
Application Note

 Using UART0 with an internal timer to
generate the baudrate MB90670/675

© Fujitsu Mikroelectronics Europe GmbH, Microcontroller Application Group

History
30th Jan. 97 MM V1.0 started
28th June 00 TKa V1.1 New format

Warranty and Disclaimer

To the maximum extent permitted by applicable law, Fujitsu Mikroelektronik GmbH restricts its warranties and its
liability for all products delivered free of charge (eg. software include or header files, application examples,
application Notes, target boards, evaluation boards, engineering samples of IC’s etc.), its performance and any
consequential damages, on the use of the Product in accordance with (i) the terms of the License Agreement and the
Sale and Purchase Agreement under which agreements the Product has been delivered, (ii) the technical descriptions
and (iii) all accompanying written materials. In addition, to the maximum extent permitted by applicable law, Fujitsu
Mikroelektronik GmbH disclaims all warranties and liabilities for the performance of the Product and any consequential
damages in cases of unauthorised decompiling and/or reverse engineering and/or disassembling. Note, all these
products are intended and must only be used in an evaluation laboratory environment.

1. Fujitsu Mikroelektronik GmbH warrants that the Product will perform substantially in accordance with the
accompanying written materials for a period of 90 days form the date of receipt by the customer. Concerning
the hardware components of the Product, Fujitsu Mikroelektronik GmbH warrants that the Product will be free
from defects in material and workmanship under use and service as specified in the accompanying written
materials for a duration of 1 year from the date of receipt by the customer.

2. Should a Product turn out to be defect, Fujitsu Mikroelektronik GmbH´s entire liability and the customer´s
exclusive remedy shall be, at Fujitsu Mikroelektronik GmbH´s sole discretion, either return of the purchase
price and the license fee, or replacement of the Product or parts thereof, if the Product is returned to Fujitsu
Mikroelektronik GmbH in original packing and without further defects resulting from the customer´s use or the
transport. However, this warranty is excluded if the defect has resulted from an accident not attributable to
Fujitsu Mikroelektronik GmbH, or abuse or misapplication attributable to the customer or any other third party
not relating to Fujitsu Mikroelektronik GmbH.

3. To the maximum extent permitted by applicable law Fujitsu Mikroelektronik GmbH disclaims all other
warranties, whether expressed or implied, in particular, but not limited to, warranties of merchantability and
fitness for a particular purpose for which the Product is not designated.

4. To the maximum extent permitted by applicable law, Fujitsu Mikroelektronik GmbH´s and its suppliers´
liability is restricted to intention and gross negligence.

NO LIABILITY FOR CONSEQUENTIAL DAMAGES

To the maximum extent permitted by applicable law, in no event shall Fujitsu Mikroelektronik GmbH
and its suppliers be liable for any damages whatsoever (including but without limitation, consequential
and/or indirect damages for personal injury, assets of substantial value, loss of profits, interruption of
business operation, loss of information, or any other monetary or pecuniary loss) arising from the use of
the Product.

Should one of the above stipulations be or become invalid and/or unenforceable, the remaining stipulations shall stay in
full effect.
.

In some applications one will have to use the internal timer #0 to generate the baudrate for
UART0, because the dedicated baudrate generator cannot be used (e.g. because of an odd
frequency of the oscillator). This note shows how to it.

Using the dedicated baudrate generator

UART0 is a serial I/O port for communications with external devices. The easiest way to use the
UART is to set a baudrate using the dedicated baudrate generator. The baudrate is calculated using
the follwing equation :

b
xnR

=
Φ

8
(1) with : b : baudrate

Φ : machine clock (after PLL) in Hz
x : clock divider (3,4 or 5) bits BCH,BCH0
n : factor (1,2,4 or 8) bits RC3..RC2
R : factor (12 or 13) bit RC0

where the specified bits are included in the URD(rate and data-) register :

BCH RC3 RC2 RC1 RC0 BCH0 P D8
Table 1 : The URD-Register bit meaning

Please note, that the values in the manual on page 91 are NOT correct ! The right values for
calculating the dedicated baudrate for an asyncronous communication are :

RC3 RC2 RC1 n RC0 R BCH BCH0 x
0 0 0 1 0 12 0 1 4
0 1 0 2 1 13 1 0 3
0 1 1 4 1 1 5
1 0 0 8

Table 2 : bit settings for calculating decidated baudrates

Example : for a 16Mhz clock (e.g. 4Mhz clock and PLL=4x) the appropriate values for 9600 baud
would be x=4, n=4 and R=13 → URD=3Chex

Using timer0 to generate the baudrate

If using the internal timer (recource-name : 16-bit reload timer #0), the RC3...RC0-bits in the control
register have to be set to “1101”. Then the reload value is calculated from equation 2 :

r
xb

= −
Φ

16
1 (2) with : r : reload value (Register TMR0)

Φ : machine clock (after PLL) in Hz
x : clock divider(21,23,25)bits CSL0,1 in TMCSR
b : baudrate

For the previous example (16Mhz clock rate, b=9600 baud) the appropriate value for r would be 51
(x=2 assumed). To set up the UART0 for use with the internal timer, the timer0 control register
TMCSR0 should be initialized at least with the reload-mode-bit RELD and the enable bit CNTE set to
1. Interrupts can be selected, but are not useful because the speed of transmission would be lower
depending on the interrupt service routine. Setting bit 0 of the TMCSR0 triggers the timer.

The clock signal output pin (TOT0) from timer 0 is internally connected to the UARTs, so external
connections are not required.

UART1 works in a similar way, but the reload values for UART1 are calculated from the equation :

r
xb

= −
Φ

32
1 (3)

example code :

void main(void)
{

 /* both function calls of initUART would */
 /* initialize the UART0 with 9600,8,N,2 */
 /* async. communication. 16Mhz clock assumed */

/* initUART(0x059,0 ,0x03C); /* init UART0 for Baudgenerator-mode */

 initUART(0x059,0 ,0x06C); /* init UART0 for use with timer0 */

 while(1) /* main loop */
 {
 putS("Test \13\10"); /* put string from UART0 */
 wait(10000); /* short delay */
 }
}

.

.

.
void wait(int i)
{
 for (; i ; i--); /* very simple delay loop */
}

void initUART (BYTE modus, BYTE interr, BYTE baud)
{

UMC_SOE = 0; /* stop UART, clear flags */
URD = baud; /* set baud rate */
USR = interr; /* enable/disable UART interrupts */
UMC = modus; /* set various bits (start,stop,parity etc) */

 if (URD && 0x068) /* If Timer0 should be used for Baudrate : */
{
TMCSR0 = 0x012; /* Set as Reload timer; 0.125us speed(X=2) */
TMCSR0_INTE = 0; /* No INTs for Baud Generator Mode */
TMR0 = 51; /* 51 for 9600 Baud (with X=2 and 16MHz clock) */
TMCSR0_TRG = 1; /* Trigger for the timer0 */
}

}

int Putch (int ch) /* sends a single character */
{

while (!USR_TDRE); /* wait for empty buffer */

UIDR = (BYTE)ch; /* fill Input/Output register */
return ch;

}

void putS(char *buf) /* puts a string */
{

while (*buf != '\0') Putch(*buf++); /* send every char */
}

