
Application Note

The Bootconcept

of Fujitsu’s MB91360 Devices
© Fujitsu Microelectronics Europe GmbH, Microcontroller Application Group

History
13th Aug. 99 MM V1.0 New Format, new updated version
04th Jul. 00 MEN V1.1 Updated Application

Warranty and Disclaimer

To the maximum extent permitted by applicable law, Fujitsu Mikroelektronik GmbH restricts its
warranties and its liability for all products delivered free of charge (eg. software include or header
files, application examples, application Notes, target boards, evaluation boards, engineering samples of
IC’s etc.), its performance and any consequential damages, on the use of the Product in accordance
with (i) the terms of the License Agreement and the Sale and Purchase Agreement under which
agreements the Product has been delivered, (ii) the technical descriptions and (iii) all accompanying
written materials. In addition, to the maximum extent permitted by applicable law, Fujitsu
Mikroelektronik GmbH disclaims all warranties and liabilities for the performance of the Product and
any consequential damages in cases of unauthorised decompiling and/or reverse engineering and/or
disassembling. Note, all these products are intended and must only be used in an evaluation
laboratory environment.

1. Fujitsu Mikroelektronik GmbH warrants that the Product will perform substantially in
accordance with the accompanying written materials for a period of 90 days form the date of
receipt by the customer. Concerning the hardware components of the Product, Fujitsu
Mikroelektronik GmbH warrants that the Product will be free from defects in material and
workmanship under use and service as specified in the accompanying written materials for a
duration of 1 year from the date of receipt by the customer.

2. Should a Product turn out to be defect, Fujitsu Mikroelektronik GmbH´s entire liability and
the customer´s exclusive remedy shall be, at Fujitsu Mikroelektronik GmbH´s sole discretion,
either return of the purchase price and the license fee, or replacement of the Product or parts
thereof, if the Product is returned to Fujitsu Mikroelektronik GmbH in original packing and
without further defects resulting from the customer´s use or the transport. However, this
warranty is excluded if the defect has resulted from an accident not attributable to Fujitsu
Mikroelektronik GmbH, or abuse or misapplication attributable to the customer or any other
third party not relating to Fujitsu Mikroelektronik GmbH.

3. To the maximum extent permitted by applicable law Fujitsu Mikroelektronik GmbH disclaims
all other warranties, whether expressed or implied, in particular, but not limited to, warranties
of merchantability and fitness for a particular purpose for which the Product is not designated.

4. To the maximum extent permitted by applicable law, Fujitsu Mikroelektronik GmbH´s and its
suppliers´ liability is restricted to intention and gross negligence.

NO LIABILITY FOR CONSEQUENTIAL DAMAGES

To the maximum extent permitted by applicable law, in no event shall Fujitsu
Mikroelektronik GmbH and its suppliers be liable for any damages whatsoever
(including but without limitation, consequential and/or indirect damages for personal
injury, assets of substantial value, loss of profits, interruption of business operation, loss
of information, or any other monetary or pecuniary loss) arising from the use of the
Product.

Should one of the above stipulations be or become invalid and/or unenforceable, the remaining
stipulations shall stay in full effect.

The development of the new 32-Bit RISC MCU-family MB91360 will be
completed soon with the flash version MB91F361. In order to support
serial flash programming, a new bootconcept was developed for these
devices.

Having 512kB FlashROM onboard, the ‘360-devices are well prepared for
complex applications which require large code and constant areas. In all
Flash-MCUs, Fujitsu offers three different ways to (re-)program the internal
FlashROM :

1.) Parallel programming using a standard EPROM-programmer together with
the appropriate socket (footprint-converter).

2.) Serial programming using a built-in Boot-ROM for handling the data
transfer.

3.) In-Circuit programming – the application uses it’s own software-method in
order to customize the programming algorithms (e.g. re-programming via
CAN)

The serial programming is the most flexible method, because it has the
advantage of being available even when the device is mounted on the board
and already in use. It can be used for field-updates (complete or partly
updates the FlashROM), for diagnostic purposes (e.g. reading SW-version-
information), low-cost developments (where no in-circuit emulator can be
used) or prototype productions.

Boot-ROM

Software-routines which are required for handling the serial data are stored
inside a fixed Boot-ROM, which is present in all MB91360 devices. Compared
with the concept used in the 16-Bit devices, where the internal Boot-ROM is
only accessible when external Mode-Pins will be changed, the Boot-ROM of
the MB91360 devices is mapped into memory at all times and will be called
after each reset (see fig.1).

The BootROM is located at address FF000 and has a size of 2kB. Since it’s
connected to the internal bus system, no chip-select areas must be assigned
before executing code from this location.

Figure 1 : Reset Sequence of MB91360

The device will start executing the Boot-ROM immeadiatly after each reset
and initializes the chip (CS-settings, clock-supply etc.). Then a number of
conditions will be checked to determine wheather to start the actual
bootloader or to start the current application.

When the device does not start from a INITX (external power-on reset), the
bootloader cannot be started. Then the Boot-ROM enters a short checkloop in
order to verify the actual boot-conditions. This is either a logic “1” on the
external bootpin or the reception of a certain character from the internal
UART0 at 9600 Baud (serial trigger). Figure 2 shows the boot program flow.

The possibilty to use a serial trigger is a major advantage. This is because in
the final application, no further hardware modifications are required to enable
the re-programming. Since the actual communicaton for downloading the new
data to FlashROM will usually be transmitted over this same serial line, the
only necessary preparation is to have the serial line available outside. In many
cases, there is a serial interface for diagnostic purposes anyway. So, one
would have to connect to this interface using the programmer-software,
power-up the application and re-programming will start automatically.

2. Jump to Boot-ROM :
 Initialize MCU (and
 start Bootstraploader
 if required)

4. Application start...

Memory Map MB91360

3. No Boot-condition detected :
 Jump to Flash Boot Sector
 (1F:4000…1F:7FFF)

1. Reset (INITX) :
 Read Reset-Vector (points to
 BootROM) - Start operation.

00:0000
00:03FF
00:0400
00:07FF

00:1000

01:0000
01:FFFF

03:C000
03:FFFF

04:0000
04:3FFC

0F:F000
0F:F7FC
0F:F800
0F:FFFC

10:0000
10:07FF

18:0000

1A:0000

1C:0000

1E:0000

1F:0000
1F:4000
1F:8000
1F:FFFF

IO Area
Direct

DMA

Cache

Data RAM

Fast RAM

Boot ROM

Fixed Reset-Vector

CAN 0-2

 512k
 FLASH ROM

128k

64k
16k
16k
32k

128k

128k

Figure 2 : Flowchart of the internal Boot-ROM

Security

In many applications, protection of the internal FlashROM is an important
topic (preventing from unwanted reading, erasing or programming). Therefore,
the bootconcept includes the checking of a special vector (“security-vector”).
Whenever this vector location is blank (=FFFFFFFF), the BootROM can be
used to invoke re-programming. But if any value is written to it, the BootROM
will immeadiatly jump to this location after the chip-initializations. No more
condition-check will be performed. This protection method has the advantage
that the user can either simply disable the bootfeature or to divert the
execution to a dedicated location in order to execute customized boot-
routines.

Protocol

Once the actual bootloader has been entered (valid boot-condition found), an
acknowledge message will be sent to the external device (normally a PC) and
the initial communication can start. Four commands are accepted :

• Receive and write to a specified memory block
• Dump the contents of a specified memory block
• Initiate a “CALL” to a certain location
• Re-dump a calculated checksum for verification

Chip initialization

Read and save
RSRR(Reset Cause)

Security-
Vector =
ffffffff ?

Reset-
Cause =
INITX ?

Set Clock to 2MHz Init
UART0

Bootpin=H
or “V”

received ?

Timeout
 ?

Jump
@(SecVec)

Jump @1F4000 Start Bootloader

RST/
INIT

Yes

Yes

Yes

NoNo

No

No
Yes

Again for security reasons, the BootROM contains no functions, which directly
program or even erase the flash. The reason for this is the risk of branching
unintentionaly to a location within the BootROM (e.g. by a corrupted software
pointer or uninitialized interrupts etc.) which could lead to a complete ROM
loss ! Therefore, any routines to handle flash-programming must be
downloaded to RAM first and can be executed from there. The so-called
“FastRAM”, which allows to load and execute instructions was implemented
mainly because of this reason. Quite clearly, any programming routine must
not be executed from the flash itself, since the flash-logic will disable flash
accesses during any of the “embedded commands”.

Software

A first version of the “MB91360 Flash Programmer” was developed using the
emulation device MB91V360. It allows to either invoke all possible BootROM
or flash-programming functions manually or to do all necessary steps
automatically in one go (“Auto mode”). This tool accepts the converted linker-
output from Softune Workbench (the development environment) directy
without any pre-processing. It also can be integrated into the tool-chain and
would then be controlled by command-line options.

Figure 3 : Serial programming tool for the MB91360 series

Markus Mierse

