
A CAN BUS PROTOCOL CONTROLLER MACRO

Clive Tilbury
Senior Product Marketing Engineer

Fujitsu Mikroelektronik GmbH

1. Introduction

The CAN Bus has already established itself as popular and reliable communications
protocol in the European Automotive market and whilst well on its way to becoming a de
facto standard there, is also finding much interest in Industrial applications. As part of
Fujitsu’s ongoing commitment to these segments, a powerful and flexible CAN Bus
protocol controller has been designed to be included in the library of peripheral function
macros for the 16 bit F²MC16LX and 32 bit FR Series microcontrollers.

Now that that Fujitsu has established a Microcontroller Design Centre at its Headquarters
near Frankfurt, with the Charter to produce devices for European customers, the next 12
months will see this macro incorporated into several new MCU series.

The Fujitsu CAN controller conforms to both version 2.0A, (11 bit identifier) and version
2.0B, (extended 29 bit identifier). There are 16 message buffers that can be individually
configured to receive all identifiers, (as per BASIC CAN), to receive only one defined
identifier, (as per FULL CAN), or to accept groups of identifiers by use of a mask, (as per
Extended CAN). By setting up more than one buffers to accept the same identifier, a
multi layer buffer can be created which supports transmission and reception of multiple
frames without additional microcontroller intervention. Up to two CAN macros can be
implemented on one microcontroller.

2. Control and Status Register Structure

The microcontroller accesses the CAN Bus macro through nineteen control registers.

Twelve of these control the configuration of or report on the status of the sixteen message
buffers in a bitwise manner, ie. the nth bit relating to the nth buffer. In this way the
following functions can be managed:
Message Buffer Valid
Standard, (11 identifiers), or Extended (29 identifiers) Frame Format selection
Transmission Request, Cancel, Interrupt Enable and Complete
Remote Transmission Request
Transmit immediately or only after Remote Frame Request Received
Remote Frame Request Received (in buffer n)
Reception Complete, Overrun, Interrupt Enable

The main Control Status Register for the key functions of Transmit, Receive and Node
Status. It is possible to enable an interrupt at any transition of Node Status between Error
Active, Warning, Error Passive and Bus Off. There are two interrupt vectors for the

macro in the microcontroller – one for receive and one for both transmit and node status
change.The Last Event Indicator Register shows whether this was Transmit or Receive
Complete, with message buffer number or a Node Status transition. A special feature of
the Fujitsu CAN controller is the ability to read the number of errors that have occurred
via the Receive and Transmit Error Counter registers. One further register controls the bit
timing parameters, (bit rate, sample point and resynchronisation jump width). The bit rate
is adjustable from 10Kbit/sec to 2Mbit/sec from a CPU clock of 16MHz.

3. Acceptance Filtering

For each individual message buffer, it is possible to select one of four acceptance
schemes. These are Full Bit Comparison, Full Bit Mask or to choose the compare / mask
bit pattern according to the contents of one of two Acceptance Mask Registers, AMR0
and AMR1. (These registers are 29 bits long but use only the most significant eleven
when using standard frame format.) This method provides the programmer with great
flexibility in handling the message and buffer management.

4. Message Buffers

There are 16 message buffers at fixed addresses. Each consists of an Identifier Register
using the 11 or 29 most significant bits from 4 bytes, a 4 bit field, indicating the number
of bytes in the frame within a Data Length Count Register and 8 bytes of Data Register,
for the message itself. These are organised in functional blocks, ie. with all the identifiers
together, etc.

The priority of a message buffer is higher with decreasing buffer number. Therefore if a
message arrives, the identifier of which is accepted by two or more buffers, it is stored in
the one with the lowest number. The same rule applies for transmitting. If a write is made
to the Transmit Request Register that requires more than one buffer to send its data, then
that with the lowest number will do so first.

A unique feature of the Fujitsu CAN Bus controller its ability to set up a multi-level
buffer group. By setting buffers to use the same AMR, (or all selecting Full Bit Mask),
and having the same compared identifier bits, it is possible to accumulate a sequence of
messages. The group can be as large as there are buffers available but the block must be
contiguous. More than one group is also permissable.The first frame will be stored in the
highest priority buffer, the second in the next highest priority buffer and so on. The
frames can be read in any order and any new frame arriving into the group buffer will be
stored in the highest priority buffer available. In the event of the group becoming full, all
subsequent frames received then overwrite the first buffer of the group and an overrun
indicated. The benefit of this arrangement is that it is not so important that the
microcontroller reads the message immediately and reduces the risk of messages being
overwritten and lost. Also, in the case where the information being transmitted requires
more than the maximum 8 bytes allowed per frame, then the controller can wait until all
data is received before reading it. In the same way, larger messages can be transmitted in
one operation. Because the registers and buffers are arranged by function and the group

must consist of contiguous buffers, it is then possible to copy this larger amount of data
as a single block.

Figure 1 demonstrates the Multi Level Buffer concept diagrammatically. The group is set
up with message buffers 13, 14 and 15 selecting AMR0 and having the same compared
Identifier bits. The first frame is stored in buffer 13 and the second in buffer 14.

Figure 1. Multi Level Buffer
Select AMR0 at 10 10 10 ... Standard Identifier
Buffers 13-15 æ ↓ å Frame 1 Frame 2

AMR0 0000 1111 111 ... 0101 1001 000 ... 0101 0110 001 ...

Identifier of ↓ ID28 ID18 ↓

Message Buffer 13 0101 0000 000 ... Ä 0101 1001 000 ... 0101 1001 000 ...
Message Buffer 14 0101 0000 000 ... 0101 0000 000 ... Ä 0101 0110 001 ...
Message Buffer 15 0101 0000 000 ... 0101 0000 000 ... 0101 0000 000 ...

Configuration Receiving Frames in a Multi Level Buffer

5. Reception Flow

Figure 2 shows the flow for the Reception operation from the viewpoint of the CAN
Macro state machine.

From detection of the Start of Frame, the filtering and buffer selection is performed as
described in sections 3 and 4 above. If the Reception Complete bit is still set, then an
overrun is deemed to have occurred and the Receive Overrun bit is set, the data
overwriting the existing contents. The received message is then examined to determine
whether it is a Data Frame, (in which case the RRTR bit is set to 0), or a Remote Frame
Request, (in which case it is set to 1). If it is a Data Frame, or if it is a Remote Frame and
the Remote Transmission Request bit has been set by software, the Transmit Request bit
is cleared to cancel pending transmissions from the designated buffer. Following this, the
Reception Complete bit is set high and if enabled, a Reception Interrupt occurs.

6. Transmission Flow

 Figure 3 shows the flow for the Transmission operation from the viewpoint of the CAN
Macro state machine.

When 1 is written to the Transmit request bit of buffer x, the corresponding Transmission
Complete bit is cleared to 0. The transmission procedure begins immediately unless the
RFTWx bit has been set, denoting that it should wait until a Remote Frame has been
received. If this bit is set, then the RRTRx bit is examined to see if the condition has been
fulfilled. Providing Transmission Cancel is not set and TREQx is not cleared, (possible
by receiving a message), the buffer remains primed until it is fulfilled. A check is made to
see if more than one buffer has been initiated, (in which case, the one with the lowest
number goes first), and also that bus state is idle. Depending on the state of the TRTRx
bit, either a Data Frame or a Remote Frame is sent. If transmission is successful, then

RRTRx, TREQx are cleared and the Transmission Complete is set high and if enabled, a
Transmission Interrupt Occurs.

7. Design and Validation

The CAN Bus macro was designed at Fujitsu Microelectronics in Kawasaki, Japan. It
was created in Verilog HDL and simulated with Verilog-XL. It was then synthesised to
FLDL, (Fujitsu Logic Description Language) and FTDL, (Fujitsu Test Description
Language) using Synopsis. This was then resimulated with the in-house tool LCADFE.
In-house layout tools were used to create the GDSII output and post layout delay
extraction for final resimulation with LCADFE.

A special observer model was also written in Verilog HDL to interpret all events on the
system level CAN Bus simulation model and send messages to the screen. This was
developed by a separate team of engineers, as a check against any misinterpretation of the
CAN specification. The test vectors were written in C, based on the Bosch Test Pattern.

Below is an example of the messages from the CAN Observer:

CANOBS:End of INTERMISSION. Bus is now IDLE!
CANOBS:*************************************
CANOBS:*SOF detected. Hard Synchronization!*
CANOBS:*************************************
CANOBS:End of BASE ID
CANOBS:Standard Format ID=1000 1111 100, RTR=0
CANOBS:End of DLC. DLC=0000
CANOBS:This packet is a Remote Frame or Data Frame of DLC=0
CANOBS:No Data field expected
CANOBS:Final CRC result 001010100000001
CANOBS:CRC Received 001010100000001
CANOBS:CRC check O.K.!
CANOBS:End of CRC field
CANOBS:Signalling ACK!
CANOBS:Acknowledgement O.K.!
CANOBS:End of ACK field!
CANOBS:End of End of Frame

Since it is not very practical to run too many test frames on a simulation model of a CAN
Bus macro, it was implemented in an FPGA device as a standalone CAN Bus controller.
An evaluation board was produced with the controller as a peripheral to an MB90T678
MCU, a ROMless device in the F²MC16L family. This implementation is actually able to
run at full speed. This not only provided faster checking of the functional performance
but it was possible to reiterate the design very quickly once a bug was found. This was
done six times during the debugging process. Also the board was able to provide several
internal signals for analysis and triggering purposes which would not be available on a
finished microcontroller. The board was also provided to a consultancy, expert in CAN

Bus and member of CiA, who supported the “real-life” validation work. This included
testing the protocol behaviour, the tolerance to protocol errors on the bus, the effect of bit
errors, arbitration at low and high bus loadings and interaction with CAN controllers
from other manufacturers.

When a new device series is designed, the first version to be produced is the evaluation
chip which in a 256PGA package is the one used in Fujitsu's MB2140A in circuit
emulator. Once this is completed, a customer can begin their design work, whilst the OTP
or for all new types, Flash ROM is introduced. The Mask ROM version follows later.

8. F²MC16L, F²MC16LX and F²MC16F Microcontrollers

Fujitsu launched the F²MC16L and F²MC16F families of 16 bit microcontrollers 2 years
ago in Europe and customers have been impressed by their price, performance and
richness of features. The 16L’s are targetted at low cost, low power and low voltage
applications whilst the 16F’s are higher performance. The newest additions to the lineup
are the 16LX’s which are implemented in 0.5um CMOS technology. In total, there are
now sixteen different series available.

The features list of the first general market device series with the CAN Bus macro is
planned to include the following functional blocks:
F²MC16LX CPU Core
ROM 64KB Mask, 128KB Mask or 128KB Flash
RAM 2KB or 4KB
CAN Bus x 1 channel
UART x 2 channels
Serial I/O x 1 channel
A/D Converter 10 bit x 8 channels
External Interrupt x 8 channels
Input Capture x 4 channels
Output Compare x 4 channels
Programmable Pulse Generator x 8 channels
Reload Timer 16 bit x 1 channel

9. Conclusion

The Fujitsu CAN Bus macro is a powerful microcontroller peripheral block that offers
designers greater control over and flexibility in implementing their applications than
other solutions. At present it is included in two F²MC16LX devices, which have been
especially designed for specific customers. As an off the shelf function, it can be
incorporated into different shapes and sizes of Fujitsu’s microcontrollers to be able to fit
many application requirements and is at the forefront of Fujitsu’s strategy for the MCU
productline. 1998 will see the introduction of the first general market F²MC16LX devices
incorporating the CAN controller and the option of Mask ROM or Flash memory.

Detection of start of data frame
or remote frame (SOF)

Is reception
successful?

Determine message buffer (x) where
received messages to be stored.

End of reception

Fig.2 Reception Flowchart

RCx?

NO

Is any message buffer (x) passing
the acceptance filter found?

Store the received message
in the message buffer (x).

A reception interrupt occurs

TREQx := 0

Received message?

TRTRx?

RRTRx := 0
RRTRx := 1

ROVRx := 1

RIEx?

RCx := 1

NO

YES

YES

1

0

Remote FrameData Frame

1

1

Glossary for control / status bit for
message buffer x

0

Glossary for control / status bit for
message buffer x
RCx Reception complete
ROVRx Receive overrun
RRTRx Remote frame request received
TRTRx Remote transmission request
TREQx Transmission request
RIEx Receive interrupt enable

Transmission request
(TREQx := 1)

TCx := 0

TREQx?

RFWTx?

RRTRx?

If there are any other message buffers
meeting the above conditions, select the
lowest-numbered message buffer

TRTRx?

Is transmission
successful?

RRTRX := 0
TREQx := 0
TCx := 1

TIEx?

A transmission complete interrupt
occurs

End of transmission

A remote frame is transmittedA data frame is transmitted

TCANx?

TREQx := 0

Fig. 3 Transmission Flowchart

0

Is the bus idle?
NO

NO

0

YES

0 1

1

1

1

0

YES

1

Glossary for control / status bit for
message buffer x
TCx Transmission complete
TREQx Transmission request
RFWTx Remote frame wait
TCANx Transmission cancel
RRTRx Remote frame request received
TRTRx Remote transmission request
TIEx Transmit interrupt enable

