Compress

This months microcontroller article is based on an application note and discusses how to reduce the
microcontroller ROM-size requirement by using a compression method for storing text-data, having in
mind an information display application with on-chip LCD controller.

Background

Our microcontrollers are quite strong when it comes to micros with on-chip LCD controller, because
we have quite alot of serieswith on-chip LCD controllers, and some which can drive quite alarge
number of LCD segments.

For example the MB89820 series with 4 COM-lines x 20 SEG-lines could drive 200 individual LCD-
segments.

With such a number of segments, its even possible to drive apha numerical displays based on
14-segment characters. See figure 1.

Note that in the area of alpha numerical displays, you will also often see a requirement for

Dot Matrix Display drivers, but these usually require a dedicated LCD controller because the
number of segmentsto driveisto high.

For example compared to the 12 character display mentioned here, a similar dot matrix would
require 12x 7x5 = 420 individua segments, which isto much for us.

On the other hand, if someone can live with 14-segment based characters, the system cost will be a

\
/N

A Single 14-Segment Digit
(15 segments including decimal point)

VI NAN
I% I% I% I% Ilﬂ\ﬁl. Ilﬂé Ilﬂé I% I% IM. IM. IM.

Example: 12 Character Display

<

/

Fig. 1, Example for a 14-Segment Display

Now the general problem is, that small microcontroller systems which can display a set of pre-defined
text messages never have enough ROM-space to store al the possible text messages or strings.

This is because the more text-based messages or instructions the system can generated, the more user-
friendly it is, so software-devel opers always tend to run into the limit.

Before showing a solution to store even more strings in the available ROM-space, lets first take alook
at the standard way to store strings:

The normal way to store text strings

The normal way to define atext string in the microcontroller ROM, isto store it as a chain of ASCII-
characters, which means one byte per character, and eventually an additional specia character which
defines the end of the string.

In a C-Program this would look like:

const char ReadyText Msg[] = “READY”

In the generated Assembly language source code this |ooks like:

_ReadyText Msg DB "READY", H 00
with the additional O-byte as the termination character.

Displaying this string on the LCD display is arather complicated process which shall be explained only
briefly, since its not in the focus on this article.

Basically adisplay sub-routine function must be coded to display a character on the LCD display.
This function will receive some parameters, like the ASCII code of a single character to be
displayed, and the character position.

The display function will use the ASCII code value as an index into a bit-map table.

Thiswill define which of the 14-segments have to be switched on or off to actually display a certain
character. The bit-map information is then written into the so called VRAM of the LCD controller.
The write-address must be computed form the character position.

Note that the necessary bit-map structure and cal culations depend very much on the physical
structure of the LCD display and the correspondence between individual segments and individual
bitsin the VRAM, and thus the connection scheme of the LCD-display.

The big drawback in the normal way to store strings is the usage of the ASCI| standard.
Using one byte or 8-bits per character is good if one really needs the complete character set of 256
different characters, likein the PC are.

In our case, where our display isonly capable of displaying areduced character set
(Capital Letters "A”-"Y", numbers "0"-"9" and some special, so about 40 different characters),
using the ASCII-code seems quite a waste.

Special way to store text strings

A solution to improve text-storage efficiency seems quite obvious:
Just store the text strings in a compressed manner, for example 4-bits per character.

Thisis easy to say, but difficult to put into practice, since the C compiler nor the Assembler know a
different storage method other than storing text strings byte by byte using the ASCII code.

One could of course use a different utility program to compress text messages into a different binary
format and enter the output on a hex-byte basis into the source-code again, but this would be a rather
unpracticed solution.

Considering the data processing flow of our C-compiler, its even more straight forward to introduce
such a compressing stage automatically.

The Intermediate-Text Compressor

Fig. 2 shows the process flow of a normal compile/ assemble process and the modified one,

which uses an intermediate processor or my so called compressor to convert ASCII stringsin the C-
Compiler output into a compressed format.

This intermediate processor is a simple self written utility program, which searches for string definition
source lines and replaces them by a special compressed data.

Normal Process Flow Modified Process Flow

Code Code

C-Compiler C-Compiler

Assembly Assembly
Code Code (1

[Intermediate Procr]

Assembly
Code (2

h

Macro-Assembler
Module Module

Fig. 2, C-Compiler Process Flow

<
8
Q
< >
|
o

Of course, the assembly source-code lines which shall be modified be the compressor must be marked
by a specia header string. In the example here | used the following scheme:

#defi ne HeadSequ "] {C}["

const char CSTR Msg[] = HeadSequ "HELLO GOOD MORNI NG';
in the C-Compiler assembly language output, this like looks like

_ConplnitMsg DB "]{C}[HELLO, GOOD MORNI NG', H 00
and after compression, assembly line looks like

_Conmpl nitMsg DB HS5F HC,H2E,H7C, H53, HE H 70, H F5
DB H5 HA4HDH39,H?2

which means a reduction from 20 to 13 bytes.

The compression algorithm used in this exampleis arather smple one:

In afirst pass, al text messages are analyzed to find out which characters out of the complete ASCI|
set occur and the ranking of occurrences.

With thisinformation, a conversion table is generated.

In a2nd pass, the ASCII characters are converted into a 4-bit code, which is stored as a binary bit
Stream.

Since 4-hits can only store 16-different characters, the total number of required characters is divided
into some pages, each containing 16 different characters.

One of the characters (in the 1st page) is defined as a special escape character, which isfollowed by a
page value and the index in a different page to be able to address characters in different pages.

So without the overhead of the escape character, the compression rate would be 50%.

In practice, the compression rate is about 40%.

For a better understanding, the de-compression algorithm is shown in figure 3.

Compressed Text Decoding Process
Binary Bit Stream . Conversion Table
1] XX XX XX XXX XX XX XX XXX x
o[E ASCII
\46 Character ;[N | Characters
Page0 2 ranked
Code Index 3 according
+ 4 to occurence
5
4-bit | 6
o, 4-bit Index - 7 ____ 4 Origina ASCII Code
8
9
+ yes 10
1
[XIx| 12
2-bit 13
forPage |xx|x|x| 14]_ .
Selection ~_— 15|ESC
4-bit
+ Code Index Character 2 X
for other Page Page 1 :
—_—

Fig. 3, Decoding Process

Note that this compression scheme is just a smple example and that different compression schemes
might yield better compression rates.

For the decompression process, it is of course necessary to have a conversion table and a
decompression function on the microcontroller, which adds some additional code-overhead.
Note, that the conversion table is generated by the compressor function and is also put into the
assembly source by searching and replacing a specia header-line.

A nicething is, that in case of the former mentioned L CD-display application, the conversion tableis
not really needed if one can organize the bit-map table in the same manner.

Finally the following listing shows an example program for our 8-bit board, where the text messages
were compressed during the compile / assemble process, yielding a text-data reduction of about 40%.
The microcontroller program also contains a decompression function to convert and list the text
messages as ASCI| characters again.

Eddie Bendds

[*) FUJI TSU bx/
/* P
/* Mi kroel ektronik GmbH P
/* P!
/*! Filenane: CI.C P *!
/*! Function: Denp on howto Cronpress Text in C Prograns 1/
/*] usi ng a speci al Post-Porcessor in-between 1/
/*] t he Conpiler and Assenbl er Pass A
/*} Series: not specific A
/*1 Version: VO1. 00 P!
/*} Design: Ednund Bendel s 15. 07. 96 A
/*! Note: 1/
/*) P!
R e e +*/
#i ncl ude <TYPEDEFS. H> /* Usefull Type Definitions */

#i ncl ude "evabi os. h" /* 1Include EVAKIT Bi osl nterfaceFunctions */

#def i ne HeadSequ "]
#defi ne TabSequ "]
#defi ne EOSTRCH ' /'
#defi ne PAGEESC 15
#def i ne Char Per Page 15

{G["
{T}H

BYTE dyDVAR; direct BYTE dyDl RVAR, /* Dunmy Variabl es avoi d Li nker War ni ngs */
BYTE dyDI NT = 0x12; direct BYTE dyDIRINIT = 0x34;

typedef const struct { const char *pStr;} STR _ARY;

CSTR ver|[] = "Text Conp Exanple V 0.1, FUJITSU M kroel ekt roni k";
CSTR date[] = DATE ;
CSTR tinme[] = __TIME_;

CSTR Nor mal Msg[]
CSTR CrLf Msg[]

"Text Conpressor Denonstration\n";
II\ nll ;

/*
The following Strings contain a special Header
whi ch mark them for the internediate-processor

*/
CSTR ConvTab[] = TabSequ; /* replace by actual Conv.Table */
const char ConmplnitMsg[] = HeadSequ "HELLO, GOOD MORNI NG';

#defi ne nQpStr 18

STR ARY OptionStr[] = {

{ HeadSequ "SELECT OPTI ONS" },
HeadSequ " CHANNEL" 1},
HeadSequ "SET TI ME" },
HeadSequ " PROG RECORD' },
HeadSequ " SHOW RECORD' 1},
HeadSequ " STATUS" 1},
HeadSequ " PLAY" },
HeadSequ "RECORD' 1},
HeadSequ "REW ND' 1},
HeadSequ "FOREWARD' 1},
HeadSequ " SLOW PLAY" 1},
HeadSequ " STOP" 1},
HeadSequ "WARM NG UP" },
HeadSequ " TAPE ERROR' 1},
HeadSequ "ACESS DEN ED' 1},
HeadSequ "I NSERT TAPE" },
HeadSequ "NO TAPE" 1},

Patn Yate Lt Vet Yaan X o e Y e Y e Y e Tate et Vo Vo W}

{ HeadSequ "PLEASE WAI T" }

/* CSTR TestStr[] = { 0x89, 0x10, 0x04 }; */
BYTE *pGCet Dat a;
BYTE AcDat a;
BYTE nAcBits;
/* ________________________________ */
/*-- Convert a nunber of Bits --*
/[*-- froma Streamto a Byte --*
/* ________________________________ */
BYTE GetBi t s(BYTE nBits)
BYTE Mask, j;
BYTE Val , Tnp;
if (!'nAcBits) {
AcData = *pGet Dat a++;
nAcBits = 8; }
Mask = O;
for (j=0;j<nBits;j++) { /* Create Bits Mask */
Mask = (Mask << 1) | 0xO01;
/[*-- Get 4-Bit N bble Data --*/
Val = AcData & Mask; /* get DataBits */
if (nAcBits < nBits) { [*- if not all Bits present -*/
Tnp = AcData = *pGetData++; /* take sonme bits fromfollow ng Data */
for (j=0;j<nAcBits;j++) { /* align to available bits */
Tmp = Tnmp << 1; }
Val = (Vval | Tnp) & Mask;
nNAcBits = nAcBits + 8 - nBits; /* calculate remaining bits */
AcData = AcData >> (8-nAcBits); /* new renmining data */
el se { /[*- all bits were available -*/
AcData = AcData >> nBits; /* new renmining data */
NAcBits -= nBits;
return Val;
}
/* ________________________________ */
/[*-- Deconpress a Text String --*/
/* ________________________________ */
void PrintConmpStr(BYTE *pS)
BYTE | x, Ch;
WORD O s;
pCet Data = pS;
nAcBits = O;
do {
Os = 0;
Ix = GetBits(4); /* Get 4/bit Nibble */
i f (1x==PACGEESC) ({ [* if switch to O her Page */
Ch = GetBits(2);
O's = Char Per Page * Ch; /* cal cul ate Page O fset */
Ix = GetBits(4); /* CGet 4/bit N bble of character Code */
}
Ch = ConvTab[| x+Of s]; /* Convert to ASCII| */

if (Ch != EOSTRCH) putch(Ch);

} while (Ch != EOSTRCH);

/*

if not Term nation Character */

/* Test Program */
/* ________________________________ */
void main ()
char *pStr;
WORD i X;
put s(Nor mal MsQ) ; /* Print Initial Message */
Print ConpSt r (Conpl ni t MsQ) ; /* Print One Conpressed Message*/

put s(Cr Lf MsQ) ;

for (ix=0;ix<nCpStr;ix++) {
PrintConpStr(OptionStr[ix].pStr);
put s(Cr Lf MsQ) ;

