
Application Note

Connecting standard LCD modules to

the MB90670/5 series

© Fujitsu Microelectronics Europe GmbH, Microcontroller Application Group

History
01th Feb. 97 MM V1.0 started
28th June 00 TKa V1.1 New format

2

Warranty and Disclaimer

To the maximum extent permitted by applicable law, Fujitsu Mikroelektronik GmbH restricts its warranties and its
liability for all products delivered free of charge (eg. software include or header files, application examples,
application Notes, target boards, evaluation boards, engineering samples of IC’s etc.), its performance and any
consequential damages, on the use of the Product in accordance with (i) the terms of the License Agreement and the
Sale and Purchase Agreement under which agreements the Product has been delivered, (ii) the technical descriptions
and (iii) all accompanying written materials. In addition, to the maximum extent permitted by applicable law, Fujitsu
Mikroelektronik GmbH disclaims all warranties and liabilities for the performance of the Product and any consequential
damages in cases of unauthorised decompiling and/or reverse engineering and/or disassembling. Note, all these
products are intended and must only be used in an evaluation laboratory environment.

1. Fujitsu Mikroelektronik GmbH warrants that the Product will perform substantially in accordance with the
accompanying written materials for a period of 90 days form the date of receipt by the customer. Concerning
the hardware components of the Product, Fujitsu Mikroelektronik GmbH warrants that the Product will be free
from defects in material and workmanship under use and service as specified in the accompanying written
materials for a duration of 1 year from the date of receipt by the customer.

2. Should a Product turn out to be defect, Fujitsu Mikroelektronik GmbH´s entire liability and the customer´s
exclusive remedy shall be, at Fujitsu Mikroelektronik GmbH´s sole discretion, either return of the purchase
price and the license fee, or replacement of the Product or parts thereof, if the Product is returned to Fujitsu
Mikroelektronik GmbH in original packing and without further defects resulting from the customer´s use or the
transport. However, this warranty is excluded if the defect has resulted from an accident not attributable to
Fujitsu Mikroelektronik GmbH, or abuse or misapplication attributable to the customer or any other third party
not relating to Fujitsu Mikroelektronik GmbH.

3. To the maximum extent permitted by applicable law Fujitsu Mikroelektronik GmbH disclaims all other
warranties, whether expressed or implied, in particular, but not limited to, warranties of merchantability and
fitness for a particular purpose for which the Product is not designated.

4. To the maximum extent permitted by applicable law, Fujitsu Mikroelektronik GmbH´s and its suppliers´
liability is restricted to intention and gross negligence.

NO LIABILITY FOR CONSEQUENTIAL DAMAGES

To the maximum extent permitted by applicable law, in no event shall Fujitsu Mikroelektronik GmbH
and its suppliers be liable for any damages whatsoever (including but without limitation, consequential
and/or indirect damages for personal injury, assets of substantial value, loss of profits, interruption of
business operation, loss of information, or any other monetary or pecuniary loss) arising from the use of
the Product.

Should one of the above stipulations be or become invalid and/or unenforceable, the remaining stipulations shall stay in
full effect.
.

3

In many applications, standard LCD modules are used. Such modules feature a dedicated
controller on board to drive a dot matrix with a high segment count. Furthermore this
controller provides a parallel interface to establish communication with other devices. In the
majority of cases this is a HD44780A00 (or a compatible one).

LCD standard display modules come in many sizes and shapes. Most of them are twisted nematic
reflective displays which outputs one or more lines of alphanumerical characters. Each character is
formed in a 5 by 8 matrix of dots. The intended applications are computer peripherals, word
processors, facsimile machines, telecommunications systems, instruments, point-of-sale terminals, etc.

How LCD's work

As the name implies a liquid crystal is a compound that flows like a liquid but has a crystalline order in
the arrangement of their molecules. In a display, these crystals keep their long axes aligned due to
intermolecular forces. So by controlling the alignment, one effectively controls the optical properties
as well as the ability of the crystals to affect the transmission of light.

In a display, the liquid crystal material is sealed between two glass plates, one bearing transistors to
control the electrode (row electrodes) of each cell, the other bearing colour filters and an electrode
(column electrodes) to complete the circuit. Polarizers in the front and the rear complete the array
which is illuminated from behind.

Example application

Fig. 1 shows how to connect a standard LCD module to the 16-bit Starterkit (MB90678). The device
is connected to Port 6 of the kit in a 4-bit mode, so only 7 portpins are used (4 Data-lines and 3
Control-lines). The port output type has to be CMOS push-pull. Every data byte is transmitted in 2
nibbles using a handshake protocol. Four different display types were used to test the application.

To activate the LCD-controller, an initial sequence has to be sent to the module. This procedure sets
the device into the correct bus-mode and clears the internal RAM. Typical data transfer between the
controller and the LCD then consists of commands (listed in table 2) and data (ASCII-compatible
character set, see table 3). Example Code was written in C.

4

 Fig. 1 : Connecting a standard LCD to the 16-bit-Starterkit

The pin assignment shown in Table 1 is the industry standard for character LCD-modules (except
those with more than 80 characters). To be sure always check the manufacturers datasheet! The
displays can be used in a 8-bit or a 4-bit-interface mode.

Pin Symbol Level I/O-Function Function (8-bit mode) Function (4-bit mode)
1 Vss - - Power supply (GND) Power supply (GND)
2 Vcc - - Power supply (+5V) Power supply (+5V)
3 Vee - - Contrast adjust Contrast adjust
4 RS 0/1 I 0 = Instruction 1 = data 0 = Instruction 1 = data
5 R/W 0/1 I 0 = Write to 1=Read from LCD 0 = Write to 1=Read from LCD
6 E 1 → 0 I Enable signal Enable signal
7 DB0 0/1 I/O Data bus line 0 (LSB) not used
8 DB1 0/1 I/O Data bus line 1 not used
9 DB2 0/1 I/O Data bus line 2 not used

10 DB3 0/1 I/O Data bus line 3 not used
11 DB4 0/1 I/O Data bus line 4 Data bus line 0 (LSB) and 4
12 DB5 0/1 I/O Data bus line 5 Data bus line 1 and 5
13 DB6 0/1 I/O Data bus line 6 Data bus line 2 and 6
14 DB7 0/1 I/O Data bus line 7 (MSB) Data bus line 3 and 7 (MSB)

 Table 1 : Pin assignment

1

2

3

4

5

6

11

12

13

14

VSS

VCC

RS (Data or Function)

RW (Read or Write)

E (Enable)

D0/D4

D1/D5

D2/D6

D3/D7 /Busy

GND (24)

VCC (1)

P6.7 (23)

P6.6 (22)

P6.4 (20)

P6.0 (16)

P6.1 (17)

P6.2 (18)

P6.3 (19)

10k for contrast adjust

MB90678

Starterkit
PORT 6
(JP39-Pin)

LCD

5

 Instruction RS R
W

DB
7

DB
6

DB
5

DB
4

DB
3

DB
2

DB
1

DB
0

Description Execution
time**

Clear display
0 0 0 0 0 0 0 0 0 1

Clears display and
returns cursor home 1.64ms

Cursor home
0 0 0 0 0 0 0 0 1 *

Returns cursor to home
position 1.64ms

Entry mode set
0 0 0 0 0 0 0 1 ID S

Sets cursor move
direction (I/D), 40µs

Display On/Off
control 0 0 0 0 0 0 1 D C B

Sets On/Off of all
display (D), cursor 40µs

 Cursor/
display shift 0 0 0 0 0 1 SL RL * *

Sets cursor-move or
display-shift 40µs

Function set
0 0 0 0 1 DL N F * *

Sets interface data
length (DL), number 40µs

Set CGRAM
address 0 0 0 1 a a a a a a

Sets the CGRAM
address. 40µs

Set DDRAM
address 0 0 1 a a a a a a a

 Sets the DDRAM
address. 40µs

Read busy-flag
0 1 BF a a a a a a a

Reads Busy-flag (BF)
and address counter 0µs

Write to CG- or
DD-RAM 1 0 d d d d d d d d

Writes data to
CGRAM or DDRAM. 40µs

Read from CG-
or DD-RAM 1 1 d d d d d d d d

Reads data from
CGRAM or DDRAM. 40µs

Table 2 : HD44780 instruction set

Remarks:
DDRAM = Display Data RAM. CGRAM = Character Generator RAM. DDRAM address corresponds to cursor
position.Address Counter used for both DDRAM and CGRAM. * = Don't care. ** = Based on Fosc = 250khz.
a=address. d=data

 Table 3 : Character Set

6

/*

** **
** DISPLAY-DEMO **
** **
** for MB90678 (16bit-Starterkit) **
** can be run with Emulator **
** **
** initializes an LCD-display and displays a message **
** LCD connected to Port 6 (default-LCD-Type : LTN111) **
** **
** Author : Markus Mierse **
** Version : 1 **
** Date : 1.2.97 **
** **
** (C) Fujitsu Mikroelektronik GmbH 1997 **
** **

*/

#include <sample\extn\mb90675.h> /* for all Register Names */

/*----------------------- variables --------------------*/

typedef unsigned char BYTE; /* BYTE definition */

int cursor; /* display position */

int i; /* general purpose integer variable */

/*--------------------- prototypes --------------------*/

void initdisp(void);
void outb(unsigned char);
void busy(void);
void print(char *Name2);
void printnum(int n);
void wait(int i);

/*---*/
/* MAIN PROGRAM */
/*---*/

void main(void)
{

 initdisp(); /* initialize display on port 6 */
 print("Hello World !"); /* show a message on the LCD */
 wait(10000); /* wait a short while */

 for (i=1;i<1000;i++) /* count up to 1000 */
 {
 print("i=");
 printnum(i); /* display the number */
 wait(5000);
 }
}

/*---------------------- function bodies ----------------------*/

void initdisp(void) /* This Routine initializes the LCD on port6 */

{
DDR6=0x0DF; /* set Port to Output (P65 not used) */
PDR6=0; /* Port 6 Off*/
PDR6=0x013; /* Startup sequence */
PDR6=0x03;
 wait(1000);
PDR6=0x013;
PDR6=0x03;

 wait(1000);
PDR6=0x013;
PDR6=0x03;

 wait(1000);
PDR6=0x012;
PDR6=0x02;
outb(0x028); /* Switch to 4-bit mode */
outb(0x0C); /* Cursor Off (on=0x0F) */
outb(0x06); /* No shift */
outb(0x03); /* Cursor home */
outb(0x01); /* Display clear */

7

}

/*---*/

void outb(unsigned char a) /* send one byte to the display */
{

BYTE b;

cursor++;
if (cursor == 9)
{
 PDR6=0x01C; /* correct position !LNT111-R only!*/
 PDR6=0x00C;
 PDR6=0x010;
 PDR6=0;
 busy();
}
b=(a & 0x0F0); /* shift upper nibble */
b = b >> 4; /* to lower nibble */
if (a & 0x080) {b=(b | 0x080);};

/* but keep Bit 7 */
b=(b & 135); /* set other bits to zero */
b=(b | 16); /* set E line */
PDR6=b; /* send to LCD */
b=(b & 135); /* clear E line */
PDR6=b; /* send to LCD */
b=(a & 143); /* take lower nibble */
b=(b | 16); /* set E line */
PDR6=b; /* send to LCD */
b=(b & 143); /* clear E line */
PDR6=b; /* send to LCD */
busy(); /* wait for busy-line */

}

/*---*/

void busy(void) /* This Routine polls the busy-line */
{

BYTE b;
PDR6=0; /* Port 3 Off before reading ! */
b=1;
while (b) /* wait for Busy-line */
{
 DDR6=0x0D0; /* set Bus as input to read Bit .3 (Busy) */

 PDR6=0x05F; /* busy request */
 b=PDR6_PD63; /* read Port */
 PDR6_PD64 = 0;
 PDR6_PD64 = 1; /* toggle E */
 PDR6_PD64 = 0;
 PDR6_PD66 = 0;
 DDR6=0x0DF; /* reset Port to output */
}

}

/*---*/

void print(char *Name2) /* This Routine displays a String */
{
 unsigned char c;
 BYTE b;
 int i,l;
 outb(1); /* Display clear */
 l=strlen(Name2);
 cursor=0;
 for (i=0; i<l; i++) /* go through string */
 {
 c=(Name2[i]); /* pick char */
 b=(c | 128);
 outb(b); /* and display it */
 }
}

8

/*---*/

void printnum(int n) /* show integer value on LCD display */
{
 float x;
 int l;
 if (n < 10) /* only one digit value */
 {
 outb(0x0b0);
 outb(0x0b0);
 outb((n+48) | 128);
 }
 else if (n >= 10 && n<100) /* two digit value */
 {
 outb(0x0b0);
 outb(((n/10)+48) | 128);
 x = n-(10*(n / 10));
 l = x;
 outb((l+48) | 128);
 }
 else if (n >= 100) /* show three digits */
 {
 outb(((n/100)+48) | 128);
 x = n-(100*(n / 100));
 n = x;
 outb(((n/10)+48) | 128);
 x = n-(10*(n / 10));
 l = x;
 outb((l+48) | 128);
 }
}

/*---*/

void wait(int i)
{
 for (; i ; i--); /* very simple delay loop */
}

/*---*/

