
Lx_Eiios6.Doc (12), 20 pages, 2000-08-25

Application Note

Notes on using EI²OS on MB90500-
Series Devices

 Fujitsu Microelectronics Europe GmbH, Microcontroller Application Group

Some core changes have been done, when developing the LX-family from the L-family.
One is the optimised interrupt behaviour, which reduces stack operations. However, there is
one specific case, which has to be taken into consideration, if schedulers or operating
systems have to be implemented for MB90500 series MCU. In case of usage of the
Extended Intelligent IO Service (EI²OS) the way of storing data on stack can change. The
application note explains the different behaviour under different conditions.

The optimised stack operation is described in "3.1.2 Behaviour of LX-Family (EI²OS not
used)".

The critical case is described in "3.3.2 Behaviour of MB90500-Series (EI²OS Count
complete)". It explains the deviating usage of stack for interrupts.

History

17th Dec 97
V1.0

HLO Original version

25th Aug 00
V2.0

HLO - Completely revised, graphics improved
- condition of necessity of INTP instruction for critical behaviour is

not correct, has been removed
- Behaviour of MB90400 series added
- Application note tile now refers to MB90500 only (not to all LX-

family)
- Workaround code included in application note

Application Note:
Notes on using EI²OS on MB90500-Series Devices

- 2 - Microcontroller Application Group, 2000-08-25

Warranty and Disclaimer
To the maximum extent permitted by applicable law, Fujitsu Microelectronics Europe GmbH
restricts its warranties and its liability for software (like sample code, other examples and
tools), its performance and any consequential damages, on the use of the Product in
accordance with (i) the terms of the License Agreement and the Sale and Purchase
Agreement under which agreements the Product has been delivered, (ii) the technical
descriptions and (iii) all accompanying written materials. In addition, to the maximum extent
permitted by applicable law, Fujitsu Microelectronics Europe GmbH disclaims all warranties
and liabilities for the performance of the Product and any consequential damages in cases
of unauthorised decompiling and/or reverse engineering and/or disassembling.

1. Fujitsu Microelectronics Europe GmbH warrants that the Product will perform
substantially in accordance with the accompanying written materials (this application note)
for a period of 90 days form the date of receipt by the customer. Concerning the hardware
components of the Product, Fujitsu Microelectronics Europe GmbH warrants that the
Product will be free from defects in material and workmanship under use and service as
specified in the accompanying written materials for a duration of 1 year from the date of
receipt by the customer.

2. Should a Product turn out to be defect, Fujitsu Microelectronics Europe GmbH´s
entire liability and the customer´s exclusive remedy shall be, at Fujitsu Microelectronics
Europe GmbH´s sole discretion, either return of the purchase price and the license fee, or
replacement of the Product or parts thereof, if the Product is returned to Fujitsu
Microelectronics Europe GmbH in original packing and without further defects resulting from
the customer´s use or the transport. However, this warranty is excluded if the defect has
resulted from an accident not attributable to Fujitsu Microelectronics Europe GmbH, or
abuse or misapplication attributable to the customer or any other third party not relating to
Fujitsu Microelectronics Europe GmbH.

3. To the maximum extent permitted by applicable law Fujitsu Microelectronics Europe
GmbH disclaims all other warranties, whether expressed or implied, in particular, but not
limited to, warranties of merchantability and fitness for a particular purpose for which the
Product is not designated.

4. To the maximum extent permitted by applicable law, Fujitsu Microelectronics Europe
GmbH´s and its suppliers´ liability is restricted to intention and gross negligence.

NO LIABILITY FOR CONSEQUENTIAL DAMAGES

To the maximum extent permitted by applicable law, in no event shall Fujitsu
Microelectronics Europe GmbH and its suppliers be liable for any damages
whatsoever (including but without limitation, consequential and/or indirect damages
for personal injury, assets of substantial value, loss of profits, interruption of business
operation, loss of information, or any other monetary or pecuniary loss) arising from
the use of the Product.

Should one of the above stipulations be or become invalid and/or unenforceable, the
remaining stipulations shall stay in full effect.

Application Note:
Notes on using EI²OS on MB90500-Series Devices

Microcontroller Application Group, 2000-08-25 - 3 -

0 Contents

NOTES ON USING EI²OS ON MB90500-SERIES DEVICES... 1

0 CONTENTS ... 3

1 INTRODUCTION.. 4

1.1 AFFECTED CORES... 4

1.2 INTERRUPTS... 4

1.3 EXTENDED INTELLIGENT IO SERVICE .. 6

2 COMMON BEHAVIOUR OF L- AND LX-FAMILY .. 7

2.1 BEHAVIOUR OF L/LX-FAMILY WITH NESTED INTERRUPTS ... 7

2.2 BEHAVIOUR OF L/LX-FAMILY WITH EI²OS TRANSFER .. 8

3 DIFFERENT BEHAVIOUR OF L- AND LX-FAMILY... 9

3.1 SUSPENDED INTERRUPT REQUEST WITHOUT EI²OS ... 9

3.1.1 Behaviour of L-Family (EI²OS not used) .. 9

3.1.2 Behaviour of LX-Family (EI²OS not used).. 10

3.2 SUSPENDED INTERRUPT REQUEST WITH EI²OS-COUNT INCOMPLETE... 11

3.2.1 Behaviour of L-Family and MB90400-Series of LX-Family (EI²OS not finished) 11

3.2.2 Behaviour of MB90500-Series of LX-Family (EI²OS not finished)................................... 12

3.3 SUSPENDED INTERRUPT REQUEST WITH EI²OS-COUNT COMPLETE.. 12

3.3.1 Behaviour of L-family and MB90400-Series of LX-family (EI²OS Count complete) 13

Behaviour of MB90500-Series (EI²OS Count complete) .. 13

4 SCHEDULER AND OPERATING SYSTEMS... 16

4.1 STACK ANALYSIS .. 16

4.1.1 Correct Stack in nested Interrupt ... 16

4.1.2 Inconsistent Stack in Case of suspended EI²OS Completion Interrupt 17

4.2 WORKAROUND PROGRAMS .. 17

4.2.1 Stack Correction Program for Code Size less than 64KB... 18

4.2.2 Stack Correction Program for Code Size less than 64KB... 18

4.2.3 Stack Correction Program for Code Size bigger than 64KB and ADB must not be broken
19

5 CONCLUSION ... 20

Application Note:
Notes on using EI²OS on MB90500-Series Devices

- 4 - Microcontroller Application Group, 2000-08-25

1 Introduction

1.1 Affected Cores

The critical behaviour explained in "3.3.2 Behaviour of MB90500-Series (EI²OS Count
complete)" applies to MB90500-series only. Additional stack usage might occur if described
conditions are met.

The F²MC-16L family and the MB90400 series of F²MC-16LX family do not show the extra
behaviour. Figure°1 lists the series described in this note.

Series Family Optimised stack usage
with suspended interrupts

Extra stack usage with
EI²OS completion interrupt

MB90500 Yes
MB90400

F²MC-16LX Yes

MB90600 F²MC-16L No
No

Table 1: Series described by this report

1.2 Interrupts

Special hardware functions of an MCU can issue an interrupt request. This request will lead
to the execution of an interrupt service routine (ISR). This routine interrupts the currently
executed program and handles the request of the hardware. Before the execution of the
ISR, the MCU core stores a set of registers to the stack (Table 2) in order to save the status
of the interrupted program. Because of these stack data the ISR is not finished by normal
RET- or RETP-instruction but by RETI-instruction. RETI restores the stack data to the
registers and allows continuing the interrupted program.

Offset Register Function
+0 PS Processor Status (CCR, ILM, RP)
+2 PC Program Counter (lower 16 bits of instruction pointer IP)
+4 DTB PCB Data Bank, Program Counter Bank (higher 8 bits of IP)
+6 DPR ADB Direct Page Register, Additional Data Bank
+8 AL Accumulator lower 16 bits

+10 AH Accumulator higher 16 bits
Table 2: Interrupt stack

If an interrupt service routine is currently executed and another interrupt is requested, the
new request is handled either immediately (nested interrupt) or later after the current ISR
has been finished. Whether an ISR is executed immediately or delayed for some time
depends on a set of registers (Table 3, Table 4).

PS (16)
CCR (8)

ILM (3) RP (5)
- I S T N Y V C

Table 3: Processor Status register of F²MC-16L/LX

Application Note:
Notes on using EI²OS on MB90500-Series Devices

Microcontroller Application Group, 2000-08-25 - 5 -

Register Function

I-flag
The I-flag is part of the Code Condition Register CCR of the processor status PS. It
globally enables or disables interrupt request. If it set to 0, interrupts are not
handled regardless of other register settings.

P
ro

ce
ss

or
 S

ta
tu

s

ILM

The Interrupt Level Mask (ILM) is part of the processor status PS. It identifies the
level/priority of the current program. Only interrupt request with higher priority (see
ICR) can interrupt the current program. Note, higher priority means lower value of
the interrupt level value.
If a request has a lower level (higher priority) than indicated in ILM, the request can
be handled. Before executing the ISR, the core will automatically store the level of
the new request in ILM. This locks lower priority requests.

IE-flag Each resource has its own Interrupt Enable flag (IE or other name). Similar to the
global I-flag, this flag enables interrupt handling but for a single resource only.

C-flag The Complete flag C (or other name) indicates that the resource has finished
processing. The flag could also be used for polling.

R
es

ou
rc

e
S

ta
tu

s

ICR

Each resource of the MCU, which can issue a request, is assigned to a dedicated
Interrupt Control Register (ICR). There are 16 different ICR available; one ICR is
shared between two resources.
The ICR indicates the level/priority of the interrupt request. On request it is
compared against a global mask (see ILM). If the ICR-level is same or higher
(same or lower priority), the request is not handled until the global mask changes to
a higher level than the request.
ICR also contains configuration and status data of the EI²OS (see later).

Table 4: Important registers for interrupt handling

Only if all following conditions are met, the ISR is executed:

I-flag = 1 globally interrupt enabled

ILM > ICR request priority is high enough

IE-flag = 1 resource interrupt enable

C = 1 resource operation complete

These conditions apply all the time while interrupts are requested or pending.

LX-family vs. L-family

One difference of L-family and LX-family devices is the stack handling, if an interrupt
request is suspended due to an currently running interrupt of higher or same priority.

After the current interrupt is finished the waiting request can be handled and its ISR is
started. Before the ISR the interrupt stack of the old ISR is restored to registers. After this
the same register values are stored to the new interrupt stack again.

The LX-family devices skip this unnecessary operation and use the same interrupt stack for
the next interrupt

Application Note:
Notes on using EI²OS on MB90500-Series Devices

- 6 - Microcontroller Application Group, 2000-08-25

1.3 Extended Intelligent IO Service

This DMA-like function can be used in order to handle an interrupt request by an automatic
service instead by an ISR. The service allows for a given number requests to copy one byte
or word between given addresses on every request. The service can increment the address
pointers. This can save a lot of cycles. Instead of executing an ISR (including storing and
restoring the interrupt stack) the single data byte/word is copied automatically without
executing code. This can be used for writing/reading data to/from Serial IO data register or
reading results from ADC.

After transferring the last byte/word an ISR is executed. This EI²OS completion interrupt
finalises the operation.

If the resource supports EI²OS, the appropriate ICR is configured by setting the EI²OS-
enable flag and by setting a descriptor index. The index points to one out of sixteen
possible descriptors, which are located in internal RAM starting at H'0100. It describes the
operation of the service (see Table 5 and Table 6).

Offset Register Function
+0 BAP Lower 16 bits of Buffer Address Pointer (usually in RAM)
+2 ISCS BAPH Interrupt Service Control Status and upper 8 bits of BAP
+4 IOA IO register address pointer
+6 DCT Data Count
Table 5: EI²OS descriptor

Bit Flag Function
0 SE Termination request enable: allows resources to abort the service
1 DIR Direction: specifies to copy from or to IO-address
2 BF Buffer fixed: specifies not to increment the buffer address pointer
3 BW Byte/Word: specifies to copy bytes or words
4 IF IO fixed: specifies not to increment the IO address pointer
Table 6: ISC of EI²OS descriptor

MB90400-series vs. other series

In the case that an interrupt request for the final transfer of EI²OS is suspended due to
currently running interrupt of higher or same priority, a critical stack condition occurs, when
the completion interrupt is executed.

At the return form current interrupt, the old interrupt stack is kept and an additional one is
stored after EI²OS has been performed (see "03.3.2 Behaviour of MB90500-Series (EI²OS
Count complete)").

Application Note:
Notes on using EI²OS on MB90500-Series Devices

Microcontroller Application Group, 2000-08-25 - 7 -

2 Common Behaviour of L- and LX-Family

2.1 Behaviour of L/LX-Family with nested Interrupts

The case of nested interrupts is identical for L- and LX-family cores. A nested interrupt
happens, if the priority of the recent interrupt request is higher than the priority of the
task/interrupt, which was running during the request.

1. Any task/program (A) at any interrupt level is executed. Interrupts are globally enabled.

2. Task A is interrupted by Int B. Therefore, an interrupt stack SA, which describes task A is
saved to stack and ISRB is executed.

3. Another interrupt request INT C occurs with higher priority than Int B. Therefore, the
current interrupt is interrupted itself. The task descriptor SB (containing current state of
interrupt Int B) is saved on stack and ISRC is activated.

4. ISRD is finished by RETI. The previous task Int B is restored.

5. Finally also ISRB is finished and task A is restored by RETI.

Figure°1: Stack usage of nested interrupt of L- and LX-family

time

lower
address

stack
usage

SB

ISRB

SA

Task A

 Automatic stack operation
 Program code execution

ISRB, ISRC: active ISR
SA,SB: task context on

stack

Interrupt Priority
A < Int B < Int C
Interrupt Level
A > Int B > Int C

1 2 3 4 5

INT B

INT C

ISRCA ISRB A

RETIB

RETIC

Application Note:
Notes on using EI²OS on MB90500-Series Devices

- 8 - Microcontroller Application Group, 2000-08-25

2.2 Behaviour of L/LX-family with EI²OS Transfer

The case of EI²OS transfer the current task/ISR interrupted for a few cycles in order to
transfer thebyte/word over the bus.

1. Any task/program (A) at any interrupt level is executed. Interrupts are globally enabled.

2. Task A is interrupted by Int B. Because the EI²OS is enabled by the ICR of Int B, a
transfer is performed. The EI²OS counter and pointer are updated.

3. Task A is continued.

Figure°2: Stack usage of nested interrupt of L- and LX-family

time

lower
address

stack
usage

Task A

 EI²OS transfer
 Program code execution

Interrupt Priority
A < Int B

Interrupt Level
A > Int B1 23

A A

Application Note:
Notes on using EI²OS on MB90500-Series Devices

Microcontroller Application Group, 2000-08-25 - 9 -

3 Different Behaviour of L- and LX-Family

3.1 Suspended Interrupt Request without EI²OS

Suspended Interrupt request means that an interrupt is not performed because its priority is
not high enough or because interrupts are not enabled globally or for the resource. As soon
as the core status allows lower priority interrupts or if interrupts are enabled, the request is
handled.

3.1.1 Behaviour of L-Family (EI²OS not used)

For the case of a suspended interrupt the L-family and LX-family behave different.

When executing the RETI instruction, the saved CPU registers will be restored. If another
interrupt is already waiting to be executed, just the same register values will be save on
stack again.

1. Any task/program (A) at any interrupt level is executed Interrupts are globally enabled.

2. An interrupt (Int B) of higher priority than current task is activated. The current task is
saved as SA on stack and ISRB is started.

3. Interrupt (Int C) of lower or same priority as Int B but higher priority than task A is
requested. Since its priority is not higher than Int B, it is not activated yet. Note, if ISRB

globally disables interrupts (I-flag := 0), INT C is suspended regardless of its priority.

4. ISRB is finished by RETI. The description SA of task A is restored on stack by microcode
(no program code). If ISRB had disabled interrupts globally, they will be enabled again
because old status was stored on stack.

5. Since Int C is still pending, task A is not continued but ISRC activated. Not only one
instruction of task A has been executed between ‘4’ and ‘5’. Therefore, the same task
descriptor SA is saved again.

6. ISRC is finished by RETI. Task A will be restored by writing CPU register values SA from
stack to CPU. After restoring, task A it is continued.

Figure°3: Stack usage of suspended interrupt of L-family

Task A

INT B

time

lower
address

stack
usage

 Automatic stack operation
 Program code execution

ISRB, ISRC: active ISR
SA: task context on

stack

Interrupt Priority
A < Int C ≤ Int B
Interrupt Level
A > Int C ≥ Int B2 3 45 61

RETIB

SA

ISRB ISRCA A

SA

RETIC

Application Note:
Notes on using EI²OS on MB90500-Series Devices

- 10 - Microcontroller Application Group, 2000-08-25

In this situation the LX-family devices behave different from L-family devices. However, LX-
family devices behaves also different depending on whether EI²OS (Extended Intelligent IO
Service) is calling an interrupt.

3.1.2 Behaviour of LX-Family (EI²OS not used)

The LX-family devices behave different from L-family devices between ‘4’ and ‘5’.
Remember that at ‘3’ an interrupt request occurs that is suspended (small priority or I-flag
off).

The L-family will have same contents of the task descriptor on stack after ‘5’ as before '4'.
(Between ‘4’ and ‘5’ only micro code and no application code are executed.) Therefore,
internal stack operations for restoring and saving are not necessary.

LX-family devices avoid these unnecessary operations.

1. Any task/program (A) at any interrupt level is executed Interrupts are globally
enabled.

2. An interrupt (Int B) of higher priority than current task is activated. The current task is
saved as SA on stack and ISRB is started.

3. Interrupt (Int C) of lower or same priority as Int B but higher priority than task A is
requested. Since its priority is not higher than Int B, it is not activated yet. Note, if
ISRB globally disables interrupts (I-flag := 0), INT C is suspended regardless of its
priority.

4. ISRB is finished by RETI. . The first word (PS) of the context SA is written back to PS.
Its interrupt level mask is compared against the appropriate interrupt control register
ICR of the waiting request. The interrupt level mask ILM is part of the processor state
PS² that is stored in SA. If the interrupt level IL of ICR is lower1 than interrupt level
mask ILM of task A, the description SA is NOT restored. The waiting interrupt will be
processed immediately.

5. If the ISE bit of ICR is not set (EI²OS disabled), ISR_C will be activated. However,
the task context is NOT saved. INT C uses the task description that has already
been saved by Int B before.

6. ISRC is finished by RETI. The stack frame SA is restored and task A is continued.
1 Lower level means higher priority.
² Before RETI-instruction the stack pointer points to PS, which is stored as last word onto stack when
context is saved due to interrupt request.

Figure°4: Stack usage of suspended interrupt of LX-family

Task A

INT B

time

lower
address

stack
usage

 Automatic stack operation
 Program code execution

ISRB, ISRC: active ISR
SA: task context on

stack

Interrupt Priority
A < Int C ≤ Int B
Interrupt Level
A > Int C ≥ Int B2 3 4/5 61

RETI

SA

ISRB ISRCA A

Application Note:
Notes on using EI²OS on MB90500-Series Devices

Microcontroller Application Group, 2000-08-25 - 11 -

3.2 Suspended Interrupt Request with EI²OS-Count
incomplete

"EI²OS-count incomplete" means that after the recent transfer, there are still other
bytes/words pending to transfer. The given number of bytes/words in the descriptor is still
unequal zero.

3.2.1 Behaviour of L-Family and MB90400-Series of LX-Family (EI²OS
not finished)

If the request ‘3’ is caused by a resource with enabled EI²OS (ISE bit in ICR set), the EI²OS
will be activated and the Byte or Word transfer will be performed after SA has been
restored. Then DCT (data counter) of the EI²OS descriptor will be decreased. The following
processing depends on the value of DCT. In case DCT is not 0 (service not finished), task A
is continued (at ‘5’).

1. Any task/program (A) at any interrupt level is executed Interrupts are globally
enabled.

2. An interrupt (Int B) of higher priority (lower level) than current task is activated. The
current task is saved as SA on stack and ISRB is started.

3. Interrupt (Int C) of lower or same priority as Int B but higher priority than task A is
requested. Since its priority is not higher than Int B, it is not activated yet. Note, if
ISRB globally disables interrupts (I-flag := 0), INT C is suspended regardless of its
priority.

4. ISRB is finished by RETI. The description SA of task A is restored in from stack to
registers by microcode (no program code). If ISRB had disabled interrupts globally,
they will be enabled again because old status was stored on stack.

E. Int C is still pending. Since ISE bit in ICR of Int C is set (EI²OS enabled), task A is not
continued yet but the EI²OS is started. One data byte or word is transferred from/to
IO area and data pointers are updated. The data counter (DCT) of the EI²OS-
descriptor is decreased.

5. If the new data counter value is NOT zero (service not finished), task A is continued.

Note, if L-family device were used, the context SA would be restored after before EI²OS is
performed.

Figure°5: Stack usage of suspended EI²OS of L-family

Task A

Int B

time

lower
address

stack
usage

 Automatic stack operation
 Program code execution
 EI²OS due to INT C

ISRB, ISRC: active ISR
SA: task context on stack

Interrupt Priority
A < Int C ≤ Int B
Interrupt Level
A > Int C ≥ Int B2 3 41

RETI

SA

ISRBA A

5E

Application Note:
Notes on using EI²OS on MB90500-Series Devices

- 12 - Microcontroller Application Group, 2000-08-25

3.2.2 Behaviour of MB90500-Series of LX-Family (EI²OS not finished)

If the request ‘3’ is caused by a resource with enabled EI²OS (ISE bit in ICR set), the EI²OS
will be activated and the byte/word transfer will be performed before SA is restored. Then
DCT (data counter) of the EI²OS descriptor will be decreased. The later processing depends
on the value of DCT. In case DCT is not 0 (service not finished), task A is restored (at '4').

1. Any task/program (A) at any interrupt level is executed Interrupts are globally enabled.

2. An interrupt (Int B) of higher priority (lower level) than current task is activated. The
current task is saved as SA on stack and ISRB is started.

3. Interrupt (Int C) of lower or same priority as Int B but higher priority than task A is
requested. Since its priority is not higher than Int B, it is not activated yet. Note, if ISRB

globally disables interrupts (I-flag := 0), INT C is suspended regardless of its priority.

E. ISRB is finished by RETI. SA is not restored yet, because there is a waiting interrupt
request. Since ISE bit in ICR of waiting interrupt Int C is set (EI²OS enabled), SA is not
restored yet but the EI²OS is started. One data byte or word is transferred from/to IO
area and data pointers are updated. The data counter (DCT) of the EI²OS-descriptor is
decreased.

4. If the new counter value is NOT zero (service not finished), operation continues by
restoring context SA of task A.

5. Task A is continued.

Note, if L-family device were used, the context SA would be restored before EI²OS is
performed.

Figure°6: Stack usage of suspended EI²OS of LX-family

3.3 Suspended Interrupt Request with EI²OS-Count
complete

EI²OS-count complete means that the last byte/word had been transferred. Therefore, the
EI²OS will execute an ISR of this resource as "completion interrupt". This allows the
software to configure a new EI²OS for the next expected block of data.

In this case not only L- and LX-family behave differently but also MB90400- and MB90500
series (both LX-family) behave differently.

Note, depending on resource (e.g. SIO) the ISR of the completion interrupt might be
executed a second time. This is not subject of this application note. This happens, if the last

Task A

Int B

time

lower
address

stack
usage

 Automatic stack operation
 Program code execution
 EI²OS due to INT C

ISRB, ISRC: active ISR
SA: task context on stack

Interrupt Priority
A < Int C ≤ Int B
Interrupt Level
A > Int C ≥ Int B2 3 E1

RETI

SA

ISRBA A

45

Application Note:
Notes on using EI²OS on MB90500-Series Devices

Microcontroller Application Group, 2000-08-25 - 13 -

byte transferred to the resource caused the completion interrupt, and the processing (e.g.
transmission) of the last byte is finished later (transmit interrupt). This behaviour is correct
and can be avoided by disabling resource IE-flag within completion interrupt.

3.3.1 Behaviour of L-family and MB90400-Series of LX-family (EI²OS
Count complete)

The L-family devices restore the stack before the EI²OS-transfer. If a completion interrupt is
executed after the transfer, the same stack data will be saved to stack again.

1. Any task/program (A) at any interrupt level is executed Interrupts are globally enabled.

2. An interrupt (Int B) of higher priority than current task is activated. The current task is
saved as SA on stack and ISRB is started.

3. Interrupt (Int C) of lower or same priority as Int B but higher priority than task A is
requested. Since its priority is not higher than Int B, it is not activated yet. Note, if ISRB

globally disables interrupts (I-flag := 0), INT C is suspended regardless of its priority.

4. Interrupt ISRB is finished by RETI. MB90600 devices immediately restore SA. MB90400
devices first check whether

E. Interrupt Int_C is still pending. Since ISE bit in ICR of Int C is set, EI²OS service is
started. One byte/word is copied from/to IO area and data pointers are updated. EI²OS
counter and pointers are updated.

5. If the new counter is zero, the EI²OS completion interrupt is to be executed. Therefore,
task A is save to stack SA again. Both stacks SA in Figure°7 are identical. There was no
program code executed in-between '4' and '5'.

6. At the end of the ISRC the instruction RETI is executed. The interrupt stack SA is
restored again.

7. Task A is continued.

Figure°7: Stack usage of suspended EI²OS and completion ISR of LX-family

3.3.2 Behaviour of MB90500-Series (EI²OS Count complete)

In case of a suspended EI²OS transfer with completion interrupt, MB90500-series devices
partly behave as an L-family device. The stack is not restored before the EI²OS-transfer.
However, if a completion interrupt is executed after the transfer, an additional interrupt stack

Task A

Int B/C

time

lower
address

stack
usage

 Automatic stack operation
 Program code execution
 EI²OS due to INT C

ISRB, ISRC: active ISR
SA: task context on stack

Interrupt Priority
A < Int C ≤ Int B
Interrupt Level
A > Int C ≥ Int B2 3 41

RETIB

SA

ISRBA A

E5

ISRC

RETIC

EI²OS complete

SA

67

Application Note:
Notes on using EI²OS on MB90500-Series Devices

- 14 - Microcontroller Application Group, 2000-08-25

G

is stored, but it should rather use the same interrupt stack or restore and store the same
again.

Side Effects

• ISRC is using a stack level, which uses 12 bytes more than expected by to its priority.

• The saved instruction pointer in SB points to an instruction (RETI of ISRB), which is
expected to be completely finished already.

• RETI of ISRB is executed a second time after the completion interrupt ISRC has been
finished.

• The saved processor status in SB is the same as in SA (see 4.1.2 Inconsistent Stack in
Case of suspended EI²OS Completion Interrupt).

1. Any task/program (A) at any interrupt level is executed Interrupts are globally enabled.

2. An interrupt (Int B) of higher priority than current task is activated. The current task is
saved as SA on stack and ISRB is started.

3. Interrupt (Int C) of lower or same priority as Int B but higher priority than task A is
requested. Since its priority is not higher than Int B, it is not activated yet. Note, if ISRB

globally disables interrupts (I-flag := 0), INT C is suspended regardless of its priority.

E. Interrupt Int B is finished by RETI. The first word (PS) of the context SA is written back to
PS. Its I-flag and ILM is compared against ICR of the waiting interrupt request Int C.
Since the interrupt level IL of ICR is lower* than ILM of SA, the remaining context SA of
task A is not restored yet and the stack pointer remains unchanged. Instruction pointer
still points to RETI of ISRB.

Since, ISE bit in ICR of Int C is set, EI²OS service is started. One byte/word is copied
from/to IO area and data pointers are updated. The EI²OS counter and pointer is
updated.

4. If the new EI²OS-counter is zero, the current context is saved to SB. The saved
instruction pointer of the interrupt stack SB points to the RETI instruction of ISRB.

5. At the end of ISRC the instruction RETIC is executed. SB is restored and the instruction
pointer points to RETIB.

6. RETIB of ISRB is fetched (as at 'E') and executed again. Now the interrupt stack SA is
restored to registers.

7. Task A is continued.

* lower level means higher priority

Application Note:
Notes on using EI²OS on MB90500-Series Devices

Microcontroller Application Group, 2000-08-25 - 15 -

Figure°8: Stack usage of suspended EI²OS and completion ISR of MB90500-LX-family

Task A

Int B

time

lower
address

stack
usage

 Automatic stack operation
 Program code execution
 EI²OS due to INT C

ISRB, ISRC: active ISR
SA, SB task context on stack

Interrupt Priority
A < Int C ≤ Int B
Interrupt Level
A > Int C ≥ Int B

2 3 E1

RETIB

SA

ISRBA A

4

ISRC

RETIC

Int C

RETIB

EI²OS complete

567

SB

Application Note:
Notes on using EI²OS on MB90500-Series Devices

- 16 - Microcontroller Application Group, 2000-08-25

4 Scheduler and Operating Systems

There are different ways that Scheduler and operating systems can work. They might have
system calls, which modify the current stack of an interrupt. E.g. data areas could be
copied. However, if these systems use the stack values of SB in 3.3.2 or modify it, operation
could fail. Following refers to the behaviour described under 3.3.2.

If the interrupt handler ISRC is calling OS service routines, which clears the stack on its own
and uses a context jump with data saved at modified return address, the address
calculation may fail. If the OS relies on stack depth and that SB would not be on top of SA

due to its priority, the OS might not restore SA. Stack overflow may occur.

However, if an ISR is always executes RETI instruction to exit the interrupt level and if the
saved instruction pointer (PCB:PC) on stack is not modified, the stack will be cleared and
restored correctly.

4.1 Stack Analysis

4.1.1 Correct Stack in nested Interrupt

Normally, if there are two interrupt stacks on top of each other, the last stored one contains
a smaller Interrupt Level Mask ILM.

In case "2.1 Behaviour of L/LX-Family with nested Interrupts" the first stack SA holds the
saved ILM (stored with processor status PS) of task A. The later SB holds the ILM of Int B
and Int C has its ILM in the actual PS register. The priority rises with stack depth. The ILM
value decreases with stack depth.

ILM(SA) > ILM(SB) > ILM(PS-register) (1)

>Show register ILM
ILM = 2

>Dump /w %SP
address +0 +2 +4 +6 +8 +A +C +E --- a s c i i --
000490 60E4 019E 00FF 0100 8002 0100 E0E0 012B .`......*..@..+.
0004A0 00FF 0100 002A 4001 0000 02C6 00E6 00FF *..@........

>disassemble FF019E
main.c$143 while (!USR0_TDRE); // wait until the first byte is sent and
FF019E 6C8421FC BBC I:21:4,FF019E

Example 1: Program status after entering the ISR of a nested interrupt

Example 1 shows a sample stack (see p4, Table 2, Table 3, Table 4). The Task A is saved
on stack as SA from H'49C to H'4A6 due to Int B. The Int B is saved as SB on stack from
H'490 to H'49A due to Int C.

The current ISRC is running at level 2 (ILM = 2). The previous interrupt was running at level
3, because the upper 3 bits of saved PSB at address H'490 are B'011. The level of task A is
7, because the upper bits of saved PSA at address H'49C are B'111.

The saved instruction pointer in SB at H'492 points to code of the ISRB at H'FF019E.

Application Note:
Notes on using EI²OS on MB90500-Series Devices

Microcontroller Application Group, 2000-08-25 - 17 -

4.1.2 Inconsistent Stack in Case of suspended EI²OS Completion
Interrupt

If the conditions of "3.3.2 Behaviour of MB90500-Series (EI²OS Count complete)" are met,
the stack shows inconsistent data. The stack SB holds mixture of status of Task A (saved
PS) and status of ISRB at the last instruction (other saved registers). However, the saved SB

is expected to be fully identical to SA. The reason for inconsistency is the fact that at RETI
(see Figure°8 event 'E') of ISRB only PS of SA is restored and ISRC is executed before the
other registers are restored.

In case "3.3.2 Behaviour of MB90500-Series (EI²OS Count complete)" the first stack SA

holds the saved ILM (stored with processor status PS) of task A. The later SB also holds the
ILM of Task A. Int C has its ILM in the actual PS register. The priority does not rise with
stack depth. The ILM value does not decrease with stack depth.

ILM(SA) = ILM(SB) > ILM(PS-register) (2)

>Show register ILM
ILM = 2

>Dump /w %SP
address +0 +2 +4 +6 +8 +A +C +E --- a s c i i --
000490 E0E0 0199 00FF 0100 7FFF 0100 E0E0 012B *..@..+.
0004A0 00FF 0100 002A 4001 0000 02C2 00E6 00FF *..@........

>Disassemble FF0199
main.c$138 }
FF0199 6B RETI

Example 2: Program status after entering the ISR of a nested interrupt

Example 2 shows a sample stack (see p4, Table 2, Table 3, Table 4). The Task A is saved
on stack as SA from H'49C to H'4A6 due to Int B. The Int B is saved as SB on stack from
H'490 to H'49A due to Int C + EI²OS. Normally, Int_C should cause the Task A to be saved
again from H'49C to H'4A6.

The current ISRC is running at level 2 (ILM = 2). The previous interrupt was running at same
or lower level than ISRB (or at any level but with interrupts globally disabled). However,
saved PS of SB is the same as of SA. The level of task A is 7, because the upper bits of
saved PSA at address H'49C are B'111.

The saved instruction pointer in SB at H'492 points to RETI of the ISRB at H'FF0199.

Note that this interrupt stack inconsistency is not a problem at all, if no
modifications are done to the stack by the program. At the end of the EI²OS
completion interrupt the stack area SB and the stack area SA are correctly
restored.

4.2 Workaround Programs

In order to achieve correct operation, even if modifications are done to the data on stack,
the use of workaround code is possible.

The code will check the interrupt stack for the code it is pointing to by instruction pointer
(PCB:PC in Table 2, p4). If it is RETI (return from interrupt) the stack is corrected by
increasing the stack pointer.

Application Note:
Notes on using EI²OS on MB90500-Series Devices

- 18 - Microcontroller Application Group, 2000-08-25

To use the code it is necessary to have the stack pointer pointing to the PS of the interrupt
stack (PCB:PC in Table 2, p4). Therefore, PUSHW or LINK must not be executed after
entering the interrupt. However, there is only limited control of this, if C-language is used.

To avoid register saving in C with FCC907-compiler the __nosavereg specifier must be
applied in addition to the __interrupt specifier of the function. In that case the
#pragma register(x) is necessary to assign a separated register bank x to the function.

There is no save way to avoid LINK instruction. LINK sets a function frame (e.g. if local
variables are used). Very small function without local variables and no parameters might not
use the LINK. However, this is out of control, if the code is changed.

Therefore, an Assembly function should be used, which corrects the stack and then jumps
to the C-language function (see Example 3). The Assembly function must be assigned to
the interrupt vector.

The combination of Example 3 and Example 5 should best fit for Medium model C-language
programs.

__interrupt void AssemblyISR(void); // prototype of AssemblyISR
#pragma intvect AssemblyISR 37 // assign function to interrupt (e.g. #37)

#pragma asm
.GLOBAL _AssemblyISR
.IMPORT _C_ISR

_AssemblyISR: // Assembly routine
Stack Correction code // work around code
JMPP _C_ISR // jump to C-code

#pragma endasm

__interrupt
void C_ISR(void) // normal interrupt handler
{

AnyResource.IntReq = 0; // clear interrupt request
}

Example 3: C-language frame for the workaround code

4.2.1 Stack Correction Program for Code Size less than 64KB

For programs with less than 64 KB code it is sufficient to read only the 16Bit-offset of the
instruction pointer from stack. Since PCB (upper 8 address bits) remains unchanged, PCB
can be used for reading the instruction at the return address (line 5 in Example 4).

1. AND CCR, #0xBF // diasabele interrupts
2. MOVW A, SP // load stackpointer
3. ADDW A, #2 // point to instruction pointer
4. MOVW A, SPB:@A // read program counter from stack
5. MOV A, PCB:@A // read instruction at return address
6. CBNE A, #0x6B,normal1 // is it RETI?
7. ADDSP #0x0C // if yes, forward stack
8. normal1:
9. OR CCR, #0x40 // enabel interrupts again

Example 4: Workaround code for programs with less than 64 KB code

4.2.2 Stack Correction Program for Code Size less than 64KB

For programs with more than 64 KB code it is necessary to change program bank as well.
Therefore, the saved program bank on stack is loaded to ADB register. This might modify
the value of ADB (see Example 5). However, ADB is properly restored when returning from
interrupt.

Application Note:
Notes on using EI²OS on MB90500-Series Devices

Microcontroller Application Group, 2000-08-25 - 19 -

If the interrupt handler relies on ADB being the same as it was in the interrupted
program, this workaround cannot be used.

AND CCR, #0xBF // diasabele interrupts
MOVW A, SP // load stackpointer
ADDW A, #4 // point to program counter bank
MOV A, SPB:@A // move AL->AH, load PCB to AL
MOV ADB, A // set bank to ADB
MOVW A, SP // load stackpointer again
ADDW A, #2 // point to program counter
MOVW A, SPB:@A // read program counter from stack
MOV A, ADB:@A // read instruction from program
CBNE A, #0x6B,normal2 // is it RETI?
ADDSP #0x0C // if yes, point to next int stack

normal2:
OR CCR, #0x40 // enabel interrupts again

Example 5: Workaround code for programs with more than 64 KB code and broken ADB

4.2.3 Stack Correction Program for Code Size bigger than 64KB and
ADB must not be broken

For programs with more than 64 KB code it is necessary to change program bank.
Therefore, the saved program bank on stack is loaded to ADB register (see Example 6).
This might modify the value of ADB. Therefore, ADB is restored before jumping to the real
ISR.

If the interrupt handler relies on ADB being the same as it was in the interrupted
program, this workaround should be used.

AND CCR, #0xBF // diasabele interrupts
MOVW A, SP // load stackpointer
ADDW A, #4 // point to program counter bank
MOV A, SPB:@A // load PCB
MOV ADB, A // set bank to ADB
MOVW A, SP // load stackpointer again
ADDW A, #2 // point to program counter
MOVW A, SPB:@A // read program counter from stack
MOV A, ADB:@A // read instruction at return address
MOVW A, SP // load stackpointer to AL and previous AL to AH
ADDW A, #6 // point to ADB
MOV A, SPB:@A // read prevous ADB value
MOV ADB, A // restore ADB
SWAPW // reload ADB pointer from AH to AL
CBNE A, #0x6B,normal3 // is it RETI?
ADDSP #0x0C // if yes, point to next int stack

normal3:
OR CCR, #0x40 // enabel interrupts again

Example 6: Workaround code for programs with more than 64 KB code and unbroken ADB

Application Note:
Notes on using EI²OS on MB90500-Series Devices

- 20 - Microcontroller Application Group, 2000-08-25

5 Conclusion

There is no problem with MB90600 series (L-family) and MB90400-series (LX-family).
However, with MB90500-series (LX-family) following items needs to be considered in order
to avoid misoperation (e.g. stack overflow):

• The data automatically saved by hardware interrupts should not be modified.

• Each interrupt should be finished by RETI instruction.

Otherwise, described workaround should be added to the EI²OS completion interrupt.

This applies only, if followings conditions are met (AND):

1. A interrupt request of lower or same priority occurs, while a program is executed.

2. This waiting request causes EI²OS to be executed.

3. EI²OS counter becomes zero. (Means that the last iteration has been done.) Therefore,
it is calling the interrupt handler.

If one of the following conditions are met, normal behaviour can be expected (OR):

1. EI²OS is not used.

2. EI²OS had been executed but the counter did NOT become zero.

