Appl i cati on Note FUC];I)TSU

Microcontroller interface to external Flash Memory

(e.g. MB90670/75 series)

© Fuijitsu Microelectronics Europe GmbH, Microcontroller Application Group

Hi story

20" March 97 | EBe | V1.0 | started

28" June 00 | TKa | V1.1 | New format

Warranty and Disclaimer

To the maxi mum extent pernitted by applicable law, Fujitsu M kroel ektroni k GrbH
restricts its warranties and its liability for all products delivered free of
charge (eg. software include or header files, application exanples, application
Not es, target boards, evaluation boards, engineering sanples of I1Cs etc.), its
performance and any consequential danages, on the use of the Product in accordance
with (i) the ternms of the License Agreenent and the Sale and Purchase Agreenent
under which agreenents the Product has been delivered, (ii) the technical
descriptions and (iii) all acconpanying witten materials. In addition, to the
maxi mum extent pernitted by applicable law, Fujitsu M kroel ektroni k GrbH di scl ai ns
all warranties and liabilities for the performance of the Product and any
consequential damages in cases of unauthorised deconpiling and/or reverse
engi neering and/or disassenbling. Note, all these products are intended and nust
only be used in an evaluation |aboratory environment.

1. Fujitsu Mkroelektronik GrbH warrants that the Product wll perform
substantially in accordance with the acconpanying witten materials for a
period of 90 days form the date of receipt by the custoner. Concerning the
hardware conponents of the Product, Fujitsu Mkroel ektronik GrbH warrants
that the Product will be free fromdefects in material and workmanshi p under
use and service as specified in the acconpanying witten materials for a
duration of 1 year fromthe date of receipt by the custoner.

2. Should a Product turn out to be defect, Fujitsu Mkroelektronik GrbH s
entire liability and the custonmer’s exclusive renedy shall be, at Fujitsu
M kroel ektroni k GrbH s sole discretion, either return of the purchase price
and the license fee, or replacenment of the Product or parts thereof, if the
Product is returned to Fujitsu M kroel ektronik GibH in original packing and
wi thout further defects resulting fromthe customer’s use or the transport.
However, this warranty is excluded if the defect has resulted from an
accident not attributable to Fujitsu Mkroelektronik GH or abuse or
m sapplication attributable to the custoner or any other third party not
relating to Fujitsu M kroel ektroni k GrbH.

3. To the maxi mum extent permitted by applicable law Fujitsu M kroel ektronik
GbH disclains all other warranties, whether expressed or inplied, in
particular, but not limted to, warranties of merchantability and fitness
for a particular purpose for which the Product is not designated.

4, To the naxi mum extent permitted by applicable law, Fujitsu M kroel ektronik
GrbH's and its suppliers” liability is restricted to intention and gross

negl i gence.
NO LI ABI LI TY FOR CONSEQUENTI AL DAMAGES

To the maxi mum extent permitted by applicable law, in no event shall Fujitsu
M kr oel ektroni k GrbH and its suppliers be liable for any damages what soever
(including but without Iimitation, consequential and/or indirect danages for
personal injury, assets of substantial value, loss of profits, interruption
of business operation, loss of information, or any other nonetary or
pecuniary loss) arising fromthe use of the Product.

Shoul d one of the above stipulations be or beconme invalid and/or unenforceable,
the remaining stipulations shall stay in full effect.

Fantastic FLASH

Flash Memories are the ideal code storage memory for microcontroller designs,

Mainly due to the fact, that the program content can be simply modified by the controller itself
without having to physically open the system and replace a component.

Thus, the nightmare of errorsin the firmware has lost its horror.

The following article intends to give some simple but important hints on hardware and software issues
related to using flash memories together with microcontrollers in embedded applications.

It is based on a practical example of using the MBM29F400TA/400BA or
MBM29F800T/MBM29F800B in 16-bit mode, but can also be easily adapted for other devices and
configurations. For further information please also refer to the data-sheet.

Backaground

FLASH memory can be directly connected to any microcotroller bus in a similar manner to ROM or
EPROM devices. Flash memories can also be programmed on dedicated programmers similar to
EPROMSs, but the real advantage is, that they can be re-programmed in-circuit under the appropriate
software control.

One could assume that a flash would require some additional and special control signals, but that is not
really the case. (At least with the FUJITSU flash memories which require only a single supply voltage).
Actually, compared with a standard EPROM, there exist some special signals like /WE, RY/BY,
/RESET, and BY TE but their function is quite trivial:

Difference FLASH / EPROM

M BM 29F400xA MB27C512A
Al _| D0.D15
A0.A17 =) = A0.A15 =) D0.D7
ICE __| ICE _|
IOE __| I0E _|
MWE _|
RY/BY __|
IRESET _|

IBYTE __|

The/BYTE input is used to configure the device to operate in either 8-bit or 16-bit wide mode.

If it is configured as an 8-bit memory, the additional addressline“A ;" is needed to address the
complete memory area. As mentioned above, for this application note we assume the 16-bit mode, so
“A 1" isnot used.

“RY/BY” isan output status signal which could be used to check if the flash memory is doing
something specia (“embedded algorithm operations’), but since this status information can also be
determined by software, it’s not really necessary to connect this signal to a dedicated controller input,
SO we assume not used.

“/WE” isasimple write input and used to enable writing data to the flash memory.

But, do not assume that writing to a flash memory location would program this location with the
written data. This would be to ssmple and more importantly to dangerous. A “corrupted” program
could then overwrite and destroy the memory contents if it writes something into the flash memory
space. To actually program a flash memory location, a“secret” command has to be sent to the flash
devicesinternal state machine to put it into the “embedded command” mode. In this mode, you can
then execute a write operation or one of the other embedded commands, such as erasing.

“/RESET” could be used to get the flash memory out of the “embedded command” mode, but as

above, this can be done by software as well, so this input could be ssmply tied to Vcc.
In fact, the /RESET input could be useful in a different aspect mentioned | ater.

Pr ogramming Philosophy

So far it should be clear, that a flash memory is a quite ssimple device and that it is possible to perform
in-circuit programming using some “secret” commands.
To make things alittle bit more complicated, we have to pay attention to some futher considerations:

1.) First of all, it should be noted, that if the flash memory is the only program memory in a system,

the flash memory must contain some instruction code, so the system is able to “boot-up” at power-on
or reset. Thus the flash device has to be programmed once before it is soldered into the system.

(See the example Microcontroller Memory Map. Note that in this example we assume controllers like
Fujitsu’s, which read its reset-vector from the upper or top memory area. There are other architectures,
which would require the FLASH to be at the bottom of the memory area.)

2.) Before re-programming the flash memory, it has to be either erased completely, or just certain
memory areas of the flash, called “sectors’. Thiswould be done by issuing an embedded erase
command. (Please refer to the data sheet on the flash memory sector areas.)

The problem is, that while a erase procedure is in progress, the complete flash memory can not be
accessed. So evenif just a sector is erased, the controller software can not run from a different sector in
that flash memory.

Thus, before erasing the flash, a so called “Flash Monitor” program has to be installed in a different
memory area, for example by copying some code from the Flash to the RAM area.

When the controller is executing code from that RAM area, it can initiate the erase operation, and make
sure that new program data is written into the flash memory.

MicroController Memory Map

FFFFF <= Reset Vector
512 KByte Boot Program
(256 KWord) . .
FLASH Application-Program
8 0000
7 FFFF
(unused)
40000

3 FFFF- « Flash Monitor
00000 Program

Now, what would happen if the power-supply fails during that process.

Wéll, if the complete chip erase was executed, basically bad luck.

The flash program memory would be empty or inconsistent and the system is out of use.

If just an individual sector was erased, and it was not the sector which contains the reset-vector, boot
program and the install-routine for the Flash Monitor, the system could be re-programmed again.

To make sure such an important “boot sector” can never be erased, it isindeed possible to “erase-
protected” each individual sector. Note, that this protection can only be done by dedicated
programming equipment and not by software control.

A drawback of this protection is of course, that the flash program can not be re-programmed
completely anymore. The application software has to be structured into afixed part which will never
change, and a variable part which could be updated.

To be able to keep this fixed part as small as possible, the flash memory have a couple a smaller sectors
in the “boot area’, so the required protection area can be specified in rather small area steps.

Note also, that due to the different processor architectures, there exist two type of flash devices.

One, where these smaller sectors are located at the top of the memory area, and the others where they
are located at the bottom.

At this point | would aso like to mention a nice trick using the /RESET input.

If the microcontroller busis accessible by an external connector, it would be possible to temporarily
connect an external memory board which contains a program memory with some boot-code, which is
mapped to the same flash memory address space.

Usually this would lead to a bus-conflict, if two memory devices are selected within the same memory
area, but if the flash /RESET is activated, then the on-board flash memory is disabled.

Now, the external program could install a“Flash Monitor” into ram. Then the external memory board
could be disconnected or made inactive, the /RESET could be released again, and the flash memory can
be re-programmed with the updated code, so the /RESET input is effectively used as a second chip
select input.

Thisway, even an empty flash memory could be programmed inside a system for the first time.

Bit Assignment, Even/Odd Address, Byte/Word Accesses

To understand the software procedures which can activate the “embedded commands’, there are some
more hardware related issues to discuss, since they have some impact on the software.

The main reason for this is because we have chosen the 16-bit wide example.

The typica connection scheme between a Fujitsu microcontroller and a 16-bit wide flash memory is
shown in the following figure. Other Architectures might look slightly different.

Address Bus Connection for 16-bit Configuration

MB90T673 M BM 29F400xA

AO | AO

Al Al
ALl Al o

AL7 I_I_ AL7

MICRO A18 FLASH
D0..D15 < > D0..D15

ICE ICE

JOE JOE

WL /WE

/WH |—

The important thing is, that the address line A1 of the controller is connected to AO of the flash
memory. The controller would need its AO line only to address single bytes in an external memory, but
since we configured our system to be 16-bit wide, the smallest unit the microcontroller can read is a 16-
bit word. Note, that also the controller has to be configured such that it knows that the flash memory
areais 16-bit wide.

This ensures that even if the controller software reads a byte from the flash area, the controller
hardware will read a 16-bit word and multiplex the higher data bits D8..D15 onto DO..D7 internaly if
the access was to an odd memory location.)

This ensures also, that if the controller would read a 16-bit word from an odd-address, the micro
hardware has to read two 16-bit words and assemble the data by using the hi-byte of the 1st and the lo-
byte of the 2nd access.

If the flash memory would not be a flash, but a 16-bit wide RAM, the RAM would have two write
inputs, so the micro could write individual bytes into the RAM (/WL and /WH).

But the flash is not such aRAM and has just one write input which is connected to WL, so we can only
write 16-bit words into the flash memory.

Coming back to the “secret embedded commands’.

As said before, writing data to the flash memory does not program a flash memory location,

the write cycle is ssmply ignored.

But if you know the “secret”, you can write one of the specia codes into the relevant memory locations
in the right order (like a pass-word) and you will get into the embedded command mode.

Now, the above implications on AddressBit Assignement and 16-Bit Bus Mode imply some additional
rules to be followed, otherwise the “ password” will not work. These are:

a) The software must be written in a manner, such that all read/write accesses to the flash memory
(for embedded commands) are 16-bit wide and reference only even microcontroller-addresses.
Otherwise there is arisk that the micro-hardware generates two-cycle access.

Of course this might require specia care when using a C-Compiler such that the C-Compiler
does not generate strange executable code.

b) The specia “secret” memory locations to write to, are not the ones mentioned in the data-sheet.
This means physicaly yes, but due to the A1 => AO bit assignments, the address values used by
the controller software are actually the mentioned ones shifted |eft by one hit.

Example Program

After al these hardware considerations its time to look at the software.

An example program was developed which is able to demonstrate the embedded functions.

The program is structured into two source code modules. One provides the “embedded command
functions’, the other is a user interface or monitor type program, which calls these functions to display
some information about the flash memory (Vendor-, Device-Code), and which allows to do some basic
thinks like chip-erase, individual sector erase, program and display memory locations.

To save space, we have listed just the first source code module in this article.

Edmund Bendels

[*) FUJI TSU bx/

/*) Mi kroel ektronik GmbH P

[*) Px/

/*} Filename: FLA C P

/*! Function: Basic Routines for FLASH operations 1/

[*) (Tested with MBMROF400TA and MBMROF800B) bx/

[*) Px/

/*} Series: MB90670/ 5 P *!

/*1 Version: VO1. 00 P *!

/*) Design: E. Bendel s P *!

/*} Change: <nanme> <date> P *!

[R +*/

#i ncl ude <typedefs. h> [* usefull type definitions */

#include "fla.h" /* Flash Functions */

#defi ne Aut oSel Cnd 0x9090

#defi ne ProgranCnd OxAOAO

#defi ne SecEraCrdl 0x8080

#defi ne SecEraCmd2 0x3030

#defi ne ChpEraCnrd2 0x1010

#defi ne LoAdr 5555 OxAAAA /* Address 5555 is AAAA physically

#defi ne LoAdr AAAA 0x5554 /* Address AAAA is 5554 physically

#defi ne LoAdrxx00 0x0000 /* Address xx00 is xx00 physically

#defi ne LoAdrxx01 0x0002 /* Address xx01 is xx02 physically

#defi ne LoAdrxx02 0x0004 /* Address xx02 is xx04 physically
/* since Al of Mcro => A0 of Flash

/* Note: (OddAddress would lead to a 2 cycle Access ! */
/* __ */
/* __ */

voi d CGener at eSequence(l ong FAdr,

WORD _ far *pAAAA;
WORD _ far *p5555

WORD FL_Aut oSel ect (I ong FAdr,

p5555 =
PAAAA =

*p5555 = OXAAAA;
*pAAAA = 0x5555;
*p5555 = COmd;

WORD _ far *pAdr;

Cener at eSequence(FAdr,
pAdr = (WORD _ far*) ((
*MCode = *pAdr;

pAdr = (WORD _ far*) ((
*DCode = *pAdr;

FL_Fast Reset (FAdr);
return 1;

WORD FL_GCet Sect Prot (|1 ong FAdr)

WORD _ far *pAdr;

/* some Po
/* some Po

/* Data
/* Data
/* Data

Aut 0Sel Cnd) ;
FAdr & OxFFFEO000)
/

FAdr & OxFFFEOO00O)

/* read Manufacture Code */

/*

inters to Flash Menory */
inters to Flash Menory */

(WORD __far*) ((FAdr & OXxFFFE0000) | LoAdr5555);
(WORD __far*) ((FAdr & OXxFFFEO000) | LoAdr AAAA);

AA */
55 */
=Command Byte (Word)*/

WORD *MCode, WORD * DCode)

| LoAdrxx00);
* read Device Code */

| LoAdrxx01);

Ter mi nat e Aut oMode */

!
!
Po*/
!
I

.*/

WORD Fl ag;

Cener at eSequence(FAdr, AutoSel Cmd);
pAdr = (WORD _ far*) ((FAdr & OxXFFFEOOOO) | LoAdrxx02);

Fl ag = *pAdr; /* Protect Bit Status */
FL_Fast Reset (FAdr); [* Term nate AutoMde */
return Fl ag;

}

/* __ */

voi d FL_Fast Reset (1 ong FAddr)
WORD _ far *pAdr;

pAdr = FAddr & OxFFFEO000O;
*pAdr = OxFOFO;

WORD FL_ReadWr d(1 ong FAddr)

WORD _ far *pAdr;

WORD Dat ;
pAdr = (WORD __far*) FAddr;
Dat = *pAdr;
return Dat;
}
/* __ */

WORD FL_WiteWrd(long FAdr, WORD Dat a)

WORD _ far *pAdr;
WORD TDat ;

pAdr = (WORD _ far*) FAdr;
Cener at eSequence(FAdr, PrograntCmd);
*pAdr = Dat a;
do {
TDat = *pAdr;
if (TDat==Data) return 1;
el se if ((TDat &x0028)==0x0028) return O; /* Failure Case */
} while (1);

WORD FL_Sect or Erase(l ong FAdr)
WORD _ far *pAAAA /* sone Pointers to Flash Menory */
WORD _ far *p5555; /* sone Pointers to Flash Menory */
WORD _ far *pAdr;
WORD TDat ;

pAdr = (WORD _ far*) FAdr;

p5555 = (WORD __far*) ((FAdr & OxFFFEOOOQ) | LoAdr5555);
pAAAA = (WORD _ far*) ((FAdr & OxFFFEOOOQ) | LoAdr AAAA);
p5555 = OxAAAA / Data = AA */
pAAAA = 0x5555; / Data = 55 */
p5555 = SecEraCnmdl; / Erase Conmand 1 */
p5555 = OxAAAA / Data = AA */
pAAAA = 0x5555; / Data = 55 */
pAdr = SecEraCnd2; / Erase Command 2 */

do {

TDat = *pAdr;

/* Failure Case */

i f (TDat &0x0080) return 1; [* if finnished */
else if ((TDat &x0028)==0x0028) return O;
} while (1);
}
/* __ */
WORD FL_Chi pErase(l ong FAdr)
{
WORD _ far *pAdr;
WORD TDat ;

FAdr &= OxFFFEOO0OO; [*
pAdr = (WORD __far*) FAdr

Cener at eSequence(FAdr, SecEraCndl);
Cener at eSequence(FAdr, ChpEraCnd2);

Make sure EvenAddress */

do {
TDat = *pAdr;
i f (TDat &x0080) return 1; /* if finnished */

el se if ((TDat &x0028)==0x0028) return O;
} while (1);

/* Failure Case */

