MB86291S <Scarlet> I2C Interface Specification

Revision 1.01 April 8, 2001

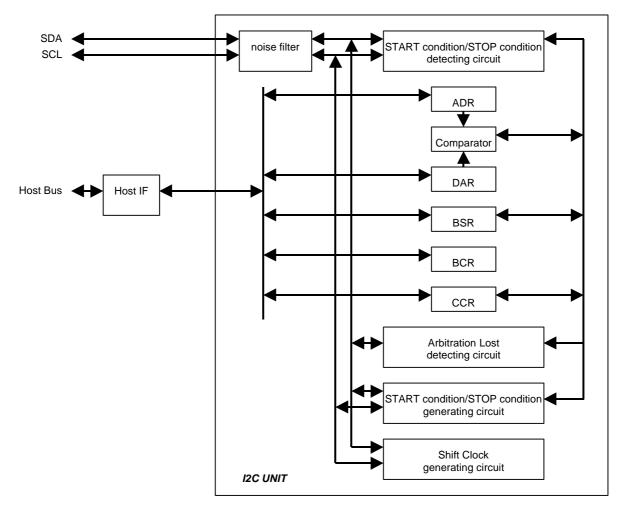
Copyright © FUJITSU LIMITED ALL RIGHTS RESERVED

	Release Information									
Date Rev. Page Change Recognition										
13 th July 2000	1.00	23	First release							
30 th Mar. 2001	1.01	24	rewriting (from Rose to Scarlet)							

(Change History:1/1)

1	Overview 1.1 features	
2	Block diagram 2.1 block diagram 2.2 block function overview	.2
3	Signals	.4
4	example application 4.1 connection diagram	
5	Function overview. 5.1 START condition. 5.2 STOP condition 5.3 addressing. 5.4 synchronization of SCL 5.5 arbitration 5.6 acknowledge 5.7 bus error 5.8 initialize. 5.9 1-byte transfer from master to slave. 5.10 1-byte transfer from slave to master. 5.11 recovery from bus error	.6 .7 .7 .8 .8 .9 0
6	Registers 1 6.1 register map 1 6.2 registers 1	3
7	Timing	20 20 20 21 21
8	Notes .2 8.1 about a 10-bit slave address .2 8.2 about competition of SCC, MSS, and INT bit .2 8.3 about setup of S serial transfer clock .2	23 23

1 Overview


1.1 Features of I2C

master transmission and reception slave transmission and reception arbitration clock synchronization detection of slave address detection of general call address detection of transfer direction repeated generation and detection of START condition detection of bus error correspondence to standard-mode (100kbit/s) / high-speed-mode (400kbit/s)

2 Block diagram

2.1 block diagram

The block diagram is shown below:

- 2.2 block function overview
 - START condition / STOP condition detecting circuit This circuit performs detection of START condition and STOP condition from the state of SDA and SCL.
 - START condition / STOP condition generating circuit This circuit performs generation of START condition and STOP condition by changing the state of SDA and SCL.
 - Arbitration Lost detecting circuit This circuit compares the data output to SDA line with the data input into SDA line at the time of data transmission, and it checks whether these data is in agreement. When not in agreement, it generates arbitration lost.
 - Shift Clock generating circuit This circuit performs generating timing count of the clock for serial data transfer, and output control of SCL clock by setup of a clock control register.
 - Comparater Comparater compares whether the received address and the self-address appointed to be the address register is in agreement, and whether the received address is a global address.
 - ADR ADR is the 7-bit register which appoints a slave address.
 - DAR DAR is the 8-bit register used by serial data transfer.
 - BSR

BSR is the 8-bit register for the state of I2C bus etc. This register has following functions:

- detection of repeated START condition
- detection of arbitration lost
- storage of acknowledge bit
- data transfer direction
- detection of addressing
- detection of general call address
- detection of the 1st byte
- BCR

BCR is the 8-bit register which performs control and interruption of I2C bus. This register has following functions:

- request / permission of interruption
- generation of START condition
- selection of master / slave
- > permission to generate acknowledge
- CCR

CCR is the 7-bit register used by serial data transfer. This register has following functions:

- permission of operation
- setup of a serial clock frequency
- selection of standard-mode / high-speed-mode
- noise filter

This noise filter consists of a 3 step shift register. When all three value that carried out the continuation sampling of the SCL/SDA input signals is "1", the filter output is "1". Conversely when all three value is "0", the filter output is "0". To other samplings it holds the state before 1 clock.

3 Signals

table 3-1 external signal list

Name I/O		Description	notes
SDA	I	Serial Data Line	
SCL	I/O	Serial Clock Line	
XINT	0	Interrupti request signal. When this signal is "0", it indicates an interruption request. SH3/4 asserts LOW-active and V832 asserts HI-active.	

Pinning outline on MB86291S :

Pin 99 : XINT Pin 184: SDA Pin 185: SCL Pin 186: XI2CEN → Pin 186 must be connected to GND to activate the I2C module !

Input voltage level is 3.3V. Please be careful – do NOT connect to 5V !

4 example application

4.1 connection diagram

The connection diagram is shown below.

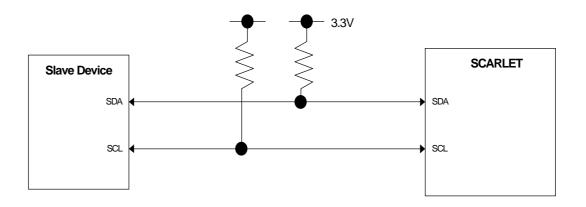
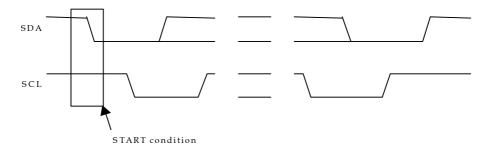


Fig. 4-1 connection diagram

5 Function overview

Two bi-directional buses, serial data line (SDA) and serial clock line (SCL), carry information at I2Cbus. Scarlet I2C interface has SDA input (SDAI) and SDA output (SDAO) for SDA and is connected to SDA line via open-drain I/O cell. And this interface also has SCL input (SCLI) and SCL output (SCLO) for SCL line and is connected to SCL line via open-drain I/O cell. The wired theory is used when the interface is connected to SDA line and SCL line.

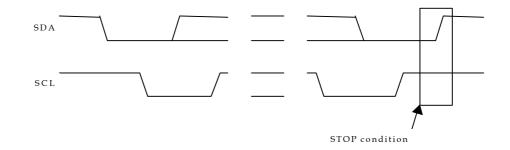

5.1 START condition

If "1" is written to MSS bit while the bus is free, this module will become a master mode and will generate START condition simultaneously. In a master mode, even if a bus is in a use state (BB=1), START condition can be generated again by writing "1" to SCC bit.

There are two conditions to generate START condition.

- "1" writing to MSS bit in the state where the bus is not used (MSS=0 & BB=0 & INT=0 & AL=0) - "1" writing to SCC bit in the interruption state in a master mode (MSS=1 & BB=1 & INT=1 & AL=0)

If "1" writing is performed to MSS bit in an idol state, AL bit will be set to "1". "1" writing to MSS bit other than the above is disregarded.


5.2 STOP condition

If "0" is written to MSS bit in a master mode (MSS=1), this module will generate STOP condition and will become a slave mode.

There is a condition to generate STOP condition.

- "0" writing to MSS bit in the interruption state in a master mode (MSS=1 & BB=1 & INT=1 & AL=0)

"0" writing to MSS bit other than the above is disregarded.

5.3 addressing

In a master mode, it is set to BB="1" and TRX="0" after generation of START condition, and the contents of DAR register are output from MSB. When this module receives acknowledge after transmission of address data, the bit-0 of transmitting data (bit-0 of DRA register after transmission) is reversed and it is stored in TRX bit.

• transfer format of slave address

A transfer format of slave address is shown below:

MSB							LSB	
A6	A5	A4	A3	A2	A1	A0	R/W	ACK
			slave addro	ess				

• map of slave address

A map of slave address is shown below:

slave address	R/W	Description
		General call address
		START byte
	Х	CBUS address
	Х	Reserved
	Х	Reserved
XX	Х	Reserved
XXX	х	Available slave address
XX	Х	10-bit slave addressing*1
XX	X	Reserved

*1 This module does not support 10-bit slave address.

5.4 synchronization of SCL

When two or more I2C devices turn into a master device almost simultaneously and drive SCL line, each devices senses the state of SCL line and adjusts the drive timing of SCL line automatically in accordance with the timing of the latest device.

5.5 arbitration

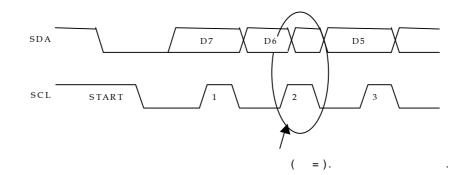
When other masters have transmitted data simultaneously at the time of master transmission, arbitration takes places. When its own transmitting data is "1" and the data on SDA line is "0", the master considers that the arbitration was lost and sets "1" to AL. And if the master is going to generate START condition while the bus is in use by other master, it will consider that arbitration was lost and will set "1" to AL.

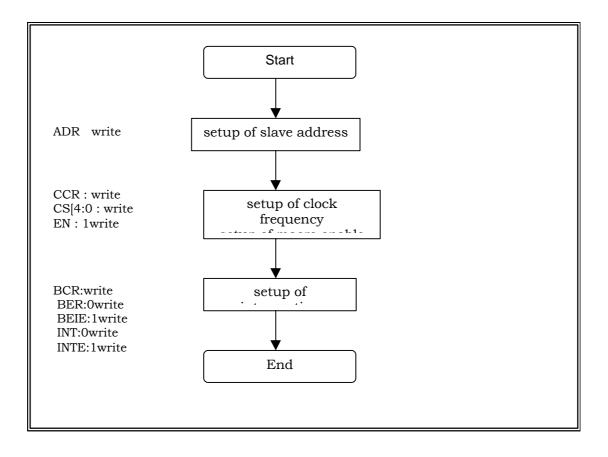
When the START condition which other masters generated is detected by the time the master actually generated START condition, even when it checked the bus is in nonuse state and wrote in MSS="1", it considers that the arbitration was lost and sets "1" to AL.

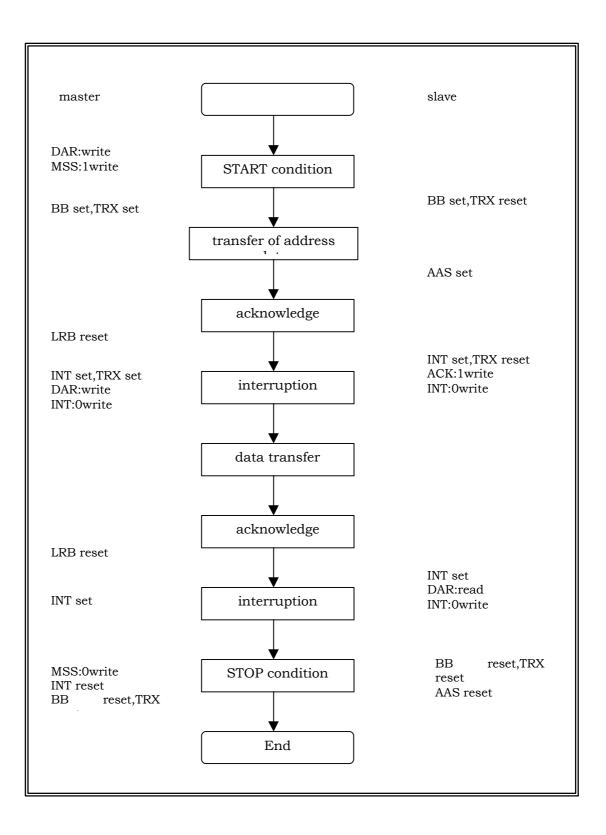
When AL bit is set to "1", a master will set MSS="0" and TRX= "0" and it will be a slave receiving mode.

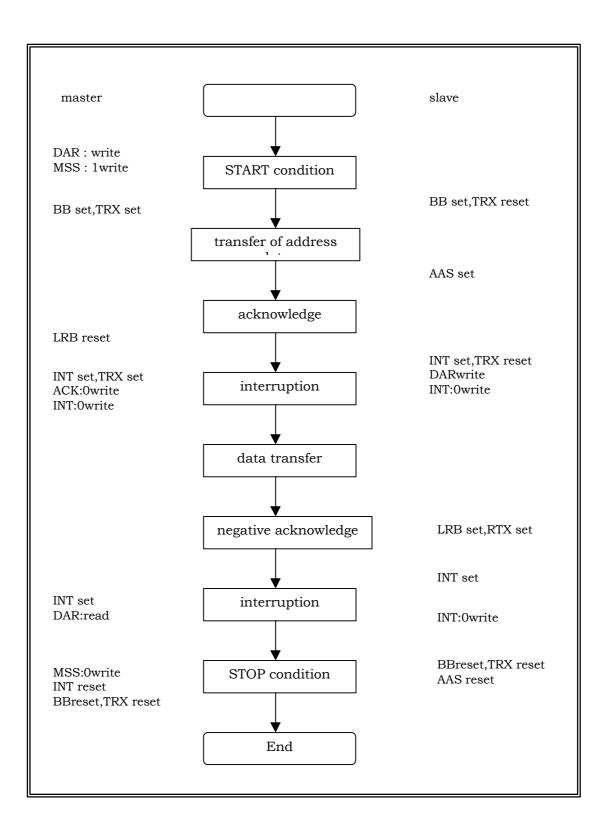
When the arbitration is lost (it has no royalty of a bus), a master stops a drive of SDA. However, a drive of SCL is not stopped until 1 byte transfer is completed and interruption is cleared.

5.6 acknowledge

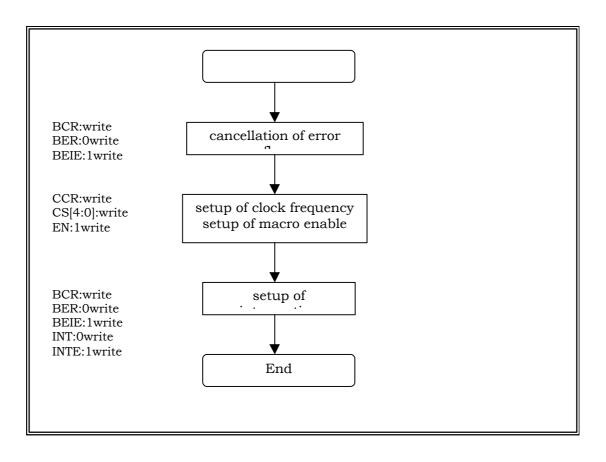

Acknowledge is transmitted from a reception side to a transmission side. At the time of data reception, acknowledge is stored in LRB bit by ACK bit.


When the acknowledge from a master reception side is not received at the time of slave transmission, it sets TRX="0" and becomes slave receiving mode. Thereby, a master can generate STOP condition when a slave opens SCL.


5.7 bus error


When the following conditions are satisfied, it is judged as a bus error, and this interface will be in a stop state.

- detection of the basic regulation violation on I2C-bus under data transfer (including ACK bit)
- detection of STOP condition in a master mode
- detection of the basic regulation violation on I2C-bus at the time of bus idol



5.11 recovery from bus error

6 Registers

6.1 register map

I2C Interface offset address head = 1FCC000 (SH3 SH4), 0FCC000 (V83x,SPARClite)

byte address			data				
byte address	31 24	23	16 15	8	7	0	
000h		Reserve	ed		BSR		
004h		Reserved					
008h		Reserve	ed		CCR		
00Ch		Reserve	ed		ADR		
010h		Reserve	ed		DAR		
014h			ccess prohibition				
018h		Access prohibition					
01Ch		A	ccess prohibition				

6-1 register list

6.2 registers

Register address	I2CbaseA	ddress + 000h						
Bit #	7	6	5	4	3	2	1	0
Bit field name	BB	RSC	AL	LRB	TRX	AAS	GCA	FBT
/	R	R	R	R	R	R	R	R
Default	0	0	0	0	0	0	0	0

BSR (Bus Status Register)

All bits on this register are cleared while bit EN on CCR register is "0".

Bit7	BB (Bus Busy)IndicatestateofI2C-bus0 STOPconditionwasdetected.1 START condition (The bus is in use.) was detected.
Bit	RSC (Repeated START Condition)IndicaterepeatedSTARTconditionThis bit is cleared by writing "0" to INT bit, the case of not addressed in a slave mode, the detection of START condition under bus stop, and the detection of STOP condition.0RepeatedSTARTconditionwasnotdetected.1START condition was detected again while the bus was in use.
Bit5	AL(Arbitration Lost)ArbitrationlostDetectArbitrationlostThisbitisclearedbywriting"0"toINTbit.0Arbitrationlostwasnotdetected.1Arbitration occurred during master transmission, or "1" writing was performed toMSS bit while other systems were using the bus.
Bit4	LRB (Last Received Bit) Store Acknowledge This bit is cleared by detection of START condition or STOP condition.
Bit3	TRX (Transmit / Receive) Indicate data receipt and data transmission. 0 receipt 1 transmission
Bit2	AAS (Address As Slave) Detect addressing This bit is cleared by detection of START condition or STOP condition. 0 Addressing was not performed in a slave mode. 1 Addressing was performed in a slave mode.
Bit1	GCA (General Call Address)DetectgeneralCalladdressAddress(00h)This bit is cleared by detection of START condition or STOP condition.0 Generalcalladdresswas1 General call address wad received in a slave mode.
BitO	FBT (First Byte Transfer)Detectthe1stbyteDetectthe1stbyteEven if this bit is set to "1" by detection of START condition, it is cleared by writing "0"onINTbit or by not being addressed in a slave mode.0Receiveddataisnotthe1stbyte.1Received data is the 1st byte (address data).StateStateStateStateState

BCR (Bus Control Register)

BER BER BER SCC MSS ACK GCAA INTE INTE 2 0	Di4 #		dress + 0004h	E	4	2	2	1	0
Image R/W R/W </th <th>Bit # Bit field name</th> <th>7 BER</th> <th>6 BEIE</th> <th>5</th> <th>4 MSS</th> <th>3 ACK</th> <th></th> <th>1 INTE</th> <th></th>	Bit # Bit field name	7 BER	6 BEIE	5	4 MSS	3 ACK		1 INTE	
Detect 0 0 0 0 0 0 0 0 3h7 BER (Bus Error) Flag bit for request of bus error interruption When this bit is set, EN bit on CCR register will be cleared, this module will be in a store state and data transfer will be discontinued Write Case 0 A request of bus error interruption is cleared 0 A bus error was not detected 0 A bus error interruption interruption 0 Prohibition of bus error interruption 0 Prohibition of bus error interruption 3ht5 SCC (Start Condition Continue) Generate START condition 0 Don't 1 START condition los is generated again at the time of master transmission. fistarafer Stat									
Flag bit for request of bus error interruption When this bit is set, EN bit on CCR register will be cleared, this module will be in a sto state and data transfer will be discontinued Write case 0 A request of bus error interruption is clearer 1 Don't case 0 A bus error interruption Bit6 BEIE (Bus Error Interruption Enable) error interruption When both this bit and BER bit are '1''. the interruption is generated 0 Porhibition of bus error interruption Bit5 SCC (Start Condition Continue) Generate START condition care Bit4 MSS (Master Slave Select) Select master / slave mod Bit3 ACK (ACKnowledge) Permit generated. Stare slave mod O This module becomes a master mode, generates START condition and star transfer transfer Bit3 ACK (ACKnowledge) Permit generation of acknowledg	, Default								
0 A request of buss error interruption is clearer 1 Don't cast 0 A bus error was not detected 1 Undefined START condition or STOP condition was detected while data transfer. BEIE (Bus Error Interruption Enable) error interruption Permistion of bus serror interruption is generated 0 Prohibition of bus error interruption Bit5 SCC (Start Condition Continue) Generate START condition car Bit4 Start condition is generated again at the time of master transmission. MSS (Master Slave Select) slave mod Bit4 Start condition los is generated in master transmission, this bit is cleared and th module becomes a slave mod Bit3 ACK (ACKnowledge) Select master / slave mod Bit3 ACK (ACKnowledge) is not generated. Bit4 GCAA General Call Address Acknowledge is not generated. Bit5 ACK (ACKnowl	Bit7	Flag When this state	bit is set, E	EN bit on CC	R register	will be clea	red, this mo	dule will be	in a stop ontinued
0 A bus error was not detected 1 Undefined START condition or STOP condition was detected while data transfer. BBI6 BUE (Bus Error Interruption Enable) Permit bus error interruption Veno both this bit and BER bit are "1", the interruption is generated 0 Prohibition of bus 0 Promits Condition Continue) Generate START condition Bit5 SCC (Start Condition Continue) Generate START condition Write case 0 Don't carr 1 START condition is generated again at the time of master transmission. Bit4 MSS (Master Slave Select) Select master / slave modol 0 This module becomes a slave mode after generating STOP condition an completing 1 This module becomes a master mode, generates START condition an start transfer. Bit3 ACK (ACKnowledge) Permit generation of acknowledge at the time of data reception in a slave mode 0 Acknowledge is generated. acknowledge a not generated Bit4 INTE (INTerrupt Enable) generated. acknowledge is not generated acknowledge		0 A	request	of	ouss e	error in	nterruption	is	cleared care
Bit6 BEIE (Bus Error Interruption Enable) Permit bus error interruption When both this bit and BER bit are "1", the interruption is generated 0 Prohibition of bus error interruption Bit5 SCC (Start Condition Continue) Generate START condition Bit5 SCC (Start Condition Continue) Generate START condition Bit4 MSS (Master Stave Select) Select master / slave modd Bit4 MSS (Master Stave Select) Select master / slave modd Bit4 MSS (Master Stave Select) Select a slave modd Select master / slave modd modd O This module becomes a slave mode after generating STOP condition and start transfer. starsfer. starsfer. Bit3 ACK (ACKnowledge) Permit generation of acknowledge at the time of data reception This bit becomes invalid at the time of address data reception in a slave modd Acknowledge is generated. Bit2 GCAA General Call Address Acknowledge Permit generation of acknowledge at the time of general call address receptio Acknowledge is generated.		0 A							case detected osfer
0 Prohibition of bus error interruption Bit5 SCC (Start Condition Continue) Generate START condition Write case 0 Don't care care 1 START condition is generated again at the time of master transmission. Bit4 MSS (Master Slave Select) Select master / slave mod 8 Select master / slave mod 0 This module becomes a slave mode after generating STOP condition an completing transfe 1 This module becomes a slave mode after generating STOP condition and start transfer. transfe 8 ACK (ACKnowledge) Permit generation of acknowledge at the time of data reception This bit becomes invalid at the time of address data reception in a slave mode 0 Acknowledge is generated. Bit2 GCAA General Call Address Acknowledge 8 not generated. generated. Bit1 INTEr (INTerrupt Enable) Permit generated. interruption of interruption 8 INT (INTrrupt) Flag St Cline is maintained at "L" level. If this bit is cleared by bein written "0", SCL line is released and the following byte transfer is started. Moreover, it reset to "0"	Bit6	BEIE (Bus Permit	s Error Inter	ruption Enal bus	ole)	erro	r	int	erruptio
Generate START condition Write case 0 Don't care 0 Don't care 1 START condition is generated again at the time of master transmission. MSS (Master Slave Select) Select master / slave mod When arbitration lost is generated in master transmission, this bit is cleared and th module becomes a slave mod 0 This module becomes a slave mod on mod 1 This module becomes a master mode, generates START condition and start transfer. mod a slave mod Bit3 ACK (ACKnowledge) Permit generation of acknowledge at the time of data reception This bit becomes invalid at the time of address data reception in a slave mode 0 Acknowledge s not generated 1 Acknowledge is generated. Bit2 GCAA General Call Address Acknowledge mod not generated 1 Acknowledge is generated. Bit1 INTE (INTerrupt Enable) Permit generation of interruption of interruption for request of interruption for transfer en When this bit is "1" interruption of interruption written "0", SCL line is relea	Dite	0 Prohib 1 Permis	ition ssion of bus	of error interr	bu		-		
1 START condition is generated again at the time of master transmission. Bit4 MSS (Master Slave Select) Select master / slave mod When arbitration lost is generated in master transmission, this bit is cleared and th module becomes a slave mod 0 This module becomes a slave mode after generating STOP condition and start transfer. Transfer transfer Bit3 ACK (ACKnowledge) Permit generation of acknowledge at the time of data reception This bit becomes invalid at the time of address data reception in a slave mode 0 Acknowledge is generated. Bit2 GCAA General Call Address Acknowledge Bit1 INTE (INTerrupt Enable) interruption is not generated interruption Vhen this bit is "1" interruption is generated if INT bit is "1" 0 Prohibition of interrupt interruption Bit0 INT (INTrrupt) Flag bit for request of interruption for transfer en When this bit is released and the following byte transfer is started. Moreover, it is reset to "0" by generating of START condition at the time of master. cass Bit0 INT (INTrrupt) Flag bit for request of interruption for transfer en When this bit is released and the following byte transfer is started. Moreover, it is reset to "0" by generating of START condition or STOP condition at the time of master.	ыю	Generate		Continue)	STA	RT			conditio
Select master / slave mode When arbitration lost is generated in master transmission, this bit is cleared and th module becomes a slave mode 0 This module becomes a slave mode on mode 1 This module becomes a slave mode after generating STOP condition and start transfer. transfer transfer Bit3 ACK (ACKnowledge) Permit generation of acknowledge at the time of data reception This bit becomes invalid at the time of address data reception in a slave mode 0 Acknowledge is not generated 1 Acknowledge is not generated Bit2 GCAA General Call Address Acknowledge Permit generation of acknowledge at the time of general call address reception 0 0 Acknowledge is not generated 1 Acknowledge is not generated 1 Acknowledge is end interruption 0 Acknowledge is end not generated 1 Acknowledge is end not generated <t< td=""><td>Bit4</td><td>1 STAR</td><td></td><td></td><td>l again at th</td><td>e time of m</td><td>naster transr</td><td>nission.</td><td>care</td></t<>	Bit4	1 STAR			l again at th	e time of m	naster transr	nission.	care
Permit generation of acknowledge at the time of data reception This bit becomes invalid at the time of address data reception in a slave mode 0 Acknowledge is not generated 1 Acknowledge is generated. Bit2 GCAA General Call Address Acknowledge Permit generation of acknowledge at the time of general call address reception 0 Acknowledge 1 Acknowledge is not generated 1 Acknowledge is generated. interruption interruption When this bit is "1" interruption is generated if INT bit is "1" of interruption Bit0 INT (INTrrupt) Flag bit for request of interruption for transfer en When this bit is "1" SCL line is maintained at "L" level. If this bit is cleared by bein written "0", SCL line is released and the following byte transfer is started. Moreover, it is reset to "0" by generating of START condition or STOP condition at the time of master. write Cas Cas Cas	Bit3	When arb module 0 This r completing 1 This r transfer.	module be g nodule bec	t is generate becomes comes a s	slave mode	a e after ge	sion, this bit slave nerating S	FOP condi	and thi mode tion an transfe
Permit generation of acknowledge at the time of general call address reception 0 Acknowledge is not generated Bit1 INTE (INTerrupt Enable) Permit interruption is generated if INT bit is "1" Bit0 INT (INTrrupt) of interruption Bit0 INT (INTrrupt) Flag bit for request of interruption Bit0 INT (INTrrupt) Flag bit for request of interruption Bit0 INT (INTrrupt) Flag bit for request of interruption Bit0 INT (INTrrupt) Flag bit for request of interruption Bit0 INT (INTrrupt) Flag bit for request and the following byte transfer is started. Moreover, it is reset to "0" by generating of START condition or STOP condition at the time of master. write cas cas 0 The flag is cleared cas 0 The flag is not ended 1 bit is set		Permit This bit t 0 Acknor 1 Acknor	generation becomes in wledge wledge is g	valid at the enerated.	e time of a is	address da	ta reception	n in a slav	ve mode
PermitinterruptionWhen this bit is "1" interruption is generated if INT bit is "1 0 Prohibitionof1 Permission of interruptBit0INT (INTrrupt)FlagbitFlagbitforrequestreset to "0" by generating of START condition or STOP condition at the time of master.writecas0 Theflag1 Don'tcare casreadcas0 Thetransfer1 Don'tcare cas1 Don'tcare cas1 It is set when 1 byte transfer including the acknowledge bit is completed and corresponds to the following conditions. It is a bus master.	Bit2	Permit ge 0 Acknor	eneration o wledge	of acknowle	dge at the				
Bit0 INT (INTrrupt) Flag bit for request of interruption for transfer en When this bit is "1" SCL line is maintained at "L" level. If this bit is cleared by bein written "0", SCL line is released and the following byte transfer is started. Moreover, it reset to "0" by generating of START condition or STOP condition at the time of master. <u>write</u> <u>case</u> 0 The flag is cleared 1 Don't <u>care</u> <u>read</u> <u>case</u> 0 The transfer is not ended 1 It is set when 1 byte transfer including the acknowledge bit is completed and corresponds to the following conditions. It is a bus master.	Bit1	Permit When tl 0 Prohib	his bit i ition	is "1" in	terruption		rated if		•
0Theflagiscleared1Don'tcarereadcas0Thetransferisnotended1It is set when 1 byte transfer including the acknowledge bit is completed and corresponds to the following conditions. It is a bus master.It is a bus master.	BitO	INT (INTrr Flag When this written "0" reset to " master.	rupt) bit for s bit is "1" : ', SCL line i	request SCL line is s released a	maintained and the follo	at "L" leve wing byte t	el. If this bit ransfer is st	is cleared arted. More	by bein over, it i ime of
1 Don't care read cas 0 The transfer is not ended 1 It is set when 1 byte transfer including the acknowledge bit is completed and corresponds to the following conditions. It is a bus master.				flac			is		cleared
readcas0Thetransferisnotended1It is set when 1 byte transfer including the acknowledge bit is completed and corresponds to the following conditions. It is a bus master.It is a bus master.				nag	1				care
0 The transfer is not ender 1 It is set when 1 byte transfer including the acknowledge bit is completed and corresponds to the following conditions. It is a bus master.									cas
1 It is set when 1 byte transfer including the acknowledge bit is completed and corresponds to the following conditions. It is a bus master.		-		transfer		is	not		endec
			ds to the fo	llowing cond		the ackno	wledge bit	is complete	ed and

It was going to generate START condition while other systems by which arbitration lost happened used the bus.

competition of SCC, MSS and INT bit

Competition of the following byte transfer, generation of START condition and generation of STOP condition happens by the simultaneous writing of SCC, MSS and INT bit. The priority at this case is as follows.

- 1) the following byte transfer and generation of STOP condition If "0" is written to INT bit and "0" is written to MSS bit, priority will be given to "0" writing to MSS bit and STOP condition will be generated.
- 2) the following byte transfer and generation of START condition If "0" is written to INT bit and "1" is written to SCC bit, priority will be given to "1" writing to SCC bit and START condition will be generated.
- 3) generation of START condition and STOP condition The simultaneous writing of "1" to SCC bit and "0" to MSS bit is prohibition.

CCR (Clock Control Register)

			/						
Register address	I2CbaseA	ddress + 0008h	1	•					
Bit #	7	6	5	4	3	2	1	0	
Bit field name		HSM	EN	CS4	CS3	CS2	CS1	CS0	
/	R1	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Default	1	0	0						
Bit7	nonuse "1" is alw	ays read at	read.						
Bit6	Select 0 Stand	0 Standard-mode							
Bit5 Bit4	is clea 0 Prohil 1 Permi	on s bit is "0", ared. Thi	s bit eration	is cleare o				bit) set.	
	Frequence Please s operation standa	et up fscl r	ot to exce 00KHz	nsfer clock	a se is shown e shown be	as the foll	owing form		

standard-mode

$$fscl = \frac{f}{(2 m)+2}$$

high-speed-mode

$$fscl = \frac{f}{int(1.5 m)+2}$$

f:I2C system clock = 16.6MHz

Note :

+2 cycles are minimum overhead to confirm that the output level of SCL terminal changed. When the delay of the positive edge of SCL terminal is large or when the clock is extended by the slave device, it becomes larger than this value.

The value of m becomes like the following page to the value of CS 4-0.

CS4	CS3	CS2	CS1	CS0		M
004	000	002	001	000	standard	high-speed
0	0	0	0	0	65	inhibited
0	0	0	0	1	66	inhibited
0	0	0	1	0	67	inhibited
0	0	0	1	1	68	inhibited
0	0	1	0	0	69	inhibited
0	0	1	0	1	70	inhibited
0	0	1	1	0	71	inhibited
0	0	1	1	1	72	inhibited
0	1	0	0	0	73	9
0	1	0	0	1	74	10
0	1	0	1	0	75	11
0	1	0	1	1	76	12
0	1	1	0	0	77	13
0	1	1	0	1	78	14
0	1	1	1	0	79	15
0	1	1	1	1	80	16
1	0	0	0	0	81	17
1	0	0	0	1	82	18
1	0	0	1	0	83	19
1	0	0	1	1	84	20
1	0	1	0	0	85	21
1	0	1	0	1	86	22
1	0	1	1	0	87	23
1	0	1	1	1	88	24
1	1	0	0	0	89	25
1	1	0	0	1	90	26
1	1	0	1	0	91	27
1	1	0	1	1	92	28
1	1	1	0	0	93	29
1	1	1	0	1	94	30
1	1	1	1	0	95	31
1	1	1	1	1	96	32

Address Register(ADR)

Register address	I2CbaseA	ddress + 000Cl	h					
Bit #	7	6	5	4	3	2	1	0
Bit field name		A6	A5	A4	A3	A2	A1	A0
/	R1	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Default	1							

nonuse

"1" is always read at read.

Bit6 0	A6 0 (Address6 0)		
	Store	slave	address
	In a slave mode it is com and when in agreement, a	· · ·	

Data Register DAR

Bit7

Register address	I2CbaseAddress + 0010h							
	7	6	5	4	3	2	1	0
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Bit7 0 D7 0 (Data7 0)

Store serial data This is a data register for serial data transfer. The data is transferred from MSB. At the time of data reception (TRX=0) the data output is set to "1". The writing side of this register is a double buffer. When the bus is in use (BB=1), the write data is loaded to the register for serial transfer for every transfer. At the time of read-out, the receiving data is effective only when INT bit is set because the register for serial transfer is read directly at this time.

7 Timing

7.1 timing chart

I2C bus timing

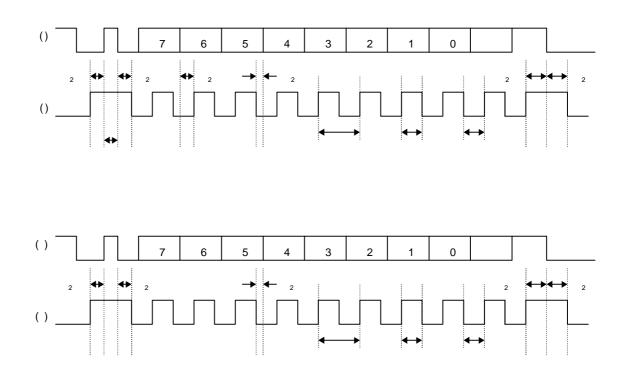
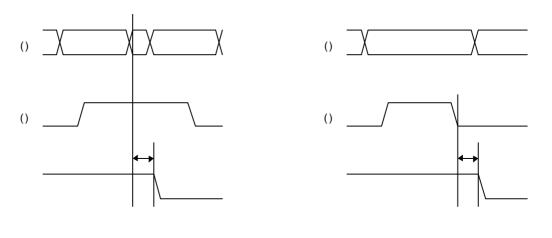



Fig. 7-1 figure of I2C bus timing

interrupt ion timing

832

.

Fig. 7-2 figure of interruption timing

7.2 timing table

I2C bus timing

symbol			MIN	MAX	unit
T _{S2SDAI}	SDA(I) setup time	standard			ns
		high-speed			ns
T _{H2SDAI}	SCL(I) hold time	standard			ns
		high-speed			ns
T _{CSCLI}	SCL(I) cycle time	standard			S
CSCLI		high-speed			S
T _{WHSCLI}	SCL(I) H period	standard			S
		high-speed			S
т	SCL(I) L period	standard			S
T _{WLSCLI}		high-speed			S
–	SCL(O) cycle time	standard	2*m+2 _(*2)		PCLK _{*1}
T _{CSCLO}		high-speed	int(1.5*m)+2(*2)		PCLK _{*1}
T _{WHSCLO}	SCL(O) H period	standard	m+2 _(*2)		PCLK _{*1}
		high-speed	int(0.5*m)+2(*2)		PCLK _{*1}
т	SCL(O) L period	standard	m(*2)		PCLK _{*1}
T _{WLSCLO}		high-speed	m(*2)		PCLK _{*1}
T _{W2SCLI}	SCL(I) setup time	standard			S
W2SCLI		high-speed			S
т	SCL(I) hold time	standard			S
T _{H2SCLI}		high-speed			S
T _{WBFI}	bus free time	standard			S
		hirh-speed			S
T _{S2SCLO}	SCL(O) set up time	standard	m+2 _(*2)		PCLK _{*1}
S2SCLO		high-speed	int(0.5*m)+2(*2)		PCLK _{*1}
T _{H2SCLO}	SCL(O) hold time	standard	m-2 _(*2)		PCLK _{*1}
		high-speed	int(0.5*m)-2 _(*2)		PCLK _{*1}
T _{H2SDAO}	SDA(O) hold time				PCLK _{*1}

*1 PCLK is an internal clock of I2C module. (16.6MHz)
*2 Refer to the clock control register (CCR) for the value of m.

timing of interrupt

sy	/mbol		MIN	MAX	unit
	T _{PHINT}	XINT delay (bus error)			PCLK
R					
	T _{PHINT}	XINT delay (except bus error)			PCLK
R					

8 Notes

8.1 about a 10-bit slave address

This module does not support the 10-bit slave address. Therefore, please do not specify the slave address of from 78H to 7bH to this module. If it is specified by mistake, a normal transfer cannot be performed although acknowledge bit is returned at the time of 1 byte reception.

8.2 about competition of SCC, MSS, and INT bit

Competition of the following byte transfer, generation of START condition, and generation of STOP condition happens by the simultaneous writing of SCC, MSS, and INT bit. At this time the priority is as follows.

- 1) the following byte transfer and generation of STOP condition If "0" is written to INT bit and "0" is written to MSS bit, priority will be given to "0" writing to MSS bit and STOP condition will be generated.
- 2) the following byte transfer and generation of START condition If "0" is written to INT bit and "1" is written to SCC bit, priority will be given to "1" writing to SCC bit and START condition will be generated.
- 3) generation of START condition and generation of STOP condition The simultaneous writing of "1" in SCC bit and "0" to MSS bit is prohibition.

8.3 about setup of S serial transfer clock

When the delay of the positive edge of SCL terminal is large or when the clock is extended by the slave device, it may become smaller than setting value (calculation value) because of generation of overhead.