Application Note

o2
FUJITSU

Procedure to switch the PLL

MB91F365G,MB91F366G

MB91F367G,MB91F368G

MB91F362,MB91

~361G

© Fujitsu Microelectronics Europe GmbH, Microcontroller Application Group

History

20" Nov. 00 | AG | V1.0 | started

25th. May 01 | AG | V1.1 | measurement results added
13" Aug. 01 | AG | V1.2 | sequence optimised

clock modulator switched off

clock source

FWMT set to 1 wait state for flash access when oscillator is

Warranty and Disclaimer

To the maximum extent permitted by applicable law, Fujitsu Mikroelektronik GmbH restricts its warranties and
its liability for all products delivered free of charge (eg. software include or header files, application examples,
application Notes, target boards, evaluation boards, engineering samples of IC’s etc.), its performance and any
consequential damages, on the use of the Product in accordance with (i) the terms of the License Agreement and
the Sale and Purchase Agreement under which agreements the Product has been delivered, (ii) the technical
descriptions and (iii) all accompanying written materials. In addition, to the maximum extent permitted by
applicable law, Fujitsu Mikroelektronik GmbH disclaims all warranties and liabilities for the performance of the
Product and any consequential damages in cases of unauthorised decompiling and/or reverse engineering and/or
disassembling. Note, all these products are intended and must only be used in an evaluation laboratory
environment.

1.

Fujitsu Mikroelektronik GmbH warrants that the Product will perform substantially in accordance with
the accompanying written materials for a period of 90 days form the date of receipt by the customer.
Concerning the hardware components of the Product, Fujitsu Mikroelektronik GmbH warrants that the
Product will be free from defects in material and workmanship under use and service as specified in the
accompanying written materials for a duration of 1 year from the date of receipt by the customer.

Should a Product turn out to be defect, Fujitsu Mikroelektronik GmbH's entire liability and the
customer’s exclusive remedy shall be, at Fujitsu Mikroelektronik GmbH's sole discretion, either return
of the purchase price and the license fee, or replacement of the Product or parts thereof, if the Product is
returned to Fujitsu Mikroelektronik GmbH in original packing and without further defects resulting
from the customer’s use or the transport. However, this warranty is excluded if the defect has resulted
from an accident not attributable to Fujitsu Mikroelektronik GmbH, or abuse or misapplication
attributable to the customer or any other third party not relating to Fujitsu Mikroelektronik GmbH.

To the maximum extent permitted by applicable law Fujitsu Mikroelektronik GmbH disclaims all other
warranties, whether expressed or implied, in particular, but not limited to, warranties of merchantability
and fitness for a particular purpose for which the Product is not designated.

To the maximum extent permitted by applicable law, Fujitsu Mikroelektronik GmbH s and its suppliers’
liability is restricted to intention and gross negligence.

NO LIABILITY FOR CONSEQUENTIAL DAMAGES

To the maximum extent permitted by applicable law, in no event shall Fujitsu Mikroelektronik
GmbH and its suppliers be liable for any damages whatsoever (including but without limitation,
consequential and/or indirect damages for personal injury, assets of substantial value, loss of
profits, interruption of business operation, loss of information, or any other monetary or
pecuniary loss) arising from the use of the Product.

Should one of the above stipulations be or become invalid and/or unenforceable, the remaining stipulations shall
stay in full effect.

Contents

L. CONCEIMEA EVICESveiieeeeeeeieie et e e e et e e e e e e e et e e e eenaeeeeeaseeeeenseeeeenreeeeenseeeennneeseennees 4
2. The ODESIVEA DENAVIOL.oei i e e e e e e et eeeenaeeeenneeeeeaneeeenn 4
3. The cause of the VOItage VAriationcc.coueriiiriiirieieiet sttt ettt ettt b st ebe e nen 4
4. Method to reduce the VOItage VAriationcc.oevvieiiiiiiiiieriecie ettt ettt steebeebessaeseee s e e sseebeenseens 5
5. INterface Of the TOULINE.cc..iiiiiiiei ettt et e e et e e e e e ette e eaae e etae e eateeeareeeaaeeennas 7
6. RESUILS ..ot ettt e e et e e e e te e e e etaeeeet—aeeeettaaeeetbaeeeatbeaeeataeeeataeeeanes 8
7. The source code 0f the FOULINE.ccuiiiuiiiiiii ettt ettt etee et e e et e e eaeeeeteeeeaeeeeteeeeaeeeeseeeeseeenes 11

1. Concerned devices

The following description is concerned to these devices:
MBI1F361G,

MB91F362,

MB91F365G,

MB9I1F366G,

MBI1F367G,

MB91F368G

2. The obesrved behavior

The MB91360- devices have an voltage regulator inernal. This regulator generates the voltage
of 3.3 V for the core. The core needs a voltage in the specified range for a correct
functionality. Changing the clock settings can cause a power consumption the voltage
regulator is not able to supply with a voltage level in the specified range.

A core voltage outside the specified range can consequence to a system crash. There are two
events which can induce an unspecified level of the internal core voltage on the VCC3C pin
of the MCU:

e enabling PLL as clock source

e disabling PLL as clock source

Possible situation when clock settings can be changed:

e at startup (configure and select PLL as clock source)

e before entering low power modes (RTC mode, sleep mode)

e after returning from low power modes (RTC mode, SLEEP mode) to RUN mode clock
settings are reconfigured

3. The cause of the voltage variation

The internal voltage regulator generates the 3V core voltage form the 5V supply. During
enabling/disabling the PLL as clock source the regulator can’t guaranty a constant core
voltage of 3V. The voltage drops or exceeds the specified limits of the voltage range
obviously. In that case a correct execution of the appplication can’t be guarantied.
Therefore it’s necessary to keep the core voltage inside the specified range.

4. Method to reduce the voltage variation

The intensity of the voltage variation depends on the power consumption of the whole
controller at the moment of changing the clock source settings. Then lower the current power
consumtion at the critical moment then lower is the intensity of the voltage variation. It isn’t
possible to avoid the voltage variation complete. But the intensity of the voltage variation can
be reduced and be kept inside the specified limits. The absolute value of the voltage variation
is influenced by the frequency of internal components and what components are running at the
moment of enabling or disabling the PLL as clock source. Then more components of the
controller are disabled at the moment of changing the clock source then lower is the intensity
of the voltage variation.

So we propose the following to take care when the clock settings are changed:
e reduction of frequency of external and peripheral bus before settings are changed
e entering to sleep mode at the moment PLL is enabled/disabled as clock source

FME provides a routine should be used to change the clock settings. Figure 1 shows the
flowchart of this routine.

change PLL settings :

change PLL settings

save context

set down interrupts levels
switch off clock modulator
set down bhus freanencies

no

PLL clock source ?

yes

enable TBC

clock source->oscillator
disable PLL as clock source
enter dleen made

TBC interrupt

v

switch PLL off
set FMWT: 1 wait state

no

PLL to be switched on ?

yes +

enable TBC
set parameter to FMWT register
set PLL frequency

switch on PTT.

stabilization
time expired ?

enable PLL as clock source
enter SLEEP mode

TBC interrupt

set parameters to DIVR0,DIVR1
restore interrupt levels
restore context

Figure 1 flowchart

return to application

5. Interface of the routine

prototype of the function:
void switch_pll (BYTE register CLKR, BYTE register DIVRO,BYTE register DIVRI,
BYTE register FMWT);

The function “switch_pll” is used to reduce the voltage variation when clock settings are
changed. Four parameter are passed to this function. The value of these parameters are set to
the MCU registers CLKR, DIVRO, DIVR1 and FMWT.

parameter “register CLKR™:
This parameter mirrors the MCU register CLKR and defines the PLL multiplier will be set to
this register.

register CLKR:

| PLL2SO | PLLIS2 |PLLIS1 |PLLISO |PLL2EN |PLLIEN |CLKSI |CLKSO |

This register is used to configure the PLL. The bits PLL1S2, PLL1S1 and PLL1S0 define the
frequency of the PLL and only these bits of the parameter ,,register CLKR* needs to be set by
the application. If these three bits of the parameter are set to null the PLL is deselected as
clock source (CLKS1 =0, CLKSO0 = 0) and switched off (PLL1EN = 0). All other values of
this parameter are taken over to CLKR register without testing. The application side needs to
take care of the validility of the settings.

parameter “register DIVRO”:
This parameter mirrors the MCU register DIVRO and defines the value will be set to this
register.

register DIVRO:

| B3 | B2 | Bl | BO | P3 | P2 | P11 | PO |

Bits BO —B3 set the division ratio for CPU clock. These bits are always set to null.
Bits PO-P3 set the division the division ratio for clock of resource bus. Only these bits of
parameter register DIVRO need to be set by the application.

parameter “register DIVR1”:

register DIVR1:

| T3 | T2 | Tl | TO | S3 | S2 | S1 | SO \

Bits TO —T3 set the division ratio for clock of external bus. Only these bits of parameter
register DIVRI need to be set by application.

Bits S0-S3 are unused.

The application side needs to take care of the valid setting of all three parameter to avoid
unspecified settings of the concerned register which can block the MCU.

parameter “register FMWT”:
This parameter mirrors the MCU register FMWT and defines the value will be set to this
register.

register FMWT:

[— — |FACI |FACO |EQINH |WTC2 |WTCl [WTCO |

This register is contained only in devices with flash on the f-bus.
The bits WTCO0-WTC2 define the count of wait states for flash accesses.
The application side needs to take care of the valid setting.

6. Results
Measurement of the voltage variation when clock settings are changed

The voltage variation could not be avoided totally by this procedure.
But the intensity of the variation could be reduced obviously and could be kept inside the
speciefied range by using this procedure.

The following pictures show the results of the measurement at the VCC3C pin during clock
settings are changed. There are more then one variation visible, because the voltage varies at
disabling the PLL as clock source, enabling the PLL as clock source and setting up/down the
bus frequencies.

"".ﬁr"l"l,l"lb"lllllll \i‘ﬂ

=50, 0 0] B

Figure 2 PLL -> switch off , CPU clocked by Oszillator

|50, Cwmw

=50, Oy] By

Figure 3 PLL -> switch on to 16 MHz

|50, D

h J|I AN J|, f",”.-u.‘.r’l. .J.,,n"r‘“ur

| =50, Oy -

Figure 4 PLL -> switch off , CPU clocked by PLL 16 MHz

1100, DY

Figure 5 PLL -> switch to 32 MHz)

r||_ Ot

|14 1
Y 1!1 ,ﬁu Lluul,u t \. 1 i ’Um,f‘,) 'Ll'l J'uLJuuLM’W‘J‘J’ A J f“J ..

=500 0 -] Big

=50, 0l - By

Figure 7 PLL -> switch on to 48 MHz

ERARRA AR AR AR AR AL

NAAANAAARRA AR R '||I' i3
v

Figure 8 PLL -> switch off , CPU clocked by PLL 48 MHz

Figure 9 PLL -> switch on to 64 MHz

i e R R R e R R e R A TR ""—'f'

-Z00. DY 4] B

Figure 10 PLL -> switch off ,CPU clocked by PLL 64 MHz

10

Runtime of this routine

Table 1 shows the runtime of this procedure depending on the clock rate.

CPU clock before call CPU clock after call duration
2 MHz, clocked by oscillator | 16 MHz, clocked by PLL 2.6 ms

16 MHz, clocked by PLL 32 MHz, clocked by PLL 2.22 ms
64 MHz, clocked by PLL 2 MHz, clocked by oscillator | 1.58 ms

Table 1 runtime of the procedure

7. The source code of the routine

void switch plI(BYTE register CLKR, BYTE register DIVRO,BYTE register DIVR1, BYTE register FWMT)

{
BYTE local register TBCR;

BYTE local register ICR[48], *ptr,count;
/* save status register */

#pragma asm

st ps,@-r15
#pragma endasm

/*disable all interrupts*/
_ DIO:;

/*save TBCR */
local_register TBCR = TBCR;

/* save all ICR's and set lowest priority */
ptr=(BYTE*) 0x440;

for (count=0;count<=47;count++)

{

local register ICR[count]= *ptr;

*ptr++ = Ox1F;

}

/* disable clock modulator */
if(CMCR & 0x0001)

{
CMCR &= 0xBF;

CMCR &= 0xAC;
}

/* disable TBC interrupt */
TBCR &= 0x3F;

#pragma asm
PLL_SWITCH:

/* set R-Bus to PLL /16 MHz : */

11

Idi # divr0, R12 ; R-Bus clock :
Idi #0x0f, r1 ; R-Bus=PLL /16
stbrl,@r12

/* set ext Bus to PLL /16 MHz : */
Idi # divrl, R12 ; R-Bus clock :
Idi #0xFF, r1 ; R-Bus=PLL /16
stbrl,@r12

/* set interrupt level of tbc */
1di:8 #20,r0
Idi # icr31,rl
stb r0,@r1

/* enable interrupt */
stilm #30

/* PLL clock source ? */
1di:20 # clkr,R12
ldub @R 12,R1
1di:8 #0x02,R0
and RO,R1
beq PLL NOT_CLOCK_SOURCE

/* configuration and start of TBC */
1di:8 #0xa5,r0
1di:8 #0x5a,rl
1di:32 # ctbr,r12

stb 10,@r12

stb rl,@r12

1di:8 #0x40,r0 /* TBIF=0,TBIE=1,TBC=000,SYNCR/SYNCS=0*/
1di:32 # tber,rl2

stb 10,@r12

/* clock source > oscillator */
Idi # clkr, R12 ; PLL lock time elapsed :
Idi #0xFC,r2

/* go to SLEEP mode */
1di:8 #0x50,r0
1di:32 # sterrll
stb r0,@r11
andb r2,@r12 ; deselect PLL as clock source

/* now sleeping...*/

lock time:
Idi # tber,R11
btsth #0x8, @R 11 ; Check interrupt flag
beq lock time ; time elapsed when set

PLL NOT_CLOCK_SOURCE:
/* switch off PLL */

1di #0xF8,r2

andb r2,@r12

/* disable tbc interrupt */
1di:32 # tber,rl2
1di:8 #0x3F,rl
andb rl,@rl2

12

/* set FWMT, CLK source oscillator, 1 wait states */

#if defined CPU MB91FV360G
Idi # fmwt,R3
1di #0x01,R4
stb R4,@R3

#endif

PLL SWITCHED_ OFF:
#pragma endasm

/* prepare configuration main PLL : */
/* mask the multiplier for CLKR-register; if !0, then PLL switch PLL on*/

if (register CLKR &= 0x70)
{
CLKR &= 0x8F;
CLKR |=register CLKR;

#if defined CPU_MBO91FV360G

/* set parameter value -> FWMT */

FMWT=register FWMT;
#endif

#pragma asm

/* configuration and start of TBC; no interrupt; timer underflow is polled */

1di:8 #0xa5,r0
1di:8 #0x5a,rl
1di:32 # ctbr,r12
stb 10,@r12
stb rl,@r12
1di:8 #0x00,r0
1di:32 # tber,rl2
stb 10,@r12

/* switch on PLL*/

Idi # clkr,R12

1di #0x04,R1

orb R1,@R12
/*awaiting stabilisation time*/
lock_time 2nd:

Idi #_tber,R12

btsth #0x8, @R 12

beq lock time 2nd

;PLL lock time elapsed :

/* TBIF=0,TBIE=0,TBC=000,SYNCR/SYNCS=0*/

; Check interrupt flag
; time elapsed when set

/* configuration and start of TBC */

1di:8 #0xa5,r0
1di:8 #0x5a,rl
1di:32 # ctbr,rl2
stb 10,@r12
stb rl,@r12
1di:8 #0x40,r0
1di:32 # tber,rl2
stb 10,@r12

Idi # clkr, R12
1di #0x02,r2

/* go to SLEEP mode*/
1di:8 #0x50,r0

/* TBIF=0,TBIE=1,TBC=000,SYNCR/SYNCS=0*/

/* SLEEP=1,HIZ=0,058=00,0SCD2=0,0SCD 1=0*/

13

I1di:32 # ster,rll
stb 10,@rl1
orbr2,@r12 ;select PLL as clock source

/* now sleeping...*/

lock time 3rd:
Idi # tber,R12

btsth #0x8, @R 12 ; Check interrupt flag
beq lock time 3rd ; time elapsed when set
/* TBT off */

1di:8 #0x00,r0

1di:32 # tber,rl2

stb r0,@r12
#pragma endasm

3
/* end of PLL switching on*/

/* set R-Bus frequency : */
DIVRO = register DIVRO;

/* set ext.Bus frequency : */
DIVRI =register DIVR1;

/* end SMOOTH_PLL */

/* restore ICR's*/
ptr=(BYTE*) 0x440;
for (count=0;count<=47;count++)

{

*ptr++ = local_register ICR[count];

}

TBCR = local register TBCR;
#pragma asm
Id @r15+,ps

#pragma endasm

return;

}

14

	Concerned devices
	The obesrved behavior
	The cause of the voltage variation
	Method to reduce the voltage variation
	Interface of the routine
	Results
	The source code of the routine

