
1

Application Note

Communication with SPI device via the Uart or the
SIO of the MB90540 series.

 Fujitsu Mikroelectronics Europe GmbH

This application note describes how a SPI device can be connected to the Fujitsu
Microcontroller MB90540 series. Two different possibilities exist to communicate
with the SPI device. One is the SIO, the other is the Uart in synchronous mode.

History
05th May 00 Men V1.0 New Format, new updated version
20th May 00 Men Updated version
13 th Sep 00 Men V1.1 Some slide changes

2

Warranty and Disclaimer

To the maximum extent permitted by applicable law, Fujitsu Microelectronics Europe GmbH restricts its
warranties and its liability for all products delivered free of charge (eg. software include or header files,
application examples, application Notes, target boards, evaluation boards, engineering samples of IC’s
etc.), its performance and any consequential damages, on the use of the Product in accordance with (i) the
terms of the License Agreement and the Sale and Purchase Agreement under which agreements the Product
has been delivered, (ii) the technical descriptions and (iii) all accompanying written materials. In addition,
to the maximum extent permitted by applicable law, Fujitsu Microelectronics Europe GmbH disclaims all
warranties and liabilities for the performance of the Product and any consequential damages in cases of
unauthorised decompiling and/or reverse engineering and/or disassembling. Note, all these products are
intended and must only be used in an evaluation laboratory environment.

1. Fujitsu Microelectronics Europe GmbH warrants that the Product will perform substantially in
accordance with the accompanying written materials for a period of 90 days form the date of
receipt by the customer. Concerning the hardware components of the Product, Fujitsu
Microelectronics Europe GmbH warrants that the Product will be free from defects in material and
workmanship under use and service as specified in the accompanying written materials for a
duration of 1 year from the date of receipt by the customer.

2. Should a Product turn out to be defect, Fujitsu Microelectronics Europe GmbH ś entire liability
and the customer ś exclusive remedy shall be, at Fujitsu Microelectronics Europe GmbH ś sole
discretion, either return of the purchase price and the license fee, or replacement of the Product or
parts thereof, if the Product is returned to Fujitsu Microelectronics Europe GmbH in original
packing and without further defects resulting from the customer ś use or the transport. However,
this warranty is excluded if the defect has resulted from an accident not attributable to Fujitsu
Microelectronics Europe GmbH, or abuse or misapplication attributable to the customer or any
other third party not relating to Fujitsu Microelectronics Europe GmbH.

3. To the maximum extent permitted by applicable law Fujitsu Microelectronics Europe GmbH
disclaims all other warranties, whether expressed or implied, in particular, but not limited to,
warranties of merchantability and fitness for a particular purpose for which the Product is not
designated.

4. To the maximum extent permitted by applicable law, Fujitsu Microelectronics Europe GmbH ś
and its suppliers ́liability is restricted to intention and gross negligence.

NO LIABILITY FOR CONSEQUENTIAL DAMAGES

To the maximum extent permitted by applicable law, in no event shall Fujitsu
Microelectronics Europe GmbH and its suppliers be liable for any damages whatsoever
(including but without limitation, consequential and/or indirect damages for personal injury,
assets of substantial value, loss of profits, interruption of business operation, loss of
information, or any other monetary or pecuniary loss) arising from the use of the Product.

Should one of the above stipulations be or become invalid and/or unenforceable, the remaining stipulations
shall stay in full effect.

3

Contents

1.0 Introduction 4

2.0 Background 4

3.0 SPI Clock Phase and Polarity Controls 4

 3.1.0 Clock Phase Equals Zero Transfer Format 5

 3.1.1 Clock Phase Equals One Transfer Format 5

4.0 SPI via Serial I/O (SIO) 5

 4.1 Configuration of the SIO 7

5.0 SPI via Uart 7

 5.1 Configuration of the Uart 9

6.0 Operation in General 9

7.0 Difference when using the Uart 10

8.0 Conclusion 11

9.0 Appendix 12

4

1.0 Introduction:

The Serial Peripheral Interface (SPI) circuit is a synchronous serial data link that
is standard across many Motorola microprocessors and other peripheral chips. It
provides support for a high bandwidth (1 megabaud) network connection
amongst CPUs and other devices supporting the SPI.

The SPI is essentially a shift register that serially transmits data bits to other
SPI’s. During a data transfer, one SPI system acts as the “master” which controls
the data flow, while the other system acts as the “slave” which has data shifted
into and out of it by the master. Different CPU’s can take turn being masters, and
one master may simultaneously shift data into multiple slaves. However, only one
slave may drive its output to write data back to the master at any given time.

The SPI that is used in this application is the NM25C020. This device is a 2k
serial CMOS EEPROM.

2.0 Background:

The serial peripheral interface (SPI), as the name implies, is primarily used to
allow the microcontroller unit (MCU) to communicate with peripheral devices.
Communication is performed synchronously with the most significant bit (MSB)
first. Peripheral devices are simple as an ordinary transistor-transistor logic (TTL)
shift register or as complex as a complete subsystem, such as a liquid crystal
diode (LCD) display driver or an analog-to-digital (A/D) converter subsystem.

During an SPI transfer, data is simultaneously transmitted (shifted out serially)
and received (shifted in serially). A serial clock line synchronizes shifting and
sampling of the information on the two serial data lines. A slave select or chip
select line allows individual selection of the SPI device. Unselected devices do
not interfere with SPI bus activities.

3.0 SPI Clock Phase and Polarity Controls:

The clock phase can be any of two fundamentally different transfer formats.
These two transfer modes are described below. The clock phase and polarity
should be identical for the master SPI device and the communicating slave
device.
The clock polarity can be selected active high or active low clock and has no
significant effect on the transfer format.

5

3.1.0 Clock Phase Equals Zero Transfer Format:

When clock phase equals zero, the chip select (CS low active) line must be
negated and reasserted between each successive serial byte. Also, if the slave
writes data to the MCU shift register while CS is active low, a write-collision error
results.

3.1.1 Clock Phase Equals One Transfer Format:

When clock phase equals one, the CS line may remain active low between
successive transfers (can be tied low all the times). This format is sometimes
preferred in systems having a single fixed master and a single slave driving the
MISO data line.

The diagram 1 shows the timing of the SPI for the two different transfer’s formats.

Diagram 1

4.0 SPI via Serial I/O (SIO):

The SIO is quite similar to the SPI, because communication is achieved only
synchronously and the MSB is shifted out first. A bit in the serial mode control
status register (SMCS) decides the shifting direction. Data is received and
transmit simultaneously with the serial shift register (SDR). A serial clock line
synchronizes shifting and sampling of the information on the two serial data lines.
The bits in the shift register are serially output via the serial output pin (SOT2) at
the falling edge of the serial shift clock (external clock or internal clock). The bits
are serially input to the shift register via the serial input pin (SIN2) at the rising
edge of the serial shift clock. At the end of the serial transfer, this block is
stopped or stands by for a read or write of the data register according to the
MODE bit of the serial mode status register.

6

The SIO offers two methods for the conditions to start the transfer operation from
the stop state. A MODE bit selects the condition in which the SIO is started.
Upon a reset the MODE bit is set low.

MODE = 0:

The first operation method is that to start with a transfer the STRT bit has to be
set high and the STOP bit low. During the transfer of data the STRT and BUSY
will remain high and the STOP will be low. After transmission is complied STRT
and BUSY will change to low and STOP too high. If a next transfer should be
started the described sequence has to be repeated.

MODE = 1:

The second operation method is performed by an interrupt. First the device has
to be set in standby transition. This is achieved by setting STRT high and STOP
low. When BUSY becomes low an interrupt request is issued to CPU and a
transmission can be executed. After the transmission is finished the SIR bit has
to be cleared. This has to be done to avoid that the program loops inside the
interrupt service routine. If the program has finished the service routine and the
SIR flag remains high, a now interrupt is requested to CPU and the program will
repeat the service routine until a reset occurs.

The transition figure 1 shows the different states for the operation of the SIO.

Figure 1

7

4.1 Configuration of the SIO:

The figure 2 shows the settings for the SIO to communicate with a SPI device.

void Init_SIO(void)
{

SMCS = 0x3202; /* (01100010xxxx0010) */
Shift clock = 62.5kHz; interrupt disable; serial output enable
SCDCR =0x88; /* (10001000) prescaler */
Division ration = 8; Prescaler enable
DDR4 = 0xFF; /* set all ports to outputs */
DDR5 = 0x00; /* set all ports to input */

}

Figure 2

5.0 SPI via Uart:

Not all the Fujitsu microcontroller have a SIO macro inside. But it is also possible
to use the Uart to communicate with an SPI device.

The Fujitsu Uart macro offers two transfer modes asynchronous and
synchronous. Not all of the Fujitsu Uart macros can be used for synchronous
transfer to communicate via SPI. Only the Uart with serial communications
interface (SCI) supports this, because other Uart macro uses in synchronous
mode still a start and a stop bit.

8

Table 3 shows the devices, which contain the Uart macro to communicate with a
SPI device.

Device Uart (SCI) MSB or LSB Only LSB
470 Uart0 X
495 Uart0/1 X
520 Uart0 X
540/545 Uart1 X
550A Uart0 X
560 Uart0/1 X
570 Uart0/1 X
580 Uart0 – 4 X
590 X
595 Uart1
610A Uart0 – 2 X
620A Uart0 X
630A Uart0/1 X
640A Uart0/1 X
650A Uart0 X
660A Uart0 X
670/675 Uart1 X

 Table 3

Nearly all the Fujitsu Uart macros transfer data with the least significant bit (LSB)
first. Therefore, the bits have to be switched by software to achieve transmit and
receive with the MSB first. A few Uart macros offer a special feature to decide if
the MSB or LSB should be transmit or received first. Table 3 shows which
devices have this feature inside their Uart.

When an internal clock signal source (dedicated baud rate generator or internal
timer) is selected for baudrate generation, a receive clock signal is automatically
generated each time data is transmitted. Data length is 8-bit only, and no parity
bit may be attached. Also, there is no start/stop bit, so that no error detection is
enabled except for overrun errors.

9

5.1 Configuration of the Uart:

The figure 3 shows the settings for the Uart to communicate with a SPI device.

void InitUart_Master(void)
{

/* initialize UART1 */
SMR1 = 0xA3; /* serial mode register (10100011) */
SCR1 = 0x13; /* serial control register (00010011) */
U1CDCR = 0x88; /* prescaler control register (10001000) */
DDR4 = 0xE7; /* port direction register (11100111) */
WP = TRUE; /* this pins have to held high */
HOLD = TRUE; /* */

}

Figure 3

6.0 Operation in general:

In this small circuit the Fujitsu MCU is the master and the EEPROM is acting as
the slave. The table 4 shows the small instruction set the SPI device uses. These
instructions are needed to communication with this device.

Table 4

The slave device will be in non-active state from the beginning on. To activate
the device the chip select (CS) pin has to hold low. The CS, write protection (WP)
and the HOLD pin are all low active.

Hardware data protection is provided by WP pin to protect against inadvertent
programming. The HOLD pin allows the serial communication to be suspended
the device without resetting the serial sequence.

10

The figure 4 shows a drawing of the connection between the MCU and the SPI
device.

Figure 4

When CS is set to low, transmission can start now. First one of the instructions
mentioned above has to be sent to the device. Depending on the op-code
additional information must be sent to the EEPROM. To receive data from the
SPI device the master must send a dummy out of the SDR. The way the dummy
looks like depends on the used SPI device. In the used application the dummy
was a simple 8bit of low values.
With this synchronous clock the data of the SPI is clocked in serially to the SDR.
After the read or write cycle is finished the CS is pulled back to high level. Now a
new device can be selected. For every device it is necessary to provide its own
CS line.

7.0 Difference when using the Uart:

When using the Uart instead of the SIO, the general operation is the same. But
for the Uart same extra things have to be into account.

First, according to the MCU, which is used, because the Uart starts transmission
with the least significant bit (LSB) first the data have to be turn around. Only
some Uart’s offer the possibility to determine the order in which the bits are

11

shifted out. If the Uart does not support such a feature, there are two possibilities
to tackle this problem.

One possibility is to do the changing of the shifting order by software. This
means, all the information and data must be changed before transferred. And all
the incoming data must be changed before using it inside the application. Too
increase the speed performance, all the op-codes, if some special commands
are used to communicate with the connected SPI device, e.g. EEPROM this
could be stored in the reverse order. Also transferred data could be defined
already in the vice versa order to avoid extra calculation time.

The other solution is to use external hardware. Therefore, a device has to be
placed between the master and the slave. This device has to change the order of
the bits. But this could be influencing the bandwidth of the SPI transfer.

The next difference between the SIO and the Uart is that if the Uart uses
synchronous receive clock each time data is transmitted. The transmit/receive
buffer of the SIO is the same therefore, each time data is written or read the
buffer of the SIO, the buffer is cleared.
The Uart has independent buffers. Each time data is transferred, e.g. an op-code
to the EEPROM, data is placed in the receive buffer. And as long as the data in
the receive buffer remains there, no new data is written to the receive buffer, the
buffer is blocked. This means, with every transmit signal the User-Application has
to take care, that the receive buffer is clear after every transmission. The Uart
has to send a dummy to receive the correct data out of the EEPROM.

8.0 Conclusion:

The SPI via SIO is much easier to implement compared to the Uart, but on the
other hand it is possible to use the Uart to communicate with SPI devices. This
can be helpful if the chosen device has no SIO macro inside.

12

9.0 Appendix:

The Table 6 shows an overview of the Uart and SIO macros of the 16 Bit family.

Device Uart (SCI) Serial I/O
470 Uart0*
495 Uart0/1*
520 Uart0 X
540/545 Uart1 X
550A Uart0 X
560 Uart0/1*
570 Uart0/1 X
580 Uart0 – 4 X
590 X
595 Uart1
610A Uart0 – 2 X
620A Uart0 X
630A Uart0/1 X
640A Uart0/1
650A Uart0 X
660A Uart0
670/675 Uart1
*Uart can select shifting order (MSB or LSB first)

13

Flowchart of the application:

 S t a r t

 Initialize SIO / Uart

Read status of
the EEPROM

Is
EEROM
not busy?

Write data to
the EEPROM

Read status of
the EEPROM

Is
EEROM
not busy?

Read data out of
the EEPROM

Data
==
written
data?

END

No

No

No

14

Flowchart of the SPI interface software with Serial I/O:

S T A R T

WP = HIGH
HOLD = HIGH

Write data to
the EEPROM

Read status out
of the EEPROM

Status
== 0

Read data out of
the EEPROM

 E N D

15

Program Code for SIO

/*--
 MAIN.C
 - description
 - See README.TXT for project description and disclaimer.

/*---*/

/************************* Includes *********************************/
#include "mb90540.h"
#include "spi.def"

/************************* Constants/Strings *************************/

/*************************** Gloabals ********************************/
uchar rbuf = 0;
uchar status = 0;
uchar tbuf = 0;

/************************ Prototyps *********************************/
void Init_SIO(void);
void read_status(void);
void read(void);
void write(void);
void start_seq(void);
void stop_seq(void);

/*======================== PROCEDURES ==============================*/
void Init_SIO(void)
{

SMCS = 0x0207; /* (00000010xxxx0111) 1MHz */
SCDCR =0x8E; /* (10001000) prescaler */
DDR4 = 0xFF;
DDR5 = 0x00;

}

void start_seq(void)
{

/*start a synchron transfer */
SMCS_STOP = FALSE;
SMCS_STRT = TRUE;
while(SMCS_BUSY == 1); /* wait until transmit is complete */

}

void stop_seq(void)
{

SMCS_STOP = TRUE;
SMCS_STRT = FALSE;
SMCS_BUSY = FALSE;

}

void read_status(void)
{

/* reads status out of the EEPROM */
CS = FALSE; /* chipselect (CS) is active low */

16

SDR = RDSR; /* write opcode into serial shift data register */
start_seq(); /* start synchron transfer */
SDR = DUMMY;/* write dummy into serial shift data register */
start_seq(); /* start synchron transfer */
status = SDR; /* receive status of the EEPROM */
stop_seq(); /* clear flags */
CS = TRUE; /* CS high */

}

void read(void)
{

/* read data out of the memory */
CS = FALSE;
SDR = READ; /* write opcode into serial shift data register */
start_seq(); /* start synchron transfer */
SDR = ADDRESS; /* send memory address */
start_seq();
SDR = DUMMY;/* write dummy into serial shift data register */
start_seq();
tbuf = SDR; /* receive status of the EEPROM */
stop_seq();
CS = TRUE;

}

void write(void)
{

CS = FALSE;
SDR = WREN; /* write enable*/
start_seq(); /* start synchron transfer */
CS = TRUE; /* CS high */

CS = FALSE;
SDR = WRITE;/* write opcode into serial shift data register */
start_seq();
SDR = ADDRESS;
start_seq();
SDR = DATA;
start_seq();
stop_seq(); /* clear flags */
CS = TRUE;

}

void write_disable(void)
{

CS = FALSE;
SDR = WRDI;
start_seq();
CS = TRUE;

}
/*===================== END OF PROCEDURES ===========================*/

/*********************** M A I N ************************************/
void main(void)
{

Init_SIO();
 InitIrqLevels();
 __set_il(7); /* allow all levels */

17

 __EI(); /* globaly enable interrupts */

 HOLD = TRUE; /* HOLD line */
 WP = TRUE; /* Write Protected line */

 write_disable(); /* disable write */
 write(); /* write data to a specific memory address */

 while(1)
 {
 /* SPI Master */
 read_status(); /* read status */
 if((status & 1) == 0) /* if device has finished writing data */
 {
 read(); /* read data from a specific memory address */
 }
 }
}
/************************** end of main ******************************/

18

Flowchart Uart for SPI:

 START

WP = HIGH
HOLD = HIGH

Read status out
of the EEPROM

Write data to
the EEPROM

Status
== 0

Read data out of
the EEPROM

 E N D

Swap byte from LSB
first to MSB first

Swap byte from LSB
first to MSB first

Swap byte from LSB
first to MSB first

19

Program Code for Uart

/*---
 MAIN.C
 - description
 - See README.TXT for project description and disclaimer.

/*---*/

/************************** Includes ********************************/
#include "mb90540.h"
#include "spi.def"

/*********************** Constants/Strings **************************/

/************************** Gloabals ********************************/
uchar rbuf = 0;
uchar status = 0;
uchar tbuf = 0;
const uchar Data[] = {0x51,0xA2,0x3F};
const uchar Address[] = {0x00,0x01,0x02};
int index = 0;

/************************** Prototyps *******************************/
void InitUart_Master(void);
uchar mirror_byte(uchar);
void write(void);
void write_enable(void);
void write_disable(void);
void read(void);
void read_status(void);
void clear_buffer(void);

/*========================== PROCEDURES ============================*/
void InitUart_Master(void)
{

/* initialize UART1 */
SMR1 = 0x83; /* serial mode register (10000011) 1Mbit */
SCR1 = 0x13; /* serial control register (00010011) */
U1CDCR = 0x88; /* prescaler control register (10001000) */
DDR4 = 0xE7; /* port direction register (11100111) */
WP = TRUE; /* this pins have to held high */
HOLD = TRUE; /* */

}

/* This function is necessay to change the LSB and MSB for the
 the SPI device

*/
uchar mirror_byte(uchar value)
{

/* mirror a byte */
uchar temp,temp1;

temp1 = value & 1;
temp1 = temp1 << 7;
temp = temp1;

20

temp1 = value & 2;
temp1 = temp1 << 5;
temp = temp1 | temp;
temp1 = value & 4;
temp1 = temp1 << 3;
temp = temp1 | temp;
temp1 = value & 8;
temp1 = temp1 << 1;
temp = temp1 | temp;
temp1 = value & 0x10;
temp1 = temp1 >> 1;
temp = temp1 | temp;
temp1 = value & 0x20;
temp1 = temp1 >> 3;
temp = temp1 | temp;
temp1 = value & 0x40;
temp1 = temp1 >> 5;
temp = temp1 | temp;
temp1 = value & 0x80;
temp1 = temp1 >> 7;
temp = temp1 | temp;
return(temp);

}

void read_status(void)
{
 uchar send_op_code;

 CS = FALSE; /* select device */

 send_op_code = mirror_byte(RDSR); /* mirror byte */

SODR1 = send_op_code; /* send opcode */
 while(SSR1_TDRE == 0); /* wait that tranmission is finished*/

clear_buffer(); /* clear the receive buffer */

SODR1 = 0x00; /* send a dummy to receive */
 /* the data from EEPROM*/
 while(SSR1_RDRF == 0); /* wait that data is available */
 if(SSR1_ORE || SSR1_FRE)/* look for valid or invalid data */

{
rbuf = SIDR1;
SCR1_REC = 0; /* clear flags */

}
else
{

rbuf = SIDR1;
status = mirror_byte(rbuf); /* mirror byte */

 }
CS = TRUE; /* diselecte the device */

}

void write(void)
{
 uchar send_op_code;

21

 CS = FALSE; /* selecte the device */

 send_op_code = mirror_byte(WRITE); /* mirror byte */
 SODR1 = send_op_code; /* send opcode */
 while(SSR1_TDRE == 0); /* wait that tranmission is finished*/

clear_buffer(); /* clear the receive buffer */

 send_op_code = mirror_byte(Address[index]); /* mirror byte */
 SODR1 = send_op_code; /* send opcode */
 while(SSR1_TDRE == 0); /* wait that tranmission is finished*/

clear_buffer(); /* clear the receive buffer */

 send_op_code = mirror_byte(Data[index]);
 SODR1 = send_op_code;
 while(SSR1_TDRE == 0);

clear_buffer();

CS = TRUE;
}

void read(void)
{

uchar send_op_code;

CS = FALSE;

send_op_code = mirror_byte(READ); /* mirror byte */
SODR1 = send_op_code; /* send opcode */
while(SSR1_TDRE == 0); /* wait that tranmission is finished*/

clear_buffer(); /* clear the receive buffer */

send_op_code = mirror_byte(Address[index]);
 SODR1 = send_op_code;
 while(SSR1_TDRE == 0);

clear_buffer();

SODR1 = 0x00; /* send a dummy to receive the answer */

while(SSR1_RDRF == 0); /* wait that data is available */
if(SSR1_ORE || SSR1_FRE)/* look for valid or invalid data */
{

rbuf = SIDR1;
SCR1_REC = 0; /* clear flags */

}
else
{

rbuf = SIDR1;
 tbuf = mirror_byte(rbuf); /* mirror byte */
 }
 CS = TRUE;
}

22

void write_enable(void)
{
 uchar send_op_code;

 CS = FALSE;

 send_op_code = mirror_byte(WREN); /* mirror byte */
 SODR1 = send_op_code; /* send opcode */
 while(SSR1_TDRE == 0); /* wait that tranmission is finished*/

clear_buffer(); /* clear the receive buffer */

 CS = TRUE;
}

void write_disable(void)
{
 uchar send_op_code;

 CS = FALSE;

 send_op_code = mirror_byte(WRDI);
 SODR1 = send_op_code;
 while(SSR1_TDRE == 0);

clear_buffer();

 CS = TRUE;
}

void clear_buffer(void)
{
 while(SSR1_RDRF == 0);
 rbuf = SIDR1; /* clear buffer */
 rbuf = 0;
}

/*====================== END OF PROCEDURES ==========================*/

/************************* M A I N *********************************/
void main(void)
{

InitUart_Master();
 InitIrqLevels();
 __set_il(7); /* allow all levels */
 __EI(); /* globaly enable interrupts */

for(index = 0;index < 3;index++)
{

write_enable(); /* enables a write cycle */
write(); /* writes data to the memory */
read_status(); /* read status of the device */
while((status & 1) == 1)/* wait that device become ready */

read_status();
}

23

write_disable(); /* disables the writing */

while(1)
 {
 /* SPI Master */

 if(index >= 3)
 index = 0;
 read_status(); /* read status */
 read(); /* read data from the EEPROM */
 index++;
 }
}
/*********************** end of main *********************************/

