
#HL9905128 Startup.Doc

Application Note

 FCC907S-Memory Initialisation with
F²MC16-Start-Up File

© Fujitsu Mikroelektronik GmbH, Microcontroller Application Group

CONTENTS

0 Introduction.................................... 3

1 FCC907S-Compiler Memory
Models.. 3

1.1 Memory Models............................... 3

1.2 Addressing Space in Detail.............. 4

1.2.1 __far – Physical Addressing 4

1.2.2 __near – Offset Addressing . 5

1.2.3 __direct – Offset Addressing 6

1.3 FCC907S Default Data Sections 6

1.3.1 Section Overview................. 6

1.3.2 Special Sections DCLEAR
and DTRANS................................... 7

1.3.3 Sections CINIT vs. CONST
and RAMCONST vs. ROMCONST .. 8

1.3.4 Examples for Data Sections 8

2 Configuration of Start-up File 11

2.1 FAMILY - Controller Family 11

2.2 MODEL - Memory Model 11

2.3 CONSTDATA - Constant Symbol
Area .. 12

2.4 STACKUSE - Used Stack Type..... 12

2.5 SSSIZE, USSIZE - Stack Size....... 12

2.6 REGBANK - Register Bank 13

2.7 CLIBINI – Initialise C-Library 13

2.8 CLOCKSPEED, CLOCKWAIT –
Operation Frequency..................... 13

2.9 BUSMODE – External Bus Interface
14

2.10ROMMIRROR (F²MC-16LX only) .. 14

2.11External Bus Setting...................... 14

2.12RESET_VECTOR 15

3 Appendix...................................... 16

3.1 Source Code of Start.asm 16

3.2 History... 24

Application Note

- 2 - © Fujitsu Mikroelektronik GmbH

Warranty and Disclaimer
To the maximum extent permitted by applicable law, Fujitsu Mikroelektronik GmbH restricts
its warranties and its liability for software (like this start-up file, other examples and tools), its
performance and any consequential damages, on the use of the Product in accordance with
(i) the terms of the License Agreement and the Sale and Purchase Agreement under which
agreements the Product has been delivered, (ii) the technical descriptions and (iii) all
accompanying written materials. In addition, to the maximum extent permitted by applicable
law, Fujitsu Mikroelektronik GmbH disclaims all warranties and liabilities for the performance
of the Product and any consequential damages in cases of unauthorised decompiling and/or
reverse engineering and/or disassembling.

1. Fujitsu Mikroelektronik GmbH warrants that the Product will perform substantially in
accordance with the accompanying written materials (this application note) for a period of 90
days form the date of receipt by the customer. Concerning the hardware components of the
Product, Fujitsu Mikroelektronik GmbH warrants that the Product will be free from defects in
material and workmanship under use and service as specified in the accompanying written
materials for a duration of 1 year from the date of receipt by the customer.

2. Should a Product turn out to be defect, Fujitsu Mikroelektronik GmbH´s entire liability
and the customer´s exclusive remedy shall be, at Fujitsu Mikroelektronik GmbH´s sole
discretion, either return of the purchase price and the license fee, or replacement of the
Product or parts thereof, if the Product is returned to Fujitsu Mikroelektronik GmbH in original
packing and without further defects resulting from the customer´s use or the transport.
However, this warranty is excluded if the defect has resulted from an accident not
attributable to Fujitsu Mikroelektronik GmbH, or abuse or misapplication attributable to the
customer or any other third party not relating to Fujitsu Mikroelektronik GmbH.

3. To the maximum extent permitted by applicable law Fujitsu Mikroelektronik GmbH
disclaims all other warranties, whether expressed or implied, in particular, but not limited to,
warranties of merchantability and fitness for a particular purpose for which the Product is not
designated.

4. To the maximum extent permitted by applicable law, Fujitsu Mikroelektronik GmbH´s
and its suppliers´ liability is restricted to intention and gross negligence.

NO LIABILITY FOR CONSEQUENTIAL DAMAGES

To the maximum extent permitted by applicable law, in no event shall Fujitsu
Mikroelektronik GmbH and its suppliers be liable for any damages whatsoever
(including but without limitation, consequential and/or indirect damages for personal
injury, assets of substantial value, loss of profits, interruption of business operation,
loss of information, or any other monetary or pecuniary loss) arising from the use of
the Product.

Should one of the above stipulations be or become invalid and/or unenforceable, the
remaining stipulations shall stay in full effect.

 FCC907S-Memory Initialisation with F²MC16-Start-Up File

© Fujitsu Mikroelektronik GmbH - 3 -

0 Introduction

All C-language applications need special code to be executed before all others, which
initialises all data areas generated by the compiler and which performs a basic configuration
of the microcontroller. This code is called start-up code and is part of the start-up file.

This document describes the start-up file “start.am” version 1.9 provided by Fujitsu
Mikroelektronik GmbH for all F²MC16-microcontrollers. The start-up file “start.asm” comes
with the Softune Workbench FMG’s edition and can be found in the Sample directory.
Please also refer to the Softune Workbench help.

Main Features of the Start-Up File “Start.asm”:

- Configuration part for easy step by step set-up of the start-up code,

- Configuration pre-configured and suitable for most types of single-chip applications

- Configuration allows to set reset vector with automatic mode byte setting

- Start-up code for pre-setting of core and external bus registers

- Start-up code for memory initialisation according to FCC907S-compiler sections,

- Start-up file is linkage order independent,

- Start-up file is suitable for all memory models.

1 FCC907S-Compiler Memory Models

In order to understand the purpose of the data areas, which have to be initialised by the
start-up file, this chapter explains the memory model and data section mechanism of the
FCC907S-compiler. The compiler help provides additional information. It is also advisable to
check the list files (*.lst) generated by compiler/assembler for better understanding of what
compiler is doing with symbols and sections. Linkage information files (*.mp1) of the project
should also be checked after linkage.

1.1 Memory Models

The memory model is a compiler option for simplifying the usage of 16 Bit- and 32 Bit-
addressing. The memory model defines the default type of addressing. By changing memory
model the access type of all symbols changes automatically.

Model Default data address Default code address
Small 16 Bit (__near) 16 Bit (__near)

Medium 16 Bit (__near) 24 Bit (__far)
Compact 24 Bit (__far) 16 Bit (__near)

Large 24 Bit (__far) 24 Bit (__far)
Table 1 Memory model, address space and appropriate C-qualifier

Note, 16 Bit addressing by memory model setting implies the usage of __near qualifier, even
if not written in source-code. Note, 24 Bit addressing by memory model setting implies the
usage of __far qualifier, even if not written in source-code.

It always possible to overwrite the default address size of the memory model by dedicated
specifying the size qualifier __near or __far.
E.g. Even if Small model is used, a variable can have 24 Bit address space by specifying
__far.

Application Note

- 4 - © Fujitsu Mikroelektronik GmbH

Note: When calling a __near type qualified function from a __far type qualified function, both
functions must be positioned in the same bank. The reason is that the PCB set up for __far
type qualified function calling is also used for __near type qualified function calling.
E.g. If in model Medium a function is declared as __near, it has to be located in the same
bank as the calling function.

Small Model

The small model is to be specified in situations where all codes and data can be positioned
within a 16-bit address space. Since all addresses are expressed using 16 bits, a compact,
high-speed program can be realised.

Medium Model

The medium model is to be specified in situations where codes can be positioned in a 24-bit
address space and data can be positioned in a 16-bit address space.

It is the preferred model for all single-chip applications with more than 64 KB ROM.

Compact Model

The compact model is to be specified in situations where codes can be positioned in a 16-bit
address space and data can be positioned in a 24-bit address space.

It mainly appears to be used with applications with external bus interface and additional
RAM.

Large Model

The large model is to be specified in situations where all codes and data can be positioned
in a 24-bit address space. Since all addresses are expressed using 24 bits, the codes used
are redundant as compared to those for the small model.

It mainly appears to be used with applications with external bus interface and additional
RAM.

1.2 Addressing Space in Detail

For programming in C the FCC907S-compiler provides the qualifiers “__far”, “__near” and
“__direct”. These describe whether a symbol is addressed by its full, physical address, by
16 Bit offset or by lowest 8 Bit only. Using different addressing results in different instructions
to be used. Therefore, __direct, __near and __far addressing can be used in order to
achieve improvement of performance (__direct, __near) or flexibility (__near, __far).

Qualifier __direct __near __far
Address size 8 Bit 16 Bit 24 Bit

Address space 256 Byte 64 KByte 16 MByte
Table 2 Address qualifiers and address size relation

1.2.1 __far – Physical Addressing

Physical addressing means that the full controller address space is covered. F²MC16-
microcontrollers have a 24 Bit address size, which results in a 16 MB address space.
Specifying __far to a symbol (qualifier in C-source code or appropriate memory model)
forces physical addressing. The advantage is that the symbol is accessible regardless of the
address of the symbol. Disadvantage is that always 24 bits have to be handled, which
requires more code and reduces performance.

E.g. the symbol Var has to be loaded with 0x1234. It has been located in bank 0 at address
H’0000353 by the linker.

unsigned int __far Var; /* global varible */
void foo(void) { Var = 0x1234;} /* move new value to Var */

Example 1 Usage of __far qualifier in C forces physical addressing of Var

 FCC907S-Memory Initialisation with F²MC16-Start-Up File

© Fujitsu Mikroelektronik GmbH - 5 -

Following assembler instructions might be used:

4B53030000 MOVL A, #_Var ; move full address to accumulator
71A0 MOVL RL0, A ; move full address to general purpose register
4A3412 MOVW A, #0x1234 ; move new value to accumulator
6F3800 MOVW @RL0+00, A ; move new value to Var

Example 2 Physical addressing via general purpose register

Following code has the same result but uses a temporary bank register:

4200 MOV A, #bnksym _Var ; move bank number of Var to accumulator
6F11 MOV ADB, A ; Additional Data Bank register := bank of Var
06 ADB ; next instruction uses ADB as bank pointer
73DF53033400 MOVW _Var, #0x1234 ; address (ADB<<16 + offset(Var)) := new value

Example 3 Physical addressing via bank register

Physical addressing for code looks like this:

657856FF CALLP _foo ; call function by full address
…

__foo: … ; do anything
66 RETP ; return by 24 Bit return address

Example 4 Physical addressing of the function void __far foo(void) at 0xFF5678;

1.2.2 __near – Offset Addressing

Offset addressing means that only lower 16 address bits are handled during run-time.
Advantages are smaller code size and faster execution time. Disadvantage is the limited
address range of 64 KB.

Even if the symbol is accessed by 16 Bit address only, it still has a physical address it has
been linked to by the linker. When using __near addressing (by qualifier in source code or
using appropriate memory model) the missing eight bits of the physical address are fixed
during run-time as a global setting. The compiler uses following dedicated registers as fixed
bank addresses in order to resolve the physical address for __near addressed symbols:

Data Bank DTB global and static local variables
User Stack Bank USB,
System Stack Bank SSB

local variables, function parameters on stack

Program Counter Bank PCB function calls and returns from function
Table 3 Symbol types and default bank register

It is the task of the start-up file to provide the correct setting of those registers before
entering application main() function. Usually bank 0 (containing internal RAM) is the default
__near bank. Therefore, DTB, USB and SSB are to be set to 0 in mot cases.

Using examples of 1.2.1 __far – Physical Addressing changes as follows:

unsigned int __near Var; /* global varible */
void foo(void) { Var = 0x1234;} /* move new value to Var */

Example 5 Usage of __near qualifier in C forces offset addressing of Var

Following assembler instructions might be used:

73DF53033412 MOVW _Var, #0x1234 ; move new value to variable

Example 6 Only one instruction is necessary to load Var

Offset addressing for code looks like this:

647856 CALL _foo ; call function by offset
…

__foo: … ; do anything
67 RET ; return by offset

Example 7 Offset addressing of the function void __near foo(void);

Note: It depends on the instruction, which dedicated register is used as default bank. The
compiler takes care of this and utilises this for common data, function frame, stack data and

Application Note

- 6 - © Fujitsu Mikroelektronik GmbH

code related data (e.g. switch()-jump tables). Please refer to the compiler help and
programming manual for more information on this.

1.2.3 __direct – Offset Addressing

Direct addressing means that only lowest 8 address bits are handled during run-time.
Advantages are very small code size and faster execution time. Disadvantage is the limited
address range of 256 Byte and the limited number of instruction for direct addressing. It can
only be assigned to global variables and constants but not to functions. All __direct variables
must be located within one page (upper 16 address bits must be same). The __direct page
must be located within the default __near bank.

Even if the variable is accessed by 8 Bit address only, it still has a physical address it has
been linked to by the linker. When using __direct addressing the missing sixteen bits of the
physical address are fixed during run-time as a global setting. The compiler uses following
dedicated registers as bank and page registers in order to resolve the physical address for
__direct addressed symbols:

DTB Upper eight address bits of __direct variables
DPR Middle eight address bits of __direct variables

Table 4 Default registers for upper 16 address bits of __direct variables

It is the task of the start-up file to provide the correct setting of those registers before
entering application main() function. If correct sections and section types (see 1.3) and
appropriate linker options are used, the linker takes care of the correct page alignment.

Examples of 1.2.2 changes as follows:

unsigned char __direct Var; /* global varible */
void foo(void) { Var = 0x12;} /* move new value to Var */

Example 8 Usage of __near qualifier in C forces offset addressing of Var

Following assembler instructions might be used:

445312 MOV S:_Var, #0x12 ; move new value to variable

Example 9 Only one instruction is necessary to load Var

Note: It depends on the source code and data size whether direct addressing can be used
effectively. If Var is a word variable as in 1.2.2, compiler would automatically use __near
addressing in function foo(). This is due to the fact that there is no MOVW S:dir,#imm8-
instruction. Therefore, __direct addressing is most effective for byte data (also within
structures). There is still a performance win with word data. However, if double word data
are specified as __direct, one cannot expect any improvement of performance.

1.3 FCC907S Default Data Sections

1.3.1 Section Overview

The ANSI specification requires that global data are initialised. This has to be done by the
start-up code. However, the compiler has to provide a mechanism to collect those data,
which have to be cleared (set to zero) and those data, which have to be pre-loaded with a
value. FCC907S provides default sections, which contain dedicated groups of data. A
section is a unit that can be handled by the linker. It either contains initialised data or
reserved areas. All sections used in an application can be found in the linkage map after
linking project.

 FCC907S-Memory Initialisation with F²MC16-Start-Up File

© Fujitsu Mikroelektronik GmbH - 7 -

Name Type Start value Purpose
DATA DATA __near data of all modules
DATA_name DATA __far data of module “name”
DIRDATA DIR __direct data of all modules
LIBDATA DATA

C
le

ar
ed All

zero

All data of C-library
INIT DATA DCONST __near data of all modules
INIT_name DATA DCONST_name __far data of module “name”
DIRINIT DIR DIRCONST __direct data of all modules
LIBINIT DATA LIBDCONST All data of C-library
CINIT DATA

R
A

M

In
iti

al
is

ed

CONST __near constants of all modules
DCONST CONST Start-up data for INIT
DCONST_name CONST Start-up data for INIT_name
DIRCONST DIRCONST Start-up data for DIRINIT
LIBDCONST CONST Start-up data for LIBINIT
CONST CONST __near constants of all modules
CONST_name CONST __far constants of module “name”
DCLEAR CONST Table of all DATA_name sections
DTRANS CONST Table of all INIT_/DCONST_name
CODE CODE __near code of all modules
CODE_name CODE __far code of modules “name”
INTVECT CONST

R
O

M Fixed in binary

Interrupt vector table
IO IO Controller IO area Specific functions registers

Table 5 Default section types of FCC907S compiler. Note that “name” is only a placeholder for
several module names.

Sections DATA, DIRDATA, INIT, DIRINIT, CINIT, DCONST, DIRCONST, CONST and
CODE are related to __near and __direct symbols. Because of 16 Bit-addressing the
amount of data cannot exceed 64 KB. Therefore, all symbols of all modules are collected in
the appropriate section.

Sections DATA_name, INIT_name, DCONST_name, CONST_name and CODE_name are
related to __far symbols. Note that “name” is only a placeholder for several module names
(e.g. DATA_main and DATA_uart for main.c and uart.c). Because of 24 Bit-addressing the
entire space of all data can exceed 64 KB. However, the maximum size of a single section is
64 KB. Therefore, all __far data are grouped in that way that every module has its own __far
sections. The generic name of this section consists of the default name plus underscore plus
the name of the module (file name of source file without extension).

Sections DATA, DATA_name, DIRDATA, LIBDATA have to be set to zero by the start-up
code.

Sections INIT, INIT_name, DIRINIT, LIBINIT and possibly CINIT (see 1.3.3) have to be
initialised with a start value. The appropriate start values are located in sections DCONST,
DCONST_name, DIRCONST, LIBDCONST and possibly CONST (see 1.3.3). These
sections are just copied. Therefore, the order of the start values within each section has to
be the same as the order of the symbols. The compiler manages this.

1.3.2 Special Sections DCLEAR and DTRANS

All sections DATA_name, INIT_name and DCONST_name (note, “name” is only a
placeholder for several modules) can be spread over the full address space. Therefore, they
cannot be initialised as one block. They have to be initialised separately. Two tables are
used to collect the locations of the __far sections. The compiler manages to create these
tables.

Application Note

- 8 - © Fujitsu Mikroelektronik GmbH

Section DCLEAR contains the table for all DATA_name sections. One entry consits of start
address (4 bytes) and length (2 bytes) of the respective DATA_name section. The size of
DCLEAR results from the number of DATA_name sections multiplied by 6 Byte (size of one
entry).

 Section DTRANS contains the table for all INIT_name and DCONST_name sections. One
entry consits of start address of DCONST_name (4 bytes), start address of INIT_name
(4 bytes) and length (2 bytes) of INIT_name/CONST_name sections. The size of DTRANS
results from the number of INIT_name/DCONST_name sections multiplied by 10 Byte (size
of one entry).

1.3.3 Sections CINIT vs. CONST and RAMCONST vs. ROMCONST

Sections CINIT and CONST are related to constant __near data. RAMCONST and
ROMCONST are compiler options, which also affect the start-up code.

Constant data are fixed during run-time. They cannot be changed by C-statements.
Therefore, constant data can be located in ROM area. Table 2 shows that the sections
CONST and CONST_name are located in ROM. This is straightforward for CONST_name.
Because these sections are __far addressed and can be accessed where ever they are.

Section CONST is __near addressed. That conflicts with the fact that the default __near
bank is usually not located in ROM but in bank 0. There are two alternatives to overcome
this.

RAMCONST

RAMCONST means that all __near constants have to be copied to the default __near bank.
In this case section CONST is copied to section CINIT. During run-time the compiler
accesses all data in CINIT. The advantage is that this independent of the location of
CONST. The disadvantage is that RAM is occupied by CINIT.

Especially in single-chip applications RAM should not be used for data, which will never
change.

ROMCONST

ROMCONST means that all __near constants are mirrored to the default __near bank by
hardware. In this case section CONST is accessed in ROM. Section CINIT is not used.
During run-time the compiler accesses all data by the 16 Bit offset in CONST. Therefore,
CONST has to be linked to the region that is mirrored. The advantage is that no RAM is
wasted. The disadvantage is that location of CONST is limited to the mirrored area and that
the size of CONST is limited by the size of the mirrored area.

ROMCONST is the preferred setting for single-chip applications.

E.g. F²MC16 controller have the ROM area H’FF4000…H’FFFFFF (48 KB) mirrored to
H’004000…H’00FFFF. The constant variable const int __near Var = 100 is located in
CONST at address H’FF4567. The Compiler uses offset and generates code that accesses
Var at address H’004567 by bank register (DTB=0) and offset H’4567.

1.3.4 Examples for Data Sections

Following table lists the used section for most often used symbol types. All case not listed
here can be examined by simply compiling C-source file with single definition statement only.
The list file (*.lst) can be checked for occurrence of “section” statement.

This table assumes the source file test.c to be used. “Descriptor” of DCLEAR and DTRANS
means the table entry (see 1.3.2). Note that even if more than one variable using
DCLEAR/DTRANS is defined in a module, the descriptor is generated only once per module.

- 9 - © Fujitsu Mikroelektronik GmbH

RAM ROM
C-source

Section and Contents Size Section and Contents Size
Simple data and fields

__near int var;
__near char field[2];

DATA gets label 2

__near int var = 1;
__near char field[2] = {1, 0};
__near char field[] =„\001“; // (01 00)

INIT gets label 2 DCONST gets start value (0001) 2

ROMCONST CONST gets label and start value (0002)
Data are accessed in ROM via ROM mirror

2
__near const int var = 2;
__near const char field[] =

{2,0}; RAMCONST CINIT gets label 2 CONST gets start value (0002), has to be
copied to CINIT

2

__far int var;
__far char field[2];

DATA_test gets label 2 DCLEAR gets descriptor of DATA_test 6

__far int var = 3;
__far char field[2] = {1, 0};
__far char field[] =„\001“; // (01 00)

INIT_test gets label 2 DCONST_name gets start value (0003)
DTRANS gets descriptor of INIT_test

2
10

__far const int var = 4;
__far const char field[] = {2,0};

CONST_test gets label and value (0004) 2

__direct int var;
__direct char field[2];

DIRDATA gets label 2

__direct int var = 5;
__direct const int var = 5;
__direct char field[2] = {5, 0};
__direct const char field[] = {5,0};

DIRINIT gets label 2 DIRCONST gets start value (0005) 2

Simple pointers

__near void * __near ptr; DATA gets label 2
__near void * __near iptr = (void*)7; INIT gets label 2 DCONST gets start value (0007) 2

ROMCONST INIT gets label “ptr” and is initialised
with addr of hidden label in DCONST

2 CONST gets hidden label and value “str1”
DCONST gets reference to hidden label

5
2

__near
 char * __near ptr = „str1“;

RAMCONST

CINIT gets hidden label and is
initialised from CONST
INIT gets label “ptr” and is initialised
with addr of hidden label in DCONST

5

2

CONST gets start value “str1”

DCONST gets address of hidden label in CINIT

5

2

__near void * __far ptr; DATA_test gets label 2 DCLEAR gets descriptor of DATA_test 6
__far void * __near ptr; DATA gets label 4

Table 6 Variables definitions in C and used sections

 FCC907S-Memory Initialisation with F²MC16-Start-Up File

© Fujitsu Mikroelektronik GmbH - 11 -

2 Configuration of Start-up File

The start-up file has to be configured for the target system (hardware) and the application
software. The start-up file provides several prepared settings, which have to be checked and
which have possibly to be changed. The header of the start-up file contains information how
to find the lines containing the options to be checked. With version 1.9 of the start-up file all
lines with the comment extension “; <<<” were pointing to available settings.

In the following paragraphs all available settings are described.

2.1 FAMILY - Controller Family

Set family type of the chip the application isv running in. This setting is used by the start-up
file to check the availability of registers and to check the plausibility of settings. The correct
family setting is found by simplifying the name of the implemented controller.

Available settings:

- MB90700 à F²MC16H-family

- MB90200 à F²MC16F-family

- MB90600 à F²MC16L-family

- MB90500 à F²MC16LX-family

- MB90400 à F²MC16LX-family

Note: With this start-up file version only LX-families are differed from non-LX-families.
Note: MB90500 and MB90400 are both LX-families. There are minor core changes.
Note: This start-up file version has not been tested with MB90700 and MB90200.

E.g.: Used controller MB90F598 à set MB90500 family, LX-family

2.2 MODEL - Memory Model

The memory model describes how data and code are accessed by compiler-generated
assembler code. Please refer to the chapter 1 FCC907S-Compiler Memory Models in order
to understand the mechanism. Available options are SMALL, MEDIUM, COMPACT and
LARGE.

Within this start-up file this setting only affects the type of CALL-instruction that is used to
call library functions or application main() function from start-up file. This is either a physical
CALLP (24 Bit-address) for LARGE and MEDIUM setting or a CALL (16 Bit offset only) for
SMALL and COMPACT setting.
Note that the start-up file setting does not affect the actual memory model that has to be
used by the compiler. Therefore, the correct compiler setting is still mandatory.

The setting AUTO generates always 24 Bit-address CALLP-instructions in the start-up file. If
the main module (containing main() function) is compiled with Small or Compact model or if
libraries for those models are used, they will return with RET-instruction and not with RETP-
instruction. For 64 KB code-models the bank information on stack can be ignored. The
remaining two bytes on stack (CALLP pushes four bytes onto stack) are automatically
removed by the start-up code. Therefore, the AUTO-setting is working with all memory
models.

The start-up file setting MODEL does not affect data accesses and data initialisations.
Regardless of the memory model all section types are always initialised (except CINIT,
see 1.3.3).

Application Note

- 12 - © Fujitsu Mikroelektronik GmbH

If AUTO setting is used, the start-up file has not to be changed or modified, if the compiler
memory model is changed. AUTO is the recommended setting.

2.3 CONSTDATA - Constant Symbol Area

The CONSTDATA setting specifies how 16 Bit-addressed (__near) constant data are
handled by the start-up file. Please also refer to the chapter 1 FCC907S-Compiler Memory
Models in order to understand the mechanism.

The start-up file setting CONSTDATA only controls whether the constants are actually
copied to from CONST (ROM) to CINIT (RAM) by start-up code. The setting does not affect
the compiler option RAMCONST. To set the compiler to the correct mode is still mandatory.

In general the option RAMCONST means that 16 Bit-addressed data are copied from ROM
to RAM in order to be addressed by 16 Bit offset only. In this case the start-up file will
declare CINIT section and initialise it.

ROMCONST means that these data are not copied but accessed in ROM by 16 Bit offset
only. In this case the start-up file will not declare the CINIT section and it will not execute the
copy routine.

Recommended start-up file option is RAMCONST because this works regardless of the
compiler setting. Preferred compiler option is ROMCONST because no RAM is used for
constant data. If the compiler is set to ROMCONST and the start-up file is set to
RAMCONST, the code for copying the constant data is executed. However, since the
compiler will not generate data for the RAMCONST section (CINIT), the byte count is zero
and no data are copied.

Note that the ROMMIRROR (see 2.10) has to be enabled in all internal ROM modes, if
compiler is set to ROMCONST.

2.4 STACKUSE - Used Stack Type

The setting STACKUSE specifies the stack type that is configured, when the application
main()-function is called.

F²MC16-microcontrollers provide tow different types of stack: system stack and user stack.
The application can use either system stack only or it can use both system stack and user
stack.

System stack is always used for interrupt function. It is automatically selected, if hardware
interrupts are executed or if software interrupts are called. All stack operation of interrupt
handlers will work with the system stack.

Outside of interrupt handlers the pre-selected stack type is used. This is either user stack
(option USRSTACK) or system stack (option SYSSTACK).

If SYSSTACK is set, only the system stack area has to be prepared. All operation will work
on the same stack. The necessary safety margin has to be reserved for one stack only.
SYSSTACK should be used, if the necessary RAM consumption for stack has to be low.

If USRSTACK is set, both system stack and user stack have to be prepared. The necessary
safety margin has to be provided twice. USRSTACK should be used, if separated stack
areas are necessary for management reasons. This might be the case with schedulers,
operating systems or other applications.

2.5 SSSIZE, USSIZE - Stack Size

These settings specify the amount of words (16 Bit) to be reserved for stacks. This value has
to cover all:

- parameters passed over stack

 FCC907S-Memory Initialisation with F²MC16-Start-Up File

© Fujitsu Mikroelektronik GmbH - 13 -

- return addresses for function calls

- local variables (except static)

- temporary data due to compiler optimisation

- interrupt context on stacks

- safety margin

For estimating necessary stack size the compiler offers the “-INF stack” option. With it the
compiler generates stack information files (extension “stk”), which list the number of bytes
necessary to execute each function. These stack information files are already available for
all library functions and can be found in the Lib\907\ subdirectory of the Softune Workbench
installation.

If the support tool “C-Analyzer” is purchased, the additional tool “Musc” is able to collect
these data and to calculate the minimum stack size for the whole application.

Note: If STACKUSE is set to SYSSTACK, the number of words for the user stack is
automatically limited to one word by the start-up file.

2.6 REGBANK - Register Bank

The setting REGBANK specifies the register bank that is configured, when the application
main()-function is called.

F²MC16-microcontroller provide 32 general purpose register banks of 16 Bytes each. The
current register bank is selected by the Register Pointer RP (5 Bit), which is part of the
dedicated core register Processor State PS.

Usually the default bank is bank 0.

Note: This start-up file does not reserve the RAM area for the register bank. Reserving the
area for all used register banks is a mandatory setting of the linker.

2.7 CLIBINI – Initialise C-Library

The setting CLIBINI specifies whether the start-up code has to call the stream initialisation
function of the C-library.

The stream initialisation is necessary only, if streamed IO-functions are used. These
functions (e.g. printf()) also require the definition of application specific low-level functions.
For more information refer to the compiler help.

2.8 CLOCKSPEED, CLOCKWAIT – Operation Frequency

The setting CLOCKSPEED specifies the operation frequency to be set by the start-up code.
CLOCKWAIT specifies whether the PLL has to be stable before calling application main()-
function.

With this settings either main clock (PLL off) or any PLL-mode can be selected. If the clock
setting has to be handled by the application main code, the option NOCLOCK avoids any
access to the clock control register by the start-up code.

If any PLL-mode has been selected by CLOCKSPEED, the setting CLOCKWAIT specifies
whether to wait for stabilised PLL before calling main()-function. If the start-up code selects a
PLL-mode, it is not immediately activated. The controller still runs at main-clock mode until
the PLL-stabilisation wait time runs out. After that the controller switches automatically to the
selected PLL-mode. If main()-function is called when controller is still in main-clock mode,
the usage of resources might cause misoperation (wrong timing). To avoid this CLOCKWAIT
should be set. This way the start-up code waits until the PLL is activated and delays the call
of the main()-function.

Application Note

- 14 - © Fujitsu Mikroelektronik GmbH

2.9 BUSMODE – External Bus Interface

This setting specifies the use of external bus interface. For all devices without external bus
interface it has to be set to SINGLE_CHIP.

If BUSMODE is set to INTROM_EXTBUS, the internal ROM (Mask, Flash, OTP) is still
accessible. If EXTROM_EXTBUS is selected The internal ROM is not accessible. Detailed
address specification can be found in the controller hardware manual.

- BUSMODE affects the mode byte setting, if the reset vector is enabled in the start-up file
(see 2.12).

- If INTROM_EXTBUS or EXTROM_EXTBUS is selected, external bus control registers
are set by the start-up code (see 2.11). In SINGLE_CHIP mode external bus control
registers are not accessed.

- If INTROM_EXTBUS or EXTROM_EXTBUS is selected, external bus control registers
are set by the start-up code (see 2.11). In SINGLE_CHIP mode external bus control
registers are not accessed.

2.10 ROMMIRROR (F²MC-16LX only)

This setting specifies the usage of the ROM-mirror function for of F²MC-16LX-
microcontrollers in INTROM_EXTBUS mode. F²MC-16LX controllers have a special function
register that allows choosing whether to access internal ROM or external bus in the area
H’004000…H’00FFFF.

If ROMIRROR is set to ON, the internal ROM area H’FF4000…H’FFFFFF is mirrored to
H’004000…H’00FFFF. If ROMIRROR is set to OFF, the external bus is visible in
H’004000…H’00FFFF.

This setting does not apply to other controllers than F²MC-16LX. It does not apply to other
bus modes than INTROM_EXTBUS. For other controller families and other bus modes it is
ignored. In single-chip mode of F²MC-16LX controllers and in internal-ROM modes of other
controllers the ROM area is always mirrored.

Recommended setting is ON because it allows the usage of the ROMCONST-option of the
compiler in internal-ROM modes (see 1.3.3).

2.11 External Bus Setting

If BUSMODE is set to INTROM_EXTBUS or EXTROM_EXTBUS the external bus interface
is enabled. In this case it has to be configured properly. Please refer to the hardware
controller hardware manual for detailed information.

AUTOWAIT_IO, AUTOWAIT_LO, AUTOWAIT_HI

These settings refer to the Auto-Ready function (wait-states). No wait-states, one, two or
three wait-states can be set separately for the external IO-area (C0…FF), the lower external
area (002000…7FFFFF) and to the higher external area (800000…FFFFFF/800000…end of
external bus area).

ADDR_PINS

This setting specifies the usage of address lines A16…A23. These can be set as IO-port
instead of address line independently. This allows to save IO-ports, if the external address
decoder does not need to differ these address lines.

BUS_SIGNAL

This setting specifies the bus width and the usage bus control signals Write, Hold Request,
Ready and Clock. The control signal pins can used as IO-port instead of bus control signal.

 FCC907S-Memory Initialisation with F²MC16-Start-Up File

© Fujitsu Mikroelektronik GmbH - 15 -

This allows to save IO-ports, if not all bus features are used. E.g. If only external ROM is
connected, there is not need for Write signal.

The bus width specifies to use either 16 Bit multiplexed bus or 8 Bit multiplexed bus. This
can be set separately for the external IO-area (C0…FF), the lower external area
(002000…7FFFFF) and to the higher external area (800000…FFFFFF/800000…end of
external bus area). If RESET_VECTOR (see 2.12) is enabled, the selection of the higher bus
area will become part of the mode byte of the reset vector.

In 8 Bit multiplexed bus mode the address is output first. Than the AD0…AD7 changes to
data bus (read or write). Upper 16 address lines (or less) keep their address value. Lower 8
address lines have to be latched. If internal memory (e.g. internal RAM) is accessed, upper
16 address lines still keep the value of the last external access. Lower 8 address lines
change to high-impedance and bus control signals stay inactive (e.g. /RD stays high).

In 16 Bit multiplexed bus mode the address is output first. Than the AD0…AD15 changes to
data bus (read or write). Upper 8 address lines (or less) keep their address value. Lower 16
address lines have to be latched. If internal memory (e.g. internal RAM) is accessed, upper 8
address lines still keep the value of the last external access. Lower 16 address lines change
to high-impedance and bus control signals stay inactive (e.g. /RD stays high).

2.12 RESET_VECTOR

This setting specifies the generation of a reset vector. A reset vector contains the start
address of the program and a mode byte, which defines the bus mode. If RESET_VECTOR
is ON, a section RESVECT is generated. The mode byte is automatically calculated from the
other bus settings.

If RESET_VECTOR is OFF, this section is not generated.

Note: The reset vector can also be defined by pragma statement in C-language. However,
the mode byte has to be calculated manually then.

Note: For those devices, which have fixed reset vector or if bootstrap loaders are used,
which do not process the vector address, RESET_VECTOR can be set OFF. In this case the
start-up module has to be linked to the proper address by linker settings.

Note: If devices with fixed reset vector are used and if these devices are debugged with
emulator debugger, RESET_VECTOR should be set to ON, even if the start-up code is
linked to fixed start address. This is because the emulator debugger does not process fixed
vectors and still needs the reset vector. Make sure that the reset vector is identical with the
fixed vector, if no special bootstrap loader (for Flash memory) is used that takes care of
these different vectors.

Application Note

- 16 - © Fujitsu Mikroelektronik GmbH

3 Appendix

3.1 Source Code of Start.asm
;==
; MB90500/MB90600/MB90700/MB90700H/MB90200 Series C Compiler,
; (C) FUJITSU MIKROELEKTRONIK GMBH 1998-99
;
; Startup file for memory and basic controller initialization
;==

 .PROGRAM STARTUP
 .TITLE "STARTUP FILE FOR MEMORY INITIALIZATION"

;==
; CHECK ALL OPTIONS WHETHER THEY FIT TO THE APPLICATION;
;
; Configure this startup file in the "Settings" section. Search for
; comments with leading "; <<<". This points to the items to be set.
;
;==
; Disclaimer
;==
; FUJITSU MIKROELEKTRONIK GMBH
; Am Siebenstein 6-10, 63303 Dreieich
; Tel.:++49/6103/690-0,Fax - 122
;
; The following software is for demonstration purposes only.
; It is not fully tested, nor validated in order to fullfill
; its task under all circumstances. Therefore, this software
; or any part of it must only be used in an evaluation
; laboratory environment.
; This software is subject to the rules of our standard
; DISCLAIMER, that is delivered with our SW-tools (on the CD
; "Micros Documentation & Software V3.0" see "\START.HTM" or
; see our Internet Page -
; http://www.fujitsu-ede.com/products/micro/disclaimer.html
;
;==
; History
;==
;
; Version 1.00 25. Aug 98 Holger Loesche
; - original version
; Version 1.01 31. Aug 98 Holger Loesche
; - bug: conditional for reset vector was missing
; Version 1.02 16. Oct 98 Holger Loesche
; - memory model AUTO introduced (use far calls only and repair
; stack, if necessary
; - colons removed from EQU labels
; - stream_init call added
; - RAMCONST set as default (also for ROMCONST systems)
; Version 1.03 19. Oct 98 Holger Loesche
; - bug: SEGCOPY macro: used size changed from sizeof(src) to
; sizeof(dest). It was conflicting with RAMCONST, if compiler
; is set to ROMCONST.
; Version 1.04 21. Oct 98 Holger Loesche
; - ROM mirror option added
; - _exit call added
; - bug: EQU ON/OFF move to upper lines
; Version 1.05 28. Oct 98 Holger Loesche
; - CALL/CALLP _exit was not differed
; Version 1.06 18. Feb 99 Holger Loesche
; - default external bus configuration: WR signal enabled
; - ROMMIRROR macro processing simplified (less warnings>
; Version 1.07 01. April 99 Holger Loesche
; - Version string had wrong number (1.05 instead of 1.06)
; - Copyright slightly changed
; Version 1.08 16. April 99 Juergen Rohn
; - Version placed in separate section (caused problems with fixed
; reset vector)
; Version 1.09 12. May 99 Holger Loesche
; - MB90400 family added

 FCC907S-Memory Initialisation with F²MC16-Start-Up File

© Fujitsu Mikroelektronik GmbH - 17 -

; - several coments changed
; - INTROM_EXTBUS macro was wrong
; - BUSWIDTH macro removed, no resolved from bus signal
; - disclaimer added
; Version 1.10 17. May 99 Holger Loesche
; - change in 1.10 (MODEBYTE) related to BUSWIDTH was not complete
;
;==
 .SECTION VERSIONS, CONST
 .SDATA "Start 1.09\n" ; comment this line to remove

;==
; Settings
;==
#set OFF 0
#set ON 1

; ------- controller family ---------

#set MB90700 0
#set MB90200 1
#set MB90600 2
#set MB90500 3
#set MB90400 4

#set FAMILY MB90500 ; <<< select family

; ------- Memory models --------- default address size
 ; data code
#set SMALL 0 ; 16 Bit 16 Bit
#set MEDIUM 1 ; 16 Bit 24 Bit
#set COMPACT 2 ; 24 Bit 16 Bit
#set LARGE 3 ; 24 Bit 24 Bit

#set AUTO 4 ; works always, might waste 2 bytes

#set MEMMODEL AUTO ; <<< C-memory model

; The selected memory model should be set in order to fit to the
; model selected for the compiler.
; Note, in this startup version AUTO will work for all
; C-models. However, if the compiler is configured for SMALL or
; COMPACT, two bytes on stack will be lost. If this is not
; acceptable, the above setting should be set to the correct model.

; ------- Constant symbols ---------

#set ROMCONST 0 ; works only with compiler ROMCONST
#set RAMCONST 1 ; works with BOTH compiler settings

#set CONSTDATA RAMCONST ; <<< set RAMCONST or ROMCONST

; - RAMCONST (default) should always work, even if compiler is set
; to ROMCONST.
; If compiler is set to ROMCONST and this startup file is set to
; RAMCONST, this startup file will only generate an empty section
; CINIT. The code, which copies from CONST to CINIT will not have
; any effect then.
; - It is highly recommended to set the compiler to ROMCONST for
; single-chip mode or internal ROM+ext bus.
; - Full external bus requires external address mapping.
; Single-chip can be emulated by the emulator debugger.
; ROM mirror can also be used with simulator.
;
;see also MIRROR options of external bus settings

; ------- stack ---------

#set USRSTACK 0 ; use user stack, system stack for interrupts
#set SYSSTACK 1 ; use system stack for all (program + inter)

#set STACKUSE SYSSTACK ; <<< set used stacks

; - If only SSB is used and SSB is linked to a different bank than USB,
; make sure that all C-modules (which generate far pointers to stack
; data) have "#pragma SSB". Applies only to exclusive configurations.

Application Note

- 18 - © Fujitsu Mikroelektronik GmbH

; - Note, several library functions require quite a big stack (due to
; ANSI). Check the stack information files (*.stk) in the LIB\907
; directory.

SSSIZE .EQU 384 ; <<< system stack size in words
#if STACKUSE == USRSTACK
USSIZE .EQU 384 ; <<< user stack size, if used
#else
USSIZE .EQU 1 ; just a dummy
#endif

#if STACKUSE == USRSTACK
macro RELOAD_SP ; used after function call
 MOVW A, #USTACK_TOP ; repair stack, if stream_init
 MOVW SP,A ; was completed by RET (not RETP)
endm
#else
macro RELOAD_SP ; used after function call
 MOVW A, #SSTACK_TOP ; repair stack, in case stream_init
 MOVW SP,A ; was completed by RET (not RETP)
endm
#endif

; ------- General Register Bank ---------

#set REGBANK 0 ; <<< set default register bank

; set the General Register Bank that is to be used after startup.
; Usually, this is bank 0, which applies to address H'180..H'18F. Set
; in the range from 0 to 31.

#if REGBANK > 31 || REGBANK < 0
error REGBANK setting out of range
#endif
; ------- Library interface ---------

#set NOLIBINIT 0 ; do not initialize Library
#set DOLIBINIT 1 ; initialize Library interface

#set CLIBINI NOLIBINIT ; <<< select extended libray usage

; This option has only to be set, if file-IO/standard-IO function of the
; C-libraray have to be used (printf(), fopen()...). This also requires
; low-level functions to be defined by the application software.
; For other library functions like (e.g. sprintf()) all this is not
; necessary. However, several functions consume a large amount of stack.

; ------- Clock selection --------

#set NOCLOCK 0 ; do not touch CKSCR register
#set MAINCLOCK 1 ; select main clock (1/2 external)
#set PLLx1 2 ; set PLL to x1 ext. clock/quartz
#set PLLx2 3 ; set PLL to x2 ext. clock/quartz
#set PLLx3 4 ; set PLL to x3 ext. clock/quartz
#set PLLx4 5 ; set PLL to x4 ext. clock/quartz

#set CLOCKSPEED PLLx4 ; <<< set PLL ratio
#set CLOCKWAIT ON ; <<< wait for stabilized PLL, if
 ; PLL is used
; The clock is set quiet early. However, if CLOCKWAIT is ON, polling
; for machine clock to be switched to PLL is done at the end of this
; file. Therefore, the stabilization time is not wasted. Main() will
; finally start at correct speed. Resources can immediately be used.
;
; This startup file version does not support subclock.

; ------- Bus interface ---------

#set SINGLE_CHIP 0 ; all internal
#set INTROM_EXTBUS 1 ; mask ROM, FLASH, or OTP ROM used
#set EXTROM_EXTBUS 2 ; full external bus (INROM not used)

#set BUSMODE SINGLE_CHIP ; <<< set bus mode (see mode pins)

#set ROMMIRROR ON ; <<< ROM mirror function ON/OFF

 FCC907S-Memory Initialisation with F²MC16-Start-Up File

© Fujitsu Mikroelektronik GmbH - 19 -

 ; MB90500 family only

; In Internal ROM / External Bus mode one can select whether to mirror
; area FF4000..FFFFFF to 004000..00FFFF. This is necessary to get the
; compiler ROMCONST option working. However, if ROMCONST is not used,
; this area might be used to access external memory. This is intended
; to increase performance, if a lot of dynamic data have to be accessed.
; In SMALL and MEDIUM model these data can be accessed within bank 0,
; which allows to use near addressing.
; These controller without the ROMM-control register always have the
; mirror function on in INROM mode.

; If BUSMODE is "SINGLE_CHIP", ignore remaining bus settings.

#set WIDTH_8 0 ; 8 Bit external bus
#set WIDTH_16 1 ; 16 Bit external bus

;#set BUSWIDTH WIDTH_16 ; <<< set external bus width

#set AUTOWAIT_IO 0 ; <<< 0..3 waitstates for IO area
#set AUTOWAIT_LO 0 ; <<< 0..3 for lower external area
#set AUTOWAIT_HI 0 ; <<< 0..3 for higher external area

#set ADDR_PINS B'00000000 ; <<< select used address lines
 ; A23..A16 to be output.
; This is the value to be set in HACR-register. "1" means: pin used as
; IO-port. (B'10000000 => A23 not used, B'00000001 => A16 not used)

#set BUS_SIGNAL B'00000100 ; <<< enable bus control signals
; ||||||||__ ignored
; |||||||___ bus width lower memory (0:16, 1:8Bit)
; ||||||____ output WR signal(s) (1: enabled)
; |||||_____ bus width upper memory (0:16, 1:8Bit)
; ||||______ bus width ext IO area (0:16, 1:8Bit)
; |||_______ enable HRQ input (1: enabled)
; ||________ enable RDY input (1: enabled)
; |_________ output CLK signal (1:enabled)

; These settings correspond to the EPCR-register.
; Hint: Except for MB90500 devices the clock output is needed for
; external RDY synchronisation, if Ready function is used.
; Hint: Don't forget to enable WR signals, if external RAM has to be
; written to.

#set iARSR ((AUTOWAIT_IO<<6)|((AUTOWAIT_HI&3)<<4)|(AUTOWAIT_LO&3))

; ------- Reset Vector ---------

#set RESET_VECTOR ON ; <<< enable reset vector

#if BUSMODE == SINGLE_CHIP
set MODEBYTE 0
#else
set MODEBYTE (((BUSMODE&3)<<6) | ((~BUS_SIGNAL)&8))
#endif

; Above setting can also be used, if all other interrupt vectors are
; specified via "pragma intvect". Only if interrupts 0..7 are specified
; via "pragma intvect", this will conflict with the vector in this
; module. The reason is the INTVECT section, which includes the whole
; area from the lowest to the highest specified vector.

#if RESET_VECTOR == ON
 .SECTION RESVECT, CONST, LOCATE=H'FFFFDC
 .DATA.E _start
 .DATA.B MODEBYTE
#endif

; <<< END OF SETTINGS >>>

;==
; Several fixed addresses (fixed for MB90xxx controllers)
;==

LPMCR .EQU 0xA0 ; Low power mode control register

Application Note

- 20 - © Fujitsu Mikroelektronik GmbH

CKSCR .EQU 0xA1 ; Clock select control register
#if BUSMODE != SINGLE_CHIP
ARSR .EQU 0xA5 ; *1) Automatic ready function reg
HACR .EQU 0xA6 ; *1) External address output reg
EPCR .EQU 0xA7 ; *1) Bus control signal selection
#endif
#if FAMILY == MB90500 || FAMILY == MB90400
ROMM .EQU 0x6F ; *2) ROM mirror control register
#endif
WDTC .EQU 0xA8 ; Watchdog control register
TBTC .EQU 0xA9 ; Timerbase timer control register

; *1 only for devices with external bus
; *2 only for MB905xx (FFMC-16LX) devices

;==
; Declaration of sections (data, const)
;==
 .SECTION DATA, DATA, ALIGN=2 ; zero clear area
 .SECTION INIT, DATA, ALIGN=2 ; initialized area
 .SECTION DIRDATA, DIR, ALIGN=2 ; zero clear direct
DIRDATA_S:
 .SECTION DIRINIT, DIR, ALIGN=2 ; initialized dir
#if CONSTDATA == RAMCONST
 .SECTION CINIT, DATA, ALIGN=2 ; initialized const
#endif
 .SECTION LIBDATA, DATA, ALIGN=2 ; zero clear lib area
 .SECTION LIBINIT, DATA, ALIGN=2 ; initialized lib area

 .SECTION DIRCONST, DIRCONST,ALIGN=2 ; DIRINIT initializers
 .SECTION DCONST, CONST, ALIGN=2 ; DINIT initializers
 .SECTION CONST, CONST, ALIGN=2 ; CINIT initializers
 .SECTION LIBDCONST, CONST, ALIGN=2 ; LIBDCONST init val

 .SECTION DCLEAR, CONST, ALIGN=2 ; far zero clear table
 .SECTION DTRANS, CONST, ALIGN=2 ; far copy table

;==
; Stack area and stack top definition
;==
 .SECTION SSTACK, STACK, ALIGN=2
 .RES.H SSSIZE
SSTACK_TOP:
 .SECTION USTACK, STACK, ALIGN=2
 .RES.H USSIZE
USTACK_TOP:

;==
; ___ _____ __ ___ _____
; / | / \ | \ |
; ___ | | | |___/ |
; \ | |----| | \ |
; ___/ | | | | \ | Begin of actual code section
;==
 .SECTION CODE_START, CODE, ALIGN=1
 .IMPORT _main ; user code entrance
#if CLIBINI == DOLIBINIT
 .IMPORT __stream_init
 .IMPORT _exit
 .EXPORT __exit
#endif
 .EXPORT _start

;==
; "NOT RESET YET" WARNING
;==
notresetyet:
 NOP ; read hint below!!!!!!!
; If the debugger stays at the NOP above, the controller has not been
; reset yet. In order to reset all hardware register it is highly re-
; commended to reset the controller.
; However, if no reset vector has been defined on purpose, this dummy
; start address can also be used.
; This mechanism is using the .END instruction at the end of this mo-
; dule. It is not necessary for controller operation but improves
; security during debugging (mainly emulator debugger).

 FCC907S-Memory Initialisation with F²MC16-Start-Up File

© Fujitsu Mikroelektronik GmbH - 21 -

;==
; Program start address the reset vector should point here
;==
_start:
 AND CCR, #0 ; disable interrups
 MOV ILM,#7 ; set interrupt level mask to ALL
 MOV RP,#REGBANK ; set register bank pointer

;==
; Set clock ratio (ignore subclock)
;==
#if CLOCKSPEED != NOCLOCK
 SETB I:CKSCR:2 ; set main clock
if CLOCKSPEED > MAINCLOCK
 MOV A, I:CKSCR ; copy clock register
 AND A, #0xFC ; set x1 for PLL
if CLOCKSPEED == PLLx2
 OR A, #0x01 ; set x2 for PLL
elif CLOCKSPEED == PLLx3
 OR A, #0x02 ; set x3 for PLL
elif CLOCKSPEED == PLLx4
 OR A, #0x03 ; set x4 for PLL
endif
 MOV I:CKSCR, A ; write back
 CLRB I:CKSCR:2 ; enable PLL, PLL is not switched
 ; to the MCU yet but after stabi-
 ; lizing it switchs on its own to
 ; higher speed (see below)
endif ; CLOCKSPEED > MAINCLOCK
#endif ; CLOCKSPEED != NOCLOCK

;==
; Set some external bus configuaration
;==

#if BUSMODE != SINGLE_CHIP ; ext bus used
 MOV I:HACR, #ADDR_PINS ; set used upper address lines
 MOV I:EPCR, #BUS_SIGNAL ; set used bus signals
 MOV I:ARSR, #iARSR ; set auto-wait cycles
#endif

#if FAMILY == MB90500 || FAMILY == MB90400 ; only these have ROMM

if BUSMODE == INTROM_EXTBUS ; EXTBUS and INTROM/EXTROM
if ROMMIRROR == OFF && CONSTDATA == ROMCONST
error Mirror function must be ON to mirror internal ROM
endif
endif

 MOV I:ROMM, #ROMMIRROR
#endif

;==
; Copy from initial value areas to reserved data area of near data
;==
#macro SEGCOPY DEST, SRC
 MOV A,#BNKSEC \SRC ; get bank of source section
 MOV DTB,A ; store source bank in DTB
 MOV A,#BNKSEC \DEST ; get destination bank
 MOV ADB,A ; store dest bank in ADB
 MOVW RW0,#SIZEOF (\DEST) ; get size of dest section
 MOVW A,#\DEST ; move destination offset to AL
 MOVW A,#\SRC ; move source offset to AL and
 ; move AL (dest offset) to AH
 MOVSI ADB,DTB ; copy RW0 bytes src->dest
#endm

 SEGCOPY INIT, DCONST ; from DCONST to INIT
 SEGCOPY DIRINIT, DIRCONST ; from DIRCONST to DIRINIT
 SEGCOPY LIBINIT, LIBDCONST ; from LIBDCONST to LIBINIT
#if CONSTDATA == RAMCONST
 SEGCOPY CINIT, CONST ; from CONST to CINIT
#endif

Application Note

- 22 - © Fujitsu Mikroelektronik GmbH

;==
; Clear uninitialized near data areas to zero
;==
#macro SEGZERO SEC
 MOV A,#BNKSEC \SEC ; get bank of section
 MOV ADB,A ; store bank in ADB
 MOVW RW0,#SIZEOF (\SEC) ; store number of bytes in RW0
 MOVW A,#\SEC ; move dest offset to AL
 MOVN A,#0 ; move fill value to AL and
 ; move AL (offset) to AH
 FILSI ADB ; fill RW0 bytes with AL
#endm

 SEGZERO DATA ; clear DATA
 SEGZERO DIRDATA ; clear DIRDATA
 SEGZERO LIBDATA ; clear LIBDATA

;==
; Copy initial value of far data areas.
; Each C-module has its own far INIT section. The names are generic.
; DCONST_module contains the initializers for the far data of the one
; module. INIT_module reserves the RAM area, which has to be loaded
; with the data from DCONST_module. ("module" is the name of the *.c
; file)
; All separated DCONST_module/INIT_module areas are described in
; DTRANS section by start addresses and length of each far section.
; 0000 1. source address (ROM)
; 0004 1. destination address (RAM)
; 0008 length of sections 1
; 000A 2. source address (ROM)
; 000E 2. destination address (RAM)
; 0012 length of sections 2
; 0014 3. source address ...
;==
 MOV A, #BNKSEC DTRANS ; get bank of table
 MOV DTB, A ; store bank in DTB
 MOVW RW1, #DTRANS ; get start offset of table
 OR CCR, #H'20 ; System stack flag set (SSB used)
 BRA LABEL2 ; branch to loop condition
LABEL1:
 MOVW A, @RW1+6 ; get bank of destination
 MOV SSB, A ; save dest bank in SSB
 MOVW A, @RW1+2 ; get source bank
 MOV ADB, A ; save source bank in ADB
 MOVW A, @RW1+4 ; move destination addr in AL
 MOVW A, @RW1 ; AL ->AH, src addr -> AL
 MOVW RW0, @RW1+8 ; number of bytes to copy -> RW0
 MOVSI SPB, ADB ; copy data
 MOVN A, #10 ; length of one table entry is 10
 ADDW RW1, A ; set pointer to next table entry
LABEL2:
 MOVW A, RW1 ; get address of next block
 SUBW A, #DTRANS ; sub address of first block
 CMPW A, #SIZEOF (DTRANS) ; all blocks processed ?
 BNE LABEL1 ; if not, branch

;==
; Clear uninitialized far data areas to zero
; Each C-module has its own far DATA section. The names are generic.
; DATA_module contains the reserved area (RAM) to be cleared.
; ("module" is the name of the *.c file)
; All separated DATA_module areas are described in DCLEAR section by
; start addresses and length of all far section.
; 0000 1. section address (RAM)
; 0004 length of section 1
; 0006 2. section address (RAM)
; 000A length of section 2
; 000C 3. section address (RAM)
; 0010 length of section 3 ...
;==
 MOV A, #BNKSEC DCLEAR ; get bank of table
 MOV DTB, A ; store bank in DTB
 MOVW RW1, #DCLEAR ; get start offset of table
 BRA LABEL4 ; branch to loop condition
LABEL3:
 MOV A, @RW1+2 ; get section bank

 FCC907S-Memory Initialisation with F²MC16-Start-Up File

© Fujitsu Mikroelektronik GmbH - 23 -

 MOV ADB, A ; save section bank in ADB
 MOVW RW0, @RW1+4 ; number of bytes to copy -> RW0
 MOVW A, @RW1 ; move section addr in AL
 MOVN A, #0 ; AL ->AH, init value -> AL
 FILSI ADB ; write 0 to section
 MOVN A, #6 ; length of one table entry is 6
 ADDW RW1, A ; set pointer to next table entry
LABEL4:
 MOVW A, RW1 ; get address of next block
 SUBW A, #DCLEAR ; sub address of first block
 CMPW A, #SIZEOF (DCLEAR) ; all blocks processed ?
 BNE LABEL3 ; if not, branch

;==
; Prepare stacks and set the default stack type
;==
#macro SYSSTACKINI
 OR CCR,#H'20 ; set System stack flag
 MOV A,#BNKSYM SSTACK_TOP ; System stack set
 MOV SSB,A
 MOVW A,#SSTACK_TOP
 MOVW SP,A
#endm
#macro USRSTACKINI
 AND CCR,#H'DF ; User stack flag set
 MOV A,#BNKSYM USTACK_TOP ; User stack set
 MOV USB,A
 MOVW A,#USTACK_TOP
 MOVW SP,A
#endm
#if STACKUSE == USRSTACK
 SYSSTACKINI
 USRSTACKINI ; finally user stack selected
#else
 USRSTACKINI
 SYSSTACKINI ; finally system stack selected
#endif

;==
; Set default data bank and direct page register
;==
 MOV A,#BNKSEC DATA ; User data bank offset
 MOV DTB,A

 MOV A,#PAGE DIRDATA_S ; User direct page
 MOV DPR,A

;==
; Wait for PLL to stabilize
;==

#if CLOCKSPEED > MAINCLOCK && CLOCKWAIT == ON
no_PLL_yet:
 BBS I:CKSCR:6,no_PLL_yet ; check MCM and wait for
 ; PLL to stabilize
#endif

;==
; Call lib init function: reload stack afterwards, if AUTO-model
;==
#if CLIBINI == DOLIBINIT
if MEMMODEL == SMALL || MEMMODEL == COMPACT
 CALL __stream_init ; initialize library IO
else ; MEDIUM, LARGE, AUTO
 CALLP __stream_init ; initialize library IO
if MEMMODEL == AUTO
 RELOAD_SP ; repair stack since stream_init was
 ; possibly left by RET (not RETP)
endif ; AUTO
endif ; MEDIUM, LARGE, AUTO
#endif ; LIBINI

;==
; Call C-language main entrance
;==
#if MEMMODEL == SMALL || MEMMODEL == COMPACT

Application Note

- 24 - © Fujitsu Mikroelektronik GmbH

 CALL _main ; Start main function
#else ; MEDIUM, LARGE, AUTO
 CALLP _main ; Start main function
 ; ignore remaining word on stack,
 ; if main was completed by RET
#endif
#if CLIBINI == DOLIBINIT
if MEMMODEL == SMALL || MEMMODEL == COMPACT
 CALL _exit
else ; MEDIUM, LARGE, AUTO
 CALLP _exit ; ignore remaining word on stack,
 ; if main was completed by RET
endif
__exit:
#endif
end:
 BRA end ; Loop

 .END notresetyet ; define debugger start address
;==
; End of startup
;==

3.2 History

12th May 99 Holger Lösche Original version
17th May 99 Holger Lösche Minor typos corrected

