Application Note

Note on calculating reload values FFMC8L © Fujitsu Mikroelektronik GmbH

When using timers in reload mode, the main intention is to generate circular interrupts with a fixed reload time. But when interrupt service routines are called, a certain overhead will be produced by the compiler (context save !). This note shows how to calculate the correct reload value taking in account the produced extra code.

In this example, a rectangular signal with a frequency of $1,5 \mathrm{kHz}$ should be produced on pin 40 . The reload value has to be calculated to obtain this period. The positive width of the signal is fixed and much smaller than the period itself.

The diagram below shows the signal and the ISR procedure : When the interrupt is signaled and processed immediately, which would assume a certain priority and no other interrupt currently active, the context will be saved on the stack after the ISR-subroutine is called. This context save is produced by the compiler. After that the intended taks can be processed - in this case a signal on pin 40 with a definite width.

Fig. 1. : Producing a signal on pin 40 using a 16-bit(reload)-timer interrupt
In the produced code, the offset (due to calling ISR and context save) takes 64 cycles ($40_{\text {hex }}$) which must be included in the calculation :

$$
\begin{aligned}
\text { Reload }=F F F F_{\text {hex }}-\left(f_{c} /\left(4 f_{\text {int }}\right)\right)+40_{\text {hex }} \quad \text { mit }: & f_{c}: \text { Quartzfreq. } \\
& f_{\text {int }:} \text { Interruptfreq. } .
\end{aligned}
$$

In this example : With $f_{c}=10 \mathrm{MHz}$ and $f_{\text {int }}=1500 \mathrm{~Hz}$: Reload $=\mathrm{F}_{9} \mathrm{BD}_{\text {hex }}$

Interrupt-Service Routione 16-bit-Timer :

(C-Source-code printed bold)

before calling ISR : finish actual command and save PS and address on stack
approx. 10-14 cycles

220: void TC16INT6()

221: \{
C2BA: 40 PUSHW A 4
C2BB: 43 XCHW A,T 2
C2BC: 40 PUSHW A 4
C2BD: F3 MOVW A,EP 2
C2BE: 40 PUSHW A 4
C2BF: 41 PUSHW IX 4
C2C0: F1 MOVW A,SP 2
C2C1: E2 MOVW IX,A 2
C2C2: 08 MOV A,R0 3
C2C3: 10 SWAP 2
C2C4: 09 MOV A,R1 3
C2C5: 40 PUSHW A 4
222: $\mathbf{T M C R}=\mathbf{0 x 2 2 ;} \quad / *$ Int enable egain */
C2C6: 851822 MOV 18,\#22
223: TCHR = 0xF6; /* Reload value */
C2C9: 8519F6 MOV 19,\#F6 4
224: $T C L R=0 \times 3 B$;
C2CC: 851A3B MOV 1A,\#3B 4
225: TCS = 1; $\quad / *$ start counter again */
C2CF: A818 SETB 18:00 $\underline{4}$
64 cycles
226: PDR4_0 = 1; / * show pulse on PIN 40 */
C2D1: A80F SETB 0F:00
227: wait(20);
C2D3: E40014 MOVW A,\#0014
C2D6: 40 PUSHW A
C2D7: 31C04B CALL Iwait
C2DA: 50 POPW A
228: PDR4_0 = 0;
C2DB: A00F CLRB 0F:00
229:\}
C2DD: 50 POPW A
2DE: 49 MOV R1,A
2DF: 10 SWAP
2E0: 48 MOV R0,A
2E1: F2 MOVW A,IX
2E2: E1 MOVW SP,A
2E3: 51 POPW IX
2E4: 50 POPW A
2E5: E3 MOVW EP,A
2E6: 50 POPW A
2E7: 43 XCHW A,T
2E8: 50 POPW A
2E9: 30 RETI

