
Application Note

Note on calculating reload values
FFMC8L

 Fujitsu Mikroelektronik GmbH
 15.1.1997 Vers. 1.0 by M.Mierse

When using timers in reload mode, the main intention is to generate circular interrupts with a
fixed reload time. But when interrupt service routines are called, a certain overhead will be
produced by the compiler (context save !). This note shows how to calculate the correct reload
value taking in account the produced extra code.

In this example, a rectangular signal with a frequency of 1,5 kHz should be produced on pin 40. The
reload value has to be calculated to obtain this period. The positive width of the signal is fixed and
much smaller than the period itself.

The diagram below shows the signal and the ISR procedure : When the interrupt is signaled and
processed immediately, which would assume a certain priority and no other interrupt currently active,
the context will be saved on the stack after the ISR-subroutine is called. This context save is produced
by the compiler. After that the intended taks can be processed – in this case a signal on pin 40 with a
definite width.

Fig. 1. : Producing a signal on pin 40 using a 16-bit(reload)-timer interrupt

In the produced code, the offset (due to calling ISR and context save) takes 64 cycles (40hex) which
must be included in the calculation :

Reload = FFFFhex - (fc / (4 fint)) + 40hex mit : fc : Quartzfreq.
fint : Interruptfreq.

In this example : With fc = 10 MHz and fint=1500Hz : Reload=F9BDhex

Reload-value without correction offset

Interrupt Interrupt

period

offset

Interrupt-Service Routione 16-bit-Timer :

(C-Source-code printed bold)

before calling ISR : finish actual command and save PS and address on stack approx. 10-14 cycles

220: void TC16INT6()
221: {

C2BA: 40 PUSHW A 4
C2BB: 43 XCHW A,T 2
C2BC: 40 PUSHW A 4
C2BD: F3 MOVW A,EP 2
C2BE: 40 PUSHW A 4
C2BF: 41 PUSHW IX 4
C2C0: F1 MOVW A,SP 2
C2C1: E2 MOVW IX,A 2
C2C2: 08 MOV A,R0 3
C2C3: 10 SWAP 2
C2C4: 09 MOV A,R1 3
C2C5: 40 PUSHW A 4

222: TMCR = 0x22; /* Int enable egain */
C2C6: 851822 MOV 18,#22 4

223: TCHR = 0xF6; /* Reload value */
C2C9: 8519F6 MOV 19,#F6 4

224: TCLR = 0x3B;
C2CC: 851A3B MOV 1A,#3B 4

225: TCS = 1; /* start counter again */
C2CF: A818 SETB 18:00 4

64 cycles
226: PDR4_0 = 1; /* show pulse on PIN 40 */

C2D1: A80F SETB 0F:00
227: wait(20);

C2D3: E40014 MOVW A,#0014
C2D6: 40 PUSHW A
C2D7: 31C04B CALL \wait
C2DA: 50 POPW A

228: PDR4_0 = 0;
C2DB: A00F CLRB 0F:00

229:}
C2DD: 50 POPW A
2DE: 49 MOV R1,A
2DF: 10 SWAP
2E0: 48 MOV R0,A
2E1: F2 MOVW A,IX
2E2: E1 MOVW SP,A
2E3: 51 POPW IX
2E4: 50 POPW A
2E5: E3 MOVW EP,A
2E6: 50 POPW A
2E7: 43 XCHW A,T
2E8: 50 POPW A
2E9: 30 RETI

