8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89628R/629R/P629

MB89628R/629R/P629

- DESCRIPTION

The MB89628R/629R/P629 have been developed as a general-purpose version of the $\mathrm{F}^{2} \mathrm{MC}^{\star}$-8L family consisting of proprietary 8 -bit, single-chip microcontrollers.

In addition to the $\mathrm{F}^{2} \mathrm{MC}-8 \mathrm{LCPU}$ core which can operate at low voltage but at high speed, the microcontrollers contain a variety of peripheral functions such as timers, serial interfaces, an A/D converter, and an external interrupt.

The MB89628R/629R/P629 are applicable to a wide range of applications from welfare to industrial equipment, including portable devices.
*: F²MC stands for FUJITSU Flexible Microcontroller.

■ FEATURES

- Large-size RAM MB89P629: 4 Kbytes MB89628R: 3 Kbytes MB89629R: 3 Kbytes
- High-speed processing at low voltage Minimum execution time: $0.4 \mu \mathrm{~s} / 3.5 \mathrm{~V}, 0.8 \mu \mathrm{~s} / 2.7 \mathrm{~V}$
- F²MC-8L family CPU core Instruction set optimized for controllers

> Multiplication and division instructions 16-bit arithmetic operations
> Test and branch instructions Bit manipulation instructions, etc.

PACKAGE

64-pin Plastic SH-DIP

(DIP-64P-M01)

64-pin Plastic QFP

(FPT-64P-M06)
(Continued)

- Four types of timers

8 -bit PWM timer (also usable as a reload timer)
8 -bit pulse width count timer (Continuous measurement capable, applicable to remote control, etc.)
16-bit timer/counter
20-bit time-base timer

- Two serial interfaces

Swichable the transfer direction allows communication with various equipment.

- 8-bit A/D converter

Sense mode function enabling comparison at $5 \mu \mathrm{~s}$
Activation by an external input capable

- External interrupt: 4 channels

Four channels are independent and capable of wake-up from low-power consumption modes (with an edge detection function).

- Low-power consumption modes

Stop mode (Oscillation stops to reduce the current consumption.)
Sleep mode (The CPU stops to reduce the current consumption to approx. $1 / 3$ of normal.)

PRODUCT LINEUP

Part number Parameter	MB89628R	MB89629R	MB89P629	MB89PV620*1
Classification	Mass production products (mask ROM products)		One-time PROM product for evaluation and development	Piggyback/evaluation product for evaluation and development
ROM size	$24 \mathrm{~K} \times 8$ bits (internal mask ROM)	$32 \mathrm{~K} \times 8$ bits (internal mask ROM)	$\quad 32 \mathrm{~K} \times 8$ bits (internal PROM, programming with general-purpose EPROM programmer)	$32 \mathrm{~K} \times 8$ bits (external ROM)
RAM size	3072×8 bits		4096×8 bits	$1 \mathrm{~K} \times 8$ bits
CPU functions	Number of instructions: Instruction bit length: Instruction length: Data bit length: Minimum execution time: Interrupt processing time:		$\begin{aligned} & 136 \\ & 8 \text { bits } \\ & 1 \text { to } 3 \text { bytes } \\ & 1,8,16 \text { bits } \\ & 0.4 \mu \mathrm{~s} / 10 \mathrm{MHz} \\ & 3.6 \mu \mathrm{~s} / 10 \mathrm{MHz} \end{aligned}$	
Ports	Input ports: Output ports (N -ch open-drain): I/O ports (N -ch open-drain): Output ports (CMOS): I/O ports (CMOS): Total:		5 (4 ports also serve 8 (All also serve as 8 (4 ports also serve 8 24 53	as peripherals.) ripherals.) as peripherals.)
8-bit PWM timer	8-bit reload timer operation (toggled output capable, operating clock cycle: $0.4 \mu \mathrm{~s}$ to 3.3 ms) 8 -bit resolution PWM operation (conversion cycle: $102 \mu \mathrm{~s}$ to 839 ms)			
8 -bit pulse width count timer	8-bit timer operation (overflow output capable, operating clock cycle: 0.4 to $12.8 \mu \mathrm{~s}$) 8 -bit reload timer operation (toggled output capable, operating clock cycle: 0.4 to $12.8 \mu \mathrm{~s}$) 8 -bit pulse width measurement operation (Continuous measurement " H " pulse width/"L" pulse width/from \uparrow to \uparrow /from \downarrow to \downarrow capable)			
16-bit timer/counter	16-bit timer operation (operating clock cycle: $0.4 \mu \mathrm{~s}$) 16-bit event counter operation (Rising/falling/both edges selectability)			
8-bit serial I/O 1 , 8-bit serial I/O 2	8-bitsLSB first/MSB first transfer selectabilityOne clock selectable from four transfer clocks(one external shift clock, three internal shift clocks: $0.8 \mu \mathrm{~s}, 3.2 \mu \mathrm{~s}, 12.8 \mu \mathrm{~s}$)			
8-bit A/D converter	8-bit resolution $\times 8$ channelsA/D conversion mode (conversion time: $18 \mu \mathrm{~s}$)Sense mode (conversion time: $5 \mu \mathrm{~s}$)Continuous activation by an external activation or an internal timer capableReference voltage input			
External interrupt	4 independent channels (edge selection, interrupt vector, source flag) Rising edge/falling edge selectability Used also for wake-up from stop/sleep mode. (Edge detection is also permitted in stop mode.)			
Standby modes	Sleep mode, stop mode			
Process	CMOS			
Operating voltage**	2.2 V to 6.0 V		2.7 V to 6.0 V	
EPROM for use				MBM27C256A-20

*1: The piggyback/evaluation product is applicable to the MB89620 series.
*2: Varies with conditions such as the operating frequency. (See section "■ Electrical Characteristics.") In the case of the MB89PV620, the voltage varies with the restrictions of the EPROM for use.

PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89628R MB89629R MB89P629	MB89PV620
DIP－64P－M01	\bigcirc	\times
FPT－64P－M06	\bigcirc	\times
MDP－64C－P02	\times	\bigcirc
MQP－64C－P01	\times	\bigcirc

\bigcirc ：Available \times ：Not available
Note：For more information about each package，see section＂■ Package Dimensions．＂

DIFFERENCES AMONG PRODUCTS

1．Memory Size

Before evaluating using the piggyback product，verify its differences from the product that will actually be used． Take particular care on the following points：
－On the MB89P629，the program area starts from address 8007H but on the MB89PV620，MB89628R，and MB89629R starts from 8000н．（On the MB89P629，addresses 8000н to 8006н comprise the option setting area，option settings can be read by reading these addresses．On the MB89PV620，MB89628R，and MB89629R，addresses 8000 to 8006 н could also be used as a program ROM．However，do not use these addresses in order to maintain compatibility of the MB89P629．）

2．Current Consumption

－In the case of the MB89PV620，add the current consumed by the EPROM which is connected to the top socket．
－When operated at low speed，the product with an OTPROM（one－time PROM）or an EPROM will consume more current than the product with a mask ROM．
However，the current consumption in sleep／stop modes is the same．（For more information，see section ＂$⿴ 囗 十$ Electrical Characteristics＂．）

3．Mask Options

Functions that can be selected as options and how to designate these options vary by the product．
Before using options check section＂■ Mask Options．＂
Take particular care on the following points：
－A pull－up resistor cannot be set for P40 to P47 on the MB89P629．
－A pull－up resistor is not selected for P50 to P57 when the A／D converter is used．
－Options are fixed on the MB89PV620．

MB89628R/629R/P629

PIN DESCRIPTION

Pin no.		Pin name	Circuit type	\quad Function

*1: DIP-64P-M01
(Continued)
*2: FPT-64P-M06
(Continued)

Pin no.		Pin name	Circuit type	Function
SH-DIP*1	QFP ${ }^{2}$			
2	59	P37/PTO	E	General-purpose I/O port Also serves as the toggle output for the 8-bit PWM timer. This port is a hysteresis input type.
3 to 6	60 to 63	P40 to P43	G	N-ch open-drain I/O ports These ports are a hysteresis input type.
7	64	P44/BZ	G	N-ch open-drain I/O port Also serves as a buzzer output. This port is a hysteresis input type.
8	1	P45/SCK2	G	N-ch open-drain I/O port Also serves as the clock I/O for the 8-bit serial I/O 2. This port is a hysteresis input type.
9	2	P46/SO2	G	N-ch open-drain I/O port Also serves as the data output for the 8 -bit serial I/O 2. This port is a hysteresis input type.
10	3	P47/SI2	G	N-ch open-drain I/O port Also serves as the data input for the 8 -bit serial I/O 2. This port is a hysteresis input type.
11 to 18	4 to 11	P50/AN0 to P57/AN7	H	N-ch open-drain output-only port Also serves as the analog input for the A/D converter.
22 to 25	15 to 18	P60/INT0 to P63/INT2	I	General-purpose input-only ports Also serve as an external interrupt input. These ports are a hysteresis input type.
26	19	P64	I	General-purpose input-only port This port is a hysteresis input type.
64	57	Vcc	-	Power supply pin
$\begin{aligned} & 32, \\ & 57 \end{aligned}$	$\begin{aligned} & 25, \\ & 50 \end{aligned}$	Vss	-	Power supply (GND) pins
19	12	AVcc	-	A/D converter power supply pin
20	13	AVR	-	A/D converter reference voltage input pin
21	14	AVss	-	A/D converter power supply (GND) pin. Use this pin at the same voltage as $\mathrm{V}_{\text {ss }}$.

[^0]
I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- At an oscillation feedback resistor of approximately $1 \mathrm{M} \Omega / 5.0 \mathrm{~V}$
B	$\square \square$	
C		- At an output pull-up resistor (P-ch) of approximately $50 \mathrm{M} \Omega / 5.0 \mathrm{~V}$ - CMOS hysteresis input
D		- CMOS output - CMOS input - Pull-up resistor optional (except P22 and P23)
E		- CMOS output - Hysteresis input - Pull-up resistor optional
F		- CMOS output

(Continued)
(Continued)

Type	Circuit	Remarks
G	(1)	- N-ch open-drain output - Hysteresis input - Pull-up resistor optional (MB89628R and MB89629R only)
H		- N-ch open-drain output - Analog input
1	[1)	- Hysteresis input - Pull-up resistor optional

HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than V_{cc} or lower than $\mathrm{V}_{s s}$ is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ Electrical Characteristics" is applied between Vcc and Vss.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.
Also, take care to prevent the analog power supply (AVcc and AVR) and analog input from exceeding the digital power supply (V_{cc}) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters

Connect to be $A V C c=D A V C=V c c$ and $A V s s=A V R=V_{s s}$ even if the A / D and D / A converters are not in use.

4. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

5. Power Supply Voltage Fluctuations

Although Vcc power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations (P-P value) will be less than 10% of the standard Vcc value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than $0.1 \mathrm{~V} / \mathrm{ms}$ at the time of a momentary fluctuation such as when power is switched.

6. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and wake-up from stop mode.

PROGRAMMING TO THE EPROM ON THE MB89P629

The MB89P629 is an OTPROM version of the MB89628R and MB89629R.

1. Features

- 16-Kbyte PROM on chip
- Options can be set using the EPROM programmer.
- Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)

2. Memory Space

Memory space in EPROM mode, option area is diagrammed below.

3. Programming to the EPROM

In EPROM mode, the MB89P629 functions equivalent to the MBM27C256A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter.

- Programming procedure

(1) Set the EPROM programmer to the MBM27C256A.
(2) Load program data into the EPROM programmer at 0000н to 7 FFFH (note that addresses 8000 н to FFFF н while operating as a single chip assign to 0000^{\prime} to 7 FFFH in EPROM mode. For information about each corresponding option, see " 7 . Setting OTPROM Options.")
(3) Program to 0000 to 7FFFн with the EPROM programmer.

4. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program.

5. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

6. EPROM Programmer Socket Adapter

Package	Compatible socket adapter
DIP-64P-M01	ROM-64SD-28DP-8L
FPT-64P-M06	ROM-64QF-28DP-8L

Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760

7. Setting OTPROM Options

The programming procedure is the same as that for the PROM. Options can be set by programming values at the addresses shown on the memory map. The relationship between bits and options is shown on the following bit map:

- OTPROM option bit map

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
$\begin{array}{\|c} 8000 \mathrm{H} \\ (0000 \mathrm{H}) \end{array}$	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	Oscillation stabilization time 1: Crystal 0: Ceramic	Reset pin output 1:Yes 2: No	Power-on reset 1:Yes 0 : No	Vacancy Readable and writable	Vacancy Readable and writable
$\begin{array}{\|c} 8001 \mathrm{H} \\ (0001 \mathrm{H}) \end{array}$	P07 Pull-up 1: No 0:Yes	P06 Pull-up 1: No 0: Yes	P05 Pull-up 1: No 0:Yes	P04 Pull-up 1: No 0:Yes	P03 Pull-up 1: No 0:Yes	P02 Pull-up 1: No 0:Yes	P01 Pull-up 1: No 0 :Yes	P00 Pull-up 1: No 0:Yes
$\begin{gathered} 8002 \mathrm{H} \\ (0002 \mathrm{H}) \end{gathered}$	P17 Pull-up 1: No 0:Yes	P16 Pull-up 1: No 0 : Yes	P15 Pull-up 1: No 0 0:Yes	P14 Pull-up 1: No 0 0: Yes	P13 Pull-up 1: No 0 0: Yes	P12 Pull-up 1: No 0 0:Yes	P11 Pull-up 1: No 0 :Yes	P10 Pull-up 1: No 0 :Yes
$\begin{array}{\|c} 8003 \mathrm{H} \\ (0003 \mathrm{H}) \end{array}$	P37 Pull-up 1: No 0 :Yes	P36 Pull-up 1: No 0:Yes	P35 Pull-up 1: No 0:Yes	P34 Pull-up 1: No 0: Yes	P33 Pull-up 1: No 0:Yes	P32 Pull-up 1: No 0 0:Yes	P31 Pull-up 1: No 0 : Yes	P30 Pull-up 1: No 0:Yes
$\begin{array}{\|c} 8004 \mathrm{H} \\ (0004 \mathrm{H}) \end{array}$	P57 Pull-up 1: No 0:Yes	P56 Pull-up 1: No 0: Yes	P55 Pull-up 1: No 0:Yes	P54 Pull-up 1: No 0: Yes	P53 Pull-up 1: No 0: Yes	P52 Pull-up 1: No 0 :Yes	P51 Pull-up 1: No 0: Yes	P50 Pull-up 1: No 0:Yes
$\begin{gathered} 8005 \mathrm{H} \\ \left(0005_{\mathrm{H}}\right) \end{gathered}$	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	P64 Pull-up 1: No $0: Y e s$	P63 Pull-up 1: No 0 0:Yes	P62 Pull-up 1: No $0: Y e s$	P61 Pull-up 1: No 0 :Yes	P60 Pull-up 1: No 0:Yes
$\begin{array}{\|c} 8006 \mathrm{H} \\ (0006 \mathrm{H}) \end{array}$	Vacancy Readable and writable	Reserved bit Readable and writable						

Notes: - Set each bit to 1 to erase.

- Do not write 0 to the vacant bit.

The read value of the vacant bit is 1 , unless 0 is written to it.

- Always write 0 to the reserved bit.

PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

MBM27C256A-20TV, MBM27C256A-20CZ

2. Programming Socket Adapter

To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato Co., Ltd.) listed below.

Package	Adapter socket part number
LCC-32 (Rectangle)	ROM-32LC-28DP-YG

Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760

3. Memory Space

Memory space in 32 -Kbyte PROM on the EPROM programmer is diagrammed below.

4. Programming to the EPROM

(1) Set the EPROM programmer to the MBM27C256A.
(2) Load program data into the EPROM programmer at 0007н to 7FFFн.
(3) Program to 0000 to 7 FFFH with the EPROM programmer.

MB89628R/629R/P629

BLOCK DIAGRAM

MB89628R/629R/P629

CPU CORE

1. Memory Space

The microcontrollers of the MB89628R/629R/P629 offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89628R/629R/P629 is structured as illustrated below.

Memory Space

*1: The internal RAM of the MB89PV620 is 1 Kbyte. The RAM of a development tool can be substituted for that RAM when the tool is connected. If the MB89PV620 is used as a piggyback product, however, it runs out of RAM. Note, in addition, that some tools such as the MB2140 series cannot be used due to mapping restrictions.
*2: Since addresses 8000н to 8006н for the MB89P629 comprise an option area, do not use this area for the MB89PV620, MB89628R, and MB89629R.

3. Registers

The F${ }^{2}$ MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:

Program counter (PC): A 16-bit register for indicating instruction storage positions
Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8 -bit data processing instruction, the lower byte is used.

Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator When the instruction is an 8 -bit data processing instruction, the lower byte is used.

Index register (IX): A 16-bit register for index modification
Extra pointer (EP):
A 16-bit pointer for indicating a memory address
Stack pointer (SP):
A 16-bit register for indicating a stack area
Program status (PS):
A 16-bit register for storing a register pointer, a condition code

16 bits		Initial value
PC	: Program counter	FFFD ${ }_{\text {H }}$
A	: Accumulator	Undefined
T	: Temporary accumulator	Undefined
IX	: Index register	Undefined
EP	: Extra pointer	Undefined
SP	: Stack pointer	Undefined
PS	: Program status I-fla	- $0, \mathrm{LL} 1,0=$

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

Structure of the Program Status Register

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

Rule for Conversion of Actual Addresses of the General-purpose Register Area

														RP				Lower	OP	odes
	"0" "0	"0" "0	"0"	"0"	"0"	"0"	"0	"	"1"		R4	R3		R2	R1	R0		b2	b1	b0
	\downarrow		\downarrow	\downarrow		\downarrow	\downarrow	\downarrow		\downarrow	\downarrow	\downarrow								
Generated addresses	A15 A	A14 A	A13	A12	A11	A10	A		A8		A7	A6		A5	A4	A3		A2	A1	A0

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions.
I-flag: Interrupt is allowed when this flag is set to 1 . Interrupt is prohibited when the flag is set to 0 . Set to 0 when reset.

IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	ILO	Interrupt level	High-low
0	0	1	High
0	1	2	
1	0	3	Low $=$ no interrupt
1	1	2	

N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0 .
Z-flag: Set when an arithmetic operation results in 0 . Cleared otherwise.
V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur.

C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise. Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:
General-purpose registers: An 8-bit register for storing data
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 32 banks can be used on the MB89628R and MB89629R. The bank currently in use is indicated by the register bank pointer (RP).

Register Bank Configuration

MB89628R/629R/P629

I/O MAP

Address	Read/write	Register name	Register description
OOH	(R/W)	PDR0	Port 0 data register
01н	(W)	DDR0	Port 0 data direction register
02н	(R/W)	PDR1	Port 1 data register
03н	(W)	DDR1	Port 1 data direction register
04н	(R/W)	PDR2	Port 2 data register
05	(R/W)	BCTR	External bus pin control register
06\%			Vacancy
07\%			Vacancy
08н	(R/W)	STBC	Standby control register
09н	(R/W)	WDTC	Watchdog timer control register
$0 \mathrm{AH}_{\mathrm{H}}$	(R/W)	TBTC	Time-base timer control register
OBH			Vacancy
$0 \mathrm{CH}_{\mathrm{H}}$	(R/W)	PDR3	Port 3 data register
ODH	(W)	DDR3	Port 3 data direction register
ОЕн	(R/W)	PDR4	Port 4 data register
OFH	(R/W)	BZCR	Buzzer register
10 H	(R/W)	PDR5	Port 5 data register
11H	(R)	PDR6	Port 6 data register
12H	(R/W)	CNTR	PWM control register
13H	(W)	COMR	PWM compare register
14 H	(R/W)	PCR1	PWC pulse width control register 1
15 H	(R/W)	PCR2	PWC pulse width control register 2
16 ${ }^{\text {H }}$	(R/W)	RLBR	PWC reload buffer register
17\%			Vacancy
18H	(R/W)	TMCR	16-bit timer control register
19н	(R/W)	TCHR	16-bit timer count register (H)
$1 \mathrm{AH}^{\text {}}$	(R/W)	TCLR	16-bit timer count register (L)
1 BH			Vacancy
1 CH	(R/W)	SMR1	Serial I/O 1 mode register
1D ${ }_{\text {H }}$	(R/W)	SDR1	Serial I/O 1 data register
$1 \mathrm{E}_{\mathrm{H}}$	(R/W)	SMR2	Serial I/O 2 mode register
1 FH	(R/W)	SDR2	Serial I/O 2 data register

(Continued)
(Continued)

Address	Read/write	Register name	Register description
20H	(R/W)	ADC1	A/D converter control register 1
21H	(R/W)	ADC2	A/D converter control register 2
22H	(R/W)	ADCD	A/D converter data register
23-			Vacancy
24-	(R/W)	EIC1	External interrupt control register 1
25 H	(R/W)	EIC2	External interrupt control register 2
26 H	(R/W)	CLKE	Clock output control register
27- to 7Вн			Vacancy
7 CH	(W)	ILR1	Interrupt level setting register 1
7D	(W)	ILR2	Interrupt level setting register 2
7Ен	(W)	ILR3	Interrupt level setting register 3
7F\%			Vacancy

Note: Do not use vacancies.

MB89628R/629R/P629

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc AV cc	Vss-0.3	Vss +7.0	V	*1
A/D converter reference input voltage	AVR	Vss-0.3	Vss +7.0	V	AVR must not exceed AV cc +0.3 V .
Input voltage	V	Vss-0.3	V cc +0.3	V	Except P40 to P47*2
	V12	Vss-0.3	Vss +7.0	V	P40 to P47
Output voltage	Vo	Vss-0.3	V cc +0.3	V	Except P40 to P47*2
	Vo2	Vss-0.3	V ss +7.0	V	P40 to P47
"L" level maximum output current	lot	-	20	mA	
"L" level average output current	lolav	-	4	mA	Average value (operating current \times operating rate)
"L" level total maximum output current	Elo	-	100	mA	
"L" level total average output current	£lolav	-	40	mA	Average value (operating current \times operating rate)
"H" level maximum output current	Іон	-	-20	mA	
"H" level average output current	lohav	-	-4	mA	Average value (operating current \times operating rate)
" H " level total maximum output current	\sum Іон	-	-50	mA	
" H " level total average output current	\sum lohav	-	-20	mA	Average value (operating current \times operating rate)
Power consumption	PD	-	300	mW	
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

*1: Use AVcc and V_{cc} set at the same voltage.
Take care so that AV cc does not exceed Vcc , such as when power is turned on.
*2: Vı and Vo must not exceed $\mathrm{Vcc}+0.3 \mathrm{~V}$.
Precautions: Permanent device damage may occur if the above "Absolute Maximum Ratings" are exceeded.
Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. Recommended Operating Conditions

$\left(\mathrm{AV} s s=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}\right)$

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Voc AVcc	2.2*	6.0*	V	Normal operation assurance range* (MB89628R/629R)
		2.7*	6.0*	V	Normal operation assurance range* (MB89P629/PV620)
		1.5	6.0	V	Retains the RAM state in stop mode
A/D converter reference input voltage	AVR	0.0	AVcc	V	
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	

*: These values vary with the operating frequency and analog assurance range. See Figure 1 and " 5 . A/D Converter Electrical Characteristics."

Figure 1 Operating Voltage vs. Clock Operating Frequency
Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of $4 / \mathrm{Fc}$.

MB89628R/629R/P629

3. DC Characteristics

$\left(\mathrm{AV} \mathrm{cc}=\mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
" H " level input voltage	V_{H}	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P10 to P17, } \\ & \text { P22, P23 } \end{aligned}$	-	0.7 Vcc	-	$\mathrm{Vcc}+0.3$	V	
	Vıнs	RST, MODO, MOD1, P30 to P37, P60 to P64	-	0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V	
	VIHS2	P40 to P47	-	0.8 Vcc	-	Vss +6.0	V	
"L" level input voltage	VIL	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P10 to P17, } \\ & \text { P22, P23 } \end{aligned}$	-	Vss - 0.3	-	0.3 Vcc	V	
	Vııs	RST, MODO, MOD1, P30 to P37, P40 to P47, P60 to P64	-	Vss - 0.3	-	0.2 Vcc	V	
Open-drain output pin application voltage	V	P50 to P57	-	Vss -0.3	-	Vss +0.3	V	
	V D 2	P40 to P47	-	Vss - 0.3	-	Vss +6.0	V	
" H " level output voltage	Vон	P00 to P07, P10 to P17, P20 to P27, P30 to P37	Іон $=-2.0 \mathrm{~mA}$	4.0	-	-	V	
"L" level output voltage	Vol	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57	$\mathrm{loL}=+4.0 \mathrm{~mA}$	-	-	0.4	V	
	Vol2	$\overline{\text { RST }}$		-	-	0.4	V	
Input leakage current (Hi-z output leakage current)	Lıı1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P60 to P64, MOD0, MOD1	$0.0 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{\text {cc }}$	-	-	± 5	$\mu \mathrm{A}$	Without pull-up resistor
Pull-up resistance	Rpull	P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P64, RST	$\mathrm{V}_{1}=0.0 \mathrm{~V}$	25	50	100	$\mathrm{k} \Omega$	

(Continued)
(Continued)
$\left(\mathrm{AV} \mathrm{cc}=\mathrm{V} \mathrm{cc}=+5.0 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Power supply current*	Icc	Vcc	$\mathrm{F}_{\mathrm{c}}=10 \mathrm{MHz}$ Normal operation mode (External clock)	-	9	15	mA	MB89628R, MB89629R
				-	10	18	mA	MB89P629
	Iccs		$\mathrm{Fc}_{\mathrm{c}}=10 \mathrm{MHz}$ Sleep mode (External clock)	-	3	4	mA	
	Іcch		Stop mode $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	-	1	$\mu \mathrm{A}$	
	IA	AV ${ }_{\text {cc }}$	$\mathrm{F}_{\mathrm{c}}=10 \mathrm{MHz},$ when A/D conversion is activated	-	1	3	mA	
	Iat		$\begin{aligned} & \mathrm{F} \mathrm{C}=10 \mathrm{MHz}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \text { when } \mathrm{A} / \mathrm{D} \\ & \text { conversion } \\ & \text { is stopped } \end{aligned}$	-	-	1	$\mu \mathrm{A}$	
Input capacitance	CIn	Other than $\mathrm{AV}_{\mathrm{cc}}, \mathrm{AV}$ ss, Vcc, and Vss	$\mathrm{f}=1 \mathrm{MHz}$	-	10	-	pF	

* : In the case of the MB89PV620, the current consumed by the connected EPROM and ICE is not included. The power supply current is measured at the external clock.

MB89628R/629R/P629

4. AC Characteristics

(1) Reset Timing

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
$\overline{\mathrm{RST}}$ "L" pulse width	tzızH	-	16 txcyL	-	ns	

Note: txcyı is the oscillation cycle $(1 / \mathrm{Fc})$ to input to the X 0 pin.

(2) Power-on Reset

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
Power supply rising time	t_{R}	-	-	50	ms	Power-on reset function only
Power supply cut-off time	toff		1	-	ms	Due to repeated operations

Note: Make sure that power supply rises within the selected oscillation stabilization time.
If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

(3) Clock Timing

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Clock frequency	Fc	X0, X1	-	1	10	MHz	
Clock cycle time	txcyl	X0, X1		100	1000	ns	
Input clock pulse width	$\begin{aligned} & \mathrm{P}_{\mathrm{wH}} \\ & \mathrm{PwL} \end{aligned}$	X0		20	-	ns	External clock
Input clock rising/falling time	$\begin{aligned} & \text { tcr } \\ & \text { tcF } \end{aligned}$	X0		-	10	ns	External clock

X0 and X1 Timing and Conditions

Clock Conditions

(4) Instruction Cycle

Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle (minimum execution time)	tinst	$4 / \mathrm{Fc}$	$\mu \mathrm{s}$	tinst $=0.4 \mu \mathrm{~s}$ when operating at $\mathrm{Fc}=10 \mathrm{MHz}$

(5) Serial I/O Timing

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	SCK1, SCK2	Internal shift clock mode	2 tinst*	-	$\mu \mathrm{s}$	
SCK1 $\downarrow \rightarrow$ SO1 time SCK2 $\downarrow \rightarrow$ SO2 time	tsıov	$\begin{aligned} & \text { SCK1, SO1 } \\ & \text { SCK2. SO2 } \end{aligned}$		-200	200	ns	
$\begin{aligned} & \text { Valid SI1 } \rightarrow \text { SCK1 } \uparrow \\ & \text { Valid SI2 } \rightarrow \text { SCK2 } \uparrow \end{aligned}$	tivs	$\begin{aligned} & \text { SI1, SCK1 } \\ & \text { SI2, SCK2 } \end{aligned}$		1/2 tinst ${ }^{*}$	-	$\mu \mathrm{S}$	
SCK1 $\uparrow \rightarrow$ valid SI1 hold time SCK2 $\uparrow \rightarrow$ valid SI2 hold time	tshix	SCK1, SI1 SCK2, SI2		$1 / 2$ tinst ${ }^{*}$	-	$\mu \mathrm{S}$	
Serial clock "H" pulse width	tsHSL	SCK1, SCK2	External shift clock mode	1 tinst*	-	$\mu \mathrm{s}$	
Serial clock "L" pulse width	tsısh	SCK1, SCK2		1 tinst*	-	$\mu \mathrm{s}$	
SCK1 $\downarrow \rightarrow$ SO1 time SCK2 $\downarrow \rightarrow$ SO2 time	tslov	$\begin{aligned} & \text { SCK1, SO1 } \\ & \text { SCK2, SO2 } \end{aligned}$		0	200	ns	
$\begin{aligned} & \text { Valid SI1 } \rightarrow \text { SCK1 } \uparrow \\ & \text { Valid SI2 } \rightarrow \text { SCK2 } \uparrow \end{aligned}$	tivsH	$\begin{aligned} & \text { SI1, SCK1 } \\ & \text { SI2, SCK2 } \end{aligned}$		1/2 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
SCK1 $\uparrow \rightarrow$ valid SI1 hold time SCK2 $\uparrow \rightarrow$ valid SI2 hold time	tshix	$\begin{aligned} & \text { SCK1, SI1 } \\ & \text { SCK2, SI2 } \end{aligned}$		$1 / 2$ tinst ${ }^{*}$	-	$\mu \mathrm{S}$	

[^1]Internal Shift Clock Mode

External Shift Clock Mode

(6) Peripheral Input Timing

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Peripheral input "H" pulse width 1	tıLı\| 1			2 tinst*	-	$\mu \mathrm{s}$	
Peripheral input "L" pulse width 1	thilı	to INT3	-	2 tinst*	-	$\mu \mathrm{s}$	
Peripheral input "H" pulse width 2	tıLH2	ADST	A/D mode	32 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Peripheral input "L" pulse width 2	thilı2			32 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Peripheral input "H" pulse width 2	tılı\%		Sense mode	8 tinst*	-	$\mu \mathrm{s}$	
Peripheral input "L" pulse width 2	thill2			8 tinst*	-	$\mu \mathrm{s}$	

* : For information on tinst, see "(4) Instruction Cycle."

5. A/D Converter Electrical Characteristics

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Resolution	-	-	-	-	-	8	bit	
Total error			AVR $=$ AVcc	-	-	± 1.5	LSB	
Linearity error				-	-	± 1.0	LSB	
Differential linearity error				-	-	± 0.9	LSB	
Zero transition voltage	Vот			AVss-1.0 LSB	AVss + 0.5 LSB	AVss + 2.0 LSB	mV	
Full-scale transition voltage	Vfst			AVR - 3.0 LSB	AVR-1.5 LSB	AVR	mV	
Interchannel disparity	-			-	-	0.5	LSB	
A/D mode conversion time			-	-	44 tinst*	-	$\mu \mathrm{S}$	
Sense mode conversion time				-	12 tinst*	-	$\mu \mathrm{S}$	
Analog port input current	IAIN	ANO to AN7		-	-	10	$\mu \mathrm{A}$	
Analog input voltage	-			0.0	-	AVR	V	
Reference voltage	-	AVR		0.0	-	AVcc	V	
Reference voltage supply current	In		$\mathrm{AVR}=5.0 \mathrm{~V}$, when A / D conversion activated	-	100	-	$\mu \mathrm{A}$	
	IRH		AVR $=5.0 \mathrm{~V}$, when A/D conversion stopped	-	-	1	$\mu \mathrm{A}$	

*: For information on tinst, see "(4) Instruction Cycle" in "4. AC Characteristics."

(1) A/D Glossary

- Resolution

Analog changes that are identifiable with the A/D converter.
When the number of bits is 8 , analog voltage can be divided into $2^{8}=256$.

- Linearity error (unit: LSB)

The deviation of the straight line connecting the zero transition point ("0000 0000" \leftrightarrow "0000 0001") with the full-scale transition point ("11111111" "1111 1110") from actual conversion characteristics

- Differential linearity error (unit: LSB)

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

- Total error (unit: LSB)

The difference between theoretical and actual conversion values

(2) Precautions

- Input impedance of the analog input pins

The A/D converter contains a sample hold circuit as illustrated below to fetch analog input voltage into the sample hold capacitor for eight instruction cycles after activating A/D conversion.
For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output impedance of the external circuit low (below $10 \mathrm{k} \Omega$).
Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of about $0.1 \mu \mathrm{~F}$ for the analog input pin.

Analog Input Equivalent Circuit

If the analog input impedance is higher than $10 \mathrm{k} \Omega$, it is recommended to connect an external capacitor of approx. $0.1 \mu \mathrm{~F}$.

- Error

The smaller the | AVR - AVss |, the greater the error would become relatively.

■ INSTRUCTIONS

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.
Table 1 Instruction Symbols

Symbol	
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
\#vct	Vector table number (3 bits)
\#d8	Immediate data (8 bits)
\#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
A	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
T	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)

(Continued)
(Continued)

Symbol	
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri (8 bits, i=0 to 7)
\times	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(\times)	Indicates that the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
$((\times))$	The address indicated by the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:
Mnemonic: Assembler notation of an instruction
~: Number of instructions
\#: Number of bytes
Operation: Operation of an instruction
TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in the column indicate the following:

- "-" indicates no change.
- dH is the 8 upper bits of operation description data.
- AL and AH must become the contents of AL and AH immediately before the instruction is executed.
- 00 becomes 00.

$\mathrm{N}, \mathrm{Z}, \mathrm{V}, \mathrm{C}:$	An instruction of which the corresponding flag will change. If + is written in this column,
the relevant instruction will change its corresponding flag.	
OP code:	Code of an instruction. If an instruction is more than one code, it is written according to
the following rule:	

Example: 48 to $4 \mathrm{~F} \leftarrow$ This indicates $48,49, \ldots 4 \mathrm{~F}$.

Table 2 Transfer Instructions (48 instructions)

Mnemonic	~	\#	Operation	TL	TH	AH	NZ V C	OP code
MOV dir,A	3	2	$($ dir $) \leftarrow(\mathrm{A})$	-	-	-	----	45
MOV @IX +off,A	4	2	$($ (IX) +off) \leftarrow (A)	-	-	-	----	46
MOV ext,A	4	3	$(\mathrm{ext}) \leftarrow(\mathrm{A})$	-	-	-	----	61
MOV @EP,A	3	1	$($ (EP)) $\leftarrow(\mathrm{A})$	-	-	-	----	47
MOV Ri,A	3	1	$(\mathrm{Ri}) \leftarrow(\mathrm{A})$	-	-	-	----	48 to 4F
MOV A,\#d8	2	2	$(\mathrm{A}) \leftarrow \mathrm{d} 8$	AL	-	-	+ +	04
MOV A,dir	3	2	(A) \leftarrow (dir)	AL	-	-	+ + - -	05
MOV A,@IX +off	4	2	$(\mathrm{A}) \leftarrow($ (IX) +off)	AL	-	-	+ + - -	06
MOV A,ext	4	3	$(\mathrm{A}) \leftarrow(\mathrm{ext})$	AL	-	-	+ + - -	60
MOV A,@A	3	1	$(\mathrm{A}) \leftarrow\left(\begin{array}{l}\text { (}) ~) ~\end{array}\right.$	AL	-	-	+ + - -	92
MOV A,@EP	3	1	$(\mathrm{A}) \leftarrow((\mathrm{EP})$)	AL	-	-	+ + --	07
MOV A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{Ri})$	AL	-	-	+ + - -	08 to 0F
MOV dir,\#d8	4	3	$(\mathrm{dir}) \leftarrow \mathrm{d} 8$	-	-	-	----	85
MOV @IX +off,\#d8	5	3	((IX) +off) \leftarrow d8	-	-	-	----	86
MOV @EP,\#d8	4	2	$($ (EP)) $\leftarrow \mathrm{d} 8$	-	-	-	----	87
MOV Ri,\#d8	4	2	(Ri) \leftarrow d8	-	-	-	----	88 to 8F
MOVW dir,A	4	2	$($ dir $) \leftarrow(\mathrm{AH}),($ dir +1$) \leftarrow(\mathrm{AL})$	-	-	-	----	D5
MOVW @IX +off,A	5	2	$\begin{aligned} & ((\mathrm{IX})+\mathrm{off}) \leftarrow(\mathrm{AH}), \\ & (\mathrm{IX})+\mathrm{off}+1) \leftarrow(\mathrm{AL}) \end{aligned}$	-	-	-	----	D6
MOVW ext,A	5	3	$(\mathrm{ext}) \leftarrow(\mathrm{AH}),(\mathrm{ext}+1) \leftarrow(\mathrm{AL})$	-	-	-	----	D4
MOVW @EP,A	4	1	$((E P)) \leftarrow(A H),((E P)+1) \leftarrow(A L)$	-	-	-	----	D7
MOVW EP,A	2	1	$(\mathrm{EP}) \leftarrow(\mathrm{A})$	-	-	-	----	E3
MOVW A,\#d16	3	3	$(\mathrm{A}) \leftarrow \mathrm{d} 16$	AL	AH	dH	+ + - -	E4
MOVW A,dir	4	2	$(\mathrm{AH}) \leftarrow$ (dir), $(\mathrm{AL}) \leftarrow($ dir + 1)	AL	AH	dH	+ + - -	C5
MOVW A,@IX +off	5	2	$\begin{aligned} & (\mathrm{AH}) \leftarrow((\mathrm{IX})+\mathrm{off}), \\ & (\mathrm{AL}) \leftarrow((\mathrm{IX})+\mathrm{off}+1) \end{aligned}$	AL	AH	dH	+ + - -	C6
MOVW A,ext	5	3	$(\mathrm{AH}) \leftarrow(\mathrm{ext}),(\mathrm{AL}) \leftarrow(\mathrm{ext}+1)$	AL	AH	dH	+ +	C4
MOVW A,@A	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{A}),(\mathrm{AL}) \leftarrow((\mathrm{A}) \mathrm{)}+1)$	AL	AH	dH	+ + - -	93
MOVW A,@EP	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{EP}) \mathrm{)},(\mathrm{AL}) \leftarrow((\mathrm{EP})+1)$	AL	AH	dH	+	C7
MOVW A,EP	2	1	$(\mathrm{A}) \leftarrow(\mathrm{EP})$	-	-	dH	----	F3
MOVW EP,\#d16	3	3	$(E P) \leftarrow d 16$	-	-	-	----	E7
MOVW IX,A	2	1	$(\mathrm{IX}) \leftarrow(\mathrm{A})$	-	-	-	----	E2
MOVW A,IX	2	1	$(\mathrm{A}) \leftarrow(\mathrm{IX})$	-	-	dH	----	F2
MOVW SP,A	2	1	$(\mathrm{SP}) \leftarrow(\mathrm{A})$	-	-	-	----	E1
MOVW A,SP	2	1	$(\mathrm{A}) \leftarrow(\mathrm{SP})$	-	-	dH	----	F1
MOV @A,T	3	1	$($ (A)) \leftarrow (T)	-	-	-	----	82
MOVW @A,T	4	1	$((A)) \leftarrow(\mathrm{TH}),((\mathrm{A})+1) \leftarrow(\mathrm{TL})$	-	-	-	----	83
MOVW IX,\#d16	3	3	$(\mathrm{IX}) \leftarrow$ d16	-	-	-	----	E6
MOVW A,PS	2	1	$(\mathrm{A}) \leftarrow(\mathrm{PS})$	-	-	dH	----	70
MOVW PS,A	2	1	$(\mathrm{PS}) \leftarrow(\mathrm{A})$	-	-	-	+ + +	71
MOVW SP,\#d16	3	3	$(\mathrm{SP}) \leftarrow \mathrm{d} 16$	-	-	-	--- -	E5
SWAP	2	1	$(\mathrm{AH}) \leftrightarrow(\mathrm{AL})$	-	-	AL	----	10
SETB dir: b	4	2	(dir) $\mathrm{b} \leftarrow \leftarrow$	-	-	-	----	A8 to AF
CLRB dir: b	4	2	(dir) $\mathrm{b} \leftarrow 0$	-	-	-	----	A0 to A7
XCH A, T	2	1	$(\mathrm{AL}) \leftrightarrow(\mathrm{TL})$	AL	-	-	----	42
XCHW A,T	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{T})$	AL	AH	dH	----	43
XCHW A,EP	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{EP})$	-	-	dH	----	F7
XCHW A,IX	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{IX})$	-	-	dH	----	F6
XCHW A,SP	3	1	(A) $\leftrightarrow(\mathrm{SP})$	-	-	dH	----	F5
MOVW A,PC	2	1	$(\mathrm{A}) \leftarrow(\mathrm{PC})$	-	-	dH	----	F0

Notes: • During byte transfer to $\mathrm{A}, \mathrm{T} \leftarrow \mathrm{A}$ is restricted to low bytes.

- Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of $\mathrm{F}^{2} \mathrm{MC}-8$ family)

MB89628R/629R/P629

Table 3 Arithmetic Operation Instructions (62 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZ V C	OP code
ADDC A,Ri	3	1	$(A) \leftarrow(A)+(R i)+C$	-	-	-	+ + + +	28 to 2F
ADDC A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{A})+\mathrm{d} 8+\mathrm{C}$	-	-	-	+ + + +	24
ADDC A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{A})+($ dir $)+C$	-	-	-	+ + + +	25
ADDC A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{A})+((\mathrm{X})+$ off $)+\mathrm{C}$	-	-	-	+ + + +	26
ADDC A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+((\mathrm{EP}))+\mathrm{C}$	-	-	-	+ + + +	27
ADDCW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{T})+\mathrm{C}$	-	-	dH	+ + + +	23
ADDC A	2	1	$(\mathrm{AL}) \leftarrow(\mathrm{AL})+(\mathrm{TL})+\mathrm{C}$	-	-	-	+ + + +	22
SUBC A,Ri	3	1	$(A) \leftarrow(A)-(R i)-C$	-	-	-	+ + + +	38 to 3F
SUBC A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{A})-\mathrm{d} 8-\mathrm{C}$	-	-	-	+ + + +	34
SUBC A,dir	3	2	$(A) \leftarrow(A)-$ (dir) - C	-	-	-	+ + + +	35
SUBC A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{A})-((\mathrm{X})+$ off $)-\mathrm{C}$	-	-	-	+ + + +	36
SUBC A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})-((\mathrm{EP}))-\mathrm{C}$	-	-	-	+ + + +	37
SUBCW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{T})-(\mathrm{A})-\mathrm{C}$	-	-	dH	+ + + +	33
SUBC A	2	1	$(\mathrm{AL}) \leftarrow(\mathrm{TL})-(\mathrm{AL})-\mathrm{C}$	-	-	-	+ + + +	32
INC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})+1$	-	-	-	+ + + -	C8 to CF
INCW EP	3	1	$(E P) \leftarrow(E P)+1$	-	-	-	----	C3
INCW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})+1$	-	-	-	----	C2
INCW A	3	1	(A) $\leftarrow(\mathrm{A})+1$	-	-	dH	+ + - -	C0
DEC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})-1$	-	-	-	+ + + -	D8 to DF
DECW EP	3	1	$(\mathrm{EP}) \leftarrow(\mathrm{EP})-1$	-	-	-	----	D3
DECW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})-1$	-	-	-	----	D2
DECW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})-1$	-	-	dH	+ +	D0
MULU A	19	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \times(\mathrm{TL})$	-	-	dH	----	01
DIVU A	21	1	$(\mathrm{A}) \leftarrow(\mathrm{T}) /(\mathrm{AL}), \mathrm{MOD} \rightarrow(\mathrm{T})$	dL	00	00	----	11
ANDW A	3	1	$(A) \leftarrow(A) \wedge(T)$	-	-	dH	+ + R -	63
ORW A	3	1	$(A) \leftarrow(A) \vee(T)$	-	-	dH	$++\mathrm{R}-$	73
XORW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A}) \forall(\mathrm{T})$	-	-	dH	+ + ${ }^{-}$	53
CMP A	2	1	(TL) - (AL)	-	-	-	+ + + +	12
CMPW A	3	1	(T) - (A)	-	-	-	+ + + +	13
RORC A	2	1	$\longrightarrow \mathrm{C} \rightarrow \mathrm{A} \square$	-	-	-	+ + +	03
ROLC A	2	1	$\mathrm{C} \leftarrow \mathrm{A} \leftarrow$	-	-	-	+ + +	02
CMP A,\#d8	2	2	(A) - d8	-	-	-	+ + + +	14
CMP A,dir	3	2	(A) - (dir)	-	-	-	+ + + +	15
CMP A,@EP	3		(A) - ((EP))	-	-	-	+ + + +	17
CMP A,@IX +off	4	2	(A) - ((IX) +off)	-	-	-	+ + + +	16
CMP A,Ri	3	1	(A) - (Ri)	-	-	-	+ + + +	18 to 1F
DAA	2	1	Decimal adjust for addition	-	-	-	+ + + +	84
DAS	2	1	Decimal adjust for subtraction	-	-	-	+ + + +	94
XOR A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{TL})$	-	-	-	+ + R -	52
XOR A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall \mathrm{d} 8$	-	-	-	$++\mathrm{R}-$	54
XOR A, dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall$ (dir)	-	-	-	$++\mathrm{R}-$	55
XOR A, @EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall((\mathrm{EP}))$	-	-	-	$++\mathrm{R}-$	57
XOR A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{ALL}) \forall((\mathrm{IX})+$ off $)$	-	-	-	$++\mathrm{R}-$	56
XOR A, Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{Ri})$	-	_	-	$++\mathrm{R}-$	58 to 5F
AND A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{TL})$	-	-	-	$++\mathrm{R}-$	62
AND A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge \mathrm{d} 8$	-	_	-	$++\mathrm{R}-$	64
AND A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge($ dir $)$	-	-	-	$++\mathrm{R}-$	65

(Continued)
(Continued)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{EP})$)	-	-	-	+ + R -	67
AND A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{X})+\mathrm{off})$	-	-	-	+ + R -	66
AND A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{Ri})$	-	_	-	$++\mathrm{R}-$	68 to 6F
OR A	2	1	$(A) \leftarrow(A L) \vee(T L)$	-	-	-	$++\mathrm{R}-$	72
OR A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee \mathrm{d} 8$	-	-	-	$++\mathrm{R}-$	74
OR A, dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee($ dir $)$	-	-	-	$++\mathrm{R}-$	75
OR A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee((\mathrm{EP}))$	-	-	-	$++\mathrm{R}-$	77
OR A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee((\mathrm{IX})+\mathrm{off})$	-	-	-	$++\mathrm{R}-$	76
OR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{Ri})$	-	-	-	+ + R -	78 to 7F
CMP dir,\#d8	5	3	(dir) - d8	-	-	-	+ + + +	95
CMP @EP,\#d8	4	2	((EP)) - d8	-	-	-	+ + + +	97
CMP @IX +off,\#d8	5	3	((IX) + off) - d8	-	-	-	+ + + +	96
CMP Ri,\#d8	4	2	(Ri) - d8	-	-	-	+ + + +	98 to 9F
INCW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$	-	-	-		C1
DECW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})-1$	-	-	-	----	D1

Table 4 Branch Instructions (17 instructions)

Mnemonic	~	\#	Operation	TL	TH	AH	NZVC	OP code
BZ/BEQ rel	3	2	If $\mathrm{Z}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	----	FD
BNZ/BNE rel	3	2	If $\mathrm{Z}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FC
BC/BLO rel	3	2	If $\mathrm{C}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}$ + rel	-	-	-	----	F9
BNC/BHS rel	3	2	If $\mathrm{C}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}$ + rel	-	-	-	----	F8
BN rel	3	2	If $\mathrm{N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}$ + rel	-	-	-	----	FB
BP rel	3	2	If $\mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FA
BLT rel	3	2	If $\mathrm{V} \forall \mathrm{N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FF
BGE rel	3	2	If $\mathrm{V} \forall \mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FE
BBC dir: b,rel	5	3	If (dir: b$)=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	-	B0 to B7
BBS dir: b,rel	5	3	If (dir: b) $=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	-+--	B8 to BF
JMP @A	2	1	$(\mathrm{PC}) \leftarrow(\mathrm{A})$	-	-	-	----	E0
JMP ext	3	3	$(\mathrm{PC}) \leftarrow \mathrm{ext}$	-	-	-	----	21
CALLV \#vct	6	1	Vector call	-	-	-	----	E8 to EF
CALL ext	6	3	Subroutine call	-	-	-	----	31
XCHW A,PC	3	1	$(\mathrm{PC}) \leftarrow(\mathrm{A}),(\mathrm{A}) \leftarrow(\mathrm{PC})+1$	-	-	dH	----	F4
RET	4	1	Return from subrountine	-	-	-	----	20
RETI	6	1	Return form interrupt	-	-	-	Restore	30

Table 5 Other Instructions (9 instructions)

Mnemonic	\sim	$\#$	Operation	TL	TH	AH	NZ V C	OP code
PUSHW A	4	1		-	-	-	----	40
POPW A	4	1		-	-	dH	----	50
PUSHW IX	4	1		-	-	-	----	41
POPW IX	4	1		-	-	-	---	51
NOP	1	1		-	-	00		
CLRC	1	1		-	-	$---R$	81	
SETC	1	1		-	-	-	$---S$	91
CLRI	1	1		-	-	-	----	80
SETI	1	1			-	-	-	----

MB89628R／629R／P629

INSTRUCTION MAP

4							${\underset{S}{3}}^{\frac{x}{\alpha}}$								$\underbrace{\text { ¢ }}_{\text {w }}$	
ш	$\begin{aligned} & \text { 区 } \\ & \sum_{\leftrightharpoons}^{0} \end{aligned}$	$\sum_{0^{0}}^{3_{0}^{9}}$	${\underset{\widehat{O}}{\Sigma}}_{\substack{\mathbb{x}}}$		$\begin{aligned} & \text { 若 } \\ & \sum_{i}^{\text {荧 }} \\ & \hline \end{aligned}$				융	$\begin{aligned} & \text { 豆 } \\ & \text { \# } \end{aligned}$	\#	忍	范	筞	${ }^{\text {吕 }}$	
0	$\begin{aligned} & z_{0}^{4} \\ & \text { 岂 } \end{aligned}$		${\underset{u}{u}}_{\substack{x}}$			$\sum_{0_{2}^{z}}^{\frac{\mathbb{K}}{\bar{\sigma}}}$			$\begin{aligned} & \text { 움 } \\ & \text { 암 } \end{aligned}$				$\begin{aligned} & \text { t } \\ & \text { O } \\ & \text { 岩 } \end{aligned}$	$\begin{aligned} & \text { 吕 } \\ & \text { 品 } \end{aligned}$	$\begin{aligned} & \text { 운 } \\ & \text { 品 } \end{aligned}$	全
0	$\sum_{\underline{0}}^{<}$	${\underset{i n}{i}}_{\infty}^{0}$	$\sum_{\underline{Z}}^{2}$					荅范				$\underbrace{\substack{\text { ® }}}_{\text {¢ }}$	$\begin{aligned} & \text { 㸿 } \\ & \underline{\underline{U}} \end{aligned}$		$\underbrace{\substack{\text { ¢ }}}_{\text {O }}$	$\underbrace{\hat{x}}_{\underline{x}}$
∞																
＜												品				$\underbrace{\substack{\text { 咅 }}}_{\text {号 }}$
σ	蜽	品		\sum_{0}^{∞}	$\mathscr{8}$							\sum_{i}^{n}	(in			$\sum_{0}^{\frac{0}{0}}$
∞	$\overline{\widetilde{U}}$	$\begin{array}{\|l} \text { O} \\ \text { 士心 } \end{array}$		方	茹				家				ion		$\underset{\Sigma}{\text { on }}$	
N	$\sum_{\sum_{0}^{0}}^{\infty}$		$\stackrel{4}{\text { ¢ }}$	${\underset{y}{0}}_{\ll}^{4}$			$$					뜽				
\bigcirc			家	$\sum_{i}^{<}$	$\overbrace{i}^{\frac{\text { 号 }}{4}}$	$)^{\text {妻 }}$				$\sum^{\text {首 }}$		$\sum_{i}^{\substack{\text { en }}}$	$\sum_{\substack{\overbrace{<}^{2}}}^{\substack{\text { 花 }}}$	$\sum_{i}^{\frac{0}{2}}$	$\sum_{i}^{\stackrel{\circ}{<}}$	
\sim	증	$\underset{\sum_{0}^{2}}{\underline{x}}$	${ }_{\text {¢ }}$			$\underset{\underset{\chi}{x}}{\substack{\text { 눌 }}}$				$\underbrace{\substack{\text { ¢ }}}_{\text {¢ }}$	$\underset{\substack{\tilde{x} \\ \underset{\sim}{x}}}{\substack{\text { r }}}$		$\underset{\substack{\underset{\sim}{x}}}{\substack{\text { 䓜 }}}$			$\underbrace{\substack{\text { ¢ }}}_{\text {¢ }}$
－								就	${\underset{\Sigma}{\partial}}_{\stackrel{\pi}{x}}^{\stackrel{\pi}{x}}$		${\underset{\Sigma}{\text { on}}}_{\substack{\underset{\sim}{x}}}$			${\underset{\Sigma}{\mathrm{o}}}_{\substack{\mathbb{K} \\ \text { ¢ }}}$		
∞	岸				$\begin{aligned} & \text { 哄 } \\ & \text { 品 } \end{aligned}$					$\begin{aligned} & \overline{\stackrel{\rightharpoonup}{x}_{4}^{4}} \\ & \text { M } \end{aligned}$	范	范		品	\|cio	
N	$\underset{\text { ¢ }}{\text { ¢ }}$	$\sum_{\sum_{j}^{n}}^{\stackrel{\stackrel{\rightharpoonup}{\overline{0}}}{0}}$	號	$\begin{aligned} & 3_{0}^{4} \\ & 0 \\ & 0 \end{aligned}$	资	荌				葆要	花	- 毕	热	毞		
－	e_{∞}^{0}	름	\sum_{0}^{1}	\sum_{0}^{1}		\sum_{0}^{n}		\sum_{0}^{n}	$\sum_{\sum_{0}^{0}}^{\stackrel{\text { 웆 }}{<}}$	$\sum_{0}^{\stackrel{\rightharpoonup}{8}}$	$\sum_{\sum_{0}^{n}}^{\substack{x \\<}}$	$\sum_{0}^{\text {n en }}$		$\sum_{\substack{0 \\ \text { 号 }}}^{\substack{\text { 2 }}}$	$\sum_{0}^{\frac{0}{4} \times{ }_{\text {¢ }}^{4}}$	\sum_{0}^{n}
0	$\frac{1}{2}$	$\frac{3}{2}$	$\begin{aligned} & \text { 4 } \\ & 0 \\ & \text { 뭉 } \end{aligned}$	$\begin{aligned} & \text { © } \\ & \text { 줒 } \end{aligned}$				흘	${\underset{\Sigma}{\text { ob }}}_{\substack{\text { 운 }}}$		${\underset{\Sigma}{\text { D}}}^{\frac{\tilde{x}}{\mathbb{x}}}$		交			交
1^{+}	－	－	N	の	＊	\bigcirc	\bullet	N	∞	\square	¢	■	0	0	ш	山

MASK OPTIONS

No.	Model	MB89628R/ MB89629R	MB89P629	MB89PV620
	Specifying procedure	Specify when ordering masking	Set with EPROM programmer	Setting not possible
1	Pull-up resistors P00 to P07, P10 to P17, P30 to P37, P40 to P47, P50 to P57, P60 to P64	Selectable per pin. (P50 to P57 must be set to without a pull-up resistor when an A/D converter is used.)	Can be set per pin. (P40 to P47 are available only for without a pull-up resistor.)	Fixed to without pull-up resistor
2	Power-on reset With power-on reset Without power-on reset	Selectable	Setting possible	Fixed to with power-on reset
3	Oscillation stabilization time selection Crystal oscillator: ($\mathbf{2}^{18} / \mathrm{Fc}$) $(26.2 \mathrm{~ms} / 10 \mathrm{MHz})$ Ceramic oscillator: $\left(2^{14} / \mathrm{Fc}\right)(1.64 \mathrm{~ms} / 10 \mathrm{MHz})$	Selectable	Setting possible	Fixed to crystal oscillator of $2^{18} / \mathrm{Fc}$
4	Reset pin output With reset output Without reset output	Selectable	Setting possible	Fixed to with reset output

- ORDERING INFORMATION

Part number	Package	Remarks		
MB89628RP-SH	64-pin Plastic SH-DIP			
MB89629RP-SH	(DIP-64P-M01)			
MB89P629P-SH	64-pin Plastic QFP (FPT-64P-M06)			
MB89628RPF	64-pin Ceramic MDIP MB89629RPF MB89P629PF	(MDP-64C-P02)		
MB89PV620C-SH				
(MQP-64C-P01)			\quad	MB89PV620CF
:---				

PACKAGE DIMENSIONS

64-pin Plastic SH-DIP
(FPT-64P-M01)

© 1994 FUJITSU LIMTED D66001S-3C-4

Dimensions in mm (inches)

64-pin Plastic QFP

(FPT-64P-M06)

© 1994 FUJITSU LIMTED F60013S-3C-2
Dimensions in mm (inches)

64-pin Ceramic MDIP
(MDP-64C-P02)

© 1994 FUUITSU LIMITED M64002SC-1-4
Dimensions in mm (inches)

64-pin Ceramic MQFP
(MQP-64C-P01)

© 1994 FUJITSU LIMITED M64004SC-1-3
Dimensions in mm (inches)

FUJITSU LIMITED

For further information please contact:

Japan
FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan
Tel: (044) 754-3753
Fax: (044) 754-3329

North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, U.S.A.
Tel: (408) 922-9000
Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
63303 Dreieich-Buchschlag

Germany

Tel: (06103) 690-0
Fax: (06103) 690-122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LIMITED
\#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 2810770
Fax: (65) 2810220

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

[^0]: *1: DIP-64P-M01
 *2: FPT-64P-M06

[^1]: * : For information on tinst, see "(4) Instruction Cycle."

