8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89660 Series

MB89663/665/P665/W665

- DESCRIPTION

The MB89660 series has been developed as a general-purpose version of the $\mathrm{F}^{2} \mathrm{MC}^{\star}-8 \mathrm{~L}$ family consisting of proprietary 8 -bit single-chip microcontrollers.

In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions such as timers, a UART, a serial interface, an 8-bit A/D converter, an input capture, an output compare, and an external interrupt. The MB89660 series is applicable to a wide range of applications from welfare products to industrial equipment.
*: F²MC stands for FUJITSU Flexible Microcontroller.
■ FEATURES

- Package expansion

QFP package
SDIP package
(Continued)

PACKAGE

64-pin Plastic SH-DIP

MB89660 Series

(Continued)

- F²MC-8L family CPU core
Instruction set optimized for controllers $\left\{\begin{array}{l}\text { Multiplication and division instructions } \\ \text { 16-bit arithmetic operations } \\ \text { Test and branch instructions } \\ \text { Bit manipulation instructions, etc. }\end{array}\right.$
- Three types of timers

8-bit PWM timer
8/16-bit timer/counter
20-bit time-base timer

- Functions that permit communications with a variety of devices

UART which permits selection of synchronous/asynchronous communications
A serial interface that permits selection of the transfer direction

- 8-bit A/D converter: 8 channels

Sense mode function capable of performing compare operation in $5 \mu \mathrm{~s}$
Activation by external input possible

- Real-time control

Input capture: 2 channels
Output compare: 2 channels

- External interrupt: 4 channels

Two channels are independent and capable of wake-up from low-power consumption modes (with an edge detection function).

- Low power consumption modes

Stop mode (Oscillation stops to minimize the current consumption.)
Sleep mode (The CPU stops to reduce the current consumption to approx. 1/3 of normal.)
Hardware standby mode (Wake-up from this mode and activation by pin input only.)

MB89660 Series

PRODUCT LINEUP

Part number	MB89663	MB89665	MB89W665	MB89P665
Classification	Mass production products (mask ROM products)		EPROM product	One-time PROM product, also used for evaluation
ROM size	$8 \mathrm{~K} \times 8$ bits (internal mask ROM)	$16 \mathrm{~K} \times 8$ bits (internal mask ROM)	$16 \mathrm{~K} \times 8$ bits (internal PROM, programming with general-purpose EPROM programmer)	$16 \mathrm{~K} \times 8$ bits (internal PROM, programming with general-purpose EPROM programmer)
RAM size	256×8 bits	512×8 bits		
CPU functions	Number of instructions: 136 Instruction bit length: 8 bits Instruction length: 1 to 3 bytes Data bit length: $1,8,16$ bits Minimum execution time: $0.4 \mu \mathrm{~s} / 10 \mathrm{MHz}$ Interrupt processing time: $3.6 \mu \mathrm{~s} / 10 \mathrm{MHz}$			
Ports	Output ports (CMOS): 8 Output ports (N-ch open-drain): 8 (All also serve as peripherals.) I/O ports (CMOS): 36 (19 ports also serve as peripherals.) Total: 52			
8-bit PWM timer	8-bit reload timer operation (toggled output capable, operating clock cycle: $0.4 \mu \mathrm{~s}, 6.4 \mu \mathrm{~s}$, $25.6 \mu \mathrm{~s})$ 8 -bit resolution PWM operation (conversion cycle: $102 \mu \mathrm{~s}, 1.6 \mathrm{~ms}, 6.6 \mathrm{~ms}$)			
8/16-bit timer/ counter	Independent 8-bit reload timer/counter operation: 2 channels Single 16 -bit event counter (cascade connection): 1 channel One clock selectable from four transfer clocks (one external shift clock, three internal clocks: $0.8 \mu \mathrm{~s}, 3.2 \mu \mathrm{~s}, 12.8 \mu \mathrm{~s}$)			
UART	$8 \text { bits }$ Full-duplex double buffer Synchronous and asynchronous data transfer			
8-bit serial I/O	8 bitsLSB first/MSB first selectabilityOne clock selectable from four transfer clocks(one external shift clock, three internal shift clocks: $0.8 \mu \mathrm{~s}, 3.2 \mu \mathrm{~s}, 12.8 \mu \mathrm{~s}$)			
8-bit A/D converter	8-bit resolution $\times 8$ channelsA/D conversion mode (conversion time: $18 \mu \mathrm{~s}$ at 10 MHz)Sense mode (conversion time: $5 \mu \mathrm{~s}$ at 10 MHz)Continuous activation by an external activation or an internal timer capableReference voltage input			
Real-time I/O	16-bit timer: operating clock cycle ($0.4 \mu \mathrm{~s}, 0.8 \mu \mathrm{~s}, 1.6 \mu \mathrm{~s}, 3.2 \mu \mathrm{~s}$) overflow interrupt Input capture: 16 bits $\times 2$ channels (External trigger edge selectability) Output compare: 16 bits $\times 2$ channels			

(Continued)

MB89660 Series

(Continued)

Part number	MB89663	MB89665	MB89W665	MB89P665
Parameter	4 channels (edge selection, interrupt vector, source flag) Rising edge/falling edge/both edges selectability Used also for wake-uf from stop/sleep mode. (Edge detection is also permitted in stop mode.) (Wake-up from hardware standby mode is not possible)			
External interrupt	Sleep mode, stop mode, and hardware standby mode			
Standby mode	CMOS			
Process	2.2 V to 6.0 V	2.7 V to 6.0 V		
Operating voltage*				

*:Varies with conditions such as the operating frequency. (See section "■ Electrical Characteristics.")
PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89663 MB89665 MB89P665	MB89W665
DIP-64P-M01	\circ	\times
DIP-64C-A06	\times	\circ
FPT-64P-M06	\circ	\times

O : Available $\quad x$: Not available
Note: For more information about each package, see section "■ Package Dimensions."

MB89660 Series

DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the OTPROM (one-time PROM) product (also used for evaluation), verify its differences from the product that will actually be used: Take particular care on the following points:

- On the MB89663, register bank from 16 to 32 cannot be used.
- On the MB89P665, address BFF0н to BFF6н comprise the option setting area, option settings can be read by reading these addresses.
- The stack area, etc., is used.

2. Current Consumption

- When operated at low speed, the product with an OTPROM or an EPROM will consume more current than the product with a mask ROM.
- However, the current comsumption in sleep/stop modes is the same. (For more information, see sections "■ Electrical Characteristics" and "■ Example Characteristics."

3. Mask Options

Functions that can be selected as options and how to designate these options vary by the product.
Before using options check section "■ Mask Options."
Take particular care on the following points:

- On the MB89P665, a pull-up resistor must be selected in a group of four pins for P54 to P57.
- For all products, P50 to P57 must be set to without a pull-up resistor when an A/D converter is used.

MB89660 Series

PIN ASSIGNMENT

(DIP-64P-M01)
(DIP-64C-A06)

(FPT-64P-M06)

MB89660 Series

PIN DESCRIPTION

Pin no.		Pin name	Circuit type	Function
DIP*1	QFP ${ }^{2}$			
30	23	X0	A	Crystal oscillator pins
31	24	X1		
28	21	MOD0	B	Operating mode selection pins Connect directly to Vcc or Vss. A pull-down resistor is selectable as an option for mask ROM products.
29	22	MOD1		
27	20	$\overline{\mathrm{RST}}$	C	Reset I/O pin This port is an N-ch open-drain output type with pull-up resistor and a hysteresis input type. "L" is output from this pin by an internal reset source. The internal circuit is initialized by the input of "L".
26	19	$\overline{\text { HST }}$	G	Hardware standby input pin Connect directly to Vcc when hardware standby is not used.
56 to 49	49 to 42	P00 to P07	D	General-purpose I/O ports
48 to 41	41 to 34	P10 to P17		
40 to 33	33 to 26	P20 to P27	F	General-purpose output ports
58	51	P30/EC	E	General-purpose I/O port Also serves as an external clock input for an 8/16-bit timer/counter. This pin is a hysteresis input type and with a noise canceller.
59	52	P31/TO1	E	General-purpose high-current I/O port Also serves as an $8 / 16$-bit timer/counter output. This pin is a hysteresis input type and with a noise canceller.
60	53	P32/TO2	E	General-purpose I/O port Also serves as an 8/16-bit timer/counter output. This pin is a hysteresis input type and with a noise canceller.
61	54	P33/RTIO	E	General-purpose I/O ports Also serve as the data input for the input capture. This pin is a hysteresis input type and with a noise canceller.
62	55	P34/RTI1		
63	56	P35/RTO0	E	General-purpose I/O ports Also serve as the data output for the output compare. This pin is a hysteresis input type and with a noise canceller.
1	58	P36/RTO1		
2	59	P37/ADST	E	General-purpose heavy-current I/O port Also serves as the external activation input for the A/D converter. This pin is a hysteresis input type and with a noise canceller.

[^0]
MB89660 Series

(Continued)

Pin no.		Pin name	Circuit type	Function
DIP*1	QFP ${ }^{+2}$			
3	60	P40/SCK1	E	General-purpose I/O port Also serves as the clock I/O for the UART. This pin is a hysteresis input type and with a noise canceller.
4	61	P41/SO1	E	General-purpose I/O port Also serves as the data output for the UART. This pin is a hysteresis input type and with a noise canceller.
5	62	P42/SI1	E	General-purpose I/O port Also serves as the data input for the UART. This pin is a hysteresis input type and with a noise canceller.
6	63	P43/SCK2	E	General-purpose I/O port Also serves as the clock I/O for the 8 -bit serial I/O interface. This pin is a hysteresis input type and with a noise canceller.
7	64	P44/SO2	E	General-purpose I/O port Also serves as the data output for the 8 -bit serial I/O interface. This pin is a hysteresis input type and with a noise canceller.
8	1	P45/SI2	E	General-purpose I/O port Also serves as the data input for the 8-bit serial I/O interface. This pin is a hysteresis input type and with a noise canceller.
9	2	P46/PTO	E	General-purpose I/O port Also serves as a toggle output for an 8-bit PWM timer. This pin is a hysteresis input type and with a noise canceller.
10	3	P47	E	General-purpose I/O port This pin is a hysteresis input type and with a noise canceller.
11 to 18	4 to 11	P50/AN0 to P57/AN7	H	N -ch open-drain output-only ports Also serve as the analog input for the A/D converter.
22 to 25	15 to 18	P60/INT0 to P63/INT3	E	General-purpose I/O ports These pins also serve as an external interrupt input. These pins are a hysteresis input type and with a noise canceller.
64	57	Vcc	-	Power supply pin
$\begin{aligned} & 32 \\ & 57 \end{aligned}$	$\begin{aligned} & 25 \\ & 50 \end{aligned}$	Vss	-	Power supply (GND) pins
19	12	AVcc	-	A/D converter power supply pin
20	13	AVR	-	A/D converter reference voltage input pin
21	14	AVss	-	A/D converter power supply pin Use this pin at the same voltage as Vss.

*1: DIP-64P-M01, DIP-64C-A06
*2: FPT-64P-M06

MB89660 Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- External clock input selection versions of crystal or ceramic oscillation type - At an oscillation feedback resistor of approximately $1 \mathrm{M} \Omega / 5.0 \mathrm{~V}$
B	$\square>$	- CMOS input - Built-in pull-down resistor (mask ROM products only)
C		- At an output pull-up resistor (P-ch) of approximately $50 \mathrm{k} \Omega / 5.0 \mathrm{~V}$ - Hysteresis input
D		- CMOS output - CMOS input - Pull-up resistor optional
E		- CMOS output - Hysteresis input - Pull-up resistor optional
F		- CMOS output

(Continued)

MB89660 Series

(Continued)

Type	Circuit	Remarks
G	$\square \square$	- Hysteresis input
H		- N-ch open-drain output - Analog input - Pull-up resistor optional

MB89660 Series

HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input and output pins other than medium- or high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section " Electrical Characteristics" is applied between V_{cc} and V_{ss}.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

Also take care to prevent the analog power supply ($A V c c$ and $A V R$) and analog input from exceeding the digital power supply (V_{cc}) when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Treatment of Power Supply Pins on Microcontrollers with A/D Converters

Connect to be $A V c c=V c c$ and $A V s s=A V R=V s s$ if the A / D converters are not in use.

4. Power Supply Voltage Fluctuations

Although Vcc power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations (P-P value) will be less than 10% of the standard Vcc value at the commercial frequency $(50$ to 60 Hz) and the transient fluctuation rate will be less than $0.1 \mathrm{~V} / \mathrm{ms}$ at the time of a momentary fluctuation such as when power is switched.

5. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset (optional) and wake-up from stop mode.

MB89660 Series

PROGRAMMING TO THE EPROM ON THE MB89P665

The MB89P665 is an OTPROM version of the MB89660 series.

1. Features

- 16-Kbyte PROM on chip
- Options can be set using the EPROM programmer.
- Equivalency to the MBM27C256A in EPROM mode (when programmed with the EPROM programmer)

2. Memory Space

Memory space in each mode such as 16-Kbyte PROM, option area is diagrammed below.

MB89660 Series

3. Programming to the PROM

In EPROM mode, the MB89P665A functions equivalent to the MBM27C256A. This allows the PROM to be programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by using the dedicated socket adapter.

- Programming procedure
(1) Set the EPROM programmer to the MBM27C256A.
(2) Load program data into the EPROM programmer at 4000н to 7FFFн (note that addresses C000н to FFFFн while operating as a single chip assign to 4000 н to $7 F F F^{н}$ in EPROM mode).
Load option data into addresses 3FF0н to 3FF6н of the EPROM programmer. (For information about each corresponding option, see " 8 . Setting OTPROM Options.")
(3) Program with the EPROM programmer.

4. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM microcomputer program.

MB89660 Series

5. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

6. Erasure Procedure

In order to clear all locations of their programmed contents, it is necessary to expose the internal EPROM to an ultraviolet light source. A dosage of 10 W -seconds $/ \mathrm{cm}^{2}$ is required to completely erase an internal EPROM. This dosage can be obtained by exposure to an ultraviolet lamp (wavelength of 2537 Angstroms (\AA)) with intensity of $12000 \mu \mathrm{~W} / \mathrm{cm}^{2}$ for 15 to 21 minuites. The internal EPROM should be about one inch from the source and all filters should be removed from the UV light source prior to erasure.

It is important to note that the internal EPROM and similar devices, will erase with light sources having wavelengths shorter than 4000 Å. Although erasure time will be much longer than with UV source at 2537 Å, nevertheless the exposure to fluorescent light and sunlight will eventually erase the internal EPROM, and exposure to them should be prevented to realize maximum system reliability. If used in such an environment, the package windows should be covered by an opaque label or substance.

7. EPROM Programmer Socket Adapter

Package	Compatible socket adapter
FPT-64P-M06	ROM-64QF-28DP-8L
DIP-64P-M01	ROM-64SD-28DP-8L

Inquiry: Sun Hayato Co., Ltd.: TEL 81-3-3802-5760
Note: Connect the adapter jumper pin to Vss when using.

MB89660 Series

8. Setting OTPROM Options

The programming procedure is the same as that for the PROM. Options can be set by programming values at the addresses shown on the memory map. The relationship between bits and options is shown on the following bit map:

- OTPROM option bit map

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
$\underset{H}{3 F F 0}$	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	Oscillation stabilizatio n time 1: Crystal 0: Ceramic	Reset pin output 1: Yes 0 : No	Power-on reset 1: Yes 0 : No	Vacancy Readable and writable	Vacancy Readable and writable
$\underset{H}{3 F F 1}$	$\begin{aligned} & \text { P07 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & 1: \text { Yes } \end{aligned}$	$\begin{aligned} & \text { P06 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & \text { 1: Yes } \end{aligned}$	$\begin{aligned} & \text { P05 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & \text { O: Yes } \end{aligned}$	$\begin{aligned} & \text { P04 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & \text { O: Yes } \end{aligned}$	$\begin{aligned} & \text { P03 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & 0: \text { Yes } \end{aligned}$	P02 Pull-up 1: No 0 : Yes	P01 Pull-up 1: No 0: Yes	$\begin{array}{\|l\|l\|} \hline \text { Poo } \\ \text { Pull-up } \\ \text { 1: No } \\ \text { O: Yes } \end{array}$
3FF2	P17 Pull-up 1: No 0 : Yes	P16 Pull-up 1: No 0: Yes	P15 Pull-up 1: No 0: Yes	P14 Pull-up 1: No 0: Yes	P13 Pull-up 1: No 0: Yes	P12 Pull-up 1: No 0 : Yes	P11 Pull-up 1: No 0: Yes	P10 Pull-up 1: No 0: Yes
3FF3	P37 Pull-up 1: No 0 : Yes	P36 Pull-up 1: No 0: Yes	P35 Pull-up 1: No 0: Yes	P34 Pull-up 1: No 0: Yes	$\begin{array}{\|l\|} \hline \text { P33 } \\ \text { Pull-up } \\ \text { 1: No } \\ \text { 0: Yes } \end{array}$	P32 Pull-up 1: No 0 : Yes	P31 Pull-up 1: No 0 : Yes	P30 Pull-up 1: No 0: Yes
$\left\lvert\, \begin{gathered} 3 F F 4 \\ \text { H } \end{gathered}\right.$	$\begin{aligned} & \text { P47 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & 0: \text { Yes } \end{aligned}$	$\begin{aligned} & \text { P46 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & \text { 0: Yes } \end{aligned}$	$\begin{aligned} & \text { P45 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & \text { O: Yes } \end{aligned}$	P44 Pull-up 1: No 0 : Yes	$\begin{aligned} & \text { P43 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & \text { O: Yes } \end{aligned}$	$\begin{aligned} & \text { P42 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & 0: \text { Yes } \end{aligned}$	$\begin{aligned} & \text { P41 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & \text { O: Yes } \end{aligned}$	$\begin{aligned} & \text { P40 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & \text { 0: Yes } \end{aligned}$
3FF5	Vacancy Readable and writable	Vacancy Readable and writable	Vacancy Readable and writable	$\begin{aligned} & \text { P57 to P54 } \\ & \text { Pull-up } \\ & \text { 1: No } \\ & 0: \text { Yes } \end{aligned}$	P53 Pull-up 1: No 0 : Yes	P52 Pull-up 1: No 0 : Yes	P51 Pull-up 1: No 0 : Yes	P50 Pull-up 1: No 0 : Yes
3FF6	Vacancy Readable and writable	P63 Pull-up 1: No 0 : Yes	P62 Pull-up 1: No 0: Yes	P61 Pull-up 1: No 0: Yes	P60 Pull-up 1: No 0 : Yes			

Note: • Set each bit to erase.

- Do not write 0 to the vacant bit.

The read value of the vacant bit is 1 , unless 0 is written to it.

MB89660 Series

BLOCK DIAGRAM

MB89660 Series

CPU CORE

1. Memory Space

The microcontrollers of the MB89660 series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89660 series is structured as illustrated below.

Memory Space

[^1]
MB89660 Series

2. Registers

The F²MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:
Program counter (PC): A 16-bit register for indicating instruction storage positions
Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8 -bit data processing instruction, the lower byte is used.
Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator When the instruction is an 8 -bit data processing instruction, the lower byte is used.

Index register (IX): A 16-bit register for index modification
Extra pointer (EP): A 16-bit pointer for indicating a memory address
Stack pointer (SP):
A 16-bit register for indicating a stack area
Program status (PS):
A 16-bit register for storing a register pointer, a condition code

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

Structure of the Program Status Register

MB89660 Series

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

Rule for Conversion of Actual Addresses of the General-purpose Register Area

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions.

I-flag: Interrupt is allowed when this flag is set to 1 . Interrupt is prohibited when the flag is set to 0 . Set to 0 when reset.

IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	ILO	Interrupt level	High-low
0	0	1	High
0	1		\vdots
1	0	2	Low $=$ no interrupt
1	1	3	

N-flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0 .
Z-flag: Set when an arithmetic operation results in 0 . Cleared otherwise.
V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur.

C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise. Set to the shift-out value in the case of a shift instruction.

MB89660 Series

The following general-purpose registers are provided:
General-purpose registers: an 8-bit register for storing data
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers. Up to a total of 16 banks can be used on the MB89663 and a total of 32 banks can be used on the MB89665/P665/W665. The bank currently in use is indicated by the register bank pointer (RP).

Note: The number of register banks that can be used varies with the RAM size.

Register Bank Configuration

This address $=0100 \mathrm{H}+8 \times(\mathrm{RP})$

MB89660 Series

I/O MAP

Address	Read/write	Register name	Register description
00н	(R/W)	PDR0	Port 0 data register
01н	(W)	DDR0	Port 0 data direction register
02н	(R/W)	PDR1	Port 1 data register
03н	(W)	DDR1	Port 1 data direction register
04н	(R/W)	PDR2	Port 2 data register
05 н			Vacancy
06н			Vacancy
07			Vacancy
08н	(R/W)	STBC	Standby control register
09н	(R/W)	WDTC	Watchdog timer control register
ОАн	(R/W)	TBTC	Watch interrupt control register
OBH			Vacancy
0 CH	(R/W)	PDR3	Port 3 data register
0D	(W)	DDR3	Port 3 data direction register
ОЕн	(R/W)	PDR4	Port 4 data register
$\mathrm{OFH}_{\mathrm{H}}$	(W)	DDR4	Port 4 data direction register
$10^{\text {H }}$	(R/W)	PDR5	Port 5 data register
11н			Vacancy
12H	(R/W)	PDR6	Port 6 data register
13н	(W)	DDR6	Port 6 data direction register
14 H			Vacancy
15 н	(R/W)	ADC1	A/D converter control register 1
16н	(R/W)	ADC2	A/D converter control register 2
17 H	(R/W)	ADCD	A/D converter data register
18H	(R/W)	T2CR	8/16-bit timer 2 control register
19 н	(R/W)	T1CR	8/16-bit timer 1 control register
1 Ан $^{\text {¢ }}$	(R/W)	T2DR	8/16-bit timer 2 data register
1Вн	(R/W)	T1DR	8/16-bit timer 1 data register
1 CH	(R/W)	CNTR	PWM control register
1D ${ }_{\text {H }}$	(W)	COMR	PWM compare register
$1 \mathrm{E}_{\mathrm{H}}$			Vacancy
1 FH			Vacancy

(Continued)

MB89660 Series

(Continued)

Address	Read/write	Register name	Register description
$22^{\text {H }}$	(R/W)	SMC	UART serial mode control register
21н	(R/W)	SRC	UART serial rate control register
22н	(R/W)	SSD	UART serial status/data register
23н	(R/W)	SIDR/SODR	UART serial data register
24 +	(R/W)	SMR	Serial mode register
25 н	(R/W)	SDR	Serial data register
26	(R/W)	EIC1	External interrupt control register 1
27	(R/W)	EIC2	External interrupt control register 2
28н	(R/W)	TMCR	Timer control register
29н	(R)	TCHR	Timer count register (H)
2 Ан $^{\text {¢ }}$	(R)	TCLR	Timer count register (L)
2Вн	(R/W)	OPCR	Output control register
2 CH	(R/W)	CPROH	Output compare register 0 (H)
2D	(R/W)	CPROL	Output compare register 0 (L)
2Ен	(R/W)	CPR1H	Output compare register 1 (H)
$2 \mathrm{~F}_{\mathrm{H}}$	(R/W)	CPR1L	Output compare register 1 (L)
30н	(R/W)	ICCR	Input capture control register
31н	(R/W)	ICIC	Input capture interrupt control register
32н	(R)	ICROH	Input capture register 0 (H)
33-	(R)	ICROL	Input capture register 0 (L)
34	(R)	ICR1H	Input capture register 1 (H)
35	(R)	ICR1L	Input capture register 1 (L)
36н			Vacancy
37			Vacancy
38н			Vacancy
7 CH	(W)	ILR1	Interrupt level setting register 1
7D	(W)	ILR2	Interrupt level setting register 2
7Ен	(W)	ILR3	Interrupt level setting register 3
7F			Vacancy

Note: Do not use vacancies.

MB89660 Series

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc AV cc	Vss - 0.3	Vss +7.0	V	*
	AVR	Vss - 0.3	Vss +7.0	V	AVR must not exceed $A V c c+$ 0.3 V
Input voltage	V	Vss - 0.3	$\mathrm{Vcc}+0.3$	V	
Output voltage	Vo	Vss - 0.3	$\mathrm{V} \mathrm{cc}+0.3$	V	
" L " level maximum output current	loL	-	20	mA	
"L" level average output current	Iolav	-	4	mA	Average value (operating current \times operating rate)
"L" level total maximum output current	${ }^{2} 10$	-	100	mA	
"L" level total average output current	${ }^{2} \mathrm{lolav}$	-	40	mA	Average value (operating current \times operating rate)
" H " level maximum output current	Іон	-	-20	mA	
"H" level average output current	Iohav	-	-4	mA	Average value (operating current \times operating rate)
"H" level total maximum output current	${ }^{2} \mathrm{OH}$	-	-50	mA	
"H" level total average output current	${ }^{2}$ Iohav	-	-20	mA	Average value (operating current \times operating rate)
Power consumption	PD	-	300	mW	
Operating temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

*: Use $A V c c$ and V_{cc} set at the same voltage.
Take care so that AV cc does not exceed Vcc , such as when power is turned on.
Precautions: Permanent device damage may occur if the above "Absolute Maximum Ratings" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

MB89660 Series

2. Recommended Operating Conditions

$(\mathrm{AV} \mathrm{ss}=\mathrm{V} s=0.0 \mathrm{~V})$

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc AVcc	2.2*	6.0*	V	Normal operation assurance range* MB89663/665
		2.7*	6.0*	V	Normal operation assurance range* MB89P665
		1.5	6.0	V	Retains the RAM state in stop mode
	AVR	0.0	AVcc	V	
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	

*:These values vary with the operating frequency and analog assurance range. See Figure. 1 and " 5 . A/D Converter Electrical Characteristics."

Note: The shaded area is assured only for the MB89663/665.

Figure 1 Operating Voltage vs. Main Clock Operating Frequency (MHz)

MB89660 Series

3. DC characteristics

Parameter	$\underset{\text { Sol }}{\text { Sym- }}$	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
" H " level input voltage	$\mathrm{V}_{\text {IH }}$	$\begin{aligned} & \text { P00 to P07, } \\ & \text { P10 to P17 } \end{aligned}$	-	0.7 Vcc	-	V cc +0.3	V	
	Vıнs	RST, $\overline{\text { HST }}$ P30 to P37, P40 to P47, P60 to P63	-	0.8 Vcc	-	V cc +0.3	V	
"L" level input voltage ${ }^{*}$	VII	P00 to P07, P10 to P17	-	Vss - 0.3	-	0.3 Vcc	V	
	Vııs	RST, HST P30 to P37, P40 to P47, P60 to P63	-	Vss - 0.3	-	0.2 Vcc	V	
Open-drain output pin application voltage	V	P50 to P57	-	Vss - 0.3	-	$\mathrm{V} \mathrm{cc}+0.3$	V	
"H" level output voltage	Vor1	P00 to P07, P10 to P17, P20 to P27, P30, P32 to P36, P40 to P47, P60 to P63	$\begin{gathered} \mathrm{I} \text { он }=-2.0 \\ \mathrm{~mA} \end{gathered}$	2.4	-	-	V	
	Vон2	P31, P37	$\mathrm{IOH}=-15 \mathrm{~mA}$	2.4	-	-	V	
"L" level output voltage	Vol1	P00 to P07, P10 to P17, P20 to P27, P30, P32 to P36, P40 to P47, P50 to P57, P60 to P63	$\begin{gathered} \mathrm{loL}=+1.8 \\ \mathrm{~mA} \end{gathered}$	-	-	0.4	V	
	VoL2	P31, P37	lot $=+12 \mathrm{~mA}$	-	-	0.4	V	
	Voı3	RST	$\begin{gathered} \hline \mathrm{OL}=+4.0 \\ \mathrm{~mA} \end{gathered}$	-	-	0.4	V	
Input leakage current (Hi-z output leakage current)	1 LI 1	P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P60 to P63	$\begin{aligned} & 0.45 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{cc}}<\mathrm{V}_{1}< \end{aligned}$	-	-	± 5	$\mu \mathrm{A}$	Without pullup resistor
Pull-up resistance	Rpulu	$\overline{\mathrm{RST}}$, option selection pin	$\mathrm{V}_{1}=0.0 \mathrm{~V}$	25	50	100	$\mathrm{k} \Omega$	

(Continued)

MB89660 Series

(Continued)
$\left(\mathrm{AV}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Pull-down resistance	Rpuld	MOD0, MOD1	$\mathrm{V}_{1}=+5.0 \mathrm{~mA}$	5	20	60	k Ω	Mask ROM products only
Power supply current	Icc	Vcc	$\begin{aligned} & \mathrm{Fc}=10 \mathrm{MHz} \\ & \text { tinst }^{3}=0.4 \mu \mathrm{~s} \\ & \text { Normal } \\ & \text { mode } \end{aligned}$	-	15	18	mA	$\begin{aligned} & \hline \text { MB89663/ } \\ & 665 \end{aligned}$
				-	17	20	mA	$\begin{aligned} & \text { MB89P665/ } \\ & \text { W665 } \end{aligned}$
	Icos		$\begin{aligned} & \mathrm{Fc}=10 \mathrm{MHz} \\ & \mathrm{tinst}^{3}=0.4 \mu \mathrm{~s} \\ & \text { Sleep mode } \end{aligned}$	-	6	8	mA	
	IcCH		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \text { tinst }^{3}=0.4 \mu \mathrm{~S} \\ & \text { Stop mode } \end{aligned}$	-	-	10	$\mu \mathrm{A}$	Also applicable to the hardware standby mode.
	IA		$\mathrm{F}_{\mathrm{c}}=10$ MHz , when A / D conversion is activated	-	2.5	4.5	mA	
	Іан	AVcc	$\begin{aligned} & \mathrm{FC}=10 \\ & \mathrm{MHz}, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \text { when A/D } \\ & \text { conversion is } \\ & \text { stoped } \end{aligned}$	-	-	5	$\mu \mathrm{A}$	
Input capacitance	$\mathrm{Cin}^{\text {n }}$	Other than $\mathrm{AVcc}, \mathrm{AVss}$, Vcc, and Vss	$\mathrm{f}=1 \mathrm{MHz}$	-	10	-	pF	

*1: Fix MOD0 and MOD1 to Vss.
*2: The power supply current is measured at the external clock.
*3: For information on tinst, see "(4) Instruction Cycle" in "4. AC Characteristics."

MB89660 Series

4. AC Characteristics

(1) Reset Timing, Hardware Standby Timing

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
RST "L" pulse width	tzızH	-	16 txcyL	-	ns	
HST "L" pulse width	tнцнн		16 txcyL	-	ns	

* : txcyl is the oscillation cycle $(1 / \mathrm{Fc})$ to input to the XO pin.

(2) Power-on Reset

$\left(\mathrm{AVss}=\mathrm{V}_{\text {ss }}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$						
Parameter	Symbol	Condition	Values		Unit	Remarks
			Min.	Max.		
Power supply rising time	tr	-	-	50	ms	
Power supply cut-off time	toff		1	-	ms	Due to repeated operations

Note: Make sure that power supply rises within the selected oscillation stabilization time.
If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

MB89660 Series

(3) Clock Timing

Parameter	Symbol	Pin	Condition	$\left(\mathrm{AV}_{\text {ss }}=\mathrm{V}_{\text {ss }}=0.0\right.$Value			, T_{A}	$0^{\circ} \mathrm{C}$ to +85
							Unit	Remarks
				Min.	Typ.	Max.		
Clock frequency	Fc	$\mathrm{X0}, \mathrm{X} 1$	-	1	-	10	MHz	
Clock cycle time	txcyL	X0, X1	-	100	-	1000	ns	
Input clock pulse width	$\begin{aligned} & \mathrm{Pwh}_{\mathrm{w}} \\ & \mathrm{PwL} \end{aligned}$	X0	-	20	-	-	ns	External clock
Input clock rising/ falling time	$\begin{aligned} & \text { tck } \\ & \text { tco } \end{aligned}$	X0	-	-	-	10	ns	External clock

X0 and X1 Timing and Conditions

(4) Instruction Cycle

Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle (minimum execution time)	tinst	$4 / \mathrm{Fc}_{\mathrm{c}}$	$\mu \mathrm{s}$	When operating at $\mathrm{F}_{\mathrm{c}}=10 \mathrm{MHz}$

MB89660 Series

(5) Recommended Resonator Manufacturers

Sample Application of Piezoelectric Resonator (FAR series)

*: Fujitsu Acoustic Resonator
$\mathrm{C} 1=\mathrm{C} 2=20 \mathrm{pF} \pm 8 \mathrm{pF}$ (built-in FAR)

FAR part number (built-in capacitor type)	Frequency	Initial deviation of FAR frequency ($\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}$)	Temperature characteristic of FAR frequency $\left(\mathrm{T}_{\mathrm{A}}=-20^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C}\right)$
FAR-C4CB-08000-M02	8.00 MHz	$\pm 0.5 \%$	$\pm 0.5 \%$
FAR-C4CB-10000-M02	10.00 MHz	$\pm 0.5 \%$	$\pm 0.5 \%$

Inquiry: FUJITSU LIMITED

MB89660 Series

Sample Application of Ceramic Resonator

A@Å@

Resonator manufacturer*	Resonator	Frequency	C1 (pF)	C2 (pF)	R (k $\Omega)$
Kyocera Corporation	KBR-7.68MWS	7.68 MHz	33	33	-
	KBR-8.0MWS	8.0 MHz	33	33	-
Murata Mfg. Co., Ltd.	CSA8.00MTZ	8.0 MHz	30	30	-

Inquiry: Kyocera Corporation

- AVX Corporation

North American Sales Headquarters: TEL 1-803-448-9411

- AVX Limited

European Sales Headquarters: TEL 44-1252-770000

- AVX/Kyocera H.K. Ltd.

Asian Sales Headquarters: TEL 852-363-3303
Murata Mfg. Co., Ltd.

- Murata Electronics North America, Inc.: TEL 1-404-436-1300
- Murata Europe Management GmbH: TEL 49-911-66870
- Murata Electronics Singapore (Pte.) Ltd.: TEL 65-758-4233

MB89660 Series

(6) Serial I/O Timing and UART Timing

$\left(\mathrm{Vcc}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV}\right.$ ss $=\mathrm{V} s=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	$\begin{aligned} & \text { SCK1, } \\ & \text { SCK2 } \end{aligned}$	Internal shift clock mode	2 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
SCK1 $\downarrow \rightarrow$ SO1 time SCK2 $\downarrow \rightarrow$ SO2 time	tstov	$\begin{aligned} & \text { SCK1, SO1 } \\ & \text { SCK2, SO2 } \end{aligned}$		-200	200	ns	
$\begin{aligned} & \text { Valid SI1 } \rightarrow \text { SCK1 } \uparrow \\ & \text { Valid SI1 } \rightarrow \text { SCK1 } \uparrow \end{aligned}$	tivs	SI1, SCK1 SI2, SCK2		1/2 tinst*	-	$\mu \mathrm{S}$	
SCK1 $\uparrow \rightarrow$ valid SI1 hold time SCK2 $\uparrow \rightarrow$ valid SI2 hold time	tshix	SCK1, SI1 SCK2, SI2		1/2 tinst*	-	$\mu \mathrm{S}$	
Serial clock "H" pulse width	tshsL	$\begin{aligned} & \text { SCK1, } \\ & \text { SCK2 } \end{aligned}$	External shift clock mode	1 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Serial clock "L" pulse width	tsısh	$\begin{aligned} & \text { SCK1, } \\ & \text { SCK2 } \end{aligned}$		1 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
SCK1 $\downarrow \rightarrow$ SO1 time SCK2 $\downarrow \rightarrow$ SO2 time	tsıov	$\begin{aligned} & \text { SCK1, SO1 } \\ & \text { SCK2, SO2 } \end{aligned}$		0	200	ns	
$\begin{aligned} & \text { Valid SI1 } \rightarrow \text { SCK1 } \uparrow \\ & \text { Valid SI2 } \rightarrow \text { SCK2 } \uparrow \end{aligned}$	tivs	$\begin{aligned} & \text { SI1, SCK1 } \\ & \text { SI2, SCK2 } \end{aligned}$		1/2 tinst ${ }^{*}$	-	$\mu \mathrm{S}$	
SCK1 $\uparrow \rightarrow$ valid SI1 hold time SCK2 $\uparrow \rightarrow$ valid SI2 hold time	tshix	$\begin{aligned} & \text { SCK1, SI1 } \\ & \text { SCK2, SI2 } \end{aligned}$		1/2 tins**	-	$\mu \mathrm{s}$	

*: For information on tinst, see "(4) Instruction Cycle."

MB89660 Series

Serial I/O Timing and UART Timing (Internal Shift Clock Mode)

Serial I/O Timing and UART Timing (External Shift Clock Mode)

MB89660 Series

(7) Peripheral Input Timing

$\left(\mathrm{Vcc}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV}\right.$ ss $=\mathrm{V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$							
Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Peripheral input "H" pulse width 1	tıLIH1	RTIO, 1 INT0 to INT3	-	2 tinst*	-	$\mu \mathrm{s}$	
Peripheral input "L" pulse width 1	tiHILT		-		-	$\mu \mathrm{s}$	
Peripheral input "H" pulse width 2	tıLIH2	EC	-	1 tinst*	-	$\mu \mathrm{s}$	
Peripheral input "L" pulse width 2	tIHIL2		-		-	$\mu \mathrm{s}$	
Peripheral input "H" pulse width 3	tıLIH3	ADST	A/D mode	32 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Peripheral input "L" pulse width 3	tiHIL3				-	$\mu \mathrm{s}$	
Peripheral input "H" pulse width 3	tıLінз		Sense mode	8 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Peripheral input "L" pulse width 3	tıHIL3				-	$\mu \mathrm{s}$	

* : For information on tinst, see "(4) Instruction cycle."

MB89660 Series

(8) Noise Filter

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Noise filter width 1	tinf1	P30 to P37, P40 to P47, P60 to P63	During port operation	15	-	ns	
Noise filter width 2	tinf2	P60 to P63	During external interrupt	60	-	ns	

MB89660 Series

5. A/D Converter Electrical Characteristics

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Resolution	-	-	-	-	-	8	bit	
Total error			$\mathrm{AVR}=\mathrm{AV} \mathrm{cc}$	-	-	± 2.0	LSB	
Linearity error				-	-	± 1.0	LSB	
Differential linearity error				-	-	± 0.9	LSB	
Zero transition voltage	Vot			$\begin{aligned} & \mathrm{AV} \text { ss - } \\ & 1.5 \\ & \text { LSB } \end{aligned}$	$\begin{aligned} & \mathrm{AV} \text { sst } \\ & 0.5 \\ & \mathrm{LSB} \end{aligned}$	$\begin{aligned} & \mathrm{AV} \text { ss }+ \\ & 2.5 \\ & \text { LSB } \end{aligned}$	mV	
Full-scale transition voltage	Vfst			$\begin{aligned} & \hline \text { AVR - } \\ & 3.5 \\ & \text { LSB } \end{aligned}$	$\begin{aligned} & \text { AVR - } \\ & 1.5 \\ & \text { LSB } \end{aligned}$	$\begin{aligned} & \text { AVR + } \\ & 0.5 \\ & \text { LSB } \end{aligned}$	mV	
Interchannel disparity	-			-	-	1	LSB	
A/D mode conversion time			-	-	44 tisnt *	-	$\mu \mathrm{s}$	
Sense mode conversion time				-	12 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Analog port input circuit	Iain	ANO to		-	-	10	$\mu \mathrm{A}$	
Analog input voltage	-	AN7		0	-	AVR	V	
Reference voltage		AVR		0	-	AVcc	V	
Reference voltage supply current	IR		AVR $=5.0 \mathrm{~V}$ when A / D conversion is activated	-	150	-	$\mu \mathrm{A}$	
	Іrн		AVR $=5.0 \mathrm{~V}$ when A / D conversion is stopped	-	-	5	$\mu \mathrm{A}$	

* : For information on tinst, see "(4) Instruction Cycle" in "4. AC Characteristics."

(1) A/D Glossary

- Resolution

Analog changes that are identifiable with the A/D converter.
When the number of bits is 8 , analog voltage can be divided into $2^{8}=256$.

- Linearity error (unit: LSB)

The deviation of the straight line connecting the zero transition point ("0000 0000" \leftrightarrow "0000 0001") with the full-scale transition point ("1111 1111" " "1111 1110") from actual conversion characteristics

- Differential linearity error (unit: LSB)

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

- Total error (unit: LSB)

The difference between theoretical and actual conversion values

MB89660 Series

(2) Precautions

- Input impedance of analog input pins

The A/D converter used for the MB89660 series contains a sample hold circuit as illustrated below to fetch analog input voltage into the sample hold capacitor for eight instruction cycles after activating A/D conversion.
For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output impedance of the external circuit low. If a higher accurancy is required, set the output impedance in this series to $2 \mathrm{k} \Omega$ or less.

When the impedance cannot be kept low, the following two methods are recommended. One is to activate the A/D converter continuously for obtaining the pseudo long sampling time by using software. The other is to connect the external capacitor of approx. $0.1 \mu \mathrm{~s}$ to the analog input pin.

Analog Input Equivalent Circuit

If the output impedance of the external circuit is high, it is recommended to connect an external capacitor of approx. $0.1 \mu \mathrm{~F}$.

- Error

The smaller the | AVR - AVss |, the greater the error would become relatively.

MB89660 Series

EXAMPLES CHARACTERISTICS

(1) "L" Level Output Voltage

P00 to P07, P10 to P17,P20 to P27, P30, P32 to P36, P40 to P47, P50 to P57, P60 to P63
(2) "H" Level Output Voltage P00 to P07, P10 to P17, P20 to P27, P30, P32 to P36, P40 to P47, P60 to P63

(3) "L" Level Output Voltage P31, P37
(4) "H" Level Output Voltage

P31, P37

MB89660 Series

(5) "H" Level Input Voltage/"L" Level Input Voltage (CMOS Input)
(6) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

(7) Power Supply Current (External Clock)

MB89660 Series

(8) Pull-up Resistance

MB89660 Series

INSTRUCTIONS

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.
Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
\#vct	Vector table number (3 bits)
\#d8	Immediate data (8 bits)
\#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
A	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
T	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)

(Continued)

MB89660 Series

(Continued)

Symbol	
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri $(8$ bits, $\mathrm{i}=0$ to 7)
\times	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(\times)	Indicates that the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.) $)$
$((\times))$	The address indicated by the contents of \times is the target of accessing. $($ Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:

Mnemonic:	Assembler notation of an instruction
\sim	Number of instructions
$\#:$	Number of bytes
Operation:	Operation of an instruction

TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in the column indicate the following:

- "-" indicates no change.
- dH is the 8 upper bits of operation description data.
- AL and AH must become the contents of AL and AH immediately before the instruction is executed.
- 00 becomes 00 .
$\mathrm{N}, \mathrm{Z}, \mathrm{V}, \mathrm{C}: \quad$ An instruction of which the corresponding flag will change. If + is written in this column, the relevant instruction will change its corresponding flag.
OP code: Code of an instruction. If an instruction is more than one code, it is written according to the following rule:
Example: 48 to $4 \mathrm{~F} \leftarrow$ This indicates $48,49, \ldots 4 \mathrm{~F}$.

Table 2 Transfer Instructions (48 instructions)

Mnemonic	~	\#	Operation	TL	TH	AH	NZVC	OP code
MOV dir,A	3	2	$($ dir $) \leftarrow(\mathrm{A})$	-	-	-	----	45
MOV @IX +off,A	4	2	$($ (IX) + off $) \leftarrow(\mathrm{A})$	-	-	-	----	46
MOV ext,A	4	3	$($ ext $) \leftarrow(A)$	-	-	-	----	61
MOV @EP,A	3	1	$($ (EP)) \leftarrow (A$)$	-	-	-	----	47
MOV Ri,A	3	1	$(\mathrm{Ri}) \leftarrow(\mathrm{A})$	-	-	-	----	48 to 4F
MOV A,\#d8	2	2	$(\mathrm{A}) \leftarrow \mathrm{d} 8$	AL	-	-	+ +--	04
MOV A,dir	3	2	$(\mathrm{A}) \leftarrow$ (dir)	AL	-	-	+ +--	05
MOV A,@IX +off	4	2	(A) $\leftarrow\left(\begin{array}{l}(\mathrm{IX})+\mathrm{off})\end{array}\right.$	AL	-	-	++--	06
MOV A,ext	4	3	$(\mathrm{A}) \leftarrow$ (ext)	AL	-	-	+ +--	60
MOV A,@A	3	1	$(\mathrm{A}) \leftarrow\left(\begin{array}{l}\text { (}) ~) ~\end{array}\right.$	AL	-	-	+ + - -	92
MOV A,@EP	3	1	$(\mathrm{A}) \leftarrow\left(\begin{array}{l}(\mathrm{EP})\end{array}\right)$	AL	-	-	+ + - -	07
MOV A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{Ri})$	AL	-	-	+ +--	08 to 0F
MOV dir,\#d8	4	3	(dir$) \leftarrow \mathrm{d} 8$	-	-	-	--- -	85
MOV @IX +off,\#d8	5	3	((IX) +off) $\leftarrow \mathrm{d} 8$	-	-	-	----	86
MOV @EP,\#d8	4	2	$($ (EP)) $\leftarrow \mathrm{d} 8$	-	-	-	----	87
MOV Ri, \#d8	4	2	(Ri) $\leftarrow \mathrm{d} 8$	-	-	-	----	88 to 8F
MOVW dir,A	4	2	$($ dir $) \leftarrow(A H),($ dir +1$) \leftarrow(A L)$	-	-	-	----	D5
MOVW @IX +off,A	5	2	$\begin{aligned} & ((\mathrm{IX})+\mathrm{off}) \leftarrow(\mathrm{AH}), \\ & ((\mathrm{IX})+\mathrm{off}+1) \leftarrow(\mathrm{AL}) \end{aligned}$	-	-	-	----	D6
MOVW ext,A	5	3	$(\mathrm{ext}) \leftarrow(\mathrm{AH}),($ ext +1$) \leftarrow(\mathrm{AL})$	-	-	-	----	D4
MOVW @EP,A	4	1	$((E P)) \leftarrow(A H),((E P)+1) \leftarrow(A L)$	-	-	-	----	D7
MOVW EP,A	2	1	$(E P) \leftarrow(A)$	-	-	-	----	E3
MOVW A,\#d16	3	3	$(\mathrm{A}) \leftarrow \mathrm{d} 16$	AL	AH	dH	+ + -	E4
MOVW A,dir	4	2	$(\mathrm{AH}) \leftarrow($ dir $),(\mathrm{AL}) \leftarrow($ dir +1$)$	AL	AH	dH	+	C5
MOVW A,@IX +off	5	2	$(\mathrm{AH}) \leftarrow((\mathrm{IX})+\mathrm{off})$, $(\mathrm{AL}) \leftarrow((\mathrm{IX})+$ off +1$)$	AL	AH	dH	+	C6
MOVW A,ext	5	3	$(\mathrm{AH}) \leftarrow($ ext $),(\mathrm{AL}) \leftarrow($ ext +1$)$	AL	AH	dH	+ + - -	C4
MOVW A,@A	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{A})),(\mathrm{AL}) \leftarrow((\mathrm{A}) \mathrm{l}+1)$	AL	AH	dH	+ + - -	93
MOVW A,@EP	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{EP}) \mathrm{)},(\mathrm{AL}) \leftarrow((\mathrm{EP})+1)$	AL	AH	dH	+ + - -	C7
MOVW A,EP	2	1	$(\mathrm{A}) \leftarrow(\mathrm{EP})$	-	-	dH	----	F3
MOVW EP,\#d16	3	3	$(E P) \leftarrow d 16$	-	-	-	----	E7
MOVW IX,A	2	1	$(\mathrm{IX}) \leftarrow(\mathrm{A})$	-	-	-	----	E2
MOVW A,IX	2	1	$(\mathrm{A}) \leftarrow(\mathrm{IX})$	-	-	dH	----	F2
MOVW SP,A	2	1	$(\mathrm{SP}) \leftarrow(\mathrm{A})$	-	-	-	----	E1
MOVW A,SP	2	1	$(\mathrm{A}) \leftarrow(\mathrm{SP})$	-	-	dH	----	F1
MOV @A,T	3	1	$($ (A)) $\leftarrow(T)$	-	-	-	----	82
MOVW @A,T	4	1	$((A)) \leftarrow(T H),((A)+1) \leftarrow(T L)$	-	-	-	----	83
MOVW IX,\#d16	3	3	$(\mathrm{IX}) \leftarrow \mathrm{d} 16$	-	-	-	----	E6
MOVW A,PS	2	1	(A) \leftarrow (PS)	-	-	dH	----	70
MOVW PS,A	2	1	$(\mathrm{PS}) \leftarrow(\mathrm{A})$	-	-	-	+ + + +	71
MOVW SP,\#d16	3		$(\mathrm{SP}) \leftarrow \mathrm{d} 16$	-	-	-	----	E5
SWAP	2	1	$(\mathrm{AH}) \leftrightarrow(\mathrm{AL})$	-	-	AL	----	10
SETB dir: b	4	2	(dir): $\mathrm{b} \leftarrow 1$	-	-	-	----	A8 to AF
CLRB dir: b	4	2	(dir): $\mathrm{b} \leftarrow 0$	-	-	-	----	A0 to A7
XCH A, ${ }^{\text {T }}$	2	1	$(\mathrm{AL}) \leftrightarrow(\mathrm{TL})$	AL	-	-	----	42
XCHW A,T	3	1	(A) $\leftrightarrow(T)$	AL	AH	dH	----	43
XCHW A,EP	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{EP})$	-	-	dH	----	F7
XCHW A,IX	3		(A) $\leftrightarrow(\mathrm{IX})$	-	-	dH	----	F6
XCHW A,SP	3	1	(A) $\leftrightarrow(\mathrm{SP})$	-	-	dH	----	F5
MOVW A,PC	2	1	$(\mathrm{A}) \leftarrow(\mathrm{PC})$	-	-	dH	----	F0

Notes: - During byte transfer to $\mathrm{A}, \mathrm{T} \leftarrow \mathrm{A}$ is restricted to low bytes.

- Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of $\mathrm{F}^{2} \mathrm{MC}-8$ family)

MB89660 Series

Table 3 Arithmetic Operation Instructions (62 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
ADDC A Ri		1	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{Ri})+\mathrm{C}$					28 to 2F
ADDC A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{A})+\mathrm{d} 8+\mathrm{C}$			-	+ + + +	24
ADDC A,dir	3	2	(A) $\leftarrow(A)+$ (dir) $+C$	_		-	+ + + +	25
ADDC A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{A})+((\mathrm{X})+\mathrm{off})+\mathrm{C}$	-		_	+ + + +	26
ADDC A,@EP	3	1	$(A) \leftarrow(A)+((E P))+C$				+ + + +	27
ADDCW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{T})+\mathrm{C}$	_		dH	++++ +++ +++	23
ADDC A	2	1	$(\mathrm{AL}) \leftarrow(\mathrm{AL})+(\mathrm{TL})+$	-	_	d	+ + + +	22
SUBC A,Ri	3	1	(A) $\leftarrow(\mathrm{A})-(\mathrm{Ri})-\mathrm{C}$	_	-	_	+ + + +	38 to 3F
SUBC A,\#d8	2	2	(A) $\leftarrow(\mathrm{A})-\mathrm{d} 8-\mathrm{C}$	-	_		+ + + +	34
SUBC A,dir	3	2	(A) $\leftarrow(A)-$ (dir $)-C$		-	_	+ + + +	35
SUBC A,@IX +off	4	2	(A) $\leftarrow(A)-((1 X)+$ off $)-C$	_	_	_	+ + + +	36
SUBC A,@EP	3	1	$(A) \leftarrow(A)-((E P))-C$	_	_	-	+ + + +	37
SUBCW ${ }^{\text {a }}$	3	1	$(\mathrm{A}) \leftarrow(\mathrm{T})-(\mathrm{A})-\mathrm{C}$	-	_	dH	+ + + +	33
SUBC A	2	1	$(\mathrm{AL}) \leftarrow(\mathrm{TL})-(\mathrm{AL})-\mathrm{C}$	-	-	-	+ + +	8 + ${ }^{32}$
INC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})+1$	_	-	_	+ + +	C8 to CF
INCW EP	3	1	(EP) $\leftarrow($ (EP) +1	_	-	_	+	C3
INCW IX	3	1	(IX) $\leftarrow(I X)+1$ $($ A) $\leftarrow(A)+1$	-	-	-		${ }^{\mathrm{C} 2}$
INCW A	3	1	(A) $\leftarrow(A)+1$ (Ri) $\leftarrow(\mathrm{Ri})-1$	-	-	dH	+ + - -	D8 toDF
DEC Ri	4	1		-	-	-	+ + +	D8 to DF
DECW EP	3	1	$\begin{aligned} & (E P) \leftarrow(E P)-1 \\ & (I X) \leftarrow(I X)-1 \end{aligned}$	-	-	-	--- -	
DECW IX	3	1	$(A X) \leftarrow(A X)-1$ $(A) \leftarrow(A)-1$	-	-	-		D2
DECW A	3	1	(A) $\leftarrow\left(\begin{array}{l}\text { (AL) } \\ (A) \times(T L)\end{array}\right.$		-	dH	+ + - -	01
MULU A	19	1			-	dH		11
DIVU A	21	1	$(A) \leftarrow(A) \wedge(T)$	dL	00	00		63
ANDW A	3	1	(A) $\leftarrow(A) \wedge(T)$ $(A) \leftarrow(A) \vee(T)$	-	-	dH	+ + R -	73
ORW A	3	1	$(A) \leftarrow(A) \forall(T)$	-	-	dH	+ + R -	53
XORW A	3	1	$\begin{aligned} (A) & \leftarrow(\mathrm{A}) \forall(\mathrm{TL})-(\mathrm{AL}) \end{aligned}$	-	-	dH	+ + R -	12
CMP A	2	1	$(T)-(A)$	-	-	-	+	13
CMPW A	3	1			-		+ + +	03
RORC A	2	1	$\rightarrow \mathrm{C} \rightarrow \mathrm{A} \square$	-	-	-	+	
ROLC A	2	1	$\mathrm{C} \leftarrow \mathrm{A} \leftrightarrows$	-	-	-	+ +	02
CMP A,\#d8	2	2	(A) -d 8	-	-	-	+ + + +	14
CMP A, dir	3	2	(A) - (dir)	_	-	-	++++	15
CMP A, @EP	3	1	(A) $-($ (EP) $)$	-	-	-	+ + + +	17
CMP A,@IX +off	4	2	(A) $-($ (IX) + off $)$	-	-	-	++++ ++++	16
CMP A,Ri	3	1	(A) - (Ri)	-	-	-	+ + + +	18 to 1F
DAA	2	1	Decimal adjust for addition				+ +	84
DAS	2	1	Decimal adjust for				+ + + +	94
XOR A	2	1	subtraction		-		+ + R -	52
XOR A,\#d8	2	2	(A) $\leftarrow(\mathrm{AL}) \forall(\mathrm{TL})$		-	-	+ + R -	54
XOR A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall \mathrm{d} 8$	-	-	-	+ + R -	55
XOR A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall$ (dir)	-	-	-	+ + R -	57
XOR A,@IX +off	4	2	(A) $\leftarrow(A L L) \forall($ (EP) $)$	-	-	-	+ + $\mathrm{R}-$	56
XOR A,Ri	3	1	(A) $\leftarrow\left(\begin{array}{ll}\text { AL }\end{array}\right) \forall((1 X)+$ Off $)$		-		+ + R -	58 to 5F
AND A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{Ri})$	-	-	-	+ + R -	62
AND A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{TL})$	-	_		$+{ }_{+}^{+}{ }^{+}$	64
AND A,dir	3	2	$(A) \leftarrow(A L) \wedge d 8$ $(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\operatorname{dir})$	-	-	-	+ + R -	65

(Continued)

MB89660 Series

(Continued)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{EP})$)	-	-	-	+ + R -	67
AND A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{IX})+\mathrm{off})$	-	-	-	+ + R -	66
AND A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{Ri})$	-	-	-	+ + R -	68 to 6F
OR A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{TL})$	-	-	-	+ + R -	72
OR A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee \mathrm{d} 8$	-	-	-	+ + R -	74
OR A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{dir})$	-	-	-	+ + R -	75
OR A,@EP	3	1	$(A) \leftarrow(A L) \vee((E P))$	-	-	-	+ + R -	77
OR A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee((\mathrm{IX})+\mathrm{off})$	-	-	-	+ + R -	76
OR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{Ri})$	-	-	-	+ + R -	78 to 7F
CMP dir,\#d8	5		(dir) - d8	-	-	-	+ + + +	95
CMP @EP,\#d8	4		((EP)) - d8	-	-	-	+ + + +	97
CMP @IX +off,\#d8	5	3	((IX) +off) - d8	-	-	-	+ + + +	96
CMP Ri,\#d8	4	2	(Ri) - d8	-	-	-	+ + + +	98 to 9F
INCW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$	-	-	-	----	C1
DECW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})-1$	-	-	-	----	D1

Table 4 Branch Instructions (17 instructions)

Mnemonic	~	\#	Operation	TL	TH	AH	NZVC	OP code
			If $\mathrm{Z}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$					FD
			If $Z=0$ then $P C \leftarrow P C+$ rel					FC
BZ/BEQ rel	3	2	If $C=1$ then $P C \leftarrow P C+$ rel	-	-	-	----	F9
BNZ/BNE rel	3	2	If $\mathrm{C}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	F8
BC/BLO rel	3	2	If $\mathrm{N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FB
BNC/BHS rel	3	2	If $\mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	----	FA
BN rel	3	2	If $V \forall N=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}$	-	-	-	----	FF
BP rel	3	2	+ rel	-	-	-	----	FE
BLT rel	3	2	If $\mathrm{V} \forall \mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}$	-	-	-	----	B0 to B7
BGE rel	3	2	+ rel	-	-	-	----	B8 to BF
BBC dir: b,rel	5	3	If (dir: b$)=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}$	-	-	-	-+--	E0
BBS dir: b,rel	5	3	+ rel	-	-	-	-+--	21
JMP @A	2	1	If (dir: b$)=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}$	-	-	-	----	E8 to EF
JMP ext	3	3	+ rel	-	-	-	----	31
CALLV \#vct	6	1	$(\mathrm{PC}) \leftarrow(\mathrm{A})$	-	-	-	----	F4
CALL ext	6	3	$(\mathrm{PC}) \leftarrow \mathrm{ext}$	-	-	-	----	20
XCHW A,PC	3	1	Vector call	-	-	dH	----	30
RET	4	1	Subroutine call	-	-	-	----	
RETI	6	1	$(\mathrm{PC}) \leftarrow(\mathrm{A}),(\mathrm{A}) \leftarrow(\mathrm{PC})+1$	-	-	-	Restore	
			Return from subrountine Return form interrupt					

Table 5 Other Instructions (9 instructions)

Mnemonic	\sim	$\#$	Operation	TL	TH	AH	NZ V C	OP code
PUSHW A	4	1		-	-	-	----	40
POPW A	4	1		-	-	dH	---	50
PUSHW IX	4	1		-	-	-	---	41
POPW IX	4	1		-	--	51		
NOP	1	1		-	-	---	00	
CLRC	1	1		-	-	----	81	
SETC	1	1		-	-	$---R$	91	
CLRI	1	1		-	-	-	---	80
SETI	1	1		-	-	-	----	90

MB89660 Series

INSTRUCTION MAP

ᄂ									$$	¢ O O	－	\％${ }_{\text {zon }}^{\text {¢ }}$	${\underset{\sim}{n}}^{\underline{\underline{o}}}$	¢		
ш	$\sum_{j}^{\boxed{\circ}}$	$\sum_{\sum^{0}}^{\infty}$	$\underset{\vdots}{\ll}$						$z_{i}^{\text {융 }}$	$>^{\text {خ }}$	$\begin{gathered} \text { N } \\ \frac{1}{3} \end{gathered}$				$z_{i}^{\text {臭 }}$	$z_{i}^{\text {N }}$
－		$3_{\substack{u_{0}^{0}}}^{0}$							$\begin{aligned} & \text { 움 } \\ & \text { ن } \\ & \text { 山 } \end{aligned}$	$\bar{\sim}$	$\begin{aligned} & \text { 표 } \\ & \text { U } \\ & \text { U } \end{aligned}$		$\underset{\sim}{ \pm}$			${ }^{\hat{\sim}}$
0	${ }^{3}$	${\underset{3}{3}}_{\substack{0 \\ 0}}$	${\underset{3}{3}}_{\underline{Z}}^{\underline{Z}}$						$\begin{aligned} & \text { O } \\ & \text { O } \\ & \underline{\mathrm{Z}} \end{aligned}$	$\begin{aligned} & \bar{\sim} \\ & \underline{0} \\ & \underline{\mathrm{O}} \end{aligned}$	$\begin{aligned} & \text { N్ } \\ & \underline{0} \\ & \underline{\underline{Z}} \end{aligned}$	$$			$\begin{aligned} & \text { O } \\ & \text { O } \\ & \underline{\mathrm{Z}} \end{aligned}$	$\begin{aligned} & \hat{\AA} \\ & \underline{\mathrm{O}} \\ & \underline{\mathrm{Z}} \end{aligned}$
¢																
«						1										
๑	总	$\begin{aligned} & \cup \\ & \underset{\omega}{\omega} \end{aligned}$			$\stackrel{\infty}{\square}$	$\sum_{0}^{\frac{\text { D }}{\text { D }}}$				$\sum_{0}^{\frac{\infty}{i n}}$						$\begin{array}{r} \text { 㕝 } \\ \sum_{0}^{n} \stackrel{y}{\square} \end{array}$
∞	$\begin{aligned} & \bar{\sim} \\ & \hline \mathcal{U} \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbb{N} \\ & 0 \end{aligned}$			$\frac{\pi}{8}$	$\underbrace{\frac{\text { DO }}{\text { O }}}$										
N		そic	$\stackrel{\mathrm{r}}{\mathrm{O}}$			玄			cor		$\frac{\underset{\sim}{\tilde{\sim}}}{\substack{\tilde{o}}}$					
\bullet				\sum_{\ll}^{\ll}	呂品			荌岂			$\sum_{\ll}^{\stackrel{\tilde{\pi}}{<}}$	$\sum_{<}^{\stackrel{N}{<}}$		$\sum_{i}^{\stackrel{N}{\sim}}$	$\sum_{<}^{\circ \stackrel{Q}{\gtrless}}$	
15	3^{3}	$\begin{aligned} & 3_{0}^{2} \\ & 0 \\ & 0 \end{aligned}$		${\underset{c}{0}}_{\substack{0 \\ \times}}^{<}$		䓂			oir					No in	(ợ	
＊												cic				
\cdots	$\begin{array}{\|l\|l\|} \underset{\sim}{\underset{\sim}{x}} \\ \hline \end{array}$			$\begin{aligned} & 3^{\ll} \\ & \bigcup_{3} \\ & \stackrel{\omega}{9} \end{aligned}$												
\sim	$\underset{\sim}{\underset{\sim}{\underset{2}{2}}}$	\sum_{S}^{0}	${ }^{\ll}$													
－	$\underset{\sim}{\substack{n}}$	$\stackrel{<}{\gtrless}$	\sum_{0}^{0}	\sum_{0}^{1}		\sum_{0}^{01}			\sum_{0}^{01}	\sum_{0}^{01}	\sum_{0}^{n}	\sum_{0}^{n}		\sum_{0}^{n}	\sum_{0}^{0}	\sum_{0}^{n}
0	$\begin{aligned} & \text { O } \\ & \text { O } \end{aligned}$		$\begin{aligned} & { }^{<} \\ & 0 \\ & 0 \\ & 0 \\ & \hline 1 \end{aligned}$								$\frac{\underset{\sim}{\tilde{N}}}{\substack{\text { O} \\ \Sigma}}$					
I	0	－	N	\cdots	＋	15	\bullet	N	∞	の	＜	－	0	\square	ш	แ

MB89660 Series

MASK OPTIONS

No.	Part number	$\begin{aligned} & \text { MB89663 } \\ & \text { MB89665 } \end{aligned}$	$\begin{aligned} & \text { MB89P665 } \\ & \text { MB89W665 } \end{aligned}$
	Specifying procedure	Specify when ordering masking	Set with EPROM programmer
1	Power-on reset selection With power-on reset Without power-on reset	Selectable	Setting possible
2	```Selection of the oscillation stabilization time \\ Crystal oscillatorNone```	Selectable	Setting possible
3	Reset pin output [With reset output Without reset output	Selectable	Setting possible
4	$\begin{aligned} & \text { Pull-up resistors } \\ & {\left[\begin{array}{l} \text { P00 to P07, P10 to P17, } \\ \text { P30 to P37, P40 to P47, } \\ \text { P50 to P57, P60 to P63 } \end{array}\right.} \end{aligned}$	Can be selected per pin. (P50 to P57 are available for without pull-up resistors when an A / D converter is used.)	Can be set per pin. (P54 to P57 must have the same setting)

ORDERING INFORMATION

Part number	Package	Remarks
MB89663P-SH	64-pin Plastic SH-DIP (DIP-64P-M01)	
MB89665P-SH	MB89P665P-SH	64-pin Plastic SH-DIP (FPT-64P-M06)
MB89663PF	64-pin Ceramic SH-DIP MB89665PF MB89P665PF	
MB89W6655C-SH		

MB89660 Series

PACKAGE DIMENSIONS

64-pin Plastic SH-DIP
(DIP-64P-M01)
(DIP-64P-M01)

© 1994 FUJITSU LIMITED D64001S-3C-4
Dimensions in mm (inches)

64-pin Plastic QFP

© 1994 FUJTSU LIMITED F64013S-3C-2
Dimensions in mm (inches)

MB89660 Series

64-pin Ceramic SH-DIP
 (DIP-64C-A06)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division Electronic Devices
KAWASAKI PLANT, 1015, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211, Japan
Tel: (044) 754-3753
Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, U.S.A.
Tel: (408) 922-9000
Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LIMITED
No. 51 Bras Basah Road,
Plaza By The Park,
\#06-04 to \#06-07
Singapore 189554
Tel: 336-1600
Fax: 336-1609

All Rights Reserved.
Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete information sufficient for construction purposes is not necessarily given.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu.

Fujitsu reserves the right to change products or specifications without notice.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu.

The information contained in this document are not intended for use with equipments which require extremely high reliability such as aerospace equipments, undersea repeaters, nuclear control systems or medical equipments for life support.

[^0]: *1: DIP-64P-M01, DIP-64C-A06
 (Continued)
 *2: FPT-64P-M06

[^1]: *: When the MB89P665 is used for evaluation, the internal ROM cannot be used.

