8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89863 Series

MB89863

■ DESCRIPTION

The MB89863 is a single-chip microcontroller using the $\mathrm{F}^{2} \mathrm{MC}-8 \mathrm{~L}$ CPU core which can operate at low voltage but at high speed. The microcontroller contains peripheral functions such as a timers unit, timers, a UART, an A/D converter, and an external interrupt. The MB89863 is optimum to the pulse output for the control of an AC inverter motor, etc.

- FEATURES

- F²MC-8L family CPU core
Instruction set optimized for controllers $\left\{\begin{array}{l}\text { Multiplication and division instructions } \\ \text { 16-bit arithmetic operations } \\ \text { Test and branch instructions } \\ \text { Bit manipulation instructions, etc. }\end{array}\right.$
- Timer unit

Outputs a non-overlap, three-phase waveforms to control an AC inverter motor.
Also usable as a PWM timer (4 channels)

- 8-bit PWM timers: 2 channels

Also usable as a reload timer

- UART

Full-duplex double buffer
Synchronous and asynchronous data transfer

PACKAGE

48-pin Plastic QFP

(FPT-48P-M04)

MB89863

(Continued)

- 10-bit A/D converter

Conversion time: 33 instruction cycles
Activation by a timer unit capable

- External interrupt: 1 channel

Usable for wake-up from low-power consumption modes (with an edge detection function)

- Low-power consumption modes

Stop mode (Oscillation stops to minimize the current consumption)
Sleep mode (the CPU stops to reduce the current consumption to approx. 1/3 of normal.)

PRODUCT LINEUP

MB89863

PIN ASSIGNMENT

(FPT-48P-MO4)

PIN DESCRIPTION

Pin no.	Pin name	Circuit type	Function
5	X0	A	Crystal oscillator pins (max. 8 MHz)
6	X1		
3	MOD0	B	Operating mode selection pins Connect directly to Vss.
4	MOD1		These pins are with a pull-down resistor.
2	$\overline{\mathrm{RST}}$	C	Reset I/O pin. This port is a hysteresis input type. The internal circuit initialized by the input of " L ". This pin is with a pull-up resistor.
22 to 29	P07 to P00	D	General-purpose I/O ports
30 to 36	P27 to P21	F	General-purpose output ports
21	P30/SCK	E	General-purpose I/O port Also serves as the I/O for the UART. This port is a hysteresis input type.
20	P31/SO	E	General-purpose I/O port Also serves as the data output for the UART. This port is a hysteresis input type.
18	P32/SI	E	General-purpose I/O port Also serves as the data input for the UART. This port is a hysteresis input type.
17	P36/PTO1	E	General-purpose I/O port Also serves as the pulse output for the 8-bit PWM 1. This port is a hysteresis input type.
16	P37/PTO2	E	General-purpose I/O port Also serves as the pulse output for the 8-bit PWM 2. This port is a hysteresis input type.
15	P40/RTO0	E	General-purpose I/O port Also serves as the pulse output for the timer unit. This port is a hysteresis input type.
14	P41/RTO1/U	E	General-purpose I/O port Also serves as the pulse output or non-overlap 3-phase waveform output for the timer unit. This port is a hysteresis input type.
13	P42/RTO2/V	E	General-purpose I/O port Also serves as the pulse output or non-overlap 3-phase waveform output for the timer unit. This port is a hysteresis input type.
12	P43/RTO3/W	E	General-purpose I/O port Also serves as the pulse output or non-overlap 3-phase waveform output for the timer unit. This port is a hysteresis input type.
11	P44/X	E	General-purpose I/O port Also serves as the non-overlap 3-phase waveform output. This port is a hysteresis input type.

(Continued)

MB89863

(Continued)

Pin no.	Pin name	Circuit type	
QFP48	F	E	General-purpose I/O port Also serves as the non-overlap 3-phase waveform output. This port is a hysteresis input.
10	P45/Y	E	General-purpose I/O port Also serves as the non-overlap 3-phase waveform output. This port is a hysteresis input type.
9	P46/Z	E	General-purpose I/O port Also serves as the trigger input for the timer unit. This port is a hysteresis input type.
8	P47/TRGI	G	N-channel open-drain output ports Also serve as analog input for the A/D converter.
39 to 42,	P57/AN7 to P54/AN4, P53/AN3 to P50/ANO	H60/NT0	General-purpose input port Also serves as an external interrupt input. This port is a hysteresis input type.
35	P64/DTTI	H	General-purpose input port Also serves as a dead-time timer disable input. This port is a hysteresis input type. DTTl input is with a noise canceller.
7	Vcc	-	Power supply pin
19	Vss	-	Power supply (GND) pin
1	AVcc	-	A/D converter power supply pin
44	AVR	-	A/D converter reference voltage input pin
43	AVss	-	A/D converter power supply (GND) pin Use this pin at the same voltage as Vss.

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- At an oscillation feedback resistor of approximately $1 \mathrm{M} \Omega$
B		- CMOS input - Built-in pull-down resistor
C		- Output pull-up resistor (P-ch) - Hysteresis input
D		- CMOS output - CMOS input
E		- CMOS output - Hysteresis input
F		- CMOS output

MB89863

(Continued)

Type	Circuit	Remarks
G		• N-ch open-drain output • Analog input
H		

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than V_{cc} or lower than V_{ss} is applied to input and output pins other than medium- to high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section " Electrical Characteristics" is applied between Vcc and Vss.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

2. Treatment of Unused Input Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistor.

3. Power Supply Voltage Fluctuations

Although Vcc power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that V cc ripple fluctuations (P-P value) will be less than 10% of the standard $V_{c c}$ value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than $0.1 \mathrm{~V} / \mathrm{ms}$ at the time of a momentary fluctuation such as when power is switched.

4. Precautions when Using an External Clock

Even when an external clock is used, oscillation stabilization time is required for power-on reset and wake-up from stop mode.

5. Power Supply and Analog Input for A/D Converter

Take care to prevent the analog power supply (AV cc and AVR) and analog input from exceeding the digital power supply (V_{Cc}) when the analog system power supply is turned on and off.
6. Treatment of Power Supply Pins on Microcontrollers with A/D Converter

Connect to be $\mathrm{AV} \mathrm{cc}=\mathrm{V}_{\mathrm{cc}}, \mathrm{AV} \mathrm{ss}=\mathrm{AVR}=\mathrm{V}_{\mathrm{ss}}$ when the A / D converter is not in use .

MB89863

DEVELOPMENT ENVIRONMENT

The MB8963 is a mask ROM product.
When using an evaluation tool or an OTPROM product for software development, use the MB89P857 or MB89W857 with the socket adapter (Part number 64SD-48QF-8L manufactured by Sun Hayato Co., Ltd.) dedicated to the MB89863 (as shown in the following example).

For programming to the MB89P/W857, refer to the F²MC-8L MB89860/850 Series Data Sheet.

MB89863

BLOCK DIAGRAM

CPU CORE

1. Memory Space

The microcontrollers of the MB89863 offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89863 is structured as illustrated below.

MB89863

2. Registers

The MB89863 has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:

Program counter (PC): A 16-bit register for indicating instruction storage positions
Accumulator (A): A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8 -bit data processing instruction, the lower byte is used.

Temporary accumulator (T): A 16-bit register which performs arithmetic operations with the accumulator When the instruction is an 8-bit data processing instruction, the lower byte is used.

Index register (IX): A 16-bit register for index modification
Extra pointer (EP): A 16-bit pointer for indicating a memory address
Stack pointer (SP): A 16-bit register for indicating a stack area
Program status (PS): A 16-bit register for storing a register pointer, a condition code

16 bHs	: Progam counter	hilal value FFFD
PC		
A	: Accumulator	Undeined
T	: Temporay ${ }^{\text {accammulator }}$	Undeined
L	: Indexregistor	Undeined
EP	: Extaponier	Undeined
SP	: S13ck pohter	Undeined
PS	: Progem status Hita	-0, IL1, 0 -

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR). (See the diagram below.)

Structure of the Program Status Register

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

Rule for Conversion of Actual Addresses of the General-purpose Register Area

													RP			0 we	OP	O	de
	'0'	'0'	'0'	'0'	'0'	'0'		"	'4'		FA	P3	R2	R1	Po	be	b1		0
	!	b	b	b	b	b	!		!		b	b	l	l	b	l	b		b
Generated adaesses	A15	14	A13	A12	A11	A10	A	9	A8		A	A 5	A5	A4	A3	穴	A1		0

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.

H-flag: Set when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared otherwise. This flag is for decimal adjustment instructions.
I-flag: Interrupt is allowed when this flag is set to 1 . Interrupt is prohibited when the flag is set to 0 . Set to 0 when reset.

IL1, 0: Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	ILO	Interrupt level	High-low
0	0	1	High
0	1		
1	0	2	
1	1	3	Low $=$ no interrupt

N -flag: Set if the MSB is set to 1 as the result of an arithmetic operation. Cleared when the bit is set to 0 .
Z-flag: Set when an arithmetic operation results in 0 . Cleared otherwise.
V-flag: Set if the complement on 2 overflows as a result of an arithmetic operation. Reset if the overflow does not occur.

C-flag: Set when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared otherwise. Set to the shift-out value in the case of a shift instruction.

MB89863

The following general-purpose registers are provided:
General-purpose registers: An 8-bit register for storing data
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 16 banks can be used on the MB89863. The bank currently in use is indicated by the register bank pointer (RP).

Register Bank Configuration

I/O MAP

Address	Read/write	Register name	Register description
00H	(R/W)	PDR0	Port 0 data register
01н	(W)	DDR0	Port 0 data direction register
02н			Vacancy
03н			Vacancy
04н	(R/W)	PDR2	Port 2 data register
05H			Vacancy
06\%			Vacancy
07\%			Vacancy
08H	(R/W)	STBC	Standby control register
09н	(W)	WDTC	Watchdog timer control register
0 Ан $^{\text {¢ }}$	(R/W)	TBTC	Time-base timer control register
OBн			Vacancy
ОС	(R/W)	PDR3	Port 3 data register
ODH	(W)	DDR3	Port 3 data direction register
ОЕн	(R/W)	PDR4	Port 4 data register
OFH	(W)	DDR4	Port 4 data direction register
10 H	(R/W)	PDR5	Port 5 data register
11н			Vacancy
12 H	(R)	PDR6	Port 6 data register
13H			Vacancy
14 H			Vacancy
15 ${ }_{\text {H }}$			Vacancy
16н			Vacancy
17нto1В ${ }_{\text {н }}$			Vacancy
1 CH	(R/W)	CTR1	PWM control register 1
1Dн	(W)	CMR1	PWM compare register 1
1EH	(R/W)	CTR2	PWM control register 2
1FH	(W)	CMR2	PWM compare register 2
20 H	(R/W)	SMC	UART serial mode control register
21H	(R/W)	SRC	UART serial rate control register
22 H	(R/W)	SSD	UART serial status/data register
23н	(R/W)	SIDR/SODR	UART serial data register

Note: Do not use vacancies.
(Continued)

MB89863

(Continued)

Address	Read/write	Register name	Register description
24H	Vacancy		
25 н	Vacancy		
26н	(R/W)	EIC1	External interrupt control register 1
27	Vacancy		
28 н	(R/W)	ADC1	A/D converter control register 1
29н	(R/W)	ADC2	A/D converter control register 2
2 2н $^{\text {¢ }}$	(R/W)	ADDH	A/D converter data register (H)
2Bн	(R/W)	ADDL	A/D converter data register (L)
2 CH	Vacancy		
2D	(W)	ZOCTR	Zero detection output control register
2Ен	(W)	CLRBRH	Compare clear buffer register (H)
2 F	(W)	CLRBRL	Compare clear buffer register (L)
30н	(R/W)	TCSR	Timer control status register
31н	(R/W)	CICR	Compare interrupt control register
32н	(R/W)	TMCR	Timer mode control register
33н	(R/W)	COER	Compare/port selection register
34	(R/W)	CMCR	Compare buffer mode control register
35	(R/W)	DTCR	Dead-time timer control register
36	(W)	DTSR	Dead-time setting register
37 ${ }^{\text {H}}$	(R/W)	OCTBR	Output control buffer register
38	(W)	OCPBROH	Output compare buffer register 0 (H)
39н	(W)	OCPBROL	Output compare buffer register 0 (L)
ЗАн	(W)	OCPBR1H	Output compare buffer register 1 (H)
ЗВн	(W)	OCPBR1L	Output compare buffer register 1 (L)
3Сн	(W)	OCPBR2H	Output compare buffer register 2 (H)
3Dн	(W)	OCPBR2L	Output compare buffer register 2 (L)
ЗЕн	(W)	OCPBR3H	Output compare buffer register 3 (H)
3Fн	(W)	OCPBR3L	Output compare buffer register 3 (L)
40н to 7 Вн	Vacancy		
7 CH	(W)	ILR1	Interrupt level setting register 1
7D	(W)	ILR2	Interrupt level setting register 2
7Ен	(W)	ILR3	Interrupt level setting register 3
7 F	Vacancy		

Note: Do not use vacancies.

- ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

$\left(\mathrm{AV} \mathrm{ss}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}\right)$					
Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc	Vss-0.3	Vss +7.0	V	
	AVcc	Vss-0.3	Vss +7.0	V	Must not exceed Vcc^{*}.
	AVR	Vss-0.3	Vss +7.0	V	AVR must not exceed AV cc + 0.3 V .
Input voltage	V	Vss-0.3	$\mathrm{Vcc}+0.3$	V	
Output voltage	Vo	Vss-0.3	Vss +0.3	V	
"L" level maximum output current	lot	-	20	mA	
"L" level average output current	lolav1	-	4	mA	P00 to P07, P21 to P27, P30 to P32, P36, P37, P50 to P57
	lolav2	-	15	mA	P40 to P47
"L" level total average output current	Σ lolav1	-	15	mA	P00 to P07, P21 to P27, P30 to P32, P36, P37, P50 to P57
	Slolav2	-	45	mA	P40 to P47
"H" level maximum output current	Іон	-	-20	mA	
"H" level average output current	ІонаV	-	-4	mA	
"H" level total maximum output current	\sum Іон	-	-20	mA	
Power consumption	Pd	-	230	mW	
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

*1: Use $A V c c$ and $V_{c c}$ set at the same voltage.
$A V c c$ does not exceed $V c c$, such as when power is turned on.
Precautions: Permanent device damage may occur if the above "Absolute Maximum Ratings" are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

MB89863

2. Recommended Operating Conditions

$(\mathrm{AV} \mathrm{ss}=\mathrm{V} s \mathrm{ss}=0.0 \mathrm{~V})$

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	$\begin{array}{l}\mathrm{Vcc} \\ \\ \end{array} \mathrm{AV} \mathrm{cc}$				

Figure 1 Operating Voltage vs. Clock Operating Frequency

MB89863

3. DC Characteristics

$\left(\mathrm{AV}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
"H" level input voltage	VIH	P00 to P07	-	0.7 Vcc	-	$\begin{gathered} \hline \mathrm{Vcc}+ \\ 0.3 \end{gathered}$	V	
	Vins	$\begin{aligned} & \overline{\mathrm{RST}}, \text { P30 to P32, } \\ & \text { P36, P37, P40 to } \\ & \text { P47 } \\ & \text { P60, P64 } \end{aligned}$	-	0.8 Vcc	-	$\begin{gathered} V_{c c}+ \\ 0.3 \end{gathered}$	V	
"L" level input voltage	VII	P00 to P07	-	$\begin{gathered} \text { Vss - } \\ 0.3 \end{gathered}$	-	0.3 Vcc	V	
	Vils	$\begin{aligned} & \text { RST, P30 to P32, } \\ & \text { P36, P37, P40 to } \\ & \text { P47 } \\ & \text { P60, P64 } \end{aligned}$	-	$\begin{gathered} \text { Vss - } \\ 0.3 \end{gathered}$	-	0.2 Vcc	V	
"H" level output voltage	Vон	```P00 to P07, P21 to P27, P30 to P32, P36, P37, P40 to P47```	I он $=-2.0 \mathrm{~mA}$	2.4	-	-	V	
"L" level output voltage	Vol1	```P00 to P07, P21 to P27, P30 to P32, P36, P37, P50 to P57```	$\mathrm{loL}=1.8 \mathrm{~mA}$	-	-	0.4	V	
	Vol2	P40 to P47	$\mathrm{loL}=15 \mathrm{~mA}$	-	-	1.5	V	
Input leakage current	Lıı1	```P00 to P07, P21 to P27, P30 to P32, P36, P37, P40 to P47, P50 to P57, P60, P64```	$\begin{gathered} 0.45 \mathrm{~V}_{\mathrm{Vcc}}<\mathrm{V}_{1}< \\ <c^{2} \end{gathered}$	-	-	± 5	$\mu \mathrm{A}$	
Pull-up resistance	Rpull	$\overline{\text { RST }}$	$\mathrm{V}_{1}=0.0 \mathrm{~V}$	25	50	100	$\mathrm{k} \Omega$	

MB89863

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{5}{*}{Power supply current} \& Icc \& \multirow{4}{*}{Vcc} \& \begin{tabular}{l}
Normal operation (external clock)
\[
\mathrm{F}_{\mathrm{c}}=4.2 \mathrm{MHz}
\] \\
Normal operation (external clock) \(\mathrm{Fc}=8 \mathrm{MHz}\)
\end{tabular} \& - \& 5

7 \& 15

18 \& $m A$
$m A$

\hline \& \& \& Sleep mode (external clock)

$$
\mathrm{F}_{\mathrm{C}}=4.2 \mathrm{MHz}
$$ \& - \& 1 \& 8 \& mA

\hline \& Iccs \& \& Sleep mode (external clock)

$$
\mathrm{F}_{\mathrm{c}}=8 \mathrm{MHz}
$$ \& - \& 2 \& 10 \& mA

\hline \& IcCH \& \& Stop mode $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ \& - \& - \& 10 \& $\mu \mathrm{A}$

\hline \& IA \& AVcc \& | $\mathrm{F}_{\mathrm{c}}=8 \mathrm{MHz},$ |
| :--- |
| when A/D conversion is activated | \& - \& 6 \& - \& mA

\hline Input capacitance \& Cin \& Other than $A V_{c c}$, AVss, Vcc, Vss \& $\mathrm{f}=1 \mathrm{MHz}$ \& - \& 10 \& - \& pF

\hline
\end{tabular}

Note: Connect the MOD0 and MOD1 pins directly to Vss.

4. AC Characteristics

(1) Reset Timing
$\left(\mathrm{V} \mathrm{cc}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV} \mathrm{ss}=\mathrm{V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
$\overline{\text { RST }}$ "L" pulse width	tzLzH	-	16 txCyL*	-	ns	

* : txcyl is the oscillation cycle $(1 / \mathrm{Fc})$ to input to the XO pin.

(2) Power-on Reset

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
Power supply rising time	tR	-	-	50	ms	
Power supply cut-off time	toff		1	-	ms	Due to repeated operations

Note: Make sure that power supply rises within the selected oscillation stabilization time.
If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is recommended.

MB89863

(3) Clock Timing

Parameter	Symbol	Pin	Condition	$\left(\mathrm{AVss}=\mathrm{V}\right.$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
				Value		Unit	Remarks
				Min.	Max.		
Clock frequency	Fc	$\mathrm{X} 0, \mathrm{X} 1$	-	1	8	MHz	
Clock cycle time	txcyl			125	1000	ns	
Input clock pulse width	Pwh Pwl	X0		35	-	ns	External clock
Input clock rising/falling time	$\begin{aligned} & \text { tcR } \\ & \text { tcF } \end{aligned}$			-	10	ns	External clock

X0 and X1 Timing Conditions

Clock Conditions

(4) Instruction Cycle

Parameter	Symbol	Value			Unit	Remarks
		Min.	Typ.	Max.		
Instruction cycle (minimum execution time)	tinst	0.50	-	4	$\mu \mathrm{~s}$	

(5) UART
$\left(\mathrm{V} \mathrm{cc}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV}\right.$ ss $=\mathrm{V}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	SCK	Internal shift clock mode	2 tinst*	-	$\mu \mathrm{s}$	
SCK $\downarrow \rightarrow$ SO time	tstov	SCK, SO		-200	200	ns	
Valid SI \rightarrow SCK \uparrow	tivsh	SI, SCK		1/2 tinst	-	$\mu \mathrm{s}$	
SCK $\uparrow \rightarrow$ valid SI hold time	tshix	SCK, SI		1/2 tinst	-	$\mu \mathrm{s}$	
Serial clock "H" pulse width	tsHSL	SCK	External shift clock mode	1 tinst	-	$\mu \mathrm{s}$	
Serial clock "L" pulse width	tstsh			1 tinst	-	$\mu \mathrm{s}$	
SCK $\downarrow \rightarrow$ SO time	tstov	SCK, SO		0	200	ns	
Valid SI \rightarrow SCK \uparrow	tivsh	SI, SCK		1/2 tinst	-	$\mu \mathrm{s}$	
SCK $\uparrow \rightarrow$ valid SI hold time	tshix	SCK, SI		1/2 tinst	-	$\mu \mathrm{S}$	

[^0]
MB89863

Internal Shift Clock Mode

External Shift Clock Mode

(6) Peripheral Input Timing
$\left(\mathrm{V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min.	Max.		
Peripheral input "H" pulse width 1	tILIH1	TRGI, DTTI, INTO	-	2 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Peripheral input "L" pulse width 1	thill			2 tinst*	-	$\mu \mathrm{s}$	

*: For information on tinst, see "(4) Instruction Cycle."

MB89863

5. A/D Converter Electrical Characteristics

Parameter	$\begin{gathered} \text { Sym- } \\ \text { bol } \end{gathered}$	Pin	Condition	Value			$\underset{t}{\text { Uni }}$	$\underset{\text { ks }}{\text { Remar }}$
				Min.	Typ.	Max.		
Resolution	-	-	-	-	-	10	bit	
Linearity error	-	-		-	-	± 2.0	LSB	
Differential linearity error	-	-		-	-	± 1.5	LSB	
Total error	-	-		-	-	± 3.0	LSB	
Zero transition voltage	Vот	ANO to AN7		$\begin{gathered} \mathrm{AV}_{\mathrm{ss}-1} \mathrm{~L} .5 \\ \mathrm{LSB} \end{gathered}$	$\begin{gathered} \mathrm{AV}_{\mathrm{ss}}+0.5 \\ \mathrm{LSB} \end{gathered}$	$\begin{gathered} \mathrm{A}_{\mathrm{ss}}+2.5 \\ \mathrm{LSB} \end{gathered}$	mV	
Full-scale transition voltage	Vfst	ANO to AN7		$\begin{gathered} \text { AVR - } 3.5 \\ \text { LSB } \end{gathered}$	$\begin{gathered} \text { AVR - } 1.5 \\ \text { LSB } \end{gathered}$	$\begin{gathered} \text { AVR }+0.5 \\ \text { LSB } \end{gathered}$	mV	
Interchannel disparity	-	-		-	-	4	LSB	
A/D mode conversion time	-	-		-	33 tinst ${ }^{*}$	-	$\mu \mathrm{s}$	
Analog port input current	Iain	ANO to AN7		-	-	10	$\mu \mathrm{A}$	
Analog input voltage	-	AN0 to AN7		0	-	AVR	V	
Reference voltage	-	AVR		0	-	AV ${ }_{\text {cc }}$	V	
Reference voltage supply current	1 R	AVR	$\begin{gathered} \mathrm{AVR}=5.0 \\ \mathrm{~V} \end{gathered}$	-	200	-	$\mu \mathrm{A}$	

*: For information on tinst, see "(4) Instruction Cycle" in "4. AC Characteristics."

(1) A/D Converter Glossary

- Resolution

Analog changes that are identifiable with the A/D converter
When the number of bits is 10 , analog voltage can be divided into $2^{10}=1024$.

- Linearity error (unit: LSB)

The deviation of the straight line connecting the zero transition point ("00 00000000 " \leftrightarrow "00 00000001 ") with the full-scale transition point ("11 $11111111 " \leftrightarrow " 1111111110$ ") from actual conversion characteristics

- Differential linearity error (unit: LSB)

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

- Total error (unit: LSB)

The difference between theoretical and actual conversion values

(2) Precautions

- Input impedance of the analog input pins

The A/D converter used for the MB89863 contains a sample hold circuit as illustrated below to fetch analog input voltage into the sample hold capacitor for 15 instruction cycles after activating A/D conversion.
For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output impedance of the external circuit low (below $10 \mathrm{k} \Omega$).

Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of about $0.1 \mu \mathrm{~F}$ for the analog input pin.

AnalogInput Equival ent Circuit

- Error

The smaller the $|A V R-A V s s|$, the greater the error would become relatively.

MB89863

EXAMPLE CHARACTERISTICS

(1) "L" Level Output Voltage (except Port 4)

(2) "L" Level Output Voltage (port 4)

(3) "H" Level Output Voltage

MB89863

(4) Power Supply Current (External Clock)

(Continued)
(Continued)

(6) Pull-up Resistance

MB89863

INSTRUCTIONS

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.
Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
\#vct	Vector table number (3 bits)
\#d8	Immediate data (8 bits)
\#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
A	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
T	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)

(Continued)
(Continued)

Symbol	
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri (8 bits, $\mathrm{i}=0$ to 7)
\times	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(\times)	Indicates that the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
$((\times))$	The address indicated by the contents of \times is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:

Mnemonic:	Assembler notation of an instruction
\sim	Number of instructions
\#:	Number of bytes
Operation:	Operation of an instruction
TL, TH, AH:	A content change when each of the TL, TH, and AH instructions is executed. Symbols in the column indicate the following:
	- "-" indicates no change.
	- dH is the 8 upper bits of operation description data.
	- AL and AH must become the contents of AL and AH immediately before the instruction
is executed.	

MB89863

Table 2 Transfer Instructions (48 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
MOV dir,A	3	2	$($ dir $) \leftarrow(\mathrm{A})$	-	-	-	----	45
MOV @IX +off,A	4	2	$($ (IX) +off) $\leftarrow(\mathrm{A})$	-	-	-	----	46
MOV ext,A	4	3	$(\mathrm{ext}) \leftarrow(\mathrm{A})$	-	-	-	----	61
MOV @EP,A	3	1	$($ (EP)) $\leftarrow(\mathrm{A})$	-	-	-	----	47
MOV Ri,A	3	1	$(\mathrm{Ri}) \leftarrow(\mathrm{A})$	-	-	-	----	48 to 4F
MOV A,\#d8	2	2	$(A) \leftarrow d 8$	AL	-	-	+ +	04
MOV A,dir	3	2	(A) \leftarrow (dir)	AL	-	-	+ + -	05
MOV A,@IX +off	4	2	$(\mathrm{A}) \leftarrow($ (IX) + off $)$	AL	-	-	+	06
MOV A,ext	4	3	$($ A $) \leftarrow($ ext $)$	AL	-	-	+ + -	60
MOV A,@A	3	1	$(\mathrm{A}) \leftarrow((\mathrm{A}))$	AL	-	-	+	92
MOV A,@EP	3	1	$(\mathrm{A}) \leftarrow((\mathrm{EP}))$	AL	-	-	+ +	07
MOV A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{Ri})$	AL	-	-	+ +	08 to 0F
MOV dir,\#d8	4	3	(dir) \leftarrow d8	-	-	-	----	85
MOV @IX +off,\#d8	5	3	((IX) +off) $\leftarrow \mathrm{d} 8$	-	-	-	----	86
MOV @EP,\#d8	4	2	$((E P)) \leftarrow \mathrm{d} 8$	-	-	-	----	87
MOV Ri,\#d8	4	2	$(\mathrm{Ri}) \leftarrow \mathrm{d} 8$	-	-	-	----	88 to 8F
MOVW dir,A	4	2	(dir) $\leftarrow(\mathrm{AH}),(\mathrm{dir}+1) \leftarrow(\mathrm{AL})$	-	-	-	----	D5
MOVW @IX +off,A	5	2	$\begin{aligned} & ((\mathrm{IX})+\mathrm{off}) \leftarrow(\mathrm{AH}), \\ & ((\mathrm{IX})+\mathrm{off}+1) \leftarrow(\mathrm{AL}) \end{aligned}$	-	-	-	----	D6
MOVW ext,A	5	3	$(\mathrm{ext}) \leftarrow(\mathrm{AH}),(\mathrm{ext}+1) \leftarrow(\mathrm{AL})$	-	-	-	----	D4
MOVW @EP,A	4	1	$((E P)) \leftarrow(A H),((E P)+1) \leftarrow(A L)$	-	-	-	----	D7
MOVW EP,A	2	1	$(E P) \leftarrow(A)$	-	-	-	----	E3
MOVW A,\#d16	3	3	$(A) \leftarrow$ d16	AL	AH	dH	+ +	E4
MOVW A,dir	4	2	$(\mathrm{AH}) \leftarrow($ dir $),(\mathrm{AL}) \leftarrow($ dir +1$)$	AL	AH	dH	+ +	C5
MOVW A,@IX +off	5	2	$\begin{aligned} & (\mathrm{AH}) \leftarrow((\mathrm{IX})+\mathrm{off}), \\ & (\mathrm{AL}) \leftarrow((\mathrm{IX})+\mathrm{off}+1) \end{aligned}$	AL	AH	dH	+ + -	C6
MOVW A,ext	5	3	$(A H) \leftarrow(e x t),(A L) \leftarrow(e x t+1)$	AL	AH	dH	+ + -	C4
MOVW A,@A	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{A}),(\mathrm{AL}) \leftarrow((\mathrm{A}))+1)$	AL	AH	dH	+ +	93
MOVW A,@EP	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{EP})),(\mathrm{AL}) \leftarrow((\mathrm{EP})+1)$	AL	AH	dH	+ + -	C7
MOVW A,EP	2	1	$(\mathrm{A}) \leftarrow(\mathrm{EP})$	-	-	dH	----	F3
MOVW EP,\#d16	3	3	$(E P) \leftarrow d 16$	-	-	-	----	E7
MOVW IX,A	2	1	$(\mathrm{IX}) \leftarrow(\mathrm{A})$	-	-	-	----	E2
MOVW A,IX	2	1	$(\mathrm{A}) \leftarrow(\mathrm{IX})$	-	-	dH	----	F2
MOVW SP,A	2	1	$(\mathrm{SP}) \leftarrow(\mathrm{A})$	-	-	-	----	E1
MOVW A,SP	2	1	$(\mathrm{A}) \leftarrow(\mathrm{SP})$	-	-	dH	----	F1
MOV @A,T	3	1	$((A)) \leftarrow(T)$	-	-	-	----	82
MOVW @A,T	4	1	$((A)) \leftarrow(T H),((A)+1) \leftarrow(T L)$	-	-	-	----	83
MOVW IX,\#d16	3	3	$(\mathrm{IX}) \leftarrow \mathrm{d} 16$	-	-	-	----	E6
MOVW A,PS	2	1	$(\mathrm{A}) \leftarrow(\mathrm{PS})$	-	-	dH	----	70
MOVW PS,A	2	1	$(\mathrm{PS}) \leftarrow(\mathrm{A})$	-	-	-	+ + + +	71
MOVW SP,\#d16	3	3	$(\mathrm{SP}) \leftarrow \mathrm{d} 16$	-	-	-	----	E5
SWAP	2	1	$(\mathrm{AH}) \leftrightarrow(\mathrm{AL})$	-	-	AL	----	10
SETB dir: b	4	2	(dir): $\mathrm{b} \leftarrow 1$	-	-	-	----	A8 to AF
CLRB dir: b	4	2	(dir): $\mathrm{b} \leftarrow 0$	-	-	-	----	A0 to A7
XCH A, T	2	1	$(\mathrm{AL}) \leftrightarrow(\mathrm{TL})$	AL	-	-	----	42
XCHW A,T	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{T})$	AL	AH	dH	----	43
XCHW A,EP	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{EP})$	-	-	dH	----	F7
XCHW A,IX	3	1	(A) \leftrightarrow (IX)	-	-	dH	----	F6
XCHW A,SP	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{SP})$	-	-	dH	----	F5
MOVW A,PC	2	1	$(\mathrm{A}) \leftarrow(\mathrm{PC})$	-	-	dH	----	F0

Notes: • During byte transfer to $\mathrm{A}, \mathrm{T} \leftarrow \mathrm{A}$ is restricted to low bytes.

- Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of $\mathrm{F}^{2} \mathrm{MC}$-8 family)

Table 3 Arithmetic Operation Instructions (62 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
ADDC A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{Ri})+\mathrm{C}$	-	-	-	+ + + +	28 to 2F
ADDC A,\#d8	2	2	$(A) \leftarrow(A)+d 8+C$	-	-	-	+ + + +	24
ADDC A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{A})+($ dir $)+\mathrm{C}$	-	-	-	$++++$	25
ADDC A,@IX +off	4	2	$(A) \leftarrow(A)+((I X)+$ off $)+C$	-	-	-	+ + + +	26
ADDC A,@EP	3	1	$(A) \leftarrow(A)+((E P))+C$	-	-	-	+ + + +	27
ADDCW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{T})+\mathrm{C}$	-	-	dH	+ + + +	23
ADDC A	2	1	$(\mathrm{AL}) \leftarrow(\mathrm{AL})+(\mathrm{TL})+\mathrm{C}$	-	-	-	+ + + +	22
SUBC A,Ri	3	1	$(A) \leftarrow(A)-(R i)-C$	-	-	-	+ + + +	38 to 3F
SUBC A,\#d8	2	2	$(A) \leftarrow(A)-$ d8 - C	-	-	-	+ + + +	34
SUBC A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{A})-($ dir $)-C$	-	-	-	+ + + +	35
SUBC A,@IX +off	4	2	$(A) \leftarrow(A)-($ (IX) +off $)-C$	-	-	-	+ + + +	36
SUBC A,@EP	3	1	$(A) \leftarrow(A)-((E P))-C$	-	-	-	+ + + +	37
SUBCW A	3	1	$(A) \leftarrow(T)-(A)-C$	-	-	dH	+ + + +	33
SUBC A	2	1	$(A L) \leftarrow(T L)-(A L)-C$	-	-	-	+ + + +	32
INC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})+1$	-	-	-	+ + + -	C8 to CF
INCW EP	3	1	$(\mathrm{EP}) \leftarrow(\mathrm{EP})+1$	-	-	-	----	C3
INCW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})+1$	-	-	-	----	C2
INCW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+1$	-	-	dH	+ + - -	C0
DEC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})-1$	-	-	-	$+++-$	D8 to DF
DECW EP	3	1	$(E P) \leftarrow(E P)-1$	-	-	-	----	D3
DECW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})-1$	-	-	-	----	D2
DECW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})-1$	-	-	dH	+ + - -	D0
MULU A	19	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \times(\mathrm{TL})$	-	-	dH	----	01
DIVU A	21	1	$(\mathrm{A}) \leftarrow(\mathrm{T}) /(\mathrm{AL}), \mathrm{MOD} \rightarrow(\mathrm{T})$	dL	00	00	----	11
ANDW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A}) \wedge(\mathrm{T})$	-	-	dH	+ + R -	63
ORW A	3	1	$(A) \leftarrow(A) \vee(T)$	-	-	dH	$++\mathrm{R}-$	73
XORW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A}) \forall(\mathrm{T})$	-	-	dH	$++\mathrm{R}-$	53
CMP A	2	1	(TL) - (AL)	-	-	-	$++++$	12
CMPW A	3	1	(T) - (A)	-	-	-	$++++$	13
RORC A	2	1	$\square \mathrm{C} \rightarrow \mathrm{A} \square$	-	-	-	+ + - +	03
ROLC A	2	1	$\square \mathrm{C} \leftarrow \mathrm{A} \leftarrow$	-	-	-	+ + - +	02
CMP A,\#d8	2	2	(A) - d8	-	-	-	+ + + +	14
CMP A, dir	3	2	(A) - (dir)	-	-	-	+ + + +	15
CMP A,@EP	3	1	(A) $-\left(\begin{array}{l}\text { (EP) }\end{array}\right)$	-	-	-	+ + + +	17
CMP A,@IX +off	4	2	(A) - ((IX) +off)	-	-	-	+ + + +	16
CMP A,Ri	3	1	(A) - (Ri)	-	-	-	$++++$	18 to 1F
DAA	2	1	Decimal adjust for addition	-	-	-	+ + + +	84
DAS	2	1	Decimal adjust for subtraction	-	-	-	+ + + +	94
XOR A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{TL})$	-	-	-	+ + R -	52
XOR A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall \mathrm{d} 8$	-	-	-	+ + R -	54
XOR A, dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall($ dir $)$	-	-	-	+ + R -	55
XOR A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall((\mathrm{EP}))$	-	-	-	+ + R -	57
XOR A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall((\mathrm{IX})+\mathrm{off})$	-	-	-	+ + R -	56
XOR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{Ri})$	-	-	-	+ + R -	58 to 5F
AND A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{TL})$	-	-	-	+ + R -	62
AND A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge \mathrm{d} 8$	-	-	-	+ + R -	64
AND A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge($ dir $)$	-	-	-	+ + R -	65

MB89863

(Continued)

INSTRUCTION MAP

MB89863

- ORDERING INFORMATION

MEMO

MB89863

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan
Tel: (044) 754-3753
Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, U.S.A.
Tel: (408) 922-9000
Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LIMITED
No. 51 Bras Basah Road,
Plaza By The Park,
\#06-04 to \#06-07
Singapore 189554
Tel: 336-1600
Fax: 336-1609

All Rights Reserved.

Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete information sufficient for construction purposes is not necessarily given.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu.

Fujitsu reserves the right to change products or specifications without notice.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu.

The information contained in this document are not intended for use with equipment which require extremely high reliability such as aerospace equipment, undersea repeaters, nuclear control systems or medical equipment for life support.

F9606

© FUJITSU LIMITED Printed in Japan

[^0]: * : For information on tinst, see "(4) Instruction Cycle."

