8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89930A Series

MB89935A/935B/P935A/PV930A

- DESCRIPTION

The MB89930A series is a line of single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions such, timers, a serial interface, an A/D converter and an external interrupt.

FEATURES

- MB89600 Series CPU core
- Maximum memory space : 64 Kbytes
- Minimum execution time : $0.4 \mu \mathrm{~s} / 10 \mathrm{MHz}$
- Interrupt processing time : $3.6 \mu \mathrm{~s} / 10 \mathrm{MHz}$
- I/O ports : max. 21channels
- 21-bit timebase timer
- 8-bit PWM timer
- 8/16-bit capture timer/counter
- 10-bit A/D converter : 8 channels
- UART
- 8-bit serial I/O
- External interrupt 1:3 channels
- External interrupt 2 : 8 channels
- Wild Register : 2 bytes
(Continued)
PACKAGE

30-pin plastic SSOP

(FPT-30P-M02)

48-pin ceramic MQFP

(MQP-48C-P01)

MB89930A Series

(Continued)

- Low-power consumption modes (sleep mode, and stop mode)
- SSOP-30 and MQFP-48 package
- CMOS Technology

PRODUCT LINEUP

Part number		MB89935A	MB89935B	MB89P935A

(Continued)

MB89930A Series

(Continued)

Parameter number	MB89935A	MB89935B	MB89P935A	MB89PV930A
10-bit A/D converter	A0-bit precision $\times 8$ channels Continuous activation by 8/16-bit timer/counter output or time-base timer counter			
Wild Register	8 -bit $\times 2$			

*: The minimum operating voltage varies with the operating frequency, the function, and the connected ICE.

PACKAGE AND CORRESPONDING PRODUCTS

Package	MB89935A	MB89935B	MB89P935A	MB89PV930A
FPT-30P-M02	\bigcirc	\bigcirc	\bigcirc	\times^{*}
MQP-48C-P01	\times	\times	\times	\bigcirc

\bigcirc : Available \times :Not available

* : Adapter for 48-pin to 30-pin conversion (manufactured by Sun Hayato Co., Ltd.)

Part number : 48QF-30SOP-8L
Inquiry : Sun Hayato Co., Ltd. : TEL (81) -3-3986-0403

- DIFFERENCES AMONG PRODUCTS

1. Memory Size

Before evaluating using the piggyback product, verify its differences from the product that will actually be used.

2. Current Consumption

In the case of the MB89PV930A, add the current consumed by the EPROM which is connected to the top socket.

3. Mask Options

Functions that can be selected as options and how to designate these options vary by the product. Before using options check section "■ MASK OPTIONS" Take particular care on the following points :

Options are fixed on the MB89PV930A and MB89P935A.

4. Difference between MB89935A and MB89935B

MB89935B is different from MB89935A in that the internal circuit and oscillator have been changed and the radiated noise and current consumption while oscillation is active is reduced. For details of the characteristics of current consumption, see "■ EXAMPLE CHARACTERISTICS".

MB89930A Series

PIN ASSIGNMENT

(TOP VIEW)

(FPT-30P-M02)
(Continued)

MB89930A Series

(Continued)

Pin no.	Pin name						
49	VPP 2	57	N.C.	65	O4	73	OE
50	A12	58	A2	66	O5	74	N.C.
51	A7	59	A1	67	O6	75	A11
52	A6	60	A0	68	O7	76	A9
53	A5	61	O1	69	O8	77	A8
54	A4	62	O2	70	CE	78	A13
55	A3	63	O3	71	A10	79	A14
56	N.C.	64	Vss	72	N.C.	80	Vcc

N.C. : Internally connected. Do not use.

MB89930A Series

PIN DESCRIPTION

Pin No.		Pin name	Circuit type	Function

(Continued)
*1: FPT-30P-M02
*2 : MQP-48C-P01

MB89930A Series

(Continued)

Pin No.		Pin name	Circuit type	Function
SSOP*1	MQFP*2			
11	34	P37/BZ/PPG	E	General-purpose CMOS I/O ports. This pin also serves as the buzzer output pin or the 12-bit programmable pulse generator output.
20	24	P50/PWM	E	General-purpose CMOS I/O ports. This pin also serves as the 8 -bit PWM output pin. The pin is a hysteresis input.
22 to 25	6 to 9	P40/ANO to P43/AN3	F	General-purpose CMOS I/O ports. These pins can also be used as N -channel open-drain ports. The pins also serve as A/D converter analog input pins.
30	18	Vcc	-	Power supply pin
10	42	Vss	-	Power (GND) pin
21	14	AVss	-	Power supply pin for the A-D converter. Apply equal potential to this pin and the $V_{\text {ss }}$ pin.
16	-	C	-	Capacitance pin for regulating the power supply. Connect an external ceramic capacitor of about $0.1 \mu \mathrm{~F}$.
-	$\begin{array}{\|c\|} \hline 15,16,17 \\ 19,20,21 \\ 22,23,36 \\ 37,38,39 \\ 40,41,43 \\ 44,45,46 \\ 47 \end{array}$	N.C.	-	Internally connected pins Be sure to leave them open.

*1: FPT-30P-M02
*2 : MQP-48C-P01

MB89930A Series

EXTERNAL EPROM PIN DESCRIPTION (MB89PV930A only)

Pin No.	Pin name	I/O	Function
49	$V_{\text {PP }}$	\bigcirc	" H " level output pin
$\begin{aligned} & 50 \\ & 51 \\ & 52 \\ & 53 \\ & 54 \\ & 55 \\ & 58 \\ & 59 \\ & 60 \end{aligned}$	A12 A7 A6 A5 A4 A3 A2 A1 A0	O	Address output pins
$\begin{aligned} & \hline 61 \\ & 62 \\ & 63 \end{aligned}$	$\begin{aligned} & \text { O1 } \\ & \text { O2 } \\ & \text { O3 } \end{aligned}$	1	Data input pins
64	Vss	0	Power supply (GND) pin
$\begin{aligned} & 65 \\ & 66 \\ & 67 \\ & 68 \\ & 69 \end{aligned}$	$\begin{aligned} & \text { O4 } \\ & \text { O5 } \\ & 06 \\ & 07 \\ & 08 \end{aligned}$	1	Data input pins
70	CE	O	ROM chip enable pin Outputs " H " during standby.
71	A10	0	Address output pin
73	OE	O	ROM output enable pin Outputs "L" at all times.
$\begin{aligned} & 75 \\ & 76 \\ & 77 \\ & 78 \\ & 79 \end{aligned}$	A11 A9 A8 A13 A14	O	Address output pins
80	Vcc	0	EPROM power supply pin
$\begin{aligned} & 56 \\ & 57 \\ & 72 \\ & 74 \end{aligned}$	N.C.	-	Internally connected pins Be sure to leave them open.

MB89930A Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- Crystal oscillation type
B	\square (1)	- Hysteresis input
C		- At an output pull-up resister (P-ch) of approximately $50 \mathrm{k} \Omega / 5.0 \mathrm{~V}$ - Hysteresis input
D		- CMOS output - CMOS input - Hysteresis input (Resource input) - Pull-up resistor optional

(Continued)

MB89930A Series

(Continued)

Type	Circuit	Remarks
E		- CMOS output - CMOS input - Pull-up resistor optional
F		- CMOS output - CMOS input - Analog input - N-ch open-drain output available
G		- CMOS output - CMOS input - Hysteresis input (Resouce input) - Analog input

MB89930A Series

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than Vcc or lower than $\mathrm{V}_{\text {ss }}$ is applied to input and output pins other than medium- and high-voltage pins or if higher than the voltage which shows on "1. Absolute Maximum Ratings" in section "■ ELECTRICAL CHARACTERISTICS" is applied between Vcc and Vss.
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.
Also, take care to prevent the analog input from exceeding the digital power supply $\left(\mathrm{V}_{c c}\right)$ when the analog system power supply is turned on and off.

2. Treatment of Unused Input Pins

Leaving unused input terminals open may lead to permanent damage due to malfunction and latchup; pull up or pull down the terminals through the resistors of $2 \mathrm{k} \Omega$ or more.
Make the unused I/O terminal in a state of output and leave it open and if it is in an input state, handle it with the same procedure as the input terminals.

3. Treatment of N.C. Pins

Be sure to leave (internally connected) N.C. pins open.

4. Power Supply Voltage Fluctuations

Although $V_{c c}$ power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore important. As stabilization guidelines, it is recommended to control power so that Vcc ripple fluctuations (P-P value) will be less than 10% of the standard Vcc value at the commercial frequency (50 to 60 Hz) and the transient fluctuation rate will be less than $0.1 \mathrm{~V} / \mathrm{ms}$ at the time of a momentary fluctuation such as when power is switched.

5. Treatment of Power Supply Pins on Microcontrollers with A/D Converters

Connect to be AV ss $=\mathrm{V}$ ss even if the A / D converters are not in use.

6. Precautions when Using an External Clock

When an external clock is used, oscillation stabilization time is required even for power-on reset (optional) and wake-up from stop mode.

7. About the Wild Register Function

No wild register can be debugged on the MB89PV930A. For the operation check, test the MB89P935A installed on a target system.

8. Program Execution in RAM

When the MB89PV930A is used, no program can be executed in RAM.

MB89930A Series

PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE

1. EPROM for Use

MBM27C256A-20TVM
2. Programming Socket Adapter

To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer : Sun Hayato
Co., Ltd.) listed below.

Package	Compatible socket part number
LCC-32	ROM-32LC-28DP-S

Inquiry : Sun Hayato Co., Ltd. : TEL (81) -3-3986-0403
FAX (81) -3-5396-9106
3. Memory Space.
\square
4. Programming to the EPROM
(1) Set the EPROM programmer to the MBM27C256A.
(2) Load program data into the EPROM programmer at 0000н to 7FFFн.
(3) Program to 0000 н to 7 FFFн with the EPROM programmer.

MB89930A Series

■ PROGRAMMING TO THE OTPROM WITH MB89P935A

1. Memory Space

2. Programming to the OTPROM

To program to the OTPROM using an EPROM programmer AF200 (manufacturer : Yokogawa Digital Computer Corp.) .

Inquiry : Yokogawa Digital Computer Corp. : TEL (81) -42-333-6224
Note : Programming to the OTPROM with MB89P935A is serial programming mode only.

3. Programming Adaptor for OTPROM

To program to the OTPROM using an EPROM programmer AF200, use the programming adapter (manufacturer : Sun Hayato Co., Ltd.) listed below.

Adaptor socket: ROM3-FPT30M02-8L
Inquiry : Sun Hayato Co., Ltd. : TEL (81) -3-3986-0403
FAX (81) -3-5396-9106

MB89930A Series

BLOCK DIAGRAM

MB89930A Series

- CPU CORE

1. Memory Space

The microcontrollers of the MB89930A series offer a memory space of 64 Kbytes for storing all of I/O, data, and program areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area. The data area can be divided into register, stack, and direct areas according to the application. The program area is located at exactly the opposite end, that is, near the highest address. Provide the tables of interrupt reset vectors and vector call instructions toward the highest address within the program area. The memory space of the MB89930A series is structured as illustrated below.

- Memory Space

MB89930A Series

2. Registers

The MB89930A series has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The following dedicated registers are provided:
Program counter (PC) : A 16-bit register for indicating instruction storage positions
Accumulator (A) : A 16-bit temporary register for storing arithmetic operations, etc. When the instruction is an 8 -bit data processing instruction, the lower byte is used.
Temporary accumulator (T) : A 16-bit register which performs arithmetic operations with the accumulator When the instruction is an 8-bit data processing instruction, the lower byte is used.
Index register (IX): A 16-bit register for index modification
Extra pointer (EP) : A 16-bit pointer for indicating a memory address
Stack pointer (SP) : A 16-bit register for indicating a stack area
Program status (PS): A 16-bit register for storing a register pointer, a condition code

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for use as a condition code register (CCR) . (See the diagram below.)

- Structure of the Program Status Register

MB89930A Series

The RP indicates the address of the register bank currently in use. The relationship between the pointer contents and the actual address is based on the conversion rule illustrated below.

- Rule for Conversion of Actual Addresses of the General-purpose Register Area

Generated addresses

								RP					Low OP codes		
"0"	"0"	"0"	"0"	"0"	"0"	"0"	"1"	R4	R3	R2	R1	R0	b2	b1	b0
\downarrow	\downarrow	\dagger	\downarrow	\checkmark	\downarrow	\downarrow	\downarrow	\dagger	\downarrow	\dagger	\dagger	\downarrow	\dagger	\dagger	\downarrow
A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0

The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and bits for control of CPU operations at the time of an interrupt.
H-flag : Set to "1" when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared to "0" otherwise. This flag is for decimal adjustment instructions.
I-flag: Interrupt is enabled when this flag is set to " 1 ". Interrupt is disabled when the flag is cleared to " 0 ". Cleared to " 0 " at the reset.
IL1, 0 : Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is higher than the value indicated by this bit.

IL1	ILO	Interrupt level	High-Iow
0	0	1	High
0	1		\vdots
1	0	2	
1	1	3	Low $=$ no interrupt

N-flag: Set to " 1 " if the MSB becomes to " 1 " as the result of an arithmetic operation. Cleared to " 0 " when the bit is cleared to " 0 ".
Z-flag : Set to "1" when an arithmetic operation results in 0 . Cleared otherwise.
V-flag : Set to " 1 " if the complement on 2 overflows as a result of an arithmetic operation. Cleared to " 0 " if the overflow does not occur.
C-flag: Set to "1" when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to " 0 " otherwise. Set to the shift-out value in the case of a shift instruction.

MB89930A Series

The following general-purpose registers are provided :
General-purpose registers : An 8-bit register for storing data
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains eight registers and up to a total of 16 banks can be used on the MB89930A series. The bank currently in use is indicated by the register bank pointer (RP) ..

- Register Bank Configuraiton

MB89930A Series

I/O MAP

Address	Register name	Register description	Read/write	Initial value
0000н	PDR0	Port 0 data register	R/W	XXXXXXXX
0001н	DDR0	Port 0 data direction register	W	00000000
0002н to 00006н	Vacancy			
0007н	SYCC	System clock control register	R/W	1--MM100
0008н	STBC	Standby control register	R/W	00010 -
0009н	WDTC	Watchdog timer control register	W	0- - X X X
000Ан	TBTC	Timebase timer control register	R/W	00- - 00
000Вн	Vacancy			
000 C н	PDR3	Port 3 data register	R/W	X X X X X X X
000D	DDR3	Port 3 data direction register	W	00000000
000Ен	RSFR	Reset flag register	R	X X X - -
000F\%	PDR4	Port 4 data register	R/W	$-\mathrm{XXXX}$
0010н	DDR4	Port 4 data direction register	R/W	$\cdots 000$
0011н	OUT4	Port 4 output format register	R/W	\cdots
0012н	PDR5	Port 5 data register	R/W	X
0013н	DDR5	Port 5 data direction register	R/W	0
0014н	RCR21	12-bit PPG control register 1	R/W	00000000
0015н	RCR22	12-bit PPG control register 2	R/W	- - 000000
0016н	RCR23	12-bit PPG control register 3	R/W	0-000000
0017 ${ }_{\text {H }}$	RCR24	12-bit PPG control register 4	R/W	- 000000
0018н	BZCR	Buzzer register	R/W	\cdots
0019н	TCCR	Capture control register	R/W	00000000
001 Ан	TCR1	Timer 1 control register	R/W	00000000
001Вн	TCR0	Timer 0 control register	R/W	000-0000
001 CH	TDR1	Timer 1 data register	R/W	XXXXXXXX
001D	TDR0	Timer 0 data register	R/W	XXXXXXXX
001Ен	TCPH	Capture data register H	R	X X X X X X ${ }^{\text {X }}$
001F	TCPL	Capture data register L	R	X X X X X X X
0020н	TCR2	Timer output control register	R/W	$\cdots 0$
0021н	Vacancy			
0022н	CNTR	PWM control register	R/W	0-000000
0023н	COMR	PWM compare register	W	X X X X X X X
00024 ${ }_{\text {H }}$	EIC1	External interrupt 1 Control register 1	R/W	00000000

(Continued)

MB89930A Series

Address	Register name	Register description	Read/write	Initial value
0025н	EIC2	External interrupt 1 Control register 2	R/W	0000
0026н	Vacancy			
0027н				
0028н	SMC	Serial mode control register	R/W	00000-00
0029н	SRC	Serial rate control register	R/W	--011000
002Ан	SSD	Serial status and data register	R/W	00100-1 X
002B	SIDR	Serial input data register	R	XXXXXXXX
	SODR	Serial output data register	W	X X X X X X X
002Cн	UPC	Clock division selection register	R/W	\cdots
002D to 0002F	Vacancy			
0030н	ADC1	A/D converter control register 1	R/W	- 0000000
0031н	ADC2	A/D converter control register 2	R/W	- 0000001
0032н	ADDH	A/D converter data register H	R/W	\cdots
0033н	ADDL	A/D converter data register L	R/W	$x \times \times \times \times \times \times$
0034н	ADEN	A/D enable register	R/W	00000000
0035	Vacancy			
0036н	EIE2	External interrupt 2 control register1	R/W	00000000
0037 ${ }_{\text {H }}$	EIF2	External interrupt 2 control register2	R/W	$\cdots \cdots$
0038н	Vacancy			
0039н	SMR	Serial mode register	R/W	00000000
003Ан	SDR	Serial data register	R/W	X X X X X X X
003Вн	SSEL	Serial function switching register	R/W	- - - - 0
$003 \mathrm{CH}_{\text {н }}$ to 003FH	Vacancy			
0040н	WRARH0	Upper-address setting register	R/W	XXXXXXXX
0041н	WRARLO	Lower-address setting register	R/W	XXXXXXXX
0042н	WRDR0	Data setting register 0	R/W	X X X X X X ${ }^{\text {P }}$
0043н	WRARH1	Upper-address setting register	R/W	XXXXXXXX
0044	WRARL1	Lower-address setting register	R/W	XXXXXXXX
0045н	WRDR1	Data setting register 1	R/W	XXXXXXXX
0046н	WREN	Address comparison EN registor	R/W	XXXXXX00
0047	WROR	Wild-register data test register	R/W	\cdots
0048 to 006Fн	Vacancy			
0070н	PUL0	Port-0 pull-up setting register	R/W	00000000

(Continued)

MB89930A Series

(Continued)

Address	Register name	Register description	Read/write	Initial value
0071н	PUL3	Port-3 pull-up setting register	R/W	00000000
0072н	PUL5	Port-5 pull-up setting register	R/W	- - - - 0
0073 to 007Ан	Vacancy			
007Вн	ILR1	Interrupt level setting register1	W	111111111
007Сн	ILR2	Interrupt level setting register2	W	1111111111
007D	ILR3	Interrupt level setting register3	W	1 11111111111
007Ен	ILR4	Interrupt level setting register4	W	11111111
007F	ITR	Interrupt test register	Not available	- 00

- : Unused, X : Undefined, M : Set using the mask option

Note : Do not use vacancies.

MB89930A Series

- ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc	Vss -0.3	Vss +6.0	V	
Input voltage	V	Vss - 0.3	$\mathrm{Vcc}+0.3$	V	
Output voltage	Vo	Vss -0.3	$\mathrm{Vcc}+6.0$	V	
"L" level maximum output current	loL1	-	20	mA	Pins P40 to P43
	loL2	-	10	mA	Pins excluding P40 to P43
"L" level average output current	lolav	-	4	mA	Average value (operating current \times operating rate)
"L" level total maximum output current	Elo	-	100	mA	
"H" level maximum output current	Іон	-	-10	mA	
"H" level average output current	lohav	-	-2	mA	Average value (operating current \times operating rate)
"H" level total maximum output current	Eloh	-	-50	mA	
Power consumption	Pd	-	200	mW	
Operating temperature	Ta	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB89930A Series

2. Recommended Operating Conditions

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc	2.2	5.5	V	Normal operation assurance range MB89935A/B
		1.5	6.0	V	Retains the RAMstate in stop mode
" H " level input voltage	V ${ }_{\text {H }}$	0.7 Vcc	$\mathrm{Vcc}+0.3$	V	P00 to P07, P30 to P37, P40 to P43, P50, UI/SI
	Vihs	0.8 Vcc	$\mathrm{Vcc}+0.3$	V	MOD0/1, $\overline{\text { RST }}, ~ E C, \overline{\text { INT20 }}$ to $\overline{\text { INT27, }}$ UCK/SCK, INT10 to INT12
"L" level input voltage	VIL	Vss - 0.3	0.3 Vcc	V	P00 to P07, P30 to P37, P40 to P43, P50, UI/SI
	Vıss	Vss - 0.3	0.2 Vcc	V	MOD0/1, $\overline{R S T}, ~ E C, \overline{I N T 20}$ to $\overline{\text { INT27, }}$ UCK/SCK, INT10 to INT12
Open-drain output pin application voltage	V	Vss - 0.3	$\mathrm{Vcc}+0.3$	V	P40 to P43
Operating temperature	Ta	-40	+85	${ }^{\circ} \mathrm{C}$	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB89930A Series

3. DC Characteristics

$$
\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV} \text { ss }=\mathrm{V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~F}_{\mathrm{cH}}=10 \mathrm{MHz} \text { (External clock) }, \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right. \text {) }
$$

Parameter	Symbol	Pin name		Condition	Value			Unit	Remarks	
				Min.	Typ.	Max.				
" H " level input voltage	V_{1}	$\begin{array}{\|l\|} \hline \text { P00 } \\ \text { P30 } \\ \text { P50, } \end{array}$	to P07, to P37, P40 to P43, , UI/SI		-	0.7 Vcc	-	$\mathrm{Vcc}+0.3$	V	
	$\mathrm{V}_{\text {IHs }}$	RST UCK INT2 INT1	MOD0/1, /SCK, EC, 20 to INT27, 0 to INT12	-	0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V		
"L" level input voltage	VIL	$\begin{aligned} & \text { P00 t } \\ & \text { P30 t } \\ & \text { P50, } \end{aligned}$	to P07, to P37, P40 to P43, , UI/SI	-	Vss - 0.3	-	0.3 Vcc	V		
	Vils	RST UCK INT2 INT1	, MOD0/1, /SCK, EC, 20 to $\overline{\text { INT27, }}$ 0 to INT12	-	Vss - 0.3	-	0.2 Vcc	V		
Open-drain output pin application voltage	V	P40	to P43	-	Vss - 0.3	-	$\mathrm{Vcc}+0.3$	V		
"H" level output voltage	Vон	$\begin{aligned} & \hline \text { P00 } \\ & \text { P40 } \end{aligned}$	$\begin{aligned} & \text { to P07, P30 to P37, } \\ & \text { to P43, P50 } \end{aligned}$	Іон $=-4.0 \mathrm{~mA}$	2.4	-	-	V		
"L" level output voltage	Vol1	$\begin{aligned} & \mathrm{P} 00 \mathrm{t} \\ & \text { P50, } \end{aligned}$	$\begin{aligned} & \text { to P07, P30 to P37, } \\ & \text {, } \overline{\text { RST }} \end{aligned}$	$\mathrm{loL}=4.0 \mathrm{~mA}$	-	-	0.4	V		
	Vol2	P40	to P43	$\mathrm{loL}=12.0 \mathrm{~mA}$	-	-	0.4	V		
Input leakage current	IL	$\begin{aligned} & \text { P00 } \\ & \text { P40 } \\ & \text { MOD } \end{aligned}$	to P07, P30 to P37, to P43, P50 , 0/1	$0.45 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{c c}$	-	-	± 5	$\mu \mathrm{A}$	Without pull-up resistor	
Pull-up resistance	Rpull	$\begin{array}{l\|} \hline \text { P00 } \\ \text { P40 } \end{array}$	to P07, P30 to P37, to P43, P50	$\mathrm{V}_{1}=0.0 \mathrm{~V}$	25	50	100	$\mathrm{k} \Omega$		
Power supply current	Icc	Vcc	Normal operation mode (External clock, highest gear speed)	When A/D converter stops	-	8	12	mA	$\begin{aligned} & \text { MB89935A/ } \\ & \text { B } \end{aligned}$	
					-	6	9	mA	$\begin{aligned} & \text { MB89P935 } \\ & \text { A } \end{aligned}$	
				When A/D converter starts	-	10	15	mA	$\begin{aligned} & \text { MB89935A/ } \\ & \text { B } \end{aligned}$	
					-	8	12	mA	$\begin{aligned} & \text { MB89P935 } \\ & \text { A } \end{aligned}$	
	Iccs		Sleep mode (External clock, highest gear speed)	When A/D converter stops	-	4	6	mA	$\begin{aligned} & \text { MB89935A/ } \\ & \text { B } \end{aligned}$	
					-	3	5	mA	$\begin{aligned} & \text { MB89P935 } \\ & \text { A } \end{aligned}$	

(Continued)

MB89930A Series

(Continued)

$$
\left(\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV} \mathrm{Ss}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~F}_{\mathrm{cH}}=10 \mathrm{MHz} \text { (External clock) }, \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right. \text {) }
$$

Parameter	Symbol	Pin name		Condition	Value			Unit	Remarks	
				Min.	Typ.	Max.				
Power supply current	Іссн	Vcc	Stop mode $\mathrm{Ta}=+25^{\circ} \mathrm{C}$ (External clock)		When A/D converter stops	-	-	1	$\mu \mathrm{A}$	MB89935A/ B
				-		-	10	$\mu \mathrm{A}$	MB89P935 A	
Input capacitance	Cin	Other than $\mathrm{AV}_{\mathrm{ss}}, \mathrm{V}_{\mathrm{cc}}$, Vss		-	-	10	-	pF	MB89P935 A	

MB89930A Series

4. AC Characteristics

(1) Reset Timing
(AV ss $=\mathrm{V}_{\text {ss }}=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
$\overline{\text { RST "L" pulse width }}$	tzızH	-	16 thcyl	-	ns	

thcy: : 1 oscillating clock cycle time

Note : When the power-on reset option is not on, leave the external reset on until oscillation becomes stable.
(2) Power-on Reset
$\left(\mathrm{AV}\right.$ ss $=\mathrm{V}_{\text {ss }}=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	Value		Unit	Remarks
				Min.		
Power supply rising time	t_{R}	-	-	50	ms	
Power supply cutoff time	toff		1	-	ms	Due to repeated operations

Note : The supply voltage must be set to the minimum value required for operation within the prescribed default oscillation settling time.

MB89930A Series

(3) Clock Timing

$$
\left(\mathrm{AV} \text { ss }=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Condition	Value		Unit	Remarks
			Min.	Max.		
Clock frequency	Fch	-	1	10	MHz	
Clock cycle time	txcyL		100	1000	ns	
Input clock pulse width	$\begin{aligned} & \text { twh } \\ & \text { twL } \end{aligned}$		20	-	ns	
Input clock rising/falling time	$\begin{aligned} & \text { tcr } \\ & \text { tcc } \end{aligned}$		-	10	ns	

- X0 and X1 Timing and Conditions

- Main Clock Conditions

When a crystal or ceramic resonator is used

When an exernal clock is used

(4) Instruction Cycle.

Parameter	Symbol	Value (typical)	Unit	Remarks
Instruction cycle (minimum execution time)	tinst	$4 / \mathrm{F}_{\mathrm{CH}}, 8 / \mathrm{F}_{\mathrm{CH}}, 16 / \mathrm{F}_{\mathrm{CH}}, 64 / \mathrm{FCH}_{\mathrm{CH}}$	$\mu \mathrm{s}$	tiNST $=0.4 \mu \mathrm{~s}$ when operating at $\mathrm{F}_{\mathrm{CH}}=10 \mathrm{MHz}\left(4 / \mathrm{F}_{\mathrm{CH}}\right)$

MB89930A Series

(5) Recommended Resonator Manufactures

- Sample application of ceramic resonator

Resonator manufacturer	Resonator	Frequency (MHz)	\mathbf{C}_{1}	\mathbf{C}_{2}	\mathbf{R}
Murata Mfg. Co., Ltd.	CSTS0400MG06	4.00	Built-in	Built-in	330Ω
	CSTCC4.00MG0H6	4.00	Built-in	Built-in	330Ω
	CSTS0800MG06	8.00	Built-in	Built-in	Not required
	CSTCC8.00MG0H6	8.00	Built-in	Built-in	Not required
	CST10.0MTW	10.00	Built-in	Built-in	Not required
	CSTCC10.0MG0H6	10.00	Built-in	Built-in	Not required

Inquiry : Murata Mfg. Co., Ltd.

- Murata Electronics North America, Inc. : TEL1-404-436-1300
- Murata Europe Management GmbH : TEL 49-911-66870
- Murata Electronics Singapore (Pte.) : TEL 65-758-4233

MB89930A Series

(6) Peripheral Input Timing

$$
\left(\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV} \mathrm{ss}=\mathrm{V} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Value		Unit	Remarks
			Min.	Max.		
Peripheral input "H" pulse width	tıı!	INT10 to INT12, INT20 to INT27, EC	2 tinst**	-	$\mu \mathrm{s}$	
Peripheral input "L" pulse width	thwl		2 tinst*	-	$\mu \mathrm{s}$	

*: For information on tinst see " (4) Instruction Cycle".

INT10 to INT12, $\overline{\text { INT20 to }} \overline{\text { INT27, }}$ EC

$\left(\mathrm{V}\right.$ cc $=5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV}$ ss $=\mathrm{V}$ ss $=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value			Unit	Remarks
			Min.	Typ.	Max.		
Peripheral input "H" noise limit	tinnc	INT10 to INT12, EC	7	15	23	ns	
Peripheral input "L" noise limit	tınc		7	15	23	ns	

MB89930A Series

(7) UART, Serial I/O Timing
$\left(\mathrm{V}\right.$ cc $=5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV}$ ss $=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	UCK/SCK	Internal shift clock mode	2 tinst*	-	$\mu \mathrm{s}$	
UCK/SCK $\downarrow \rightarrow$ SO time	tslov	UCK/SCK, SO		-200	200	ns	
Valid SI \rightarrow UCK/SCK \uparrow	tivsh	UCK/SCK, SI		1/2 tinst*	-	$\mu \mathrm{S}$	
UCK/SCK $\uparrow \rightarrow$ Valid SI hold time	tshix	UCK/SCK, SI		1/2 tinst*	-	$\mu \mathrm{s}$	
Serial clock "H" pulse width	tshsL	UCK/SCK	External shift clock mode	tinst*	-	$\mu \mathrm{s}$	
Serial clock "L" pulse width	tsLsh	UCK/SCK		tinst*	-	$\mu \mathrm{s}$	
UCK/SCK $\downarrow \rightarrow$ SO time	tslov	UCK/SCK, SO		0	200	ns	
Valid SI \rightarrow UCK/SCK	tivsh	UCK/SCK, SI		1/2 tinst*	-	$\mu \mathrm{s}$	
UCK/SCK $\uparrow \rightarrow$ Valid SI hold time	tshix	UCK/SCK, SI		1/2 tinst*	-	$\mu \mathrm{s}$	

*: For information on tinst, see " (4) Instruction Cycle".

- Internal Shift Clock Mode

- External Shift Clock Mode

MB89930A Series

5. A/D Converter

(1) A/D Converter Electrical Characteristics

$$
\left(\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV} \mathrm{ss}=\mathrm{V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Value			Unit	Remarks
		Min.	Typ.	Max.		
Resolution	-	-	-	10	bit	
Total error		-5.0	-	+5.0	LSB	
Linearity error		-3.0	-	+3.0	LSB	
Differential linearity error		-2.5	-	+2.5	LSB	
Zero transition voltage	Vot	AVss - 3.5 LSB	AVss + 0.5 LSB	AVss + 4.5 LSB	V	
Full-scale transition voltage	$\mathrm{V}_{\text {FST }}$	Vcc-6.5 LSB	Vcc-1.5 LSB	$\mathrm{Vcc}+2.0 \mathrm{LSB}$	V	
A/D mode conversion time		-	-	38 tinst*	$\mu \mathrm{s}$	
Analog port input current	Iain	-	-	10	$\mu \mathrm{A}$	
Analog input voltage range	-	0	-	Vcc	V	

*: For information on tinst, see " (4) Instruction Cycle" in "4. AC Characteristics."

(2) A/D Converter Glossary

- Resolution

Analog changes that are identifiable with the A / D converter
When the number of bits is 10 , analog voltage can be divided into $2^{10}=1024$.

- Linearity error (unit : LSB)

The deviation of the straight line connecting the zero transition point ("00 0000 0000" \leftrightarrow "00 00000001 ") with the full-scale transition point ("11 11111111" " "11 1111 1110") from actual conversion characteristics

- Differential linearity error (unit : LSB)

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

- Total error (unit : LSB)

The difference between theoretical and actual conversion values

MB89930A Series

MB89930A Series

(3) Notes on Using A/D Converter

- Input impedance of the analog input pins

The A/D converter used for the MB89930A series contains a sample hold circuit as illustrated below to fetch analog input voltage into the sample hold capacitor for 16 instruction cycles after activating A / D conversion. For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output impedance of the external circuit low (below $4 \mathrm{k} \Omega$).
Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of about $0.1 \mu \mathrm{~F}$ for the analog input pin.

- Analog Input Equivalent Circuit

If the analog input impedance is higher than $4 \mathrm{k} \Omega$, it is recommended to
 connect an external capacitor of approx. $0.1 \mu \mathrm{~F}$.

- Error

The smaller the | $\mathrm{V}_{\mathrm{cc}}-\mathrm{AVss} \mid$, the greater the error would become relatively.

MB89930A Series

EXAMPLE CHARACTERISTICS

- Power supply current (MB89935A/MB89935B/MB89P935A : 8 MHz (when FAR resonator [NM8000] is used)
MB89935A
Normal operation mode
$($ Icc1 - Vcc, Icc2 - Vcc)

MB89935B	MB89P935A	MB89935A/MB89935B/
Normal operation mode	Normal operation mode	MB89P935A/

FAR : [NM8000]

- FAR : [NM8000]
-.... External clock

Icc (mA)

MB89935A
Sleep mode
(Iccs1 - Vcc, Iccs2 - Vcc)
(Iccs1 - Vcc, Iccs2 - Vcc)

MB89P935A
Sleep mode
($\operatorname{lccs} 1-V c c, \operatorname{lccs} 2-V c c)$

MB89935A/MB89935B/ MB89P935A/

FAR : [NM8000]

- FAR: [NM8000]
.-.-. External clock

MB89930A Series

- MB89935A/MB89935B/MB89P935A : 4 MHz (when FAR resonator [NM4000] used)

MB89930A Series

- MB89935A/MB89935B : 10 MHz (when external clock is used)

MB89930A Series

(2) "L" level output voltage

VOL (V)
(3) "H" level output voltage

MB89930A Series

- INSTRUCTIONS (136 INSTRUCTIONS)

Execution instructions can be divided into the following four groups:

- Transfer
- Arithmetic operation
- Branch
- Others

Table 1 lists symbols used for notation of instructions.
Table 1 Instruction Symbols

Symbol	Meaning
dir	Direct address (8 bits)
off	Offset (8 bits)
ext	Extended address (16 bits)
\#vct	Vector table number (3 bits)
\#d8	Immediate data (8 bits)
\#d16	Immediate data (16 bits)
dir: b	Bit direct address (8:3 bits)
rel	Branch relative address (8 bits)
@	Register indirect (Example: @A, @IX, @EP)
A	Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH	Upper 8 bits of accumulator A (8 bits)
AL	Lower 8 bits of accumulator A (8 bits)
T	Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH	Upper 8 bits of temporary accumulator T (8 bits)
TL	Lower 8 bits of temporary accumulator T (8 bits)
IX	Index register IX (16 bits)
EP	Extra pointer EP (16 bits)
PC	Program counter PC (16 bits)
SP	Stack pointer SP (16 bits)
PS	Program status PS (16 bits)
dr	Accumulator A or index register IX (16 bits)
CCR	Condition code register CCR (8 bits)
RP	Register bank pointer RP (5 bits)
Ri	General-purpose register Ri (8 bits, $\mathrm{i}=0$ to 7)
\times	Indicates that the very \times is the immediate data. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
(\times)	Indicates that the contents of x is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)
((\times)	The address indicated by the contents of x is the target of accessing. (Whether its length is 8 or 16 bits is determined by the instruction in use.)

Columns indicate the following:
Mnemonic: Assembler notation of an instruction
~: \quad The number of instructions
\#: \quad The number of bytes
Operation: Operation of an instruction
TL, TH, AH: A content change when each of the TL, TH, and AH instructions is executed. Symbols in the column indicate the following:

- "-" indicates no change.
- dH is the 8 upper bits of operation description data.
- AL and AH must become the contents of AL and AH prior to the instruction executed.
- 00 becomes 00 .
$\mathrm{N}, \mathrm{Z}, \mathrm{V}, \mathrm{C}: \quad$ An instruction of which the corresponding flag will change. If + is written in this column, the relevant instruction will change its corresponding flag.
OP code: Code of an instruction. If an instruction is more than one code, it is written according to the following rule:
Example: 48 to $4 \mathrm{~F} \leftarrow$ This indicates $48,49, \ldots 4 \mathrm{~F}$.

MB89930A Series

Table 2 Transfer Instructions (48 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
MOV dir,A	3	2	$(\mathrm{dir}) \leftarrow(\mathrm{A})$	-	-	-	----	45
MOV @IX +off,A	4	2	$($ (IX) +off $) \leftarrow(A)$	-	-	-	----	46
MOV ext,A	4	3	$($ (ext) $\leftarrow(A)$	-	-	-		61
MOV @EP,A	3	1	$($ (EP)) $\leftarrow(A)$	-	-	-		47
MOV Ri,A	3	1	$(\mathrm{Ri}) \leftarrow(\mathrm{A})$	-	-	-	----	48 to 4F
MOV A,\#d8	2	2	(A) \leftarrow d 8	AL	-	-	+ + - -	04
MOV A,dir	3	2	$(\mathrm{A}) \leftarrow$ (dir)	AL	-	-	+ + - -	05
MOV A,@IX +off	4	2	(A) $\leftarrow($ (IX) + off $)$	AL	-	-	+ + - -	06
MOV A,ext	4	3	(A) $\leftarrow($ ext $)$	AL	-	-	+ + - -	60
MOV A,@A	3	1	$(\mathrm{A}) \leftarrow\left(\begin{array}{l}(A)\end{array}\right)$	AL	-	-	+ +--	92
MOV A,@EP	3	1	$(\mathrm{A}) \leftarrow((\mathrm{EP}))$	AL	-	-	+ + -	07
MOV A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{Ri})$	AL	-	-	+ + - -	08 to 0F
MOV dir,\#d8	4	3	$(\mathrm{dir}) \leftarrow \mathrm{d} 8$	-	-	-	---	85
MOV @IX +off,\#d8	5	3	$($ (IX) +off) $\leftarrow \mathrm{d} 8$	-	-	-	----	86
MOV @EP,\#d8	4	2	$((E P)) \leftarrow \mathrm{d} 8$	-	-	-	----	87
MOV Ri,\#d8	4	2	(Ri) $\leftarrow \mathrm{d} 8$	-	-	-		88 to 8 F
MOVW dir,A	4	2	$($ dir $) \leftarrow(A H),($ dir +1$) \leftarrow(A L)$	-	-	-		D5
MOVW @IX +off,A	5	2	$\left\lvert\, \begin{aligned} & ((\mathrm{IX})+\mathrm{off}) \leftarrow(\mathrm{AH}), \\ & ((\mathrm{IX})+\mathrm{off}+1) \leftarrow(\mathrm{AL}) \end{aligned}\right.$	-	-	-	---	D6
MOVW ext,A	5	3	$(\mathrm{ext}) \leftarrow(\mathrm{AH}),(\mathrm{ext}+1) \leftarrow(\mathrm{AL})$	-	-	-	----	D4
MOVW @EP,A	4	1	$((E P)) \leftarrow(A H),((E P)+1) \leftarrow(A L)$	-	-	-		D7
MOVW EP,A	2	1	$(E P) \leftarrow(A)$	-	-	-	----	E3
MOVW A,\#d16	3	3	$(\mathrm{A}) \leftarrow \mathrm{d} 16$	AL	AH	dH	+ + --	E4
MOVW A,dir	4	2	$(\mathrm{AH}) \leftarrow$ (dir), $(\mathrm{AL}) \leftarrow($ dir +1$)$	AL	AH	dH	+ + - -	C5
MOVW A,@IX +off	5	2	$(\mathrm{AH}) \leftarrow((\mathrm{IX})+\mathrm{off})$, $(A L) \leftarrow((I X)+o f f+1)$	AL	AH	dH	+ +--	C6
MOVW A,ext	5	3	$(\mathrm{AH}) \leftarrow($ ext $),(\mathrm{AL}) \leftarrow($ ext + 1)	AL	AH	dH	+ + - -	C4
MOVW A,@A	4	1	$(\mathrm{AH}) \leftarrow(\mathrm{A}) \mathrm{)},(\mathrm{AL}) \leftarrow((\mathrm{A})+1)$	AL	AH	dH	+ +--	93
MOVW A,@EP	4	1	$(\mathrm{AH}) \leftarrow((\mathrm{EP}), \mathrm{l}(\mathrm{AL}) \leftarrow((\mathrm{EP})+1)$	AL	AH	dH	+ +--	C7
MOVW A,EP	2	1	$(\mathrm{A}) \leftarrow(\mathrm{EP})$	-	-	dH	----	F3
MOVW EP,\#d16	3	3	$(E P) \leftarrow d 16$	-	-	-	---	E7
MOVW IX,A	2	1	$(\mathrm{IX}) \leftarrow(\mathrm{A})$	-	-	-	---	E2
MOVW A,IX	2	1	$(\mathrm{A}) \leftarrow(\mathrm{IX})$	-	-	dH	--	F2
MOVW SP,A	2	1	$(\mathrm{SP}) \leftarrow(\mathrm{A})$	-	-	-	--	E1
MOVW A,SP	2		$(\mathrm{A}) \leftarrow(\mathrm{SP})$	-	-	dH		F1
MOV @A,T	3	1	$($ (A$) \mathrm{)} \leftarrow(\mathrm{~T})$	-	-	-		82
MOVW @A,T	4	1	$((\mathrm{A})) \leftarrow(\mathrm{TH}),((\mathrm{A})+1) \leftarrow(\mathrm{TL})$	-	-	-	---	83
MOVW IX,\#d16	3	3	$(\mathrm{IX}) \leftarrow \mathrm{d} 16$	-	-	-	---	E6
MOVW A,PS	2	1	$(\mathrm{A}) \leftarrow$ (PS)	-	-	dH	----	70
MOVW PS,A	2	1	$(\mathrm{PS}) \leftarrow(\mathrm{A})$	-	-	-	+ + +	71
MOVW SP,\#d16	3	3	$(\mathrm{SP}) \leftarrow \mathrm{d} 16$	-	-	-	--- -	E5
SWAP	2	1	$(\mathrm{AH}) \leftrightarrow(\mathrm{AL})$	-	-	AL	----	10
SETB dir: b	4	2	(dir): $\mathrm{b} \leftarrow 1$	-	-	-	----	A8 to AF
CLRB dir: b	4	2	(dir): $\mathrm{b} \leftarrow 0$	-	-	-	----	A0 to A7
XCH A, ${ }^{\text {T }}$	2		$(\mathrm{AL}) \leftrightarrow(\mathrm{TL})$	AL	-	-	----	42
XCHW A,T	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{T})$	AL	AH	dH	----	43
XCHW A,EP	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{EP})$	-	-	dH	----	F7
XCHW A,IX	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{IX})$	-	-	dH	----	F6
XCHW A,SP	3	1	$(\mathrm{A}) \leftrightarrow(\mathrm{SP})$	-	-	dH	----	F5
MOVW A,PC	2	1	$(\mathrm{A}) \leftarrow(\mathrm{PC})$	-	-	dH	----	F0

Note During byte transfer to $A, T \leftarrow A$ is restricted to low bytes.
Operands in more than one operand instruction must be stored in the order in which their mnemonics are written. (Reverse arrangement of $\mathrm{F}^{2} \mathrm{MC}-8$ family)

MB89930A Series

Table 3 Arithmetic Operation Instructions (62 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZ VC	OP code
ADDC A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{Ri})+\mathrm{C}$	-	-	-	+ + + +	28 to 2F
ADDC A,\#d8	2	2	$(A) \leftarrow(A)+d 8+C$	-	-	-	+ + + +	24
ADDC A,dir	3	2	$(A) \leftarrow(A)+($ dir $)+C$	-	-	-	+ + + +	25
ADDC A,@IX +off	4	2	(A) $\leftarrow(A)+((X)+$ off $)+C$	-	-	-	+	26
ADDC A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+((E P))+C$	-	-	-	+ + + +	27
ADDCW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+(\mathrm{T})+\mathrm{C}$	-	-	dH	+ +	23
ADDC A	2	1	$(\mathrm{AL}) \leftarrow(\mathrm{AL})+(\mathrm{TL})+\mathrm{C}$	-	-	-	+	22
SUBC A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})-(\mathrm{Ri})-\mathrm{C}$	-	-	-	+	38 to 3F
SUBC A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{A})-\mathrm{d} 8-\mathrm{C}$	-	-	-	+ + + +	34
SUBC A,dir	3	2	$(A) \leftarrow(A)-($ dir $)-C$	-	-	-	+ + + +	35
SUBC A,@IX +off	4	2	$(A) \leftarrow(A)-((1 X)+$ off $)-C$	-	-	-	+ + + +	36
SUBC A,@EP	3	1	$(A) \leftarrow(A)-((E P))-C$	-	-	-	+ + + +	37
SUBCW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{T})-(\mathrm{A})-\mathrm{C}$	-	-	dH	+ + + +	33
SUBC A	2	1	$(\mathrm{AL}) \leftarrow(\mathrm{TL})-(\mathrm{AL})-\mathrm{C}$	-	-	-	+ + + +	32
INC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})+1$	-	-	-	+ + +	C8 to CF
INCW EP	3	1	$(\mathrm{EP}) \leftarrow(\mathrm{EP})+1$	-	-	-	----	C3
INCW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})+1$	-	-	-	----	C2
INCW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})+1$	-	-	dH	+ + -	C0
DEC Ri	4	1	$(\mathrm{Ri}) \leftarrow(\mathrm{Ri})-1$	-	-	-	+ + +	D8 to DF
DECW EP	3	1	$(E P) \leftarrow(E P)-1$	-	-	-	----	D3
DECW IX	3	1	$(\mathrm{IX}) \leftarrow(\mathrm{IX})-1$	-	-	-	----	D2
DECW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A})-1$	-	-	dH	+ +--	D0
MULU A	19	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \times(\mathrm{TL})$	-	-	dH	----	01
DIVU A	21	1	$(\mathrm{A}) \leftarrow(\mathrm{T}) /(\mathrm{AL}), \mathrm{MOD} \rightarrow(\mathrm{T})$	dL	00	00	----	11
ANDW A	3	1	$(A) \leftarrow(A) \wedge(T)$	-	-	dH	+ + R -	63
ORW A	3	1	$(A) \leftarrow(A) \vee(T)$	-	-	dH	+ + R -	73
XORW A	3	1	$(\mathrm{A}) \leftarrow(\mathrm{A}) \forall(\mathrm{T})$	-	-	dH	+ + R -	53
CMP A	2	1	(TL) - (AL)	-	-	-	++++	12
CMPW A	3	1	(T) - (A)	-	-	-	+ + + +	13
RORC A	2	1	$\rightarrow \mathrm{C} \rightarrow \mathrm{A} \square$	-	-	-	$++-+$	03
ROLC A	2	1	$\mathrm{C} \leftarrow \mathrm{A} \leftrightarrows$	-	-	-	+ + +	02
CMP A,\#d8	2	2	(A) - d8	-	-	-	+ + + +	14
CMP A,dir	3	2	(A) - (dir)	-	-	-	+ + + +	15
CMP A,@EP	3	1	(A) - ((EP))	-	-	-	+ + + +	17
CMP A,@IX +off	4	2	(A) - ((IX) +off)	-	-	-	+ + + +	16
CMP A,Ri	3	1	(A) - (Ri)	-	-	-	+ + + +	18 to 1F
DAA	2	1	Decimal adjust for addition	-	-	-	+ + + +	84
DAS	2	1	Decimal adjust for subtraction	-	-	-	+ + + +	94
XOR A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{TL})$	-	-	-	+ + R -	52
XOR A,\#d8	2	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall \mathrm{d} 8$	-	-	-	+ + R -	54
XOR A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{dir})$	-	-	-	+ + R -	55
XOR A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall((E P))$	-	-	-	+ + R -	57
XOR A,@IX +off	4	2	(A) $\leftarrow(\mathrm{AL}) \forall((\mathrm{IX})+\mathrm{off})$	-	-	-	+ + R -	56
XOR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \forall(\mathrm{Ri})$	-	-	-	+ + R -	58 to 5F
AND A	2	1	$(A) \leftarrow(A L) \wedge(T L)$	-	-	-	+ + R -	62
AND A,\#d8	2	2	$(A) \leftarrow(A L) \wedge d 8$	-	-	-	+ + R -	64
AND A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge($ dir $)$	-	-	-	+ + R -	65

(Continued)

MB89930A Series

(Continued)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
AND A,@EP	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{EP})$)	-	-	-	+ + R -	67
AND A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge((\mathrm{IX})+\mathrm{off})$	-	-	-	+ + R -	66
AND A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \wedge(\mathrm{Ri})$	-	-	-	+ + R -	68 to 6F
OR A	2	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{TL})$	-	-	-	+ + R -	72
OR A,\#d8	2	2	$(A) \leftarrow(A L) \vee d 8$	-	-	-	+ + R -	74
OR A,dir	3	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{dir})$	-	-	-	+ + R -	75
OR A, @EP	3	1	$(A) \leftarrow(A L) \vee((E P))$	-	-	-	+ + R -	77
OR A,@IX +off	4	2	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee((\mathrm{IX})+\mathrm{off})$	-	-	-	+ + R -	76
OR A,Ri	3	1	$(\mathrm{A}) \leftarrow(\mathrm{AL}) \vee(\mathrm{Ri})$	-	-	-	+ + R -	78 to 7F
CMP dir,\#d8	5	3	(dir) - d8	-	-	-	+ + + +	95
CMP @EP,\#d8	4	2	((EP)) - d8	-	-	-	+	97
CMP @IX +off,\#d8	5	3	$((1 \mathrm{X})+\mathrm{off})-\mathrm{d} 8$	-	-	-	+ + + +	96
CMP Ri,\#d8	4	2	(Ri) - d8	-	-	-	+	98 to 9F
INCW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})+1$	-	-	-	----	C1
DECW SP	3	1	$(\mathrm{SP}) \leftarrow(\mathrm{SP})-1$	-	-	-	----	D1

Table 4 Branch Instructions (17 instructions)

Mnemonic	\sim	\#	Operation	TL	TH	AH	NZVC	OP code
BZ/BEQ rel	3	2	If $\mathrm{Z}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FD
BNZ/BNE rel	3	2	If $Z=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FC
BC/BLO rel	3	2	If $\mathrm{C}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{rel}$	-	-	-	----	F9
BNC/BHS rel	3	2	If $\mathrm{C}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	F8
BN rel	3	2	If $\mathrm{N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FB
BP rel	3	2	If $\mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FA
BLT rel	3	2	If $V \forall \mathrm{~N}=1$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FF
BGE rel	3	2	If $\mathrm{V} \forall \mathrm{N}=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	----	FE
BBC dir: b,rel	5	3	If (dir: b) $=0$ then $\mathrm{PC} \leftarrow \mathrm{PC}+$ rel	-	-	-	-+--	B0 to B7
BBS dir: b,rel	5	3	If (dir: b) $=1$ then PC $\leftarrow P C+$ rel	-	-	-	-+--	B8 to BF
JMP @A	2	1	$(\mathrm{PC}) \leftarrow(\mathrm{A})$	-	-	-	----	E0
JMP ext	3	3	(PC) \leftarrow ext	-	-	-	----	21
CALLV \#vct	6	1	Vector call	-	-	-	----	E8 to EF
CALL ext	6	3	Subroutine call	-	-	-	----	31
XCHW A,PC	3	1	$(\mathrm{PC}) \leftarrow(\mathrm{A}),(\mathrm{A}) \leftarrow(\mathrm{PC})+1$	-	-	dH	----	F4
RET	4	1	Return from subrountine	-	-	-	---	20
RETI	6	1	Return form interrupt	-	-	-	Restore	30

Table 5 Other Instructions (9 instructions)

Mnemonic	\sim	$\#$	Operation	TL	TH	AH	NZ V C	OP code
PUSHW A	4	1		-	-	-	----	40
POPW A	4	1		-	-	dH	---	50
PUSHW IX	4	1		-	-	-	---	41
POPW IX	4	1		-	-	-	---	51
NOP	1	1		-	-	-	---	00
CLRC	1	1		-	-	-	$---R$	81
SETC	1	1		-	-	-	$---S$	91
CLRI			-	-	-	----	80	
SETI	1	1		-	-	90		

MB89930A Series

INSTRUCTION MAP

	0	1	2	3	4	5	6				A		c	D		
0	NOP	SWAP	RET	RETI	A		$\mathrm{MOV}_{\mathrm{A}, \text { ext }}$	$\mathrm{MOW}_{\mathrm{A}, \mathrm{PS}}$	CLRI	SETI	$\mathrm{RB}_{\mathrm{di}: 0}$	BBC dir: 0, re	${ }^{\text {NCW }}{ }_{\text {a }}$	A	@A	A,PC
1	A	$\mathrm{DivU}_{\text {a }}$	$\underset{\text { addric }}{ }$	$\begin{gathered} \text { CALL } \\ \text { addr16 } \end{gathered}$			$\mathrm{MOV}_{\text {ext }, \mathrm{A}}$	Mown	CLRC	SETC	$\text { dir: } 1$	$\begin{aligned} & i c \\ & i f: 1, \text { ele } \end{aligned}$	${ }_{\text {SP }}$	$w_{\text {SP }}$	$\underset{s P, A}{w}$	AW
2	A	CMP A		${ }_{\text {A }}$	$X{ }_{A, T}$	${ }^{\mathrm{XOR}} \mathrm{A}$	${ }^{\text {AND }}{ }_{\text {a }}$	${ }^{\text {OR }}$ A	MOV @A,T	$\underset{\mathrm{A}, \mathrm{CA}}{\mathrm{MOV}}$	$\text { dir: } 2$	$\underset{\text { dir: 2,ele }}{\substack{\mathrm{BBC}}}$	${ }^{1 \times}$	${ }^{\text {DECW }}$ IX		$\mathrm{w}_{\mathrm{A}, \mathrm{X}}$
3				w	$\underset{A, T}{ }$,	ANDW	ORW ${ }_{\text {a }}$	$\mid \underset{\text { @A, } T \mid}{ }$	$\|\underset{\mathrm{A}, \mathrm{CA}}{ }\|$	CLRB dir: 3	BC	$w_{E P}$	$\mathrm{Cw}_{\mathrm{EP}}$	$\underset{E P, A}{ }$	$\mathrm{A}_{\mathrm{A}, \mathrm{EP}}$
4	$\operatorname{mov}_{\mathrm{A}, \pm 08}$	$\underset{\mathrm{A}, \mathrm{fd} \mathrm{~d} 8}{\mathrm{CMP}}$	ADDC	$\overline{\mathrm{SUBC}} \underset{\mathrm{~A}, \pm 08}{ }$		$\underset{\mathrm{A}, \pm 08}{\mathrm{XOR}}$	$A_{A, f+d 8}^{A N D}$	$\mathrm{OR}_{\mathrm{A}, \mathrm{Ad} \mathrm{d}}$	DAA	DAS	B	$\text { Bic } \mathrm{yc} 4, \mathrm{rel}$	$\mathrm{A}_{\mathrm{A}, \mathrm{ext}}$	$\underset{\text { ext }, A}{\text { Movw }}$, , \#d 16	$\mathrm{Hm}_{\mathrm{A}, \mathrm{PC}}$
5	$\mathrm{VV}_{\mathrm{A}, \mathrm{di}}$	${ }_{\text {MP,dir }}$	ADDC	$\left.\right\|_{\text {A,dir }} ^{S U B C}$	$\mathrm{MOV}_{\text {dir, }}$	$\mathrm{XOR}_{\text {A,dir }}$	$A N D_{\text {A,dir }}$	or A,dir	$\mathrm{MOV}_{\text {diffede }}$	$\underset{\text { dirifde }}{\text { CMP }}$	${ }_{\text {CLRB }}^{\text {dir: } 5}$	BC	$\left\|\operatorname{Mow}_{\mathrm{A}, \text { dir }}\right\|$	movw dir,A	ovw	$\underset{A, S P}{ }$
6				SUBC A,@IX +d		$\begin{array}{\|l\|} \hline \text { XOR } \\ \mathrm{A}, @ \mathrm{CX} \end{array}$	$\left.\right\|_{A @ D} ^{A N D}$	OR A,@IX +d	Mov @X +0.40	CMP @X + d d	${ }^{\text {CLRB }}$ dir-	$\underset{\text { dir: } 6 \text { rel }}{\text { BBC }}$	$\left\lvert\, \begin{array}{l\|l\|} \hline \text { MOWX } \\ \hline \end{array}\right.$	Move	$\underset{\mid X \nmid d 16}{\text { Mown }}$	${ }_{\text {A, }, \mathrm{X}}$
7	$\begin{gathered} \text { MOO } \\ \text { A, } \end{gathered}$	$\underset{\mathrm{A}, \text { CMPP }}{\mathrm{CMP}}$	$\begin{array}{\|c\|} \hline \text { ADDC } \\ \text { A,@EP } \end{array}$	\mid	$\underset{@ E P, A}{ }$	$\underset{\mathrm{A}, \text { XOEP }}{\mathrm{XOR}}$	$\underset{\mathrm{A}, @ \in P}{\mathrm{AND}}$	or A,@EP	$\mathbf{Q P V}_{\substack{\text { Mev } \\ \hline}}$	$\begin{aligned} & \text { CMP } \\ & @ \in P P+488 \end{aligned}$	$\begin{gathered} \text { CLRB } \\ \text { dif: } 7 \end{gathered}$	rel	$\underset{\mathrm{A}, @ \in \mathrm{P}}{\mathrm{Mow}}$	$\begin{array}{\|c\|c\|c\|} \hline \text { Mown } \end{array}$	$\begin{gathered} \text { Movw } \\ \text { EP P \# } 16 \end{gathered}$	$\overline{\mathrm{Ha}, \mathrm{EP}}$
${ }^{8}$	$\mathrm{A}_{\mathrm{A}, \mathrm{Bo}}$	${ }_{P R}{ }_{A, B 0}$	$\underset{\mathrm{A}, \mathrm{RO}}{\mathrm{ADDC}}$	$\left\lvert\, \begin{array}{\|c\|c\|} \hline \text { SUBC } \\ \hline \end{array}\right.$	$\mathrm{MOV}_{\mathrm{Ro}, \mathrm{~A}}$	$\mathrm{XOR}_{\mathrm{A}, \mathrm{BO}}$	$\mathrm{AND}_{\mathrm{A}, \mathrm{BO}}$	${ }^{\mathrm{OR}}{ }_{\mathrm{A}, \mathrm{RO}}$	$\mathrm{Mov}_{\mathrm{Ro}, \mathrm{fd8}}$	$\underset{\substack{\text { CMP } \\ \mathrm{Ro} 0 \mathrm{Ad} 8}}{ }$	$\mathrm{SETB}_{\text {di: } 0}$	$\frac{\text { BBS }}{\text { dir: }, \text { rel }}$	NC Ro	Ro	\#0	${ }^{\text {BNC }}$ rel
9	A,R1	${ }_{A, R 1}{ }_{A, ~}$	$\underset{\mathrm{ADR1}}{\mathrm{DDC}}$	$\underset{A, R 1}{S U B C}$	$\mid \text { MOV }_{\text {R1, }, \mathrm{A}}$	$\underset{\mathrm{A}, \mathrm{R} 1}{\mathrm{KOR}}$	$\mathrm{AND}_{\mathrm{A}, \mathrm{R} 1}$	${ }^{\mathrm{OR}}{ }_{\mathrm{A}, \mathrm{R} 1}$	$\left\lvert\, \begin{array}{c\|c\|} \mathrm{MOV} \\ \mathrm{R} 1 \pm 08 \end{array}\right.$	$\underset{\substack{\text { CMP } \\ \text { R1, } 1 \mathrm{dq}}}{ }$	$\mathrm{SETB}_{\text {dir: }: 1}$	$\underset{\text { dir : , eel }}{\text { BBS }}$	R1	R1	${ }_{\# 1}$	
A	$\mathrm{MOV}_{\mathrm{A}, \mathrm{R} 2}$	$\mathrm{CMP}_{\mathrm{A}, \mathrm{R} 2}$	$\underset{A, R 2}{A D D C}$	$\underset{\mathrm{A}, \mathrm{R} 2}{ }$	$\mathrm{MOV}_{\mathrm{R} 2, \mathrm{~A}}$	$\begin{aligned} & \text { OR,R2 } \end{aligned}$	${ }^{\text {AND }}{ }_{\text {A,R2 }}$	${ }^{\text {OR }}{ }_{\text {A, R2 }}$	$\left\lvert\, \begin{gathered} \text { MOV } 2 \times 188 \end{gathered}\right.$	$\underset{R 2, \pm d 8}{\mathrm{CMP}}$	$\mathrm{SETB}_{\text {dir:2 }}$	$\int_{\text {diri 2, 2el }}^{\text {BBS }}$	R2	R2	\#2	${ }^{\text {BP }}$ rel
B	$\underset{\mathrm{A}, \mathrm{R3}}{\mathrm{MOV}}$	${ }_{\text {MP }}$	$\underset{A, R 3}{ }$	$\underset{\mathrm{A}, \mathrm{RB}}{\mathrm{SUBC}}$	$\mathrm{MOV}_{\mathrm{R} 3, \mathrm{~A}}$	$\begin{aligned} & \mathrm{OR}, \mathrm{RB} \end{aligned}$	$\underset{\mathrm{A}, \mathrm{R} 3}{\mathrm{ND}}$	${ }^{\text {R }} \text { A,R3 }$	$\left.\right\|_{\mathrm{R} 3, \pm \mathrm{AD}} ^{\mathrm{MOV}}$	$\underset{\mathrm{R} 3, \pm d 8}{\mathrm{CMP}}$	$\mathrm{SETB}_{\text {dir } 3}$	$\underset{\text { dir: } 3 \text { rel }}{\text { BBS }}$	R3	R3	\#3	${ }^{\text {BN }}$ rel
c		$\mathrm{CMP}_{\mathrm{A}, \mathrm{B4}}$	$\underset{\mathrm{A}, \mathrm{R} 4}{\mathrm{ADC}}$	$\left\lvert\, \begin{array}{\|c\|c\|c\|} \hline \text { SUBC } \\ \hline \end{array}\right.$	$\mathrm{MOV}_{\mathrm{R} 4, \mathrm{~A}}$	${ }_{A, B 4}$	$\mathrm{AND}_{\mathrm{A}, \mathrm{B4}}$	A,R4	$\mathrm{MOV}_{\mathrm{R} 4, \pm 88}$	${\underset{\mathrm{CMP}}{\mathrm{R} 4, \mathrm{dd8}},}^{2}$	$\mathrm{SETB}_{\text {dir } 4}$	$\begin{array}{\|l\|} \text { BBS } \\ \text { dir:4,el } \end{array}$	${ }^{\text {NC }} \mathrm{R}$ R4	R4	${ }_{\# 4}$	${ }^{\text {BNZ }}$ rel
D	$\begin{gathered} \mathrm{MOV} \\ \mathrm{~A}, \mathrm{R5} \end{gathered}$	$\mathrm{CMP}_{\mathrm{A}, \mathrm{R} 5}$	$\underset{\text { A,R5 }}{\text { ADDC }}$	$\underset{\mathrm{A}, \mathrm{R5}}{\mathrm{SUBC}}$	$\mid{ }^{\text {MOV }}{ }_{\text {55,A }}$	${ }_{\mathrm{A}, \mathrm{RS}}$	${ }_{\text {ND, R }}$	${ }^{\mathrm{R}}{ }_{\mathrm{A}, \mathrm{R} 5}$	$\left\lvert\, \begin{gathered} \text { MOV } \\ 55, \pm 08 \end{gathered}\right.$	$\begin{gathered} \text { CMP } \\ \substack{55, \pm 88} \end{gathered}$	$\mathrm{SETB}_{\text {dir: } 5}$	dir:5,rel	${ }^{\text {NC }}$ R5	R5	${ }_{\text {CALLV }}{ }^{\text {5 }}$	${ }^{\text {B2 }}$ rel
E	${ }_{\text {PV,R6 }}$	${ }^{4 P}{ }_{A, R 6}$	$\underset{A, R 6}{A D D C}$	$\begin{gathered} \text { SUBC }, R 6 \\ \hline \end{gathered}$	RG,A	$\begin{gathered} \mathrm{OR} \\ \mathrm{~A}, \mathrm{R} 6 \end{gathered}$	${ }^{\text {AND }}{ }_{\mathrm{A}, \mathrm{R}}$	A,R6	$\underset{\mathrm{R}, \mathrm{~A}, \pm \mathrm{A} 8}{\mathrm{MOV}}$	$\underset{\substack{\text { Re, }, \pm 08}}{\text { CMP }}$	${ }_{\text {dir: }} 6$	$\begin{array}{\|l\|} \text { dif: } 6, \text { rel } \end{array}$	${ }^{\text {INC }}$ R6	R6	\#6	BGE ${ }_{\text {rel }}$
F	$\left\lvert\, \begin{array}{\|c\|c\|} \hline \text { MOV }_{\text {A }} \end{array}\right.$	$\mathrm{CMP}_{\mathrm{A}, \mathrm{B7}}$	$\underset{A, R 7}{ }$	$\left\lvert\, \begin{array}{\|c\|c\|} \hline \text { SUBC } \\ \hline \end{array}\right.$	$\begin{array}{\|c\|} \hline \mathrm{MOV} \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \mathrm{XOR} \\ \hline, \mathrm{B7} \\ \hline \end{array}$	$\mathrm{AND}_{\mathrm{A}, \mathrm{R} 7}$	${ }^{\mathrm{OR}}{ }_{\mathrm{A}, \mathrm{R7}}$	$\begin{array}{\|c\|c\|} \hline \text { Mov } \\ \hline 7788 \end{array}$	$\begin{array}{\|c\|c\|} \hline \mathrm{CMP} \\ \mathrm{RT}, \mathrm{dd8} \end{array}$	$\mathrm{SETB}_{\text {di: } 7}$	$\underset{\text { dir:7, rel }}{\text { BBS }}$	R7	$\mathrm{DEC}_{\text {R7 }}$	\#7	${ }^{\text {BLT }}$ rel

MB89930A Series

MASK OPTIONS

No	Part number	MB89935A/B	MB89P935A	MB89PV930A
	Specifying procedure	Specify when ordering masking	Setting not possible	
1	Selection of initial value of main clock oscillation settling time* (with $\mathrm{F}_{\mathrm{ch}}=10 \mathrm{MHz}$) 01 : 2 ${ }^{14} / \mathrm{F}_{\text {сн }}$ (Approx. 1.63 ms) 10 : $2^{17} / \mathrm{F}_{\text {сн }}$ (Approx. 13.1 ms) 11 : $2^{18 / F c н ~(A p p r o x . ~} 26.2 \mathrm{~ms}$)	Selectable	Fixed to $2^{18} /$ Fch $^{\text {ch }}$ (Approx. 26.2 ms)	Fixed to $2^{18 /} /{ }_{\text {ch }}$ (Approx. 26.2 ms)
2	Power-on reset selection With power-on reset Without power-on reset	Selectable	Available	Available
3	Reset pin output With reset output Without reset output	Selectable	With reset output	With reset output

$\mathrm{F}_{\text {сн }}$: Main clock oscillation frequency
*: Initial value to which the oscillation settling time bit (SYCC : WT1, WTO) in the system clock control register is set

ORDERING INFORMATION

Part number	Package	Remarks
MB89935APFV MB89935BPFV MB89P935APFV	30-pin Plastic SSOP (FPT-30P-M02)	
MB89PV930ACFV	48-pin Ceramic MQFP (MQP-48C-P01)	

MB89930A Series

PACKAGE DIMENSIONS

MB89930A Series

(Continued)
48-pin ceramic MQFP (MQP-48C-P01)

© 1994 FUUITSU LIMITED M48001SC-4-2
Dimensions in mm (inches)

FUJITSU LIMITED

For further information please contact:

 JapanFUJITSU LIMITED
Corporate Global Business Support Division Electronic Devices
Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0721, Japan
Tel: +81-3-5322-3347
Fax: +81-3-5322-3386
http://edevice.fuitsu.com/
North and South America
FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A.
Tel: +1-408-922-9000
Fax: +1-408-922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: +1-800-866-8608
Fax: +1-408-922-9179
http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10,
D-63303 Dreieich-Buchschlag, Germany
Tel: +49-6103-690-0
Fax: +49-6103-690-122
http://www.fujitsu-fme.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LTD. \#05-08, 151 Lorong Chuan,
New Tech Park,
Singapore 556741
Tel: +65-281-0770
Fax: +65-281-0220
http://www.fmap.com.sg/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280
Korea
Tel: +82-2-3484-7100
Fax: +82-2-3484-7111

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

F0010
© FUJITSU LIMITED Printed in Japan

