

Corrections of Datasheet

MB90595/595G -

DS90595_add_V100

© Fujitsu Microelectronics Europe GmbH

Addendum, MB90595 Datasheet (DS07-13705-5E)

This is the Addendum for the Datasheet DS07-13705-4E of the MB90595/595G microcontroller series. It describes all known discrepancies of the MB90595/595G microcontroller series datasheet.

Ref. Number	Date	Version No.	Chapter/Page	Description/Correction
(Text Link)	dd.mm.yy			

DS90595001	05.06.01		Table Clock timing : External clock range added
DS90595002	05.06.01	Handling Devices	Ports behaviour during Power on

AC Characteristics:

Table 1 is incorrect, see correction below:

(1) Clock Timing:

Parameter	Symbol	Pin		Value		Units	Remarks
	_		Min.	Тур.	Max.		
Oscillation frequency	f _c	X0,X1	3		5	MHz	When using oscillation circuit
Oscillation cycle time	t _{CYL}	X0,X1	200		333	ns	When using oscillation circuit
External clock frequency	f _c	X0,X1	3		16	MHz	When using external clock
External clock cycle time	t _{CYL}	X0,X1	62.5		333	ns	When using external clock
Input clock pulse width	P_{WH} , P_{WL}	X0	10			ns	Duty ratio is about 30 to 70%
Input clock rise and fall time	t _{CR} , t _{CF}	X0			5	ns	When using external clock
Machine clock frequency	f _{CP}		1.5		16	MHz	
Machine clock cycle	t _{CP}		62.5		666	ns	
Flash Read cycle time	t _{CYCL}			2*t _{CP}		ns	When Flash is accessed by CPU

^{*:} Frequency Deviation indicates the maximum Frequency difference from the target frequency when using a multiplied clock

Power-On Reset

Output "unknown value", when the power supply Is turned on If $F^2MC-16LX$ is used. (Note)

1.Device covered

MB90V595, MB90V595G, MB90598, MB90F598, MB90F598G

2. Note:

During testing it has been found that some port pins may enter an undefined state during power on. By asserting RSTx during the power on reset (2^{17} cycles of main clock) port pins can be forced to high impedance.

1. The following Ports will output a High Impedance (Hi-z) at the terminal when the power supply is turned on when PONR and RSTX = 1 (RSTx not asserted):

2. The following ports can be forced to high impedance state (Hi-z) during PONR if RSTX is asserted during power on $(2^{17}$ cycles of main clock) or with the End of POMR and the Start of the internal clock

3. The following Ports will output an High-Z with the End of PONR and the Start of internal clocks. RSTx does not force the pins to High-Z during power on.

Note:

This workaround will work for Mode pin setting 011 (Single chip, Internal ROM external bus), 110 (Burn_In ROM), 111 (EPROM mode)

PONR: Power on ResetRSTX: Reset input pin

The following diagram shows the timing chart in detail.

Under "power-on reset" 2^{17} x oscillation clock frequency (8.192ms in case of oscillation clock frequency = 16MHz)

Waiting time to be stabilized oscillation $2^{18}\,\mathrm{x}$ oscillation clock frequency

(16.384ms in case of oscillation clock frequency = 16MHz)