16-bit Proprietary Microcontroller

CMOS

F²MC-16LX MB90595/595G Series

MB90598/598G/F598/F598G/V595/V595G

DESCRIPTION

The MB90595/595G series with FULL-CAN^{*1} interface and FLASH ROM is especially designed for automotive and industrial applications. Its main features are two on board CAN Interfaces, which conform to V2.0 Part A and Part B, while supporting a very flexible message buffer scheme and so offering more functions than a normal full CAN approach.

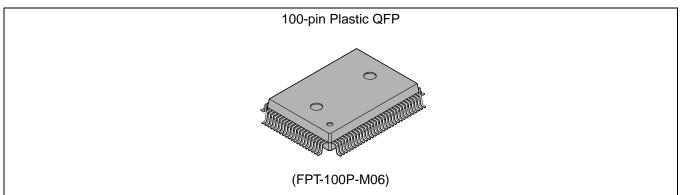
The instruction set of F²MC-16LX CPU core inherits an AT architecture of the F²MC^{*2} family with additional instruction sets for high-level languages, extended addressing mode, enhanced multiplication/division instructions, and enhanced bit manipulation instructions. The microcontroller has a 32-bit accumulator for processing long word data.

The MB90595/595G series has peripheral resources of 8/10-bit A/D converters, UART (SCI), extended I/O serial interface, 8/16-bit PPG timer, I/O timer (input capture (ICU), output compare (OCU)) and stepping motor controller.

*1: Controller Area Network (CAN) - License of Robert Bosch GmbH

*2: F²MC stands for FUJITSU Flexible Microcontroller.

FEATURES


Clock

Embedded PLL clock multiplication circuit

Operating clock (PLL clock) can be selected from divided-by-2 of oscillation or one to four times the oscillation (at oscillation of 4 MHz, 4 MHz to 16 MHz).

Minimum instruction execution time: 62.5 ns (operation at oscillation of 4 MHz, four times the oscillation clock, V_{CC} of 5.0 V)

PACKAGE

(Continued)

- Instruction set to optimize controller applications
 Rich data types (bit, byte, word, long word)
 Rich addressing mode (23 types)
 Enhanced signed multiplication/division instruction and RETI instruction functions
 Enhanced precision calculation realized by the 32-bit accumulator
- Instruction set designed for high level language (C language) and multi-task operations Adoption of system stack pointer Enhanced pointer indirect instructions Barrel shift instructions
- Program patch function (for two address pointers)
- Enhanced execution speed: 4-byte instruction queue
- Enhanced interrupt function: 8 levels, 34 factors
- Automatic data transmission function independent of CPU operation Extended intelligent I/O service function (EI²OS): Up to 10 channels
- Embedded ROM size and types Mask ROM: 128 Kbytes Flash ROM: 128 Kbytes Embedded RAM size: 4 Kbytes (MB90V595/595G : 6 Kbytes)
 Flash ROM
- Flash ROM Supports automatic programming, Embedded Algorithm TM* Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Hard-wired reset vector available in order to point to a fixed boot sector Erase can be performed on each block Block protection with external programming voltage
- Low-power consumption (stand-by) mode Sleep mode (mode in which CPU operating clock is stopped) Stop mode (mode in which oscillation is stopped) CPU intermittent operation mode Hardware stand-by mode
- Process: 0.5 μm CMOS technology
- I/O port General-purpose I/O ports: 78 ports
 Push-pull output and Schmitt trigger input.
 Programmable on each bit as I/O or signal for peripherals.
- Timer
 - Watchdog timer: 1 channel 8/16-bit PPG timer: 8/16-bit × 6 channels 16-bit re-load timer: 2 channels
- 16-bit I/O timer Input capture: 4 channels Output compare: 4 channels
- Extended I/O serial interface: 1 channel
- UART0

With full-duplex double buffer (8-bit length) Clock asynchronized or clock synchronized (with start/stop bit) transmission can be selectively used.

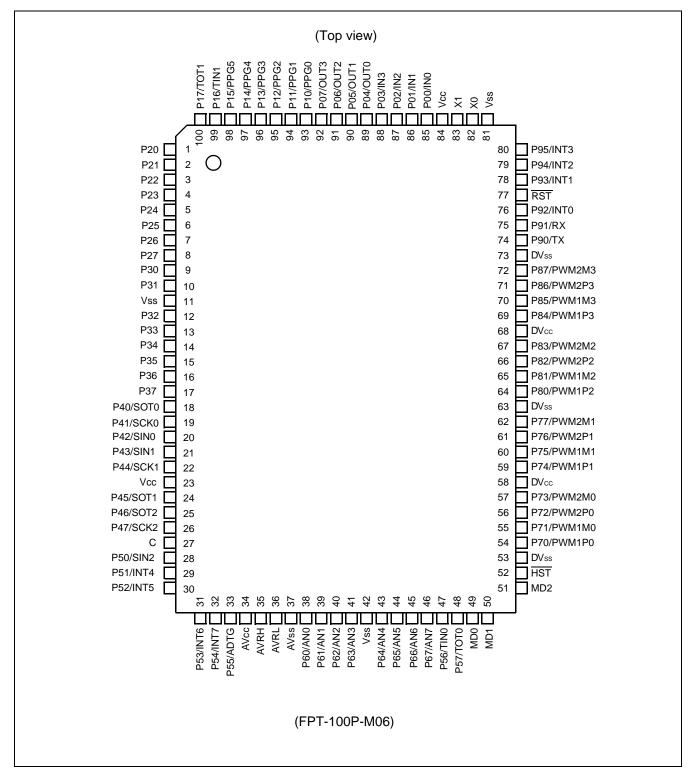
• UART1 (SCI)

With full-duplex double buffer (8-bit length) Clock asynchronized or clock synchronized serial transmission (I/O extended transmission) can be selectively used.

- Stepping motor controller (4 channels)
- External interrupt circuit (8 channels)
 A module for starting an extended intelligent I/O service (EI²OS) and generating an external interrupt which is triggered by an external input.
- Delayed interrupt generation module: Generates an interrupt request for switching tasks.
- 8/10-bit A/D converter (8 channels)
 8/10-bit resolution can be selectively used.
 Starting by an external trigger input.
- FULL-CAN interface: 1 channel Conforming to Version 2.0 Part A and Part B Flexible message buffering (mailbox and FIFO buffering can be mixed)
- 18-bit Time-base counter
- External bus interface: Maximum address space 16 Mbytes
- *: Embedded Algorithm is a trademark of Advanced Micro Devices Inc.

■ PRODUCT LINEUP

	Features	MB90598 MB90598G (under development)	MB90F598/F598G	MB90V595/V595G			
Classifi	ication	Mask ROM product	Flash ROM product	Evaluation product			
ROM s	ize	128 Kbytes	128 Kbytes Boot block Hard-wired reset vector	None			
RAM si	ize	4 Kbytes	4 Kbytes	6 Kbytes			
Emulat supply	or-specific power			None			
CPU functions		The number of instructions: 351 Instruction bit length: 8 bits, 16 bits Instruction length: 1 byte to 7 bytes Data bit length: 1 bit, 8 bits, 16 bits Minimum execution time: 62.5 ns (at machine clock frequency of 16 MHz) Interrupt processing time: 1.5 μs (at machine clock frequency of 16 MHz, minimum value)					
UART0		Clock synchronized transmission (500 K/1 M/2 Mbps) Clock asynchronized transmission (4808/5208/9615/10417/19230/38460/62500 /500000 bps at machine clock frequency of 16 MHz) Transmission can be performed by bi-directional serial transmission or by master/ slave connection.					
UART1(SCI)		Clock synchronized transmission (62.5 K/125 K/250 K/500 K/1 Mbps) Clock asynchronized transmission (1202/2404/4808/9615/31250 bps) Transmission can be performed by bi-directional serial transmission or by master/ slave connection.					
8/10-bit A/D converter		Conversion precision: 8/10-bit can b Number of inputs: 8 One-shot conversion mode (converts Scan conversion mode (converts two up to 8 cha Continuous conversion mode (conver Stop conversion mode (converts sel	s selected channel once o o or more successive chan nnels) erts selected channel cont	nels and can program inuously)			
8/16-bit PPG timers (6 channels)		Number of channels: 6 (8/16-bit × 6 channels) PPG operation of 8-bit or 16-bit A pulse wave of given intervals and given duty ratios can be output. Pulse interval: fsys, fsys/2 ¹ , fsys/2 ² , fsys/2 ³ , fsys/2 ⁴ (fsys = system clock frequency) 128μs (fosc = 4MHz : oscillation clock frequency)					
16-bit Reload timer		Number of channels: 2 Operation clock frequency: fsys/2 ¹ , fsys/2 ³ , fsys/2 ⁵ (fsys = System clock frequency) Supports External Event Count function					
16-bit I/O	16-bit Output compares	Number of channels: 4 Pin input factor: A match signal of co	ompare register				
timer	Input captures	Number of channels: 4 Rewriting a register value upon a pir	oon a pin input (rising, falling, or both edges)				

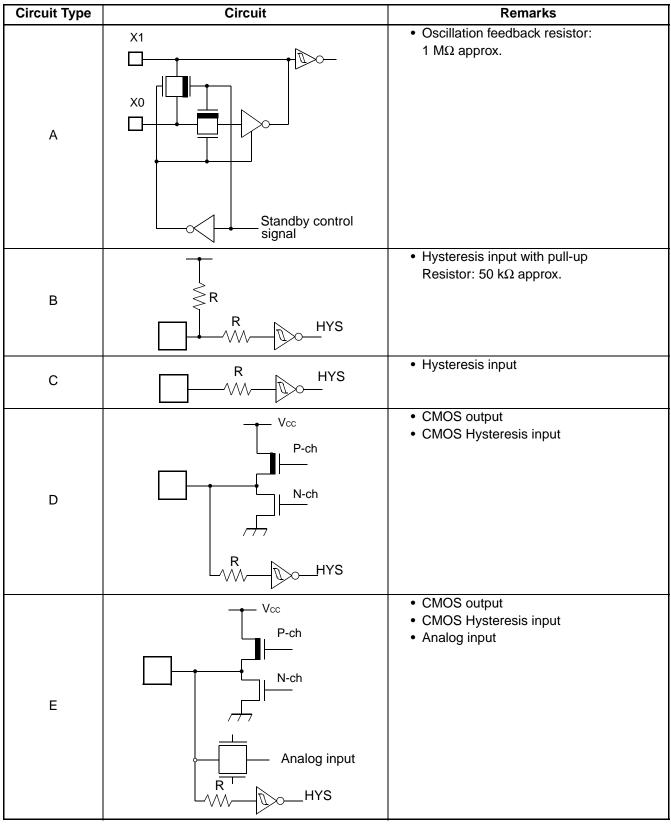

(Continued	1)
Continued	1)

Features	MB90598 MB90598G (under development) MB90F598/F598G MB90V595/V595G						
CAN Interface	Number of channels: 1 Conforms to CAN Specification Version 2.0 Part A and B Automatic re-transmission in case of error Automatic transmission responding to Remote Frame Prioritized 16 message buffers for data and ID's Supports multiple messages Flexible configuration of acceptance filtering: Full bit compare / Full bit mask / Two partial bit masks Supports up to 1Mbps CAN bit timing setting: MB90xxx:TSEG2 ≥ RSJW+2TQ MB90xxxG:TSEG2 ≥ RSJW						
Stepping motor controller (4 channels)	Four high current outputs for each channel Synchronized two 8-bit PWM's for each channel						
External interrupt circuit	Number of inputs: 8 Started by a rising edge, a falling edge, an "H" level input, or an "L" level input.						
Serial IO	Clock synchronized transmission (31.25 K/62.5 K/125 K/500 K/1 Mbps at system clock frequency of 16 MHz) LSB first/MSB first						
Watchdog timer	Reset generation interval: 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms (at oscillation of 4 MHz, minimum value)						
Flash Memory	Supports automatic programming, Embedded Algorithm [™] and Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Hard-wired reset vector available in order to point to a fixed boot sector in Flash Memory Boot block configuration Erase can be performed on each block Block protection with external programming voltage Flash Writer from Minato Electronics Inc.						
Low-power consumption (stand-by) mode	Sleep/stop/CPU intermittent operation/clock timer/hardware stand-by						
Process		CMOS					
Power supply voltage for operation*2	+5 V±10 %						
Package	QFP-100 PGA-256						

*1: It is setting of DIP switch S2 when Emulation pod (MB2145-507) is used. Please refer to the MB2145-507 hardware manual (2.7 Emulator-specific Power Pin) about details.

*2: Varies with conditions such as the operating frequency. (See section "■ ELECTRICAL CARACTERISTICS.")

PIN ASSIGNMENT


■ PIN DESCRIPTION

82 X0 A Oscillator pin 83 X1 B Reset input 77 RST B Reset input 52 HST C Hardware standby input 85 to 88 P00 to P03 General purpose IO Inputs for the Input Captures 88 to 92 P04 to P07 General purpose IO Outputs for the Output Compares. 93 to 98 PP60 to PPG5 D General purpose IO 93 to 98 PP60 to PPG5 D General purpose IO 99 P16 D General purpose IO 100 TOT1 D General purpose IO 100 P17 D General purpose IO 100 TOT1 D General purpose IO 12 to 16 P32 to P36 G General purpose IO 12 to 16 P32 to P36 G General purpose IO 12 to 16 P32 to P36 G General purpose IO 13 to 8 SOT0 G General purpose IO 14 to 18 G	Pin no.	Pin name	Circuit type	Function		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	82	X0	٨			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	83	X1	A	Oscillator pin		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	77	RST	В	Reset input		
85 to 88 IN0 to IN3 G Inputs for the Input Captures 89 to 92 P04 to P07 OUTo to OUT3 G General purpose IO 93 to 98 P10 to P15 PPG0 to PPG5 D General purpose IO 99 P16 D Outputs for the Programmable Pulse Generators 99 P16 D General purpose IO 100 P17 D General purpose IO 100 P17 D General purpose IO 100 P30 to P27 G General purpose IO 100 P30 to P31 G General purpose IO 11 to 8 P20 to P27 G General purpose IO 12 to 16 P32 to P36 G General purpose IO 17 P37 D General purpose IO 18 P40 G General purpose IO 19 P41 G General purpose IO 19 P41 G General purpose IO 19 P41 G General purpose IO 20 P42 G General purpose IO 21 P43 G	52	HST	С	Hardware standby input		
$ \begin{array}{ c c c c } \hline 1N0 \ to \ IN3 \\ \hline 1Puts for the Input Captures \\ \hline P04 \ to \ P07 \\ \hline OUT0 \ to \ OUT3 \\ \hline PPG0 \ to \ PPG5 \ epg5 \\ \hline PPG0 \ to \ PPG5 \ epg5 \\ \hline PPG0 \ to \ PPG5 \ epg5 \\ \hline PPG0 \ to \ PPG5 \ epg5 \\ \hline PPG0 \ to \ PPG5 \ epg5 \\ \hline PPG0 \ to \ PPG5 \ epg5 \\ \hline PPG0 \ to \ PPG5 \ epg5 \$	05 40 00	P00 to P03	6	General purpose IO		
89 to 92 OUT0 to OUT3 G Outputs for the Output Compares. 93 to 98 P10 to P15 P General purpose IO Outputs for the Programmable Pulse Generators 99 P16 P General purpose IO TIN input for the 16-bit Reload Timer 1 100 P17 P General purpose IO TIN input for the 16-bit Reload Timer 1 100 TOT1 D General purpose IO TOT output for the 16-bit Reload Timer 1 100 TOT1 D General purpose IO TOT output for the 16-bit Reload Timer 1 100 TOT1 D General purpose IO General purpose IO 11 to 8 P20 to P27 G General purpose IO 12 to 16 P32 to P36 G General purpose IO 12 to 16 P32 to P36 G General purpose IO 18 P40 G General purpose IO 19 P41 G General purpose IO 19 SCK0 SCK SCK input/output for UART 0 20 P42 G General purpose IO 21 P43 G General purpose IO	85 10 88	IN0 to IN3	G	Inputs for the Input Captures		
OUTO to OUT3Outputs for the Output Compares.93 to 98P10 to P15PPG0 to PPG5P99P16PGeneral purpose IO100P17PGeneral purpose IO100TOT1DGeneral purpose IO100TOT1DGeneral purpose IO100TOT1DGeneral purpose IO100TOT1DGeneral purpose IO100TOT1DGeneral purpose IO100P30 to P31GGeneral purpose IO9 to 10P30 to P31GGeneral purpose IO12 to 16P32 to P36GGeneral purpose IO17P37DGeneral purpose IO18P40GGeneral purpose IO19P41GGeneral purpose IO19SCK0SOT0SCK input/output for UART 020P42GGeneral purpose IO21P43GGeneral purpose IO22P44GGeneral purpose IO24P45GGeneral purpose IO24P45GGeneral purpose IO25P46GGeneral purpose IO26P47GGeneral purpose IO26P47GGeneral purpose IO	00.45.00	P04 to P07	0	General purpose IO		
93 to 98 PPG0 to PPG5 D Outputs for the Programmable Pulse Generators 99 F16 D General purpose IO 100 F17 D General purpose IO 100 F17 D General purpose IO 100 TOT1 D General purpose IO 100 TOT1 D General purpose IO 100 7071 G General purpose IO 100 P30 to P27 G General purpose IO 9 to 10 P30 to P31 G General purpose IO 12 to 16 P32 to P36 G General purpose IO 17 P37 D General purpose IO 18 P40 G General purpose IO 19 P41 G General purpose IO 19 P42 G General purpose IO 20 P42 G General purpose IO 21 P43 G General purpose IO 21 P43 G General purpose IO 22 P44 G General purpose IO SIN1 </td <td>89 to 92</td> <td>OUT0 to OUT3</td> <td>G</td> <td>Outputs for the Output Compares.</td>	89 to 92	OUT0 to OUT3	G	Outputs for the Output Compares.		
$ \begin{array}{ c c c c } \hline \begin{tabular}{ c c c } \hline \end{tabular} \end{tabular} \\ \hline ta$	00.45.00	P10 to P15	P	General purpose IO		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	93 to 98	PPG0 to PPG5	D	Outputs for the Programmable Pulse Generators		
$ \begin{array}{ c c c c c } \hline TIN1 & TIN input for the 16-bit Reload Timer 1 \\ \hline TOT 1 & D & General purpose IO \\ \hline TOT output for the 16-bit Reload Timer 1 \\ \hline TOT 0 to utput for the 16-bit Reload Timer 1 \\ \hline TOT 0 to utput for the 16-bit Reload Timer 1 \\ \hline TOT 0 to utput for the 16-bit Reload Timer 1 \\ \hline TOT 0 to utput for the 16-bit Reload Timer 1 \\ \hline TOT 0 to utput for the 16-bit Reload Timer 1 \\ \hline TOT 0 to utput for the 16-bit Reload Timer 1 \\ \hline TOT 0 to utput for the 16-bit Reload Timer 1 \\ \hline TOT 0 to utput for Uarrose IO \\ \hline 10 P30 to P31 & G & General purpose IO \\ \hline 12 to 16 P32 to P36 & G & General purpose IO \\ \hline 12 to 16 P32 to P36 & G & General purpose IO \\ \hline 12 to 16 P32 to P36 & G & General purpose IO \\ \hline 12 to 16 P32 to P36 & G & General purpose IO \\ \hline 13 P & P40 & G & General purpose IO \\ \hline 18 & OTO & OT 0 & SCK0 & SCK input/output for UART 0 \\ \hline 19 & P41 & G & General purpose IO \\ \hline 20 & P42 & G & General purpose IO \\ \hline 20 & P43 & G & General purpose IO \\ \hline 21 & P43 & G & General purpose IO \\ \hline 21 & P43 & G & General purpose IO \\ \hline 22 & P44 & G & General purpose IO \\ \hline 24 & P45 & G & General purpose IO \\ \hline 24 & P45 & G & General purpose IO \\ \hline 25 & P46 & G & General purpose IO \\ \hline 25 & P46 & G & General purpose IO \\ \hline 26 & P47 & G & General purpose IO \\ \hline 26 & P47 & G & General purpose IO \\ \hline 26 & P47 & G & General purpose IO \\ \hline 26 & P47 & G & General purpose IO \\ \hline 26 & P47 & G & General purpose IO \\ \hline 26 & P47 & G & General purpose IO \\ \hline 26 & P47 & G & General purpose IO \\ \hline 26 & P47 & G & General purpose IO \\ \hline 27 & General purpose IO \\ \hline 28 & P47 & G & General purpose IO \\ \hline 29 & OT output for UART 1 \\ \hline 20 & OT output for UART 1 \\ \hline 20 & OT output for UART 1 \\ \hline 20 & OT output for UART 1 \\ \hline 20 & OT output for UART 1 \\ \hline 20 & OT output for UART 1 \\ \hline 20 & OT output for the Serial IO \\ \hline 20 & OT output for the Serial IO \\ \hline 20 & OT output for UART 1 \\ \hline 20 & OT output for UART 1 \\ \hline 20 & OT output for UART 1 \\ \hline 20 & OT output for UART 1 \\ \hline 20 & OT output for UART 1 \\ \hline 20 & OT output for UART 1 \\ $		P16	5	General purpose IO		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	99	TIN1	D	TIN input for the 16-bit Reload Timer 1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	400	P17	5	General purpose IO		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	TOT1	D	TOT output for the 16-bit Reload Timer 1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 to 8	P20 to P27	G	General purpose IO		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 to 10	P30 to P31	G	General purpose IO		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 to 16	P32 to P36	G	General purpose IO		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	17	P37	D	General purpose IO		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4.0	P40	0	General purpose IO		
19SCK0GSCK input/output for UART 020P42GGeneral purpose IO20SIN0GGeneral purpose IO21P43GGeneral purpose IO21P43GGeneral purpose IO21P44GGeneral purpose IO22P44GGeneral purpose IO24P45GGeneral purpose IO24P45GGeneral purpose IO25P46GGeneral purpose IO26P47GGeneral purpose IO26P47GGeneral purpose IO	18	SOT0	G	SOT output for UART 0		
SCK0SCK input/output for UART 020P42GGeneral purpose IO21P43GGeneral purpose IO21P43GGeneral purpose IO21P43GGeneral purpose IO21P44GGeneral purpose IO22P44GGeneral purpose IO24P45GGeneral purpose IO24P45GGeneral purpose IO25P46GGeneral purpose IO26P47GGeneral purpose IO26P47GGeneral purpose IO	4.0	P41	0	General purpose IO		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	19	SCK0	G	SCK input/output for UART 0		
SIN0SIN input for UART 021P43GGeneral purpose IOSIN1GGeneral purpose IO22P44GGeneral purpose IO22SCK1GGeneral purpose IO24P45GGeneral purpose IO24P45GGeneral purpose IO25P46GGeneral purpose IO26P47GGeneral purpose IO26P47GGeneral purpose IO		P42	6	General purpose IO		
21SIN1GSIN input for UART 122P44GGeneral purpose IO22SCK1GGeneral purpose IO24P45GGeneral purpose IO24SOT1GGeneral purpose IO25P46GGeneral purpose IO25P46GGeneral purpose IO26P47GGeneral purpose IO26P47GGeneral purpose IO	20	SIN0	G	SIN input for UART 0		
SIN1SIN input for UART 122P44GGeneral purpose IO24P45GGeneral purpose IO24P45GGeneral purpose IO25P46GGeneral purpose IO25P46GGeneral purpose IO26P47GGeneral purpose IO		P43	-	General purpose IO		
22GGSCK1SCK input/output for UART 124P45GSOT1GGeneral purpose IO25P46GSOT2GGeneral purpose IOSOT output for the Serial IO26P47GGeneral purpose IO26P47GGeneral purpose IO	21	SIN1	G	SIN input for UART 1		
SCK1 SCK input/output for UART 1 24 P45 G General purpose IO 25 P46 G General purpose IO 25 P46 G General purpose IO 26 P47 G General purpose IO		P44	0	General purpose IO		
24 G SOT in the second purpose in the second	22	SCK1	G	SCK input/output for UART 1		
SOT1 SOT output for UART 1 25 P46 G SOT2 G General purpose IO 26 P47 G General purpose IO General purpose IO		P45		General purpose IO		
25 G SOT2 SOT2 SOT output for the Serial IO 26 P47 G General purpose IO	24	SOT1	G	SOT output for UART 1		
SOT2 SOT output for the Serial IO P47 G General purpose IO		P46		General purpose IO		
	25	SOT2	G	SOT output for the Serial IO		
C G SCK2 G SCK input/output for the Serial IO		P47	•	General purpose IO		
	26	SCK2	G			

$ \begin{array}{ c c c c c c } \hline 28 & \hline P50 & \\ \hline SIN2 & \hline D & \hline \\ \hline SIN Input for the Serial IO \\ \hline \\ \hline 29 to 32 & \hline P51 to P54 \\ \hline INT4 to INT7 & \hline D & \hline \\ \hline \\ \hline \\ \hline 29 to 32 & \hline \\ \hline \\ \hline P51 to P54 & \\ \hline \\$	
SIN2SIN Input for the Serial IO29 to 32P51 to P54 INT4 to INT7DGeneral purpose IO33P55 ADTGDGeneral purpose IO33P55 ADTGDGeneral purpose IO38 to 41P60 to P63 AN0 to AN3EGeneral purpose IO43 to 46P64 to P67 AN4 to AN7EGeneral purpose IO47P56 TIN0DGeneral purpose IO48P57 TOT0DGeneral purpose IO48P57 TOT0DGeneral purpose IO54 to 57PWM1P0 PWM2P0 PWM2M0FGeneral purpose IO59 to 62PWM1P1 PWM2P1FGeneral purpose IO59 to 62PWM1P1 PWM2P1FOutput for Stepper Motor Controller channel 1	
29 to 32INT4 to INT7DExternal interrupt input for INT4 to INT733P55DGeneral purpose IO33ADTGInput for the external trigger of the A/D Converter38 to 41P60 to P63E43 to 46P64 to P67E43 to 46P64 to P67E47P56D47P56D48P57D48P57D70 to P73General purpose IO54 to 57PWM1P0PWM2P0PWM2P0PWM200F59 to 62PWM1P1PWM1P1FOutput for Stepper Motor Controller channel 1	
INT4 to INT7External interrupt input for INT4 to INT733P55DGeneral purpose IO38 to 41P60 to P63EGeneral purpose IO38 to 41P64 to P67EGeneral purpose IO43 to 46P64 to P67EGeneral purpose IO43 to 46P56DGeneral purpose IO47P56DInput for the A/D Converter47P56DGeneral purpose IO48P57DGeneral purpose IO48P57DGeneral purpose IO48P57DGeneral purpose IO54 to 57P70 to P73FGeneral purpose IO54 to 57PWM1P0FGeneral purpose IO59 to 62P74 to P77FGeneral purpose IO59 to 62PWM1P1FOutput for Stepper Motor Controller channel 0	
33ADTGDInput for the external trigger of the A/D Converter38 to 41P60 to P63 AN0 to AN3EGeneral purpose IO Inputs for the A/D Converter43 to 46P64 to P67 AN4 to AN7EGeneral purpose IO Inputs for the A/D Converter47P56 TIN0DGeneral purpose IO Inputs for the A/D Converter48P57 TOT0DGeneral purpose IO TOT output for the 16-bit Reload Timer 048P57 TOT0DGeneral purpose IO TOT output for the 16-bit Reload Timer 054 to 57P70 to P73 PWM1P0 PWM2P0 PWM2M0FGeneral purpose IO Output for Stepper Motor Controller channel 059 to 62P74 to P77 PWM1P1 PWM2P1FGeneral purpose IO Output for Stepper Motor Controller channel 1	
ADTGInput for the external trigger of the A/D Converter38 to 41P60 to P63 AN0 to AN3EGeneral purpose IO Inputs for the A/D Converter43 to 46P64 to P67 AN4 to AN7EGeneral purpose IO Inputs for the A/D Converter47P56 TIN0DGeneral purpose IO Inputs for the A/D Converter48P57 TOT0DGeneral purpose IO TIN input for the 16-bit Reload Timer 048P57 TOT0DGeneral purpose IO TOT output for the 16-bit Reload Timer 054 to 57P70 to P73 PWM1P0 PWM2P0 PWM2M0FGeneral purpose IO TOT suppose IO59 to 62P74 to P77 PWM1M1 PWM2P1FGeneral purpose IO Output for Stepper Motor Controller channel 1	
38 to 41AN0 to AN3EInputs for the A/D Converter43 to 46P64 to P67 AN4 to AN7EGeneral purpose IO Inputs for the A/D Converter47P56 TIN0DGeneral purpose IO TIN input for the 16-bit Reload Timer 048P57 TOT0DGeneral purpose IO TOT output for the 16-bit Reload Timer 048P57 TOT0DGeneral purpose IO TOT output for the 16-bit Reload Timer 054 to 57P70 to P73 PWM1P0 PWM2P0 PWM2M0FGeneral purpose IO Output for Stepper Motor Controller channel 059 to 62PWM1P1 PWM2P1FGeneral purpose IO Output for Stepper Motor Controller channel 1	
AN0 to AN3Inputs for the A/D Converter43 to 46P64 to P67 AN4 to AN7EGeneral purpose IO Inputs for the A/D Converter47P56 TIN0DGeneral purpose IO TIN input for the 16-bit Reload Timer 048P57 TOT0DGeneral purpose IO TOT output for the 16-bit Reload Timer 048P57 TOT0DGeneral purpose IO TOT output for the 16-bit Reload Timer 054 to 57P70 to P73 PWM1M0 PWM2P0 PWM2M0FGeneral purpose IO Output for Stepper Motor Controller channel 059 to 62PWM1P1 PWM2P1FGeneral purpose IO Output for Stepper Motor Controller channel 1	
43 to 46AN4 to AN7EInputs for the A/D Converter47P56DGeneral purpose IO47TIN0DTIN input for the 16-bit Reload Timer 048P57DGeneral purpose IO48P57DGeneral purpose IO70 to P73PWM1P0FGeneral purpose IO54 to 57PWM1P0FGeneral purpose IO90 to 62P74 to P77FOutput for Stepper Motor Controller channel 059 to 62PWM1P1FOutput for Stepper Motor Controller channel 1	
AN4 to AN7Inputs for the A/D Converter47P56DGeneral purpose IO47TIN0DTIN input for the 16-bit Reload Timer 048P57DGeneral purpose IO48P57DGeneral purpose IO48P70 to P73General purpose IO54 to 57PWM1P0FGeneral purpose IO54 to 57PWM1P0FGeneral purpose IO9WM2P0PWM2P0FOutput for Stepper Motor Controller channel 059 to 62P74 to P77FGeneral purpose IO59 to 62PWM1P1FGeneral purpose IO	
47TIN0DTIN input for the 16-bit Reload Timer 048P57 TOT0DGeneral purpose IO TOT output for the 16-bit Reload Timer 048TOT0P70 to P73 PWM1P0 PWM1M0 PWM2P0 PWM2M0General purpose IO54 to 57PWM1P0 PWM2P0 PWM2M0FGeneral purpose IO Output for Stepper Motor Controller channel 059 to 62P74 to P77 PWM1M1 PWM2P1General purpose IO Output for Stepper Motor Controller channel 1	
TIN0TIN input for the 16-bit Reload Timer 048P57 TOT0DGeneral purpose IO TOT output for the 16-bit Reload Timer 048P70 to P73 PWM1P0 PWM1M0 PWM2P0 PWM2M0FGeneral purpose IO Output for Stepper Motor Controller channel 054 to 57P74 to P77 PWM1P1 PWM1P1 PWM2P1FGeneral purpose IO Output for Stepper Motor Controller channel 1	
48TOT0DTOT output for the 16-bit Reload Timer 0700P70 to P73General purpose IO54 to 57PWM1P0 PWM1M0 PWM2P0 PWM2M0FOutput for Stepper Motor Controller channel 059 to 62P74 to P77 PWM1M1 PWM2P1FGeneral purpose IO59 to 62PWM1P1 PWM2P1FOutput for Stepper Motor Controller channel 1	
TOT0TOT output for the 16-bit Reload Timer 0FP70 to P73General purpose IOPWM1P0PWM1M0FOutput for Stepper Motor Controller channel 0PWM2P0PWM2M0FGeneral purpose IOP74 to P77General purpose IO59 to 62PWM1P1FPWM1M1FOutput for Stepper Motor Controller channel 1	
54 to 57 PWM1P0 PWM1M0 PWM2P0 PWM2P0 PWM2M0 F Output for Stepper Motor Controller channel 0 59 to 62 P74 to P77 PWM1P1 PWM1M1 PWM2P1 F General purpose IO	
54 to 57 PWM1M0 PWM2P0 PWM2M0 F Output for Stepper Motor Controller channel 0 59 to 62 P74 to P77 PWM1M1 PWM1M1 PWM2P1 F General purpose IO	
59 to 62 PWM1P1 PWM1M1 PWM2P1 F Output for Stepper Motor Controller channel 1	
59 to 62 PWM1M1 F PWM2P1 Output for Stepper Motor Controller channel 1	
PWM2M1	
P80 to P83 General purpose IO	
64 to 67 PWM1P2 PWM1M2 F PWM2P2 PWM2M2	
P84 to P87 General purpose IO	
69 to 72 PWM1P3 PWM1M3 PWM2P3 PWM2M3 F Output for Stepper Motor Controller channel 3	
74 P90 General purpose IO	
TX D TX output for CAN Interface	
P91 General purpose IO	
75 RX D RX input for CAN Interface	

Pin no.	Pin name	Circuit type	Function		
76	P92		General purpose IO		
70	INT0	D	External interrupt input for INT0		
78 to 80	P93 to P95	D	General purpose IO		
701000	INT1 to INT3	D	External interrupt input for INT1 to INT3		
58, 68	DVcc		Dedicated power supply pins for the high current output buffers (Pin No. 54 to 72)		
53, 63, 73	DVss		Dedicated ground pins for the high current output buffers (Pin No. 54 to 72)		
34	AVcc	Power supply	Dedicated power supply pin for the A/D Converter		
37	AVss	Power supply	Dedicated ground pin for the A/D Converter		
35	AVRH	Power supply	Upper reference voltage input for the A/D Converter		
36	AVRL	Power supply	Lower reference voltage input for the A/D Converter		
49, 50	MD0 MD1	С	Operating mode selection input pins. These pins should be connected to $V_{\rm CC}$ or $V_{\rm SS}.$		
51	MD2	Н	Operating mode selection input pin. This pin should be connected to V_{CC} or V_{SS} .		
27	С		External capacitor pin. A capacitor of 0.1μ F should be connected to this pin and Vss.		
23, 84	Vcc	Power supply	Power supply pins (5.0 V).		
11, 42, 81	Vss	Power supply	Ground pins (0.0 V).		

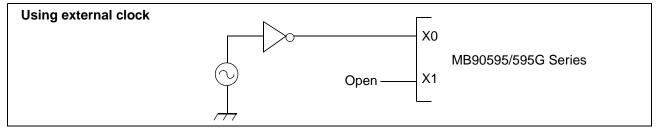
■ I/O CIRCUIT TYPE

Circuit Type	Circuit	Remarks
F	Vcc P-ch High current N-ch R M HYS	 CMOS high current output CMOS Hysteresis input
G	Vcc P-ch N-ch R R TTL	 CMOS output CMOS Hysteresis input TTL input (MB90F598/F598G, only in Flash mode)
н	R HYS R	 Hysteresis input Pull-down Resistor: 50 Ω approx. (except MB90F598/F598G)

HANDLING DEVICES

(1) Make Sure that the Voltage not Exceed the Maximum Rating (to Avoid a Latch-up).

In CMOS ICs, a latch-up phenomenon is caused when an voltage exceeding V_{cc} or an voltage below V_{ss} is applied to input or output pins or a voltage exceeding the rating is applied across V_{cc} and V_{ss}. When a latch-up is caused, the power supply current may be dramatically increased causing resultant thermal break-down of devices. To avoid the latch-up, make sure that the voltage not exceed the maximum rating. In turning on/turning off the analog power supply, make sure the analog power voltage (AV_{cc}, AVRH, DV_{cc}) and analog input voltages not exceed the digital voltage (V_{cc}).

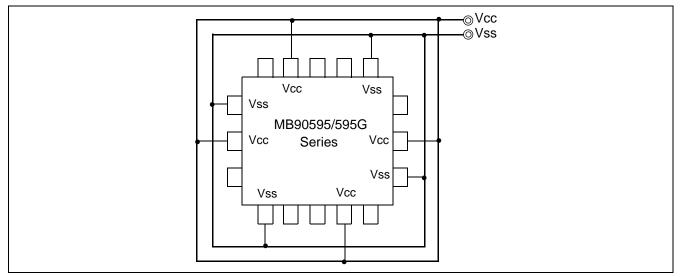

(2) Treatment of Unused Pins

Unused input pins left open may cause abnormal operation, or latch-up leading to permanent damage. Unused input pins should be pulled up or pulled down through at least 2 k Ω resistance.

Unused input/output pins may be left open in output state, but if such pins are in input state they should be handled in the same way as input pins.

(3) Using external clock

In using the external clock, drive X0 pin only and leave X1 pin unconnected.



(4) Power supply pins (Vcc/Vss)

In products with multiple V_{cc} or V_{ss} pins, pins with the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to an external power and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating (See the figure below.)

Make sure to connect V_{cc} and V_{ss} pins via lowest impedance to power lines.

It is recommended to provide a bypass capacitor of around 0.1 μ F between V_{cc} and V_{ss} pins near the device.

(5) Pull-up/down resistors

The MB90595 Series does not support internal pull-up/down resistors. Use external components where needed.

(6) Crystal Oscillator Circuit

Noises around X0 or X1 pins may cause abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure that lines of oscillation circuit not cross the lines of other circuits.

A printed circuit board artwork surrounding the X0 and X1 pins with ground area for stabilizing the operation is highly recommended.

(7) Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AV_{CC} (turning on/off the analog and digital power supplies simultaneously is acceptable).

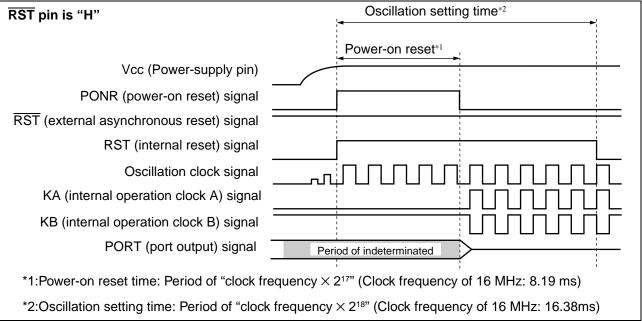
(8) Connection of Unused Pins of A/D Converter

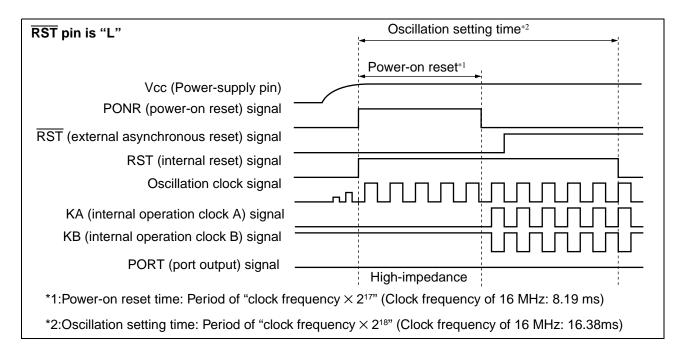
Connect unused pins of A/D converter to AVcc = Vcc, AVss = AVRH = DVcc = Vss.

(9) N.C. Pin

The N.C. (internally connected) pin must be opened for use.

(10) Notes on Energization


To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at 50 μ s or more (0.2 V to 2.7 V).


(11) Indeterminate outputs from ports 0 and 1 (MB90598/F598/V595/V595G only)

During oscillation setting time of step-down circuit (during a power-on reset) after the power is turned on, the outputs from ports 0 and 1 become following state.

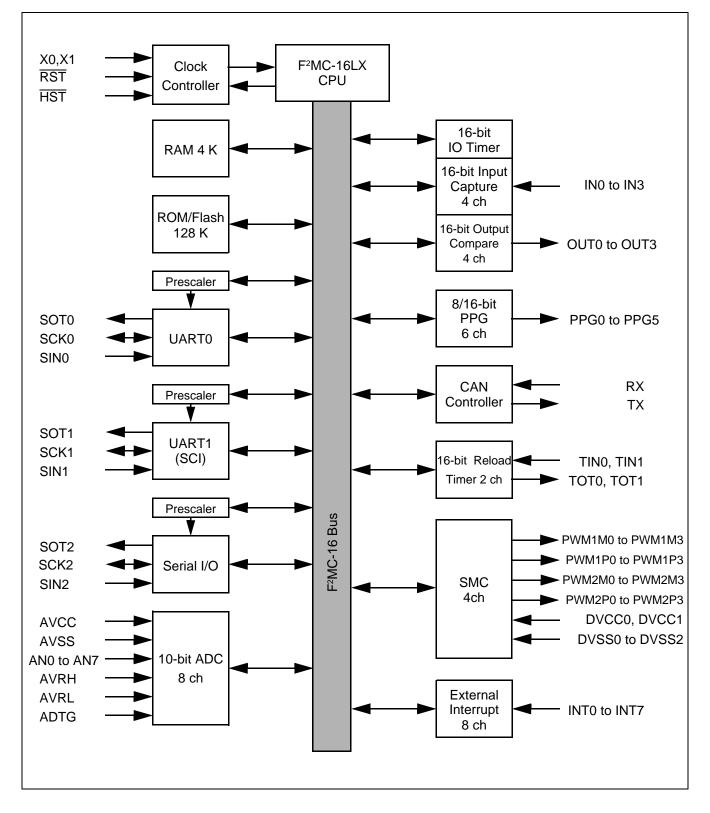
- If RST pin is "H", the outputs become indeterminate.
- If $\overline{\text{RST}}$ pin is "L", the outputs become high-impedance.

Pay attention to the port output timing shown as follow.

(12) Initialization

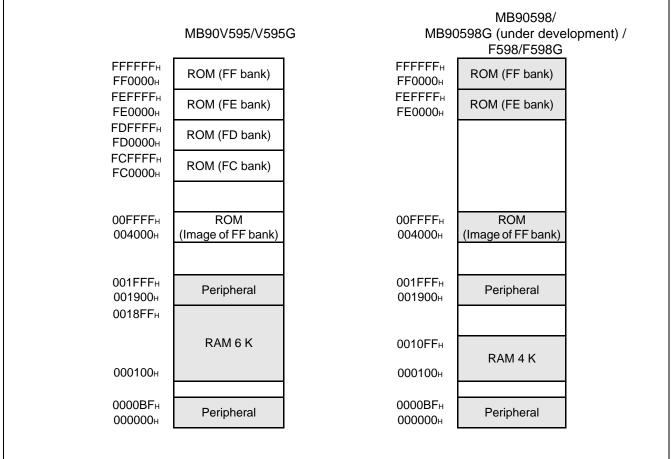
The device contains internal registers which are initialized only by a power-on reset. To initialize these registers, please turn on the power again.

(13) Directions of "DIV A, Ri" and "DIVW A, RWi" instructions


In the signed multiplication and division instructions ("DIV A, Ri" and "DIVW A, RWi"), the value of the corresponding bank register (DTB, ADB, USB, SSB) is set in "00_H".

If the values of the corresponding bank register (DTB,ADB,USB,SSB) are set to other than "00H", the remainder by the execution result of the instruction is not stored in the register of the instruction operand.

(14) Using REALOS


The use of EI²OS is not possible with the REALOS real time operating system.

BLOCK DIAGRAM

MEMORY SPACE

The memory space of the MB90595 Series is shown below

Memory space map

Note: The ROM data of bank FF is reflected in the upper address of bank 00, realizing effective use of the C compiler small model. The lower 16-bit of bank FF and the lower 16-bit of bank 00 are assigned to the same address, enabling reference of the table on the ROM without stating "far". For example, if an attempt has been made to access 00C000H, the contents of the ROM at FFC000H are accessed. Since the ROM area of the FF bank exceeds 48 Kbytes, the whole area cannot be reflected in the image for the 00 bank. The ROM data at FF4000H to FFFFFH looks, therefore, as if it were the image for 004000H to 00FFFFH. Thus, it is recommended that the ROM data table be stored in the area of FF4000H to FFFFFH.

I/O MAP

Address	Register	Abbreviation	Access	Peripheral	Initial value
00н	Port 0 Data Register	PDR0	R/W	Port 0	XXXXXXXXB
01н	Port 1 Data Register	PDR1	R/W	Port 1	XXXXXXXXB
02н	Port 2 Data Register	PDR2	R/W	Port 2	XXXXXXXXB
03н	Port 3 Data Register	PDR3	R/W	Port 3	XXXXXXXXB
04н	Port 4 Data Register	PDR4	R/W	Port 4	XXXXXXXXB
05н	Port 5 Data Register	PDR5	R/W	Port 5	XXXXXXXXB
06н	Port 6 Data Register	PDR6	R/W	Port 6	XXXXXXXXB
07н	Port 7 Data Register	PDR7	R/W	Port 7	XXXXXXXXB
08н	Port 8 Data Register	PDR8	R/W	Port 8	XXXXXXXXB
09н	Port 9 Data Register	PDR9	R/W	Port 9	XXXXXXB
0Ан to 0Fн		Reserv	ved		
10н	Port 0 Direction Register	DDR0	R/W	Port 0	00000000B
11н	Port 1 Direction Register	DDR1	R/W	Port 1	00000000
12н	Port 2 Direction Register	DDR2	R/W	Port 2	00000000B
13н	Port 3 Direction Register	DDR3	R/W	Port 3	00000000 _B
14 н	Port 4 Direction Register	DDR4	R/W	Port 4	00000000
15 н	Port 5 Direction Register	DDR5	R/W	Port 5	00000000B
16 н	Port 6 Direction Register	DDR6	R/W	Port 6	00000000B
17 н	Port 7 Direction Register	DDR7	R/W	Port 7	00000000B
18 н	Port 8 Direction Register	DDR8	R/W	Port 8	00000000
19 н	Port 9 Direction Register	DDR9	R/W	Port 9	000000B
1Ан		Reserv	red		·
1Bн	Analog Input Enable Register	ADER	R/W	Port 6, A/D	11111111 _B
1Cн to 1Fн		Reserv	/ed		·
20н	Serial Mode Control Register 0	UMC0	R/W		00000100 _B
21н	Serial status Register 0	USR0	R/W		0001000 _B
22н	Serial Input/Output Data Register 0	UIDR0/ UODR0	R/W	UART0	XXXXXXXXB
23н	Rate and Data Register 0	URD0	R/W		000000Xв
24н	Serial Mode Register 1	SMR1	R/W		00000000
25н	Serial Control Register 1	SCR1	R/W		00000100в
26н	Serial Input/Output Data Register 1	SIDR1/ SODR1	R/W	UART1	XXXXXXXXB
27н	Serial Status Register 1	SSR1	R/W		00001_00в
28н	UART1 Prescaler Control Register	U1CDCR	R/W		01111в

Address	Register	Abbreviation	Access	Peripheral	Initial value	
29н to 2Ан	Reserved					
2Вн	Serial IO Prescaler	SCDCR	R/W		01111в	
2Сн	Serial Mode Control Register (low-order)	SMCS	R/W		0000в	
2Dн	Serial Mode Control Register (high-order)	SMCS	R/W	Serial IO	00000010в	
2Ен	Serial Data Register	SDR	R/W		XXXXXXXXB	
2 F н	Edge Selector	SES	R/W		0в	
30н	External Interrupt Enable Register	ENIR	R/W		00000000	
31н	External Interrupt Request Register	EIRR	R/W		XXXXXXXXB	
32н	External Interrupt Level Register	ELVR	R/W	External Interrupt	00000000	
33н	External Interrupt Level Register	ELVR	R/W		00000000	
34н	A/D Control Status Register 0	ADCS0	R/W		00000000	
35н	A/D Control Status Register 1	ADCS1	R/W		00000000	
36н	A/D Data Register 0	ADCR0	R	A/D Converter	XXXXXXXXB	
37н	A/D Data Register 1	ADCR1	R/W		00001_XXв	
38н	PPG0 Operation Mode Control Register	PPGC0	R/W	16-bit Program- mable Pulse Generator 0/1	0_000_1в	
39н	PPG1 Operation Mode Control Register	PPGC1	R/W		0_00001в	
ЗАн	PPG0, 1 Output Pin Control Register	PPG01	R/W		00000в	
3Вн		Reserve	d			
3Сн	PPG2 Operation Mode Control Register	PPGC2	R/W	16-bit Program-	0_000_1в	
3Dн	PPG3 Operation Mode Control Register	PPGC3	R/W	mable Pulse	0_00001в	
3Ен	PPG2, 3 Output Pin Control Register	PPG23	R/W	Generator 2/3	000000B	
3Fн		Reserve	d			
40н	PPG4 Operation Mode Control Register	PPGC4	R/W	16-bit Program-	0_000_1в	
41н	PPG5 Operation Mode Control Register	PPGC5	R/W	mable Pulse	0_00001в	
42н	PPG4, 5 Output Pin Control Register	PPG45	R/W	Generator 4/5	00000в	
43н		Reserve	d			
44 H	PPG6 Operation Mode Control Register	PPGC6	R/W	16-bit Program-	0_000_1в	
45н	PPG7 Operation Mode Control Register	PPGC7	R/W	mable Pulse	0_00001в	
46 н	PPG6, 7 Output Pin Control Register	PPG67	R/W	Generator 6/7	00000в	
47н		Reserve	d	-		
48 H	PPG8 Operation Mode Control Register	PPGC8	R/W	16-bit Program-	0_000_1в	
49н	PPG9 Operation Mode Control Register	PPGC9	R/W	mable Pulse	0_00001в	
4AH	PPG8, 9 Output Pin Control Register	PPG89	R/W	Generator 8/9	00000в	
4 Вн		Reserve	d	•		

Address	Register	Abbreviation	Access	Peripheral	Initial value
4Cн	PPGA Operation Mode Control Register	PPGCA	R/W	16-bit	$0 _ 0 0 0 0 _ 1_B$
4 Dн	PPGB Operation Mode Control Register	PPGCB	R/W	Programmable Pulse	$0_000001_{\rm B}$
4 Ен	PPGA, B Output Pin Control Register	PPGAB	R/W	Generator A/B	$0\ 0\ 0\ 0\ 0\ 0\ _B$
4 Fн		Reserved			
50н	Timer Control Status Register 0	TMCSR0	R/W		$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{\rm B}$
51н	Timer Control Status Register 0	TMCSR0	R/W		0 0 0 0 _B
52н	Timer 0/Reload Register 0	TMR0/ TMRLR0	R/W	16-bit Reload Timer 0	XXXXXXXXAB
53н	Timer 0/Reload Register 0	TMR0/ TMRLR0	R/W		XXXXXXXXAB
54 H	Timer Control Status Register 1	TMCSR1	R/W		$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{\rm B}$
55H	Timer Control Status Register 1	TMCSR1	R/W		0 0 0 0 _B
56н	Timer Register 1/Reload Register 1	TMR1/ TMRLR1	R/W	16-bit Reload Timer 1	XXXXXXXX
57н	Timer Register 1/Reload Register 1	TMR1/ TMRLR1	R/W		XXXXXXXX
58 н	Output Compare Control Status Register 0	OCS0	R/W	Output	$0\ 0\ 0\ 0\ _\ _\ 0\ 0_{\rm B}$
59н	Output Compare Control Status Register 1	OCS1	R/W	Compare 0/1	$___0 0 0 0 0_B$
5Ан	Output Compare Control Status Register 2	OCS2	R/W	Output	$0\ 0\ 0\ 0\ _\ _\ 0\ 0_{\rm B}$
5 В н	Output Compare Control Status Register 3	OCS3	R/W	Compare 2/3	00000B
5 С н	Input Capture Control Status Register 0/1	ICS01	R/W	Input Capture 0/1	$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{\rm B}$
5Dн	Input Capture Control Status Register 2/3	ICS23	R/W	Input Capture 2/3	$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{\rm B}$
5Eн	PWM Control Register 0	PWC0	R/W	Stepping Motor Controller 0	0 0 0 0 0 0 0 _B
5 F н		Reserved			
60н	PWM Control Register 1	PWC1	R/W	Stepping Motor Controller 1	0 0 0 0 0 0 0 _B
61н		Reserved			
62н	PWM Control Register 2	PWC2	R/W	Stepping Motor Controller 2	0 0 0 0 0 0 0 _B
63н	Reserved				
64н	PWM Control Register 3	PWC3	R/W	Stepping Motor Controller 3	0 0 0 0 0 0 _B
65н	Reserved				
66н	Timer Data Register (low-order)	TCDT	R/W		$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{\rm B}$
67н	Timer Data Register (high-order)	TCDT	R/W	IO Timer	$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{\rm B}$
68н	Timer Control Status Register	TCCS	R/W		00000000 _B
69н to 6Ен		Reserved	 		

Address	Register	Abbreviation	Access	Peripheral	Initial value
6 F н	ROM Mirror Function Selection Register	ROMM	R/W	ROM Mirror	1в
70н	PWM1 Compare Register 0	PWC10	R/W		XXXXXXXXAB
71н	PWM2 Compare Register 0	PWC20	R/W	Stepping Motor	XXXXXXXXAB
72н	PWM1 Select Register 0	PWS10	R/W	Controller 0	000000 _B
73н	PWM2 Select Register 0	PWS20	R/W		_ 0 0 0 0 0 0 0 0 _B
74 _H	PWM1 Compare Register 1	PWC11	R/W		XXXXXXXXAB
75н	PWM2 Compare Register 1	PWC21	R/W	Stepping Motor	XXXXXXXXAB
76н	PWM1 Select Register 1	PWS11	R/W	Controller 1	000000 _B
77н	PWM2 Select Register 1	PWS21	R/W		_ 0 0 0 0 0 0 0 0 _B
78 H	PWM1 Compare Register 2	PWC12	R/W		XXXXXXXXAB
79н	PWM2 Compare Register 2	PWC22	R/W	Stepping Motor	XXXXXXXXAB
7Ан	PWM1 Select Register 2	PWS12	R/W	Controller 2	000000 _B
7Вн	PWM2 Select Register 2	PWS22	R/W		_ 0 0 0 0 0 0 0 0 _B
7Сн	PWM1 Compare Register 3	PWC13	R/W		XXXXXXXXAB
7Dн	PWM2 Compare Register 3	PWC23	R/W	Stepping Motor Controller 3	XXXXXXXXAB
7 Ен	PWM1 Select Register 3	PWS13	R/W		000000 _B
7 Fн	PWM2 Select Register 3	PWS23	R/W		_ 0 0 0 0 0 0 0 0 _B
80н to 8Fн	CAN Controller.	Refer to section	about CA	AN Controller	
90н to 9Dн		Reserved	l		
9Eн	Program Address Detection Control Status Register	PACSR	R/W	Address Match Detection Function	0 0 0 0 0 0 0 0 0 _B
9 F н	Delayed Interrupt/Request Register	DIRR	R/W	Delayed Interrupt	0 _B
А0н	Low-Power Mode Control Register	LPMCR	R/W	Low Power Controller	0 0 0 1 1 0 0 0 _B
А1н	Clock Selection Register	CKSCR	R/W	Low Power Controller	1111100в
A2H to A7H	Reserved				
А8н	Watchdog Timer Control Register	WDTC	R/W	Watchdog Timer	XXXXX 1 1 1 _B
А9н	Time Base Timer Control Register	TBTC	R/W	Time Base Timer	100100в
AAH to ADH		Reserved			1
AEн	Flash Memory Control Status Register (MB90F598/F598G only. Otherwise reserved)	FMCS	R/W	Flash Memory	0 0 0 X 0 0 0 0 _B
AFн		Reserved			•

Address	Register	Abbreviation	Access	Peripheral	Initial value
В0н	Interrupt Control Register 00	ICR00	R/W		$0\ 0\ 0\ 0\ 0\ 1\ 1\ 1_{\rm B}$
В1н	Interrupt Control Register 01	ICR01	R/W	Interrupt controller	$0\ 0\ 0\ 0\ 0\ 1\ 1\ 1_{\rm B}$
В2н	Interrupt Control Register 02	ICR02	R/W	Interrupt controller	$0\ 0\ 0\ 0\ 0\ 1\ 1\ 1_{\rm B}$
ВЗн	Interrupt Control Register 03	ICR03	R/W		$0\ 0\ 0\ 0\ 0\ 1\ 1\ 1_{\rm B}$
В4н	Interrupt Control Register 04	ICR04	R/W		$0\ 0\ 0\ 0\ 0\ 1\ 1\ 1_{\rm B}$
В5н	Interrupt Control Register 05	ICR05	R/W		$0\ 0\ 0\ 0\ 0\ 1\ 1\ 1_{\rm B}$
В6н	Interrupt Control Register 06	ICR06	R/W		$0\ 0\ 0\ 0\ 0\ 1\ 1\ 1_{\rm B}$
В7н	Interrupt Control Register 07	ICR07	R/W		00000111 _B
В8н	Interrupt Control Register 08	ICR08	R/W		$0\ 0\ 0\ 0\ 0\ 1\ 1\ 1_{\rm B}$
В9н	Interrupt Control Register 09	ICR09	R/W		$0\ 0\ 0\ 0\ 0\ 1\ 1\ 1_{\rm B}$
ВАн	Interrupt Control Register 10	ICR10	R/W	Interrupt controller	00000111 _B
ВВн	Interrupt Control Register 11	ICR11	R/W		00000111 _B
ВСн	Interrupt Control Register 12	ICR12	R/W		$0\ 0\ 0\ 0\ 0\ 1\ 1\ 1_{\rm B}$
BDн	Interrupt Control Register 13	ICR13	R/W		$0\ 0\ 0\ 0\ 0\ 1\ 1\ 1_{\rm B}$
ВЕн	Interrupt Control Register 14	ICR14	R/W		$0\ 0\ 0\ 0\ 0\ 1\ 1\ 1_{\rm B}$
BFн	Interrupt Control Register 15	ICR15	R/W		$0\ 0\ 0\ 0\ 0\ 1\ 1\ 1_{\rm B}$
COн to FFн		Rese	rved		
1900н	Reload Register L	PRLL0	R/W		XXXXXXXXB
1901 н	Reload Register H	PRLH0	R/W	16-bit Programmable Pulse	XXXXXXXXB
1902н	Reload Register L	PRLL1	R/W	Generator 0/1	XXXXXXXXB
1903н	Reload Register H	PRLH1	R/W		XXXXXXXXB
1904н	Reload Register L	PRLL2	R/W		XXXXXXXXB
1905 н	Reload Register H	PRLH2	R/W	16-bit Programmable Pulse	XXXXXXXXB
1906н	Reload Register L	PRLL3	R/W	Generator 2/3	XXXXXXXXB
1907 н	Reload Register H	PRLH3	R/W		XXXXXXXXB
1908 н	Reload Register L	PRLL4	R/W		XXXXXXXX
1909н	Reload Register H	PRLH4	R/W	16-bit Programmable	XXXXXXXX
190Ан	Reload Register L	PRLL5	R/W	Pulse Generator 4/5	XXXXXXXXAB
190Bн	Reload Register H	PRLH5	R/W		XXXXXXXX
190С н	Reload Register L	PRLL6	R/W		XXXXXXXX
190Dн	Reload Register H	PRLH6	R/W	16-bit Programmable	XXXXXXXX
190Е н	Reload Register L	PRLL7	R/W	Pulse Generator 6/7	XXXXXXXXB
190Fн	Reload Register H	PRLH7	R/W		XXXXXXXXAB

Address	Register	Abbreviation	Access	Peripheral	Initial value
1910н	Reload Register L	PRLL8	R/W		XXXXXXXX
1911н	Reload Register H	PRLH8	R/W	16-bit Programmable Pulse	XXXXXXXX
1912н	Reload Register L	PRLL9	R/W	Generator 8/9	XXXXXXXX
1913н	Reload Register H	PRLH9	R/W		XXXXXXXX
1914 н	Reload Register L	PRLLA	R/W	16-bit Programmable	XXXXXXXX
1915 н	Reload Register H	PRLHA	R/W	Pulse Generator A/B	XXXXXXXX
1916н	Reload Register L	PRLLB	R/W	16-bit Programmable	XXXXXXXX
1917 н	Reload Register H	PRLHB	R/W	Pulse Generator A/B	XXXXXXXX
1918н to 191Fн		Re	served		
1920н	Input Capture Register 0 (low-order)	IPCP0	R		XXXXXXXX
1921 н	Input Capture Register 0 (high-order)	IPCP0	R		XXXXXXXX
1922 н	Input Capture Register 1 (low-order)	IPCP1	R	Input Capture 0/1	XXXXXXXX
1923н	Input Capture Register 1 (high-order)	IPCP1	R		XXXXXXXX
1924 н	Input Capture Register 2 (low-order)	IPCP2	R		XXXXXXXX
1925 _H	Input Capture Register 2 (high-order)	IPCP2	R	Input Conture 2/2	XXXXXXXX
1926н	Input Capture Register 3 (low-order)	IPCP3	R	Input Capture 2/3	XXXXXXXX
1927 н	Input Capture Register 3 (high-order)	IPCP3	R		XXXXXXXX
1928 н	Output Compare Register 0 (low-order)	OCCP0	R/W		XXXXXXXX
1929 н	Output Compare Register 0 (high-order)	OCCP0	R/W		XXXXXXXX
192Aн	Output Compare Register 1 (low-order)	OCCP1	R/W	Output Compare 0/1	XXXXXXXX
192Bн	Output Compare Register 1 (high-order)	OCCP1	R/W		XXXXXXXX

Address	Register	Abbreviation	Access	Peripheral	Initial value			
192Cн	Output Compare Register 2 (low-order)	OCCP2	R/W		XXXXXXXX _B			
192Dн	Output Compare Register 2 (high-order)	OCCP2	R/W	Output Compare 2/2	XXXXXXXX _B			
192Eн	Output Compare Register 3 (low-order)	OCCP3	R/W	Output Compare 2/3	XXXXXXXX			
192Fн	Output Compare Register 3 (high-order)	OCCP3	R/W		XXXXXXXX			
1930н to 19FFн		Res	served					
1A00н to 1AFFн	CAN Cont	roller. Refer to s	section ab	out CAN Controller				
1B00н to 1BFFн	CAN Cont	CAN Controller. Refer to section about CAN Controller						
1C00н to 1EFFн		Re	served					
1FF0н	Program Address Detection Register 0 (low-order)				XXXXXXXX			
1FF1н	Program Address Detection Register 0 (middle-order)	PADR0	R/W		XXXXXXXX			
1FF2н	Program Address Detection Register 0 (high-order)			Address Match	XXXXXXXX			
1FF3⊦	Program Address Detection Register 1 (low-order)			Detection Function	XXXXXXXX			
1FF4н	Program Address Detection Register 1 (middle-order)	PADR1	R/W		XXXXXXXX _B			
1FF5⊦	Program Address Detection Register 1 (high-order)				XXXXXXXX			
1FF6н to 1FFFн		Re	served					

Note: Initial value of "_" represents unused bit; "X" represents unknown value. Addresses in the rage 0000H to 00FFH, which are not listed in the table, are reserved for the primary functions of the MCU. A read access to these reserved addresses results in reading "X", and any write access should not be performed.

CAN CONTROLLER

The CAN controller has the following features:

- Conforms to CAN Specification Version 2.0 Part A and B
 - Supports transmission/reception in standard frame and extended frame formats
- · Supports transmission of data frames by receiving remote frames
- 16 transmitting/receiving message buffers
 - 29-bit ID and 8-byte data
 - Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as 1D acceptance mask
 - Two acceptance mask registers in either standard frame format or extended frame formats
- Bit rate programmable from 10 Kbit/s to 2 Mbit/s (when input clock is at 16 MHz)

Address	Register	Abbreviation	Access	Initial Value	
000080н	Magazara buffar valid register	BVALR	R/W	0000000 0000000 _в	
000081н	— Message buffer valid register	DVALK	r////	0000000 000000B	
000082н		TREQR	R/W	0000000 0000000 _В	
000083н	— Transmit request register	IREQR	r////		
000084н	Transmit cancel register	TCANR	W	0000000 0000000 _в	
000085н		TCANK	vv		
000086н		TCR	R/W	0000000 0000000	
000087н	 Transmit complete register 	ICK	r////	00000000 0000000 _в	
000088н		505	R/W	0000000 000000B	
000089н	Receive complete register	RCR	K/ VV		
00008Ан	Bomoto request receiving register	RRTRR	R/W	0000000 0000000в	
00008Вн	Remote request receiving register	RRIER	r////		
00008Сн		ROVRR	R/W	0000000 0000000в	
00008Dн	Receive overrun register	ROVER	r////		
00008Eн	Dessive interrupt enable register	RIER	R/W	0000000 0000000 _в	
00008Fн	 Receive interrupt enable register 	RIER	r////		
001В00н		CSR	R/W, R	00000 00-1 _в	
001B01н	Control status register	CSR	л/vv, л	00000 00-TB	
001В02н				000.0000-	
001В03н	Last event indicator register	LEIR	R/W	000-0000в	
001B04н		DTEC	Р	0000000 00000000	
001B05н	Receive/transmit error counter	RTEC	R	00000000 0000000в	
001В06н	Dit timing register			1111111 11111	
001B07 н	Bit timing register	BTR	R/W	-1111111 11111111B	

List of Control Registers

Address	Register	Abbreviation	Access	Initial Value	
001B08 н	- IDE register	IDER	R/W	XXXXXXXX XXXXXXXX	
001B09н					
001B0Aн	- Transmit RTR register	TRTRR	R/W	0000000 0000000в	
001B0Bн			L/ AA	0000000 000000B	
001B0Cн	Remote frome receive weiting register	RFWTR	R/W	XXXXXXXX XXXXXXXX	
001B0Dн	Remote frame receive waiting register	REVVIR	r/w		
001B0Eн	- Transmit interrupt enable register	TIER	R/W	0000000 0000000в	
001B0Fн	- Transmit interrupt enable register	HER	r/w		
001B10н			R/W	XXXXXXXX XXXXXXXX	
001B11 н	Acceptones mask select register	AMSR			
001B12н	Acceptance mask select register	AWSK	r/w	XXXXXXXX XXXXXXXX	
001B13н					
001B14н				XXXXXXXX XXXXXXXX	
001B15н			R/W		
001B16н	Acceptance mask register 0	AMR0			
001B17 н				XXXXX XXXXXXXXB	
001B18⊦					
001B19⊦			5 4 4 4	XXXXXXXX XXXXXXXX	
001B1Aн	Acceptance mask register 1	AMR1	R/W		
001B1Bн	1			XXXXX XXXXXXXXB	

Address	Register	Abbreviation	Access	Initial Value
001А00н to 001А1Fн	General-purpose RAM		R/W	XXXXXXXXB to XXXXXXXB
001А20н 001А21н	ID register 0 IDR0 R/W		DAA	XXXXXXXX XXXXXXXX
001А22н 001А23н		IDRO	K/VV -	XXXXX XXXXXXXXB
001А24н 001А25н				XXXXXXXX XXXXXXX _B
001А26н 001А27н	ID register 1	IDR1	R/W -	XXXXX XXXXXXXXB
001А28н 001А29н	ID register 2		DAA	XXXXXXXX XXXXXXXX
001А2Ан 001А2Вн	ID register 2	IDR2	R/W -	XXXXX XXXXXXXXB
001А2Сн 001А2Dн		1000		XXXXXXXX XXXXXXXXB
001А2Ен 001А2Fн	ID register 3	IDR3	R/W -	XXXXX XXXXXXXXB
001А30н 001А31н	ID register 4	IDR4	R/W -	XXXXXXXX XXXXXXXX
001А32н 001А33н	ID register 4	IDR4		XXXXX XXXXXXXXB
001А34н 001А35н	ID register 5	IDR5	R/W -	XXXXXXXX XXXXXXXXB
001А36н 001А37н	-			XXXXX XXXXXXXXB
001А38н 001А39н	ID register 6	IDR6	R/W -	XXXXXXXX XXXXXXXXB
001АЗАн 001АЗВн			K/VV -	XXXXX XXXXXXXXB
001АЗСн 001АЗDн	ID register 7	IDR7	R/W -	XXXXXXXX XXXXXXXXB
001АЗЕн 001АЗFн	ID register 7			XXXXX XXXXXXXXB

List of Message Buffers (ID Registers)

Address	Register	Abbreviation	Access	Initial Value
001A40н				XXXXXXXX XXXXXXXX
001A41 н	ID register 8			
001А42н		ier 8 IDR8 R/W		XXXXX XXXXXXXXB
001А43н				
001A44н				XXXXXXXX XXXXXXXX
001A45н	ID register 9	IDR9	R/W	
001А46н				ХХХХХ ХХХХХХХХ
001A47н				
001A48 н				XXXXXXXX XXXXXXXX
001A49н	ID register 10	IDR10	R/W	
001А4Ан		IBI(10		ХХХХХ ХХХХХХХХ
001A4Bн				
001A4Cн				XXXXXXXX XXXXXXXX
001A4Dн	ID register 11 IDR11 R/W	R/W		
001A4Eн			10,00	XXXXX XXXXXXXXB
001A4Fн				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
001А50 н				XXXXXXXX XXXXXXXX
001А51 н	ID register 12	IDR12	R/W	///////////////////////////////////////
001А52 н		IDI(IZ		XXXXX XXXXXXXXB
001A53н				
001A54н				XXXXXXXX XXXXXXXX
001A55н	ID register 13	IDR13	R/W	
001A56н				ХХХХХ ХХХХХХХХ
001А57 н				
001A58н				XXXXXXXX XXXXXXXX
001А59 н	ID register 14	IDR14	R/W	
001A5Aн				XXXXX XXXXXXXXB
001A5Bн				
001A5Cн				XXXXXXXX XXXXXXXX
001A5Dн	ID register 15	IDR15	R/W	
001A5Eн				XXXXX XXXXXXXXB
001A5Fн				

Address	Register	Abbreviation	Access	Initial Value	
001А60 н			DAA		
001A61 н	DLC register 0	DLCR0	R/W	ХХХХв	
001А62 н			DAA	2000	
001А63 н	DLC register 1	DLCR1	R/W	XXXX _B	
001A64н			DAA	VVVV	
001А65н	DLC register 2	DLCR2	R/W	XXXX _B	
001А66 н	DLC register 2		R/W		
001А67 н	DLC register 3	DLCR3	K/ VV	XXXX _B	
001А68 н				VVVV-	
001А69 н	DLC register 4	DLCR4	R/W	ХХХХв	
001А6Ан	DLC register 5	DLCR5	R/W	ХХХХв	
001A6Bн	DLC register 5	DLUKD	Γ\/ ٧٧	AAAB	
001А6Сн	DLC register 6	DLCR6	R/W	ХХХХв	
001A6Dн		DLCRO	K/ VV	AAAAB	
001A6Eн	DLC register 7			ХХХХв	
001A6Fн	DLC register 7	DLCR7	R/W		
001А70н	DLC register 8	register 8 DLCR8 R/W		XXXX	
001A71 н		DLCRO	R/ VV		
001А72 н	DLC register 0	DLCR9	R/W	ХХХХв	
001А73н	DLC register 9	DLCK9	R/ VV		
001A74н	DLC register 10	DLCR10	R/W	ХХХХв	
001A75 н		DECKIU			
001А76 н	DLC register 11	DLCR11	R/W	ХХХХв	
001А77 н		DEGITI	12/00		
001A78 н	DLC register 12	DLCR12	R/W	ХХХХв	
001A79 н					
001А7Ан	DLC register 13	DLCR13	R/W	XXXXB	
001A7Bн		DLONIS	11/ 11		
001А7Сн	DLC register 14	DLCR14	R/W	ХХХХв	
001A7Dн			1 1/ 1 1		
001А7Ен	DLC register 15	DLCR15	R/W	ХХХХв	
001A7Fн					
001А80н to 001А87н	Data register 0 (8 bytes)	DTR0	R/W	XXXXXXXXB to XXXXXXXB	

List of Message Buffers (DLC Registers and Data Registers)

Address	Register	Abbreviation	Access	Initial Value
001А88н to 001А8Fн	Data register 1 (8 bytes)	DTR1	R/W	XXXXXXXXB to XXXXXXXXB
001А90н to 001А97н	Data register 2 (8 bytes)	DTR2	R/W	XXXXXXXXB to XXXXXXXXB
001A98н to 001A9Fн	Data register 3 (8 bytes)	DTR3	R/W	XXXXXXXXB to XXXXXXXXB
001AA0н to 001AA7н	Data register 4 (8 bytes)	DTR4	R/W	XXXXXXXXB to XXXXXXXXB
001AA8н to 001AAFн	Data register 5 (8 bytes)	DTR5	R/W	XXXXXXXXB to XXXXXXXXB
001AB0н to 001AB7н	Data register 6 (8 bytes)	DTR6	R/W	XXXXXXXXB to XXXXXXXXB
001AB8н to 001ABFн	Data register 7 (8 bytes)	DTR7	R/W	XXXXXXXXB to XXXXXXXXB
001AC0н to 001AC7н	Data register 8 (8 bytes)	DTR8	R/W	XXXXXXXXB to XXXXXXXXB
001AC8н to 001ACFн	Data register 9 (8 bytes)	DTR9	R/W	XXXXXXXXB to XXXXXXXXB
001AD0н to 001AD7н	Data register 10 (8 bytes)	DTR10	R/W	XXXXXXXXB to XXXXXXXXB
001AD8н to 001ADFн	Data register 11 (8 bytes)	DTR11	R/W	XXXXXXXXB to XXXXXXXXB
001AE0н to 001AE7н	Data register 12 (8 bytes)	DTR12	R/W	XXXXXXXXB to XXXXXXXXB
001АЕ8н to 001АЕFн	Data register 13 (8 bytes)	DTR13	R/W	XXXXXXXXB to XXXXXXXXB
001AF0н to 001AF7н	Data register 14 (8 bytes)	DTR14	R/W	XXXXXXXXB to XXXXXXXXB
001AF8н to 001AFFн	Data register 15 (8 bytes)	DTR15	R/W	XXXXXXXXB to XXXXXXXXB

■ INTERRUPT MAP

	El ² OS	Interru	pt vector	Interrupt co	ntrol register
Interrupt source	clear	Number	Address	Number	Address
Reset	N/A	# 08	FFFFDCH		
INT9 instruction	N/A	# 09	FFFFD8H		
Exception	N/A	# 10	FFFFD4H		
CAN RX	N/A	# 11	FFFFD0H		0000000
CAN TX/NS	N/A	# 12	FFFFCC _H	ICR00	0000В0н
External Interrupt (INT0/INT1)	*1	# 13	FFFFC8H		0000P1
Time Base Timer	N/A	# 14	FFFFC4H	ICR01	0000B1н
16-bit Reload Timer 0	*1	# 15	FFFFC0H	ICR02	0000В2н
8/10-bit A/D Converter	*1	# 16	FFFFBC H	ICRUZ	UUUUDZH
I/O Timer	N/A	# 17	FFFFB8H	ICR03	0000020
External Interrupt (INT2/INT3)	*1	# 18	FFFFB4H	10,603	0000ВЗн
Serial I/O	*1	# 19	FFFFB0H	ICR04	0000B4н
External Interrupt (INT4/INT5)	*1	# 20	FFFFAC H	10K04	0000 D4 H
Input Capture 0	*1	# 21	FFFFA8H	ICR05	000005
8/16-bit PPG 0/1	N/A	# 22	FFFFA4H	ICRUD	0000B5н
Output Compare 0	*1	# 23	FFFFA0H	ICR06	0000В6н
8/16-bit PPG 2/3	N/A	# 24	FFFF9CH	ICRU0	
External Interrupt (INT6/INT7)	*1	# 25	FFFF98н	ICR07	0000B7н
Input Capture 1	*1	# 26	FFFF94H		0000 D 7H
8/16-bit PPG 4/5	N/A	# 27	FFFF90H	ICR08	0000B8н
Output Compare 1	*1	# 28	FFFF8CH		UUUUDOH
8/16-bit PPG 6/7	N/A	# 29	FFFF88H	ICR09	0000В9н
Input Capture 2	*1	# 30	FFFF84H	ICRU9	0000098
8/16-bit PPG 8/9	N/A	# 31	FFFF80H	ICR10	0000ВАн
Output Compare 2	*1	# 32	FFFF7CH		UUUUDAH
Input Capture 3	*1	# 33	FFFF78н	ICR11	0000ВВн
8/16-bit PPG A/B	N/A	# 34	FFFF74н		UUUUDDH
Output Compare 3	*1	# 35	FFFF70н	ICR12	0000ВСн
16-bit Reload Timer 1	*1	# 36	FFFF6CH		UUUUDCH
UART 0 RX	*2	# 37	FFFF68н	ICR13	000080
UART 0 TX	*1	# 38	FFFF64н	101(13	0000BDн
UART 1 RX	*2	# 39	FFFF60H		
UART 1 TX	*1	# 40	FFFF5CH	ICR14	0000ВЕн
Flash Memory	N/A	# 41	FFFF58н	ICR15	
Delayed interrupt	N/A	# 42	FFFF54H		0000BFн

*1: The interrupt request flag is cleared by the El²OS interrupt clear signal.

*2: The interrupt request flag is cleared by the El²OS interrupt clear signal. A stop request is available.

N/A:The interrupt request flag is not cleared by the EI²OS interrupt clear signal.

- Notes: For a peripheral module with two interrupt for a single interrupt number, both interrupt request flags are cleared by the El²OS interrupt clear signal.
 - At the end of El²OS, the El²OS clear signal will be asserted for all the interrupt flags assigned to the same interrupt number. If one interrupt flag starts the El²OS and in the meantime another interrupt flag is set by hardware event, the later event is lost because the flag is cleared by the El²OS clear signal caused by the first event. So it is recommended not to use the El²OS for this interrupt number.
 - If El²OS is enabled, El²OS is initiated when one of the two interrupt signals in the same interrupt control
 register (ICR) is asserted. This means that different interrupt sources share the same El²OS Descriptor
 which should be unique for each interrupt source. For this reason, when one interrupt source uses the
 El²OS, the other interrupt should be disabled.

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(Vss = AVss = 0 V)

Demonster	O week al	Rat	ing	11	(VSS – AVSS – U V)
Parameter	Symbol	Min.	Max.	Unit	Remarks
	Vcc	Vss - 0.3	Vss + 6.0	V	
	AVcc	Vss - 0.3	Vss + 6.0	V	Vcc = AVcc *1
Power supply voltage	AVRH,	V/m 0.2	Vss + 6.0	V	AVcc ≥ AVRH/L,
	AVRL	VSS – 0.3	vss + 0.0	v	$AVRH \ge AVRL$ *1
	DVcc	Vss - 0.3	Vss + 6.0	V	Vcc ≥ DVcc
Input voltage	Vı	Vss - 0.3		V	*2
Output voltage	Vo		Vss + 6.0	V	*2
Clamp Current	CLAMP	-2.0	2.0	mΑ	
"L" level Max. output current	OL1	_	15	mΑ	Normal output *3
"L" level Avg. output current	OLAV1	_	4	mΑ	Normal output, average value *4
"L" level Max. output current	OL2	_	40	mΑ	High current output *3
"L" level Avg. output current	OLAV2	—	30	mΑ	High current output, average value *4
"L" level Max. overall output current	∑lol1	—	100	mΑ	Total normal output
"L" level Max. overall output current	∑lol2	_	330	mΑ	Total high current output
"L" level Avg. overall output current	\sum IOLAV1	—	50	mΑ	Total normal output, average value *5
"L" level Avg. overall output current	\sum Iolav2		250	mA	Total high current output, average
o .				mA	value *5
"H" level Max. output current	ОН1	—	-15	mA	Normal output *3
"H" level Avg. output current	OHAV1	_	-4	mΑ	Normal output, average value *4
"H" level Max. output current	Он2	—	-40	mΑ	High current output *3
"H" level Avg. output current	OHAV2	—	-30	mA	High current output, average value *4
"H" level Max. overall output current	∑Iон1	—	-100	mΑ	Total normal output
"H" level Max. overall output current	∑Іон₂	—	-330	mΑ	Total high current output
"H" level Avg. overall output current	Σ Ι ΟΗΑV1	—	-50	mΑ	Total normal output, average value *5
"H" level Avg. overall output current	\sum IOHAV2		-250	mA	Total high current output, average
					value *5
	_		500	mW	MB90F598/F598G
Power consumption	PD	_	400	mW	MB90598/
					MB90598G (under development)
Operating temperature		-40	+85	°C	
Storage temperature	Tstg	-55	+150	°C	

*1: AVcc, AVRL and AVRL does not exceed Vcc and AVRL does not exceed AVRH.

*2: V_I and V₀ should not exceed V_{CC} + 0.3V. V_I should not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the I_{CLAMP} rating supersedes the V_I rating.

*3: The maximum output current is a peak value for a corresponding pin.

*4: Average output current is an average current value observed for a 100 ms period for a corresponding pin.

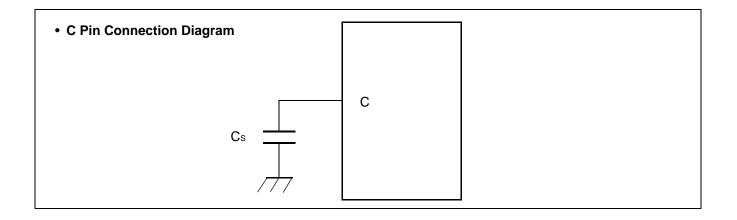
*5: Total average current is an average current value observed for a 100 ms period for all corresponding pins.

Note: Average output current = operating current × operating efficiency

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Conditions

(Vss = AVss = 0 V)


Parameter Symbol Value Unit		Remarks				
Farameter	Symbol	Min.	Тур.	Max.	Unit	Remarks
Power supply voltage	Vcc	4.5	5.0	5.5	V	Under normal operation
Fower supply voltage	AVcc	3.0		5.5	V	Maintains RAM data in stop mode
Smooth capacitor	Cs	0.022	0.1	1.0	μF	*
Operating temperature	TA	-40		+85	°C	

*: Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The smoothing capacitor to be connected to the Vcc pin must have a capacitance value higher than Cs.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

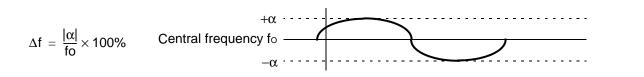
Parameter	Sym- bol		(Vcc = 5.0 V		Value	1		
		Pin name	Condition	Min.	Тур.	Max.	Unit	Remarks
Input H voltage	Vihs	CMOS hysteresis input pin		0.8 Vcc		Vcc +0.3	V	
	Vihm	MD input pin	_	Vcc – 0.3	_	Vcc +0.3	V	
Input L voltage	Vils	CMOS hysteresis input pin	_	V _{ss} – 0.3	_	0.2 Vcc	V	
	VILM	MD input pin	_	Vss – 0.3	_	Vss +0.3	V	
Output H voltage	Vон1	Output pins except P70 to P87	Vcc = 4.5 V, Іон1 = -4.0 mA	Vcc – 0.5	_	_	V	
Output H voltage	Vон2	P70 to P87	Vcc = 4.5 V, Іон2 = -30.0 mA	Vcc – 0.5	_	_	V	
Output L voltage	Vol1	Output pins except P70 to P87	Vcc = 4.5 V, lol1 = 4.0 mA		_	0.4	V	
Output L voltage	Vol2	P70 to P87	Vcc = 4.5 V, IoL2 = 30.0 mA		_	0.5	V	
Input leak current	lı∟		Vcc = 5.5 V, Vss < Vı < Vcc	-5	_	5	μA	
Power supply current *1	lcc		Vcc = 5.0 V±10%, Internal frequency:	_	35	60	mA	MB90598, MB90598G* ²
			16 MHz, At normal operating	—	50	90	mA	MB90F598
				_	40	60	mA	MB90F598G
	Iccs		Vcc = 5.0 V±10%, Internal frequency: 16 MHz, At sleep		11	18	mA	
	Істѕ	Vcc	Vcc = 5.0 V±1%, Internal frequency: 2 MHz, At timer mode	_	0.3	0.6	mA	
	Іссн		$V_{CC} = 5.0 V \pm 10\%,$ At stop, $T_A = 25^{\circ}C$	_	_	20	μA	
	Іссн2]	Vcc = 5.0 V±10%, At Hardware stand- by mode,	_		20	μA	MB90598, MB90598G*², MB90F598
			$T_A = 25^{\circ}C$	_	50	100	μA	MB90F598G

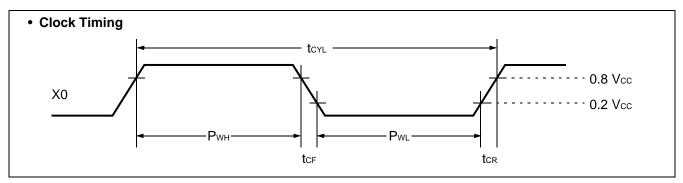
(Continued)

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0\text{V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

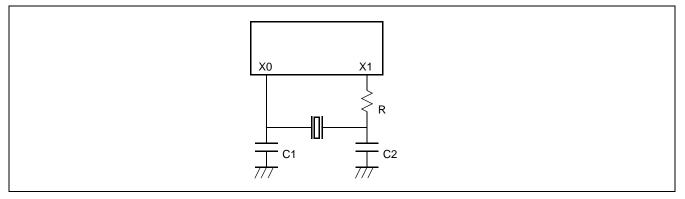
Parameter	Sym- bol	Pin name	Condition		Value	Unit	Remarks	
			Condition	Min.	Тур.	Max.	Unit	itellia ks
Input capacity	city C _{IN}	Other than C, AVcc, AVss, AVRH, AVRL, Vcc, Vss, DVcc, DVss, P70 to P87	_	_	5	15	pF	
		P70 to P87	_	_	15	30	pF	

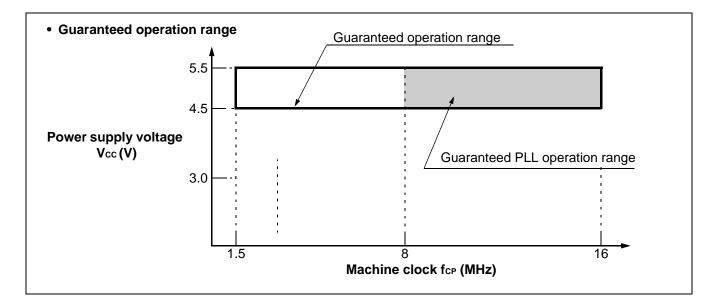
*1: Current values are tentative and subject to change without notice according to improvements in the characteristics. The power supply current testing conditions are when using the external clock.

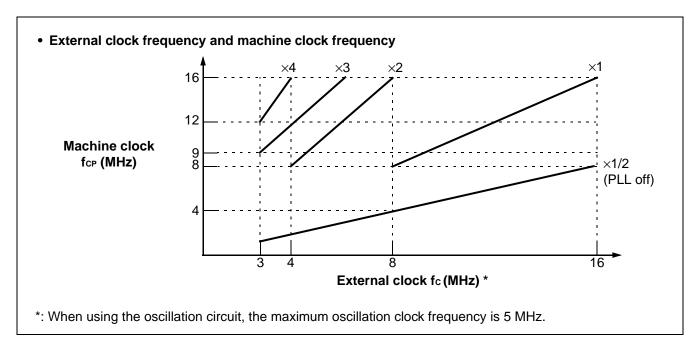

*2: Under development

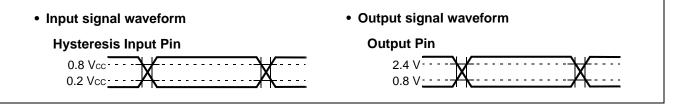

4. AC Characteristics

(1) Clock Timing


			(Vcc	= 5.0 V±	:10%, Vs	s = AVs	as = 0V, $T_A = -40 \text{ °C to } +85 \text{ °C}$)	
Parameter	Symbol	Pin name	Value			Unit	Remarks	
Falantetei	Symbol		Min.	Тур.	Max.	Omt	Rentarks	
Oscillation frequency	fc	X0, X1	3	—	5	MHz	When using an oscillation circuit	
Oscillation nequency			3	—	16	MHz	When using an external clock	
Oscillation cycle time	t-0.4	X0, X1	200	—	333	ns	When using an oscillation circuit	
Oscillation cycle time	tcy∟		62.5	—	333	ns	When using an external clock	
Frequency deviation with PLL *	Δf	—	_	_	5	%		
Input clock pulse width	Рwн, Pwl	X0	10	—	_	ns	Duty ratio is about 30 to 70%.	
Input clock rise and fall time	tcr, tcf	X0	_	—	5	ns	When using external clock	
Machine clock frequency	fср	—	1.5	—	16	MHz		
Machine clock cycle time	t CP	_	62.5	—	666	ns		


*: Frequency deviation indicates the maximum frequency difference from the target frequency when using a multiplied clock.

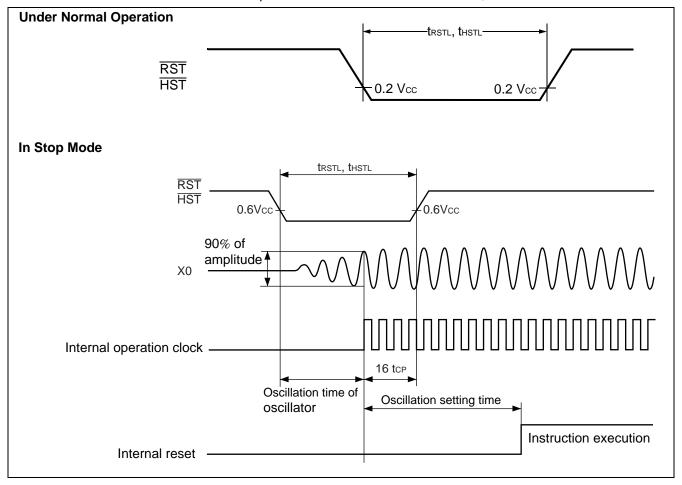



Example of Oscillation circuit

AC characteristics are set to the measured reference voltage values below.

(2) Reset and Hardware Standby Input

$(V_{CC} = 5.0 V \pm 10\%, V_{SS} = AV_{SS} = 0V, T_A = -40 °C to +85$								
Parameter	Symbol	Pin name	Value			Remarks		
Farameter	Symbol	Finnanie	Min.	Max.	Unit	reilldi KS		
			16 tcp*1	—	ns	Under normal operation		
Reset input time	t rstl	RST	Oscillation time of oscillator ^{*2} + 16 t_{CP}^{*1}		ms	In stop mode		
			16 tcp*1		ns	Under normal operation		
Hardware standby input time	t HSTL	HST	Oscillation time of oscillator ^{*2} + 16 t_{CP}^{*1}	_	ms	In stop mode		

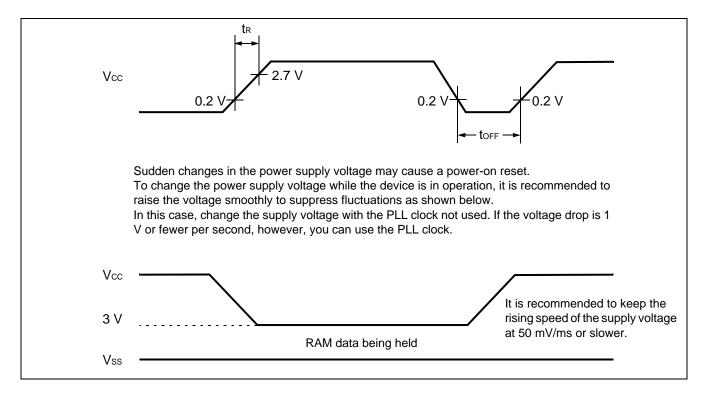

~ ,

= 0) () 4 0 0 () 4

*1: "tcp" represents one cycle time of the machine clock.

No reset can fully initialize the Flash Memory if it is performing the automatic algorithm.

*2: Oscillation time of oscillator is time that the amplitude reached the 90%. In the crystal oscillator, the oscillation time is between several ms to tens of ms. In FAR / ceramic oscillator, the oscillation time is between hundreds of μs to several ms. In the external clock, the oscillation time is 0 ms.

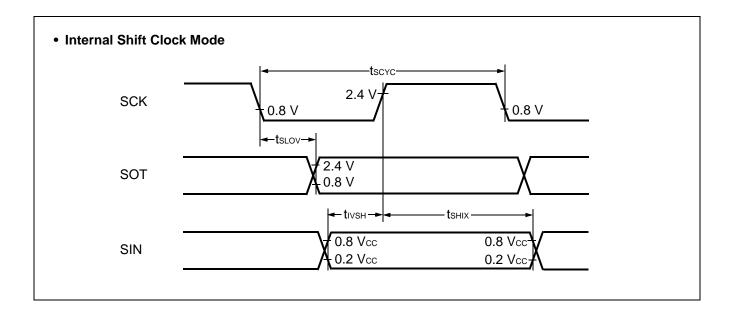

(3)Power On Reset

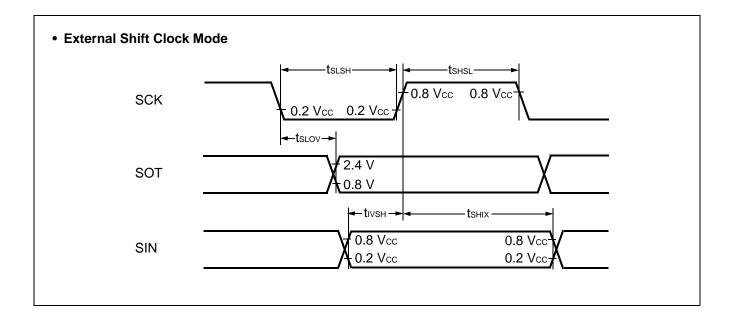
$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0\text{V}, \text{ T}_{A} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C})$									
Parameter	Symbol	Pin name	Condition	Value		Value		Unit	Remarks
Farameter	Symbol		Condition	Min.	Max.	Unit	i telliai ks		
Power on rise time	tR	Vcc		0.05	30	ms	*		
Power off time	toff	Vcc		50		ms	Due to repetitive operation		

*: Vcc must be kept lower than 0.2 V before power-on.

Notes: • The above values are used for creating a power-on reset.

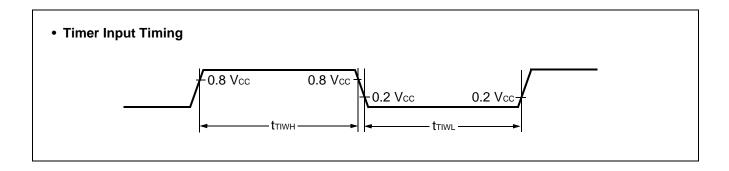
• Some registers in the device are initialized only upon a power-on reset. To initialize these register, turn on the power supply using the above values.

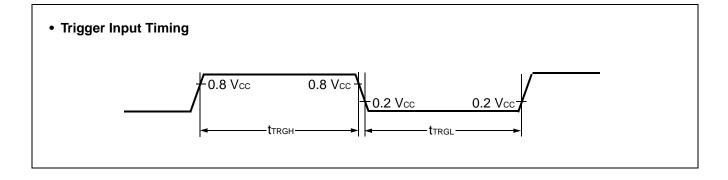

(4) UART0/1, Serial I/O Timing


$(V_{cc} = 5.0 \text{ V} \pm 10\%, \text{ V}_{ss} = \text{AV}_{ss} = 0\text{V}, \text{ T}_{A} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C})$							
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
Falanciel	Symbol	Finnanie	Condition	Min. Max.		Om	itemaiks
Serial clock cycle time	tscyc	SCK0 to SCK2		8 t CP		ns	
$SCK \downarrow \Rightarrow SOT$ delay time	t slov	SCK0 to SCK2, SOT0 to SOT2	Internal clock oper-	-80	80	ns	
Valid SIN \Rightarrow SCK \uparrow	tıvsн	SCK0 to SCK2, SIN0 to SIN2	ation output pins are $C_{L} = 80 \text{ pF} + 1 \text{ TTL}.$	100	_	ns	
$SCK \uparrow \Rightarrow Valid \ SIN \ hold \ time$	tsнıx	SCK0 to SCK2, SIN0 to SIN2		60	_	ns	
Serial clock "H" pulse width	tshsl	SCK0 to SCK2		4 t CP		ns	
Serial clock "L" pulse width	t s∟sн	SCK0 to SCK2		4 t _{CP}		ns	
$SCK \downarrow \Rightarrow SOT$ delay time	tslov	SCK0 to SCK2, SOT0 to SOT2	External clock oper- ation output pins are	_	150	ns	
Valid SIN \Rightarrow SCK \uparrow	tıvsн	SCK0 to SCK2, SIN0 to SIN2	$C_{L} = 80 \text{ pF} + 1 \text{ TTL}.$	60	—	ns	
$SCK \uparrow \Rightarrow Valid SIN hold time$	tsнıx	SCK0 to SCK2, SIN0 to SIN2		60	_	ns	

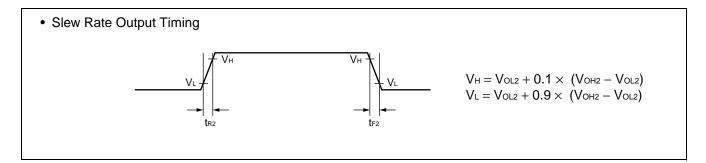
Notes: • AC characteristic in CLK synchronized mode.

• CL is load capacity value of pins when testing.


• tcp is the machine cycle (Unit: ns).


(5) Timer Input Timing

	$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0\text{V}, \text{ T}_{A} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C})$							
Parameter	Symbol	Pin name Condition		Value		Unit	Remarks	
Falameter	Symbol	Fininame	Condition	Min.	Max.	Unit	Rellidiks	
Input pulse width	tтіwн	TIN0, TIN1			4 t _{CP}		ns	
	tTIWL IN0 to IN3 - 4 to		4 ICP		ns			


(6) Trigger Input Timing

$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0\text{V}, \text{ T}_{A} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C})$										
Parameter	Svmbol	Pin name	e Condition		Value		Value		Remarks	
Farameter	Symbol	Fininaine	Condition	Min.	Max.	Unit	Nemarks			
Input pulse width	t trgh	INT0 to		5 t _{CP}		ns	Under normal operation			
	t trgl	INT7, ADTG		1		μs	In stop mode			

(7) Slew Rate High Current Outputs (MB90598, MB90598G, MB90F598G only)

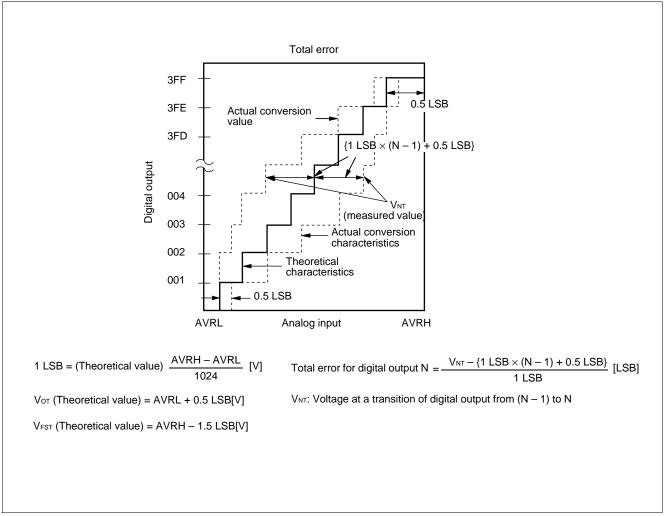
$(V_{CC} = 5.0 \text{ V} \pm 10 \text{ \%}, \text{ V}_{SS} = \text{AV}_{SS} = 0\text{V}, \text{ T}_{A} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$								
Parameter Symbol Pin name		Condition		Value	Unit	Remarks		
i arameter		Condition	Min.	Тур.	Max.	Unit	itema ka	
Output Rise/Fall time	tr2 tF2	Port P70 to P77, Port P80 to P87		15	40	150	ns	

5. A/D Converter

Deremeter	Sym-	Dia manua		11			
Parameter	bol	Pin name	Min.	Min. Typ.		Unit	Remarks
Resolution	_				10	bit	
Conversion error		_	_		±5.0	LSB	
Nonlinearity error		—	_		±2.5	LSB	
Differential linearity error	_	_	_		±1.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	AVRL – 3.5	AVRL +0.5	AVRL + 4.5	mV	
Full scale transition voltage	VFST	AN0 to AN7	AVRH – 6.5	AVRH – 1.5	AVRH + 1.5	mV	
Conversion time		_	_	352tcp	_	ns	
Sampling time		_	_	64tcp	_	ns	
Analog port input current	IAIN	AN0 to AN7	-10		10	μA	
Analog input voltage range	VAIN	AN0 to AN7	AVRL	_	AVRH	V	
Deference veltage renge		AVRH	AVRL + 2.7	—	AVcc	V	
Reference voltage range	_	AVRL	0	_	AVRH – 2.7	V	
Power supply current	la	AVcc		5	—	mA	
Fower supply current	Ан	AVcc	_	—	5	μA	*1
Reference voltage current	Ir	AVRH	_	400	600	μΑ	MB90V595, MB90V595G, MB90F598, MB90F598G
Reference voltage current				140	600	μA	MB90598, MB90598G* ²
	IRH	AVRH		—	5	μA	*1
Offset between input chan- nels	_	AN0 to AN7		_	4	LSB	

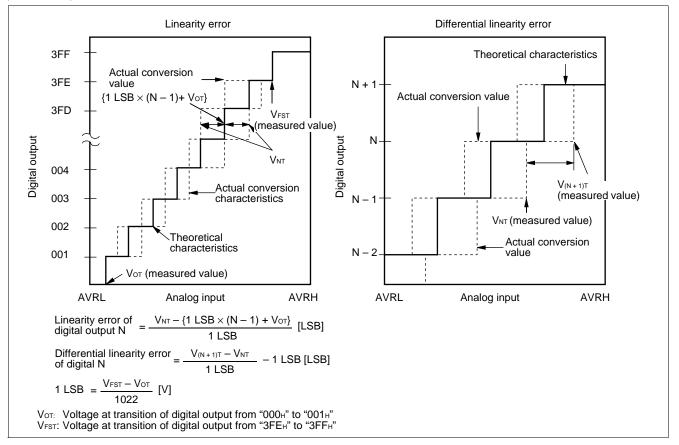
*1: When not operating A/D converter, this is the current ($V_{CC} = AV_{CC} = AVRH = 5.0$ V) when the CPU is stopped.

*2: Under development


6. A/D Converter Glossary

Resolution: Analog changes that are identifiable with the A/D converter

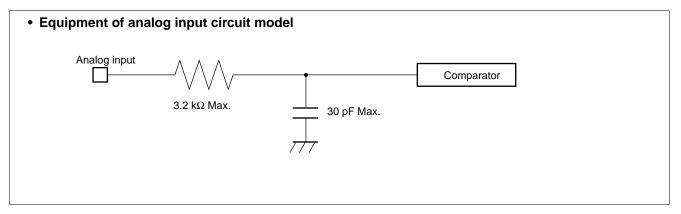
Linearity error: The deviation of the straight line connecting the zero transition point ("00 0000 0000" \leftrightarrow "00 0000 0001") with the full-scale transition point ("11 1111 1110" \leftrightarrow "11 1111 1111") from actual conversion characteristics


Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error: The total error is defined as a difference between the actual value and the theoretical value, which includes zero-transition error/full-scale transition error and linearity error.

(Continued)

(Continued)

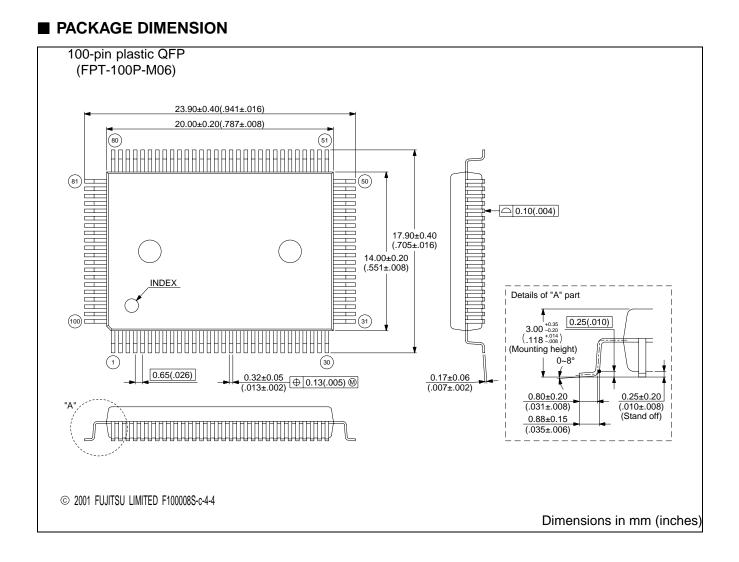


7. Notes on Using A/D Converter

Select the output impedance value for the external circuit of analog input according to the following conditions, : • Output impedance values of the external circuit of 15 k Ω or lower are recommended.

• When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.

When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period = $4.00 \ \mu s$ @machine clock of 16 MHz).



• Error

The smaller the | AVRH – AVRL |, the greater the error would become relatively.

ORDERING INFORMATION

Part number	Package	Remarks
MB90598PF MB90598GPF (under development) MB90F598PF MB90F598GPF	100-pin Plastic QFP (FPT-100P-M06)	
MB90V595CR MB90V595GCR	256-pin Ceramic PGA (PGA-256C-A01)	For evaluation

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Marketing Division Electronic Devices Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0721, Japan Tel: +81-3-5322-3353 Fax: +81-3-5322-3386

http://edevice.fujitsu.com/

North and South America

FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A. Tel: +1-408-922-9000 Fax: +1-408-922-9179

Customer Response Center *Mon. - Fri.: 7 am - 5 pm (PST)* Tel: +1-800-866-8608 Fax: +1-408-922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10, D-63303 Dreieich-Buchschlag, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122

http://www.fujitsu-fme.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. #05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220

http://www.fmap.com.sg/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280 Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

F0105 © FUJITSU LIMITED Printed in Japan All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.