
Enhanced Universal Realtime Operating System
EUROSplus TCP/IP Networking

Programming Guide and Reference

Document version: 08/2000
Dr. Kaneff Engineering Consultants

Neutorgraben 17 | D-90419 Nuremberg | Germany

Phone: +49|911|33 84 33 | Fax: +49|911|33 86 06

www.kaneff.de | support@kaneff.de

EUROSplus TCP/IP Networking
Revision History

Rev. Changes Date

-001 Original issue 06.08.1998

-002 Minor corrections 14.09.1998

-003 Minor corrections 01.10.1998

-004 Corrected TCP server example 17.02.1999

-005 Corrected chapter numbering; added #include statements in refer-
ence

02.07.1999

-006 Reformatted socket level options; added TCP level options 04.08.1999

-007 Minor corrections 30.08.1999

-008 New title sheet
Symbols for caller context

18.10.1999

-009 netctl() codes GETTCPCONNS and GETUDPCONNS 16.03.2000

-010 Error corrections 03.04.2000

-011 IP level options for getsockopt/setsockopt 20.04.2000

-012 Resolver functions 18.05.2000

-013 netctl() code GETROUTES 31.05.2000

-014 Removed description of netctl(GETIFSTATS) 15.06.2000

-015 BootRequest function 31.08.2000

uced
 par-

ault-
General remarks
All rights of this product information are reserved. No part of this product information may be reprod
in any form (print, photocopy, microfilm or other media) or processed, copied and distributed to third
ties using electronic systems.

This product information describes the present status of development. Modifications therefore are
reserved.

This product information was prepared with utmost care. However, no guarantee or liability for the f
lessness and correctness of the contents can be taken upon.

EUROS is a registered trademark of Dr. Kaneff Engineering Consultants.

IBM is a registered trademark of the IBM Corporation.

Windows 95/NT is a registered trademark of the Microsoft Corporation.

All others brands and product names are trademarks or registered trademarks of the appropriate title hold-
ers.

Copyright © 1992-2000 by Dr. Kaneff Engineering Consultants,
17 Neutorgraben,
D-90419 Nuremberg,
Germany

Printed in Germany

nt of

rvices of

ple-
ting
y and

 con-
nd

pt con-
The EUROSplus documentation
The Documentation of the operating system EUROSplus is devided in four manuals: EUROSplus Pro-
grammer’s Guide, EUROSplus User’s Guide, EUROSplus Reference Manual and the EUROSplus Instal-
lation Guide, which are part of the EUROSplus development licence. The four basic manuals of the
operating system have the following goals:

EUROSplus User’s Guide
The EUROSplus User’s Guide includes descriptions of the tools used in the development environme
EUROSplus.

EUROSplus Programmer’s Guide
The Programmer’s Guide gives an overview over the concepts, the components and the system se
the operating system EUROSplus. The EUROSplus components and system objects are introduced and
their properties and use are described.

EUROSplus Reference Manual
The EUROSplus Reference Manual contains detailled and complete descriptions of the system calls im
mented under EUROSplus. It is the basic tool in order to write succesfully applications under the opera
system EUROSplus. The system services of the Microkernel, I/O System, Process Manager, C-Librar
the POSIX Interface are described.

EUROSplus Installation Guide
The EUROSplus Installation Guide contains information for the system administrator concerning the
figuration, installation and adaption of the operating system. It is included in the development package a
describes, how the adapt a target board monitor, how to configure a timer, an UART and an interru
troller used by the operating system and how to dimension the EUROSplus data areas.

EUROSplus TCP/IP Networking Table of Contents
Table of Contents

Chapter 1
Socket programming guide

1.1 Installation. 1-3
1.1.1 Files . 1-3
1.1.2 Debug version/No-Debug version. 1-3
1.1.3 Attaching network interfaces to the network component . 1-3
1.2 Socket programming . 1-5
1.2.1 Definitions . 1-5
1.2.2 Preparing tasks for network programming . 1-5
1.2.3 Basic data structures . 1-6
1.2.4 Typical TCP client application . 1-6
1.2.5 Typical TCP server application . 1-7
1.3 Technical information . 1-9
1.3.1 Supported features . 1-9
1.3.2 Changes compared to BSD sockets. 1-9

Chapter 2
Socket function reference

2.1 Initialization and configuration. 2-3
NetInit - Initialize network component . 2-4
netctl - Set parameters of network component . 2-5
gethostname - Get name of current host . 2-10
sethostname - Set name of current host . 2-11

2.2 Main socket calls. 2-13
socket - Create an endpoint for communication . 2-14
soclose - Close a socket . 2-16
connect - Initiate a connection on a socket . 2-17
shutdown - shut down part of a full-duplex connection . 2-18
bind - Bind a socket to an address . 2-19
listen - Listen for connections on a socket . 2-20
accept - Accept a connection on a socket . 2-21

2.3 Data transfer . 2-23
recv - Receive a message from a socket. 2-24
recvfrom - Receive datagram . 2-25
send - Send a message from a socket . 2-27
sendto - Send message. 2-28

2.4 Byte order conversion . 2-29
htonl - Convert byte order . 2-30
htons - Convert byte order . 2-31
ntohl - Convert byte order . 2-32
ntohs - Convert byte order . 2-33
bswap - Swap bytes of a 16 bit value . 2-34
lswap - Swap bytes of a 32 bit value . 2-35

2.5 Socket utility functions . 2-37
getpeername - Get address of connected peer. 2-38
getsockname - Get socket address . 2-39
getsockopt - Get options on sockets . 2-40
setsockopt - Set options on sockets . 2-44
soioctl - Set I/O mode for socket . 2-45

2.6 Internet address conversion. 2-47
inet_addr - Convert text to Internet address . 2-48
inet_aton - Convert text to Internet address . 2-49
Dr. Kaneff Engineering Consultants i

Table of Contents EUROSplus TCP/IP Networking
inet_lnaof - Return local network address part . 2-50
inet_netof - Return network part of address . 2-51
inet_makeaddr - Construct Internet address . 2-52
inet_network - Convert text to network address . 2-53
inet_ntoa - Convert Internet address to text . 2-54
inet_ntoa_r - Convert Internet address to text. 2-55

2.7 Resolver functions. 2-57
res_init - Initialize resolver . 2-58
herror - Print text for current h_errno . 2-59
gethostbyname - Resolve host name . 2-60
gethostbyaddr - Resolve host address. 2-61
res_mkquery - Prepare query. 2-62
res_send - Send query . 2-63
dn_comp - Compress domain name . 2-64
dn_expand - Expand compressed domain name . 2-65

2.8 BOOTP functions . 2-67
BootRequest - Request IP address with BOOTP . 2-68

2.9 errno values . 2-69
ii Dr. Kaneff Engineering Consultants

rint.

ertical
Definitions
The following notational conventions are used for this manual:

Block print User input, examples, name of variables and functions are displayed in block p

<CR> Non-printable characters are displayed as their names in angle brackets.

[] Options and optional parameters are displayed in square brackets.

| Options and parameters of which exactly one can be used are seperated by a v
line.

� Function may be called in main() .

� Function may be called in I state.

� Function may be called in N state.

� Function may be called in S state.

� Function may be called in A state.

Chapter 1
Socket programming guide

EUROSplus TCP/IP Networking Socket programming guide

rsion
or pro-

ger be

-

1.1 Installation

1.1.1 Files

The following files are shipped with the Network Manager:

net.lib Library (Debug and No-Debug version)

socket.h C header file for main socket calls

netctl.h C header file for netctl

sockio.h C header file for soioctl

*_var.h Network statistics structures

resolv.h C header file for resolver

route.h Structures for routing table manipulation

services.h Definitions of standard port numbers

types.h Networking data types

if.h Structures for network interface manipulation

if_arp.h Structures for ARP cache manipulation

if_types.h Definitions of interface types

1.1.2 Debug version/No-Debug version

The Network Manager library is shipped in a Debug version and No-Debug version. The Debug ve
should be used when developing networking applications. The No-Debug version should be used f
duction code.

The main differences between the two versions are:

• The Debug version prints additional information on the console, e.g. protocol problems, sent and
received ICMP messages etc.

• The Debug version performs parameter checking and stack checking.
• In the No-Debug version, switching on the SO_DEBUG socket option has no effect.
• Some netctl options are not supported in the No-Debug version.

1.1.3 Attaching network interfaces to the network component

A network interface is a special EUROS driver (port driver channel or resource manager unit) that can be
attached to the Network Manager. When the driver is attached to the Network Manager, it can no lon
accessed by the I/O System. When attaching the driver, the resulting interface is assigned a name. This
name must be used to refer to that interface when using the netctl call. The name is internal to the Net
work Manager. It can not be used as input for the ObjName function. The driver object must be open
when it is attached to the Network Manager.

The following example illustrates how to attach an interface to the Network Manager:

#include <net/netctl.h>
#include <net/if.h>

int ChannelId; /* created with IoCreate and opened with IoOpen */

struct ifattach myattach;

myattach.UnitId = ChannelId;
myattach.pName = “MyIf0”;
Dr. Kaneff Engineering Consultants 1-3

Socket programming guide EUROSplus TCP/IP Networking
netctl(ATTACHINTERFACE, &myattach, sizeof(myattach));

/* configure interface... */
1-4 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket programming guide

big

byte

number

rs are

 trans-
at, no

ed by the

stack
1.2 Socket programming

1.2.1 Definitions

Network byte order
Order of bytes in multibyte data as it occurs on the network. For TCP/IP the network byte order is “
endian”, i.e. higher order bytes are transmitted first.

Host byte order
Native order of bytes in multibyte data on a host. The order depends on the CPU and operating system and
may be different from the network byte order. Multibyte data usually must be converted to network
order before transmission.

Address
IP address/port number pair specified in a struct sockaddr_in (see net/socket.h). Address and port
must be in network byte order. INADDR_ANY and 0 can be used as wildcard addresses.

Socket
Data structure internal to the network component.

Socket descriptor
Integer value identifying a socket. Socket descriptors are positive non-null values. Socket descripto
not EUROS object IDs, so they can’t be used with EUROS’ Object...() functions.

Connection
1:1 relationship between a client and a server. Connections must be established before data can be
ferred between both ends. After all data has been exchanged, the connection must be closed. After th
more data can be exchanged.

Peer
Other (non-local) side of a connection.

Client
Program or node initiating a connection (active open) to a server.

Server
Program or node accepting connections (passive open) from clients.

1.2.2 Preparing tasks for network programming

In order to use the Network Manager a task must have enough stack space. The stack space requir
Network Manager varies from CPU to CPU. A task should have at least 500 bytes of stack.

In addition, in order to be able to call some socket functions (especially inet_aton) the calling tasks
must be created with the TDP_USE_NET flag set in their Task Definition Parameters.

Since threads originating from network interface drivers also use the Network Manager, the thread
must be made large enough. This is done in the configuration table of the application.
Dr. Kaneff Engineering Consultants 1-5

Socket programming guide EUROSplus TCP/IP Networking

-

P

1.2.3 Basic data structures

Socket address
Socket functions expect addresses passed in a struct sockaddr structure. This structure has the fol-
lowing components:

sa_len Length of the entire structure

sa_family Family of address contained in this structure. Must contain one of the AF_* values.

sa_data Address data. The format of this field varies with each address family.

The EUROS Network Manager only supports the AF_INET address family (see below).

Socket address (Internet)
The structure struct sockaddr_in is a special version of the struct sockaddr structure. It is
used to specify addresses of the Internet address family (AF_INET). This structure has the following com
ponents:

sin_len Length of the entire structure (must be sizeof(struct sockaddr_in))

sin_family Family of address contained in this structure. Must be AF_INET.

sin_port Port address in network byte order. This component is ignored when only the I
address is required.

sin_addr IP address in network byte order.

sin_zero Reserved, must be zero-filled.

Since all socket functions expect a pointer to struct sockaddr instead of struct sockaddr_in ,
a typecast must be used when passing a pointer to a struct sockadd_in .

1.2.4 Typical TCP client application

The following program excerpt illustrates the typical flow of a TCP client application. For real-world
applications additional error checking is required.

/* TCP client */

#include <net/socket.h>
#include <net/services.h>

...
int s;
char buf[32] = “Hello”;
struct sockaddr_in server;

/* prepare server address */
server.sin_family = AF_INET;
server.sin_len = sizeof(server);
server.sin_port = htons(TCPSERV_ECHO); /* Port 7 (Echo)*/
server.sin_addr.s_addr = inet_addr(“1.2.3.4”);

/* create stream socket */
if ((s = socket(PF_INET, SOCK_STREAM, 0)) < 0)
{
 /* error */
 return 1;
}

1-6 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket programming guide
/* connect to server */
if (connect(s, (struct sockaddr*)&server, sizeof(server)) < 0)
{
 /* error */
 return 1;
}

/* send data */

if (send(s, buf, sizeof(buf), 0) < 0)

{
 /* error */
 return 1;
}

/* receive echo */
if (recv(s, buf, sizeof(buf), 0) < 0)
{
 /* error */
 return 1;
}

/* success, close socket */
soclose(s);

...

1.2.5 Typical TCP server application

The following program excerpt illustrates the typical flow of a TCP server application. For real-world
applications additional error checking is required.

/* TCP Server */

#include <types.h>
#include <net/socket.h>
#include <net/services.h>

int s;
char buf[32];
struct sockaddr_in server, client;
int ns, namelen;

/* create socket */
if ((s = socket(PF_INET, SOCK_STREAM, 0)) < 0)
{
 /* error */
 return 1;
}

/* bind socket to address and port */
Dr. Kaneff Engineering Consultants 1-7

Socket programming guide EUROSplus TCP/IP Networking
server.sin_family = AF_INET;
server.sin_port = htons(TCPSERV_ECHO); /* Port 7 (Echo) */
server.sin_addr.s_addr = INADDR_ANY; /* any local addr.*/
server.sin_len = sizeof(server);

if (bind(s, (struct sockaddr*)&server, sizeof(server)) < 0)
{
 /* error */
 return 1;
}

/* listen for connection, max. 1 queued connections */
if (listen(s, 1) != 0)
{
 /* error */
 return 1;
}

/* accept connection */
namelen = sizeof(client);
if ((ns = accept(s, (struct sockaddr*)&client, &namelen)) < 0)
{
 /* error */
 return 1;
}

/* receive data */
if (recv(ns, buf, sizeof(buf), 0) < 0)
{
 /* error */
 return 1;
}

/* echo back data */
if (send(ns, buf, sizeof(buf), 0) < 0)
{
 /* error */
 return 1;
}

soclose(ns);
soclose(s);
...
1-8 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket programming guide

der
d
1.3 Technical information

1.3.1 Supported features

Transport protocols:
TCP with:

• Slow start and congestion avoidance
• Fast retransmit
• Window scaling
• keepalive
• delayed ACK
• Nagle algorithm

UDP with:

• optional UDP data checksumming

Internetwork protocols:
IPv4 with:

• optional datagram forwarding
• subnetting
• configurable TTL
• configurable TOS
• fragmentation and reassembly

ICMP

ARP

Link layer protocols:
Point-to-point interfaces (PPP)

Broadcast interfaces (Ethernet, IEEE 802.2)

1.3.2 Changes compared to BSD sockets

• The select() call is not supported
• read/write on sockets is not supported, use recv /send instead
• the close call can not be used for sockets, use soclose instead
• the ioctl call can not be used for sockets, use soioctl instead
• interface parameters and routing parameters must be changed with netctl
• a reentrant version of inet_ntoa is added, called inet_ntoa_r
• there are no functions to handle the files SERVICES, PROTOCOLS or HOSTS. Instead, two hea

files protocols.h and socket.h are provided containing symbolic definitions for protocols an
services.

• IP multicasting is not supported
• Timeout values are specified with an EUROS standard TimeLimit value in an uint32 .
Dr. Kaneff Engineering Consultants 1-9

Socket programming guide EUROSplus TCP/IP Networking
1-10 Dr. Kaneff Engineering Consultants

Chapter 2
Socket function reference

EUROSplus TCP/IP Networking Socket function reference

er
2.1 Initialization and configuration
The initialization and configuration functions are used to initialize and configure the Network Manag
component and to set and query operational parameters.

Function prototypes, macros and data structures are defined in the C header files socket.h and
netctl.h .
Dr. Kaneff Engineering Consultants 2-3

Socket function reference EUROSplus TCP/IP Networking

ounts

 the

 mem-

S
A

NetInit - Initialize network component

Syntax:

#include <net/socket.h>

int NetInit(uint16 NumSockets, uint16 NumClusters,
 uint16 NumBuffers, uint16 NumPcb,
 uint16 NumUtilBlocks);

Description:
Initialize Network Manager

Parameters:

NumSockets Number of available sockets. When a socket is created using the socket() call,
one of these blocks is used.

NumClusters Number of available clusters (large buffers). These are used to buffer large am
of protocol data.

NumBuffers Number of available buffers. These are used to buffer small amounts of protocol
data.

NumPcb Number of available protocol control blocks. For each connection one of these
blocks is required.

NumUtilBlocks Number of available utility blocks. These are used to store other information of
network component like routes, interface definitions, interface addresses etc.

Return values

OK Network component successfully initialized

FAIL Initialization failed

See also:
-

Remarks:
All parameters must have a non-null value. The memory is taken from system memory. The system
ory must be configured large enough to hold this data.

Unlike the Init functions of other components, NetInit must be called from a real EUROS task, not
from main() .
2-4 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference

S
A

netctl - Set parameters of network component

Syntax:

#include <net/netctl.h>

int netctl(uint16 Option, void *pData, size_t Size);

Description:
Set configuration data of the network component.

Parameters:

Option Option code, see below

pData Pointer to option data

Size Size of option data

Return values:

OK Option successfully set

FAIL Option not set

See also:
-

Remarks:
For every Option value, pData and Size have different meanings. The following table lists available
options:

Option Meaning pData Size

SETHOSTNAME set host name pointer to new host name length of host name
(including \0)

GETHOSTNAME get host name pointer to host name buffer length of buffer

DUMPSOCKETS print socket
information
on console

ignored ignored

SETDEFTTL set default
TTL

pointer to int containing new TTL. The
default value is 64.

sizeof(int)

GETDEFTTL get default
TTL

pointer to int sizeof(int)

SETFORWARDING set forward-
ing flag

pointer to int containing new flag. 0 means
that no IP datagrams are forwarded. !=0 means
that IP datagrams are forwarded if they are
addressed to a different host. The default is to
not forward datagrams.

sizeof(int)

GETFORWARDING get forward-
ing flag

pointer to int sizeof(int)
Dr. Kaneff Engineering Consultants 2-5

Socket function reference EUROSplus TCP/IP Networking
SETREDIR set redirec-
tion flag

pointer to int containing new flag. 0 means
that no ICMP redirect messages are sent. !=0
means that ICMP redirect messages are sent if
necessary. The default is 0.

sizeof(int)

GETREDIR get redirec-
tion flag

pointer to int sizeof(int)

GETIPSTATS get IP statis-
tics

pointer to struct ipstat (see
ip_var.h)

sizeof(struct
ipstat)

GETROUTESTATS get routing
statistics

pointer to struct rtstat (see route.h) sizeof(struct
rtstat)

SETREASSTTL set reassem-
bly TTL. The
default value
is 60.

pointer to int containing new reassembly
TTL

sizeof(int)

GETREASSTTL get reassem-
bly TTL

pointer to int sizeof(int)

GETTCPSTATS get TCP sta-
tistics

pointer to struct tcpstat (see
tcp_var.h)

sizeof(struct
tcpstat)

DUMPTCPPCBS print TCP
PCB informa-
tion on con-
sole

ignored ignored

GETTCPCONNS get TCP con-
nections

Pointer to buffer (see struct tcp-
connlist in tcp_var.h)

When =
sizeof(int) , the call
returns the number of
entries in the list. When
>sizeof(int) , con-
nection entries are
returned, up to the buffer
size.

GETUDPSTATS get UDP sta-
tistics

pointer to struct udpstat (see
udp_var.h)

sizeof(struct
udpstat)

SETUDPCHECK set UDP
checksum
flag.

pointer to int containing new flag. 0 means
that the UDP checksum is not calculated for
generated UDP datagrams. !=0 means that the
checksum is calculated. The default is 1.

sizeof(int)

GETUDPCHECK get UDP
checksum flag

pointer to int sizeof(int)

Option Meaning pData Size
2-6 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference
GETUDPCONNS get UDP con-
nections

Pointer to buffer (see struct udp-
connlist in udp_var.h)

When =
sizeof(int) , the call
returns the number of
entries in the list. When
>sizeof(int) , con-
nection entries are
returned, up to the buffer
size.

SETICMPMASKR set ICMP
address mask
reply flag

pointer to int containing new flag. 0 means
to not send replies to ICMP address mask
requests. !=0 means to send replies. The
default is 0.

sizeof(int)

GETICMPMASKR get ICMP
address mask
reply flag

pointer to int sizeof(int)

GETICMPSTATS get ICMP sta-
tistics

pointer to struct icmpstat (see
icmp_var.h)

sizeof(struct
icmpstat)

SETARPENTRY set ARP entry pointer to struct arpreq (see
if_arp.h)

sizeof(struct
arpreq)

GETARPENTRY get ARP entry pointer to struct arpreq (see
if_arp.h)

sizeof(struct
arpreq)

DELARPENTRY delete ARP
entry

pointer to struct arpreq (see
if_arp.h)

sizeof(struct
arpreq)

FLUSHARP Flush ARP
cache

ignored ignored

DUMPARPENTRIES get all ARP
entries

Pointer to buffer (see struct arpdump in
if_arp.h)

When =
sizeof(int) , the call
returns the number of
entries in the cache.
When >sizeof(int) ,
cache entries are
returned, up to the buffer
size.

SIOCSIFADDR set interface
address

pointer to struct ifreq (see if.h). The
component ifr_name contains the name of
the interface. The component ifr_addr
must contain the new address.

sizeof(struct
ifreq)

SIOCGIFADDR get interface
address

pointer to struct ifreq (see if.h). The
component ifr_name contains the name of
the interface. The address is returned in the
component ifr_addr .

sizeof(struct
ifreq)

SIOCSIFDSTADDR set destina-
tion address of
point-to-point
interface

pointer to struct ifreq (see if.h). The
component ifr_name contains the name of
the interface. The component ifr_dstaddr
must contain the new address.

sizeof(struct
ifreq)

Option Meaning pData Size
Dr. Kaneff Engineering Consultants 2-7

Socket function reference EUROSplus TCP/IP Networking
SIOCGIFDSTADDR get destina-
tion address of
point-to-point
interface

pointer to struct ifreq (see if.h). The
component ifr_name contains the name of
the interface. The address is returned in the
component ifr_dstaddr .

sizeof(struct
ifreq)

SIOCSIFFLAGS set interface
flags

pointer to struct ifreq (see if.h). The
component ifr_name contains the name of
the interface. The component ifr_flags
must contain the new flags. Some interface
flags can not be changed.

sizeof(struct
ifreq)

SIOCGIFFLAGS get interface
flags

pointer to struct ifreq (see if.h). The
component ifr_name contains the name of
the interface. The flags are returned in the
component ifr_flags .

sizeof(struct
ifreq)

SIOCGIFBRDADDR get broadcast
address

pointer to struct ifreq (see if.h). The
component ifr_name contains the name of
the interface. The address is returned in the
component ifr_broadaddr .

sizeof(struct
ifreq)

SIOCSIFBRDADDR set broadcast
address

pointer to struct ifreq (see if.h). The
component ifr_name contains the name of
the interface. The component
ifr_broadaddr must contain the new
address.

sizeof(struct
ifreq)

SIOCGIFCONF get interface
list

pointer to struct ifconf (see if.h). On
input the component ifc_len contains the
length of a data buffer. ifc_req must point
to this data buffer. On output, the data buffer
contains an array of struct ifreq with
ifr_addr valid. ifc_len contains the size
of the unused portion of the data buffer.

sizeof(struct
ifconf)

SIOCGIFNETMASK get network
mask of inter-
face

pointer to struct ifreq (see if.h). The
component ifr_name contains the name of
the interface. The network mask is returned in
the component ifr_addr .

sizeof(struct
ifreq)

SIOCSIFNETMASK set network
mask of inter-
face

pointer to struct ifreq (see if.h). The
component ifr_name contains the name of
the interface. The component ifr_addr
must contain the new network mask.

sizeof(struct
ifreq)

SIOCGIFMETRIC get interface
metric

pointer to struct ifreq (see if.h). The
component ifr_name contains the name of
the interface. The metric is returned in the
component ifr_metric .

sizeof(struct
ifreq)

SIOCSIFMETRIC set interface
metric

pointer to struct ifreq (see if.h). The
component ifr_name contains the name of
the interface. The component ifr_metric
must contain the new metric.

sizeof(struct
ifreq)

Option Meaning pData Size
2-8 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference
ATTACHINTERFACE Attach IP
interface

pointer to struct ifattach (see if.h) sizeof(struct
ifattach)

DETACHINTERFACE Detach IP
interface

ADDROUTE add route pointer to struct rtreq (see route.h) sizeof(struct
rtreq)

DELROUTE delete route pointer to struct rtreq (see route.h) sizeof(struct
rtreq)

GETROUTES get all routes Pointer to buffer (see struct routelist
in route.h)

When =
sizeof(int) , the call
returns the number of
entries in the list. When
>sizeof(int) , route
entries are returned, up
to the buffer size.

Option Meaning pData Size
Dr. Kaneff Engineering Consultants 2-9

Socket function reference EUROSplus TCP/IP Networking

ated

S
A

gethostname - Get name of current host

Syntax:

#include <net/netctl.h>

int gethostname(char *name, int namelen);

Description:
Get name of host

Parameters:

name pointer to buffer for name of host

namelen length of buffer

Return values:

OK Host name sucessfully returned

FAIL Host name not returned

See also:

sethostname , netctl

Remarks:

Gethostname returns the standard host name for the current processor, as previously set by sethost-
name. The parameter namelen specifies the size of the name array. The returned name is null-termin
unless insufficient space is provided. The call to gethostname is equivalent to a call to netctl and the
option code GETHOSTNAME.
2-10 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference

S
A

sethostname - Set name of current host

Syntax:

#include <net/netctl.h>

int sethostname(const char *name, int namelen);

Description:
Set name of host.

Parameters:

name pointer to buffer containing new name

namelen length of buffer name

Return values:

OK Host name sucessfully set

FAIL Host name not set

See also:

gethostname , netctl

Remarks:

Sethostname sets the name of the host machine to be name, which has length namelen . This call is
normally used only when the system is bootstrapped. The call to sethostname is equivalent to a call to
netctl and the option code SETHOSTNAME.
Dr. Kaneff Engineering Consultants 2-11

Socket function reference EUROSplus TCP/IP Networking
2-12 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference
2.2 Main socket calls
The main socket calls are used to create and close sockets and to connect and disconnect them.

Function prototypes, macros and data structures are defined in the C header file socket.h .
Dr. Kaneff Engineering Consultants 2-13

Socket function reference EUROSplus TCP/IP Networking

xed

e

e
.
r

cular
y 0

itted
n error
ion-

S
A

socket - Create an endpoint for communication

Syntax:

#include <net/socket.h>

int socket(int domain, int type, int protocol);

Description:

Socket creates an endpoint for communication and returns a descriptor.

Parameters:

domain protocol family for which the socket will be used. Currently only PF_INET (ARPA
Internet) is supported.

type Type of socket to create. The following values are supported:

SOCK_STREAM sequenced, reliable, two-way connection based byte
streams. An out-of-band data transmission mechanism
may be supported.

SOCK_DGRAM datagrams (connectionless, unreliable messages of a fi
(typically small) maximum length).

SOCK_RAW access to internal network protocols and interfaces. Th
type SOCK_RAW is not described here.

protocol specifies a particular protocol to be used with the socket. Normally only a singl
protocol exists to support a particular socket type within a given protocol family
However, it is possible that many protocols may exist, in which case a particula
protocol must be specified in this manner. The protocol number to use is parti
to the “communication domain” in which communication is to take place; specif
to use the default protocol for the given protocol type (TCP for SOCK_STREAM and
UDP for SOCK_DGRAM).

Return values:

Descriptor Descriptor of created socket. This descriptor must be used when referencing the
socket when calling other socket functions.

FAIL Socket was not created.

See also:

accept , bind , connect , getsockname , getsockopt , soioctl , listen , recv , select ,
send , shutdown

Remarks:
Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream socket must be in
a connected state before any data may be sent or received on it. A connection to another socket is created
with a connect call. Once connected, data may be transferred using send and recv calls. When a ses-
sion has been completed a soclose may be performed. Out-of-band data may also be transmitted as
described in send and received as described in recv .

The communications protocols used to implement a SOCK_STREAM insure that data is not lost or dupli-
cated. If a piece of data for which the peer protocol has buffer space cannot be successfully transm
within a reasonable length of time, then the connection is considered broken and calls will indicate a
with FAIL returns and with ETIME as the specific code in the global variable errno. The protocols opt
2-14 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference

ity. An
 period

ires
ally keep sockets warm by forcing transmissions roughly every minute in the absence of other activ
error is then indicated if no response can be elicited on an otherwise idle connection for a extended
(e.g. 5 minutes). A FAIL return value is returned if a task sends on a broken stream, and EPIPE is
returned in errno .

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to correspondents named in sendto
calls. Datagrams are generally received with recvfrom , which returns the next datagram with its return
address.

The operation of sockets is controlled by socket level options. These options are defined in the file net/
socket.h . setsockopt and getsockopt are used to set and get options, respectively.

Socket descriptors are not EUROS object IDs. They can’t be used when another EUROS function requ
an object ID to be passed.
Dr. Kaneff Engineering Consultants 2-15

Socket function reference EUROSplus TCP/IP Networking

S
A

soclose - Close a socket

Syntax:

#include <net/socket.h>

int soclose(int s);

Description:
Close a socket

Parameters:

s Descriptor of socket to close

Return values:

OK Socket successfully closed

FAIL Can’t close socket

See also:

setsockopt

Remarks:
The soclose call closes a socket. If the socket is in a connected state, it is disconnected first. soclose
may block depending on the SO_LINGER socket option (set with setsockopt).
2-16 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference

is
 to be

ss, such

S
A

connect - Initiate a connection on a socket

Syntax:

#include <net/socket.h>

int connect(int s, struct sockaddr *name, int namelen);

Description:
Connect a socket

Parameters:

s Socket to connect

name Pointer to destination socket address

namelen Length of destination socket address

Return values:

OK Socket successfully connected

FAIL Can’t connect socket

See also:

accept , socket , getsockname

Remarks:
If s is of type SOCK_DGRAM, this call specifies the peer with which the socket is to be associated; th
address is that to which datagrams are to be sent, and the only address from which datagrams are
received. If the socket is of type SOCK_STREAM, this call attempts to make a connection to another
socket. The other socket is specified by name, which is an address in the communications space of the
socket. Each communications space interprets the name parameter in its own way. Generally, stream sock-
ets may successfully connect only once; datagram sockets may use connect multiple times to change
their association. Datagram sockets may dissolve the association by connecting to an invalid addre
as a null address.
Dr. Kaneff Engineering Consultants 2-17

Socket function reference EUROSplus TCP/IP Networking

S
A

shutdown - shut down part of a full-duplex connection

Syntax:

#include <net/socket.h>

int shutdown(int s, int how);

Description:
The shutdown call causes all or part of a full-duplex connection on the socket associated with s to be shut
down.

Parameters:

s Socket to shut down

how May have one of the following values:

0 shut down receive direction

1 shut down send direction

2 shut down both send and receive direction

Return values:

OK Socket successfully shut down

FAIL Can’t shut down socket

See also:

connect , socket
2-18 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference

S
A

bind - Bind a socket to an address

Syntax:

#include <net/socket.h>

int bind(int s, struct sockaddr *name, int namelen);

Description:
Bind a socket to a local address.

Parameters:

s Socket to bind to an address

name Pointer to a socket address

namelen Length of the socket address

Return values:

OK Address successfully bound to socket

FAIL Can’t bind address to socket

See also:

connect , listen , socket , getsockname

Remarks:

Bind assigns an address to an unnamed socket. When a socket is created with socket it exists in an
address family but has no address assigned. Bind requests that name be assigned to the socket.
Dr. Kaneff Engineering Consultants 2-19

Socket function reference EUROSplus TCP/IP Networking

inter-

o. If a

at

S
A

listen - Listen for connections on a socket

Syntax:

#include <net/socket.h>

int listen(int s, int backlog);

Description:
Put a socket into listening state.

Parameters:

s Socket

backlog Maximum length of queue of incoming connection requests. This parameter is
nally limited to 5.

Return values:

OK Success

FAIL Error

See also:

accept , connect , socket

Remarks:
To accept connections, a socket is first created with socket , a willingness to accept incoming connec-
tions and a queue limit for incoming connections are specified with listen , and then the connections are
accepted with accept . The listen call applies only to sockets of type SOCK_STREAM.

The backlog parameter defines the maximum length the queue of pending connections may grow t
connection request arrives with the queue full the client may receive an error with an indication of ECON-
NREFUSED, or, if the underlying protocol supports retransmission, the request may be ignored so th
retries may succeed.
2-20 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference

e con-

ally

ates a

et

ocket

S
A

accept - Accept a connection on a socket

Syntax:

#include <net/socket.h>

int accept(int s, struct sockaddr *addr, int *addrlen);

Description:
Accept pending incoming connection.

Parameters:

s Listening socket

addr Pointer to socket address buffer. This buffer is used to return the address of th
necting peer (client).

addrlen Length of socket address buffer. This is a value-result parameter; it should initi
contain the amount of space pointed to by addr ; on return it will contain the actual
length (in bytes) of the address returned.

Return values:

Socket Socket descriptor of the accepted connection

FAIL Error

See also:

bind , connect , listen , socket

Remarks:
The argument s is a socket that has been created with socket , bound to an address with bind , and is lis-
tening for connections after a listen .

The accept call extracts the first connection request on the queue of pending connections and cre
new socket with the same properties of s . If no pending connections are present on the queue, and the
socket is not marked as non-blocking, accept blocks the caller until a connection is present. If the sock
is marked non-blocking and no pending connections are present on the queue, accept returns an error as
described above. The accepted socket may not be used to accept more connections. The original ss
remains open.

This call is used with connection-based socket types, i.e. sockets of type SOCK_STREAM.
Dr. Kaneff Engineering Consultants 2-21

Socket function reference EUROSplus TCP/IP Networking
2-22 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference
2.3 Data transfer
The data transfer functions are used to send and receive data over sockets.

Function prototypes, macros and data structures are defined in the C header file socket.h .
Dr. Kaneff Engineering Consultants 2-23

Socket function reference EUROSplus TCP/IP Networking

 fit in
ed

 socket is

ther
tions

a
 cannot

st
 or dis-

S
A

recv - Receive a message from a socket

Syntax:

#include <net/socket.h>

ssize_t recv(int s, void *buf, size_t len, int flags);

Description:
Receive data from a socket

Parameters:

s Socket to receive data from

buf Pointer to receive buffer

len Size of receive buffer

flags Receive options. The following options are supported:

MSG_OOB process out-of-band data

MSG_PEEK peek at incoming message

MSG_WAITALL wait for full request or error

Return values:

Number of bytes Number of bytes received

0 Connection was closed while waiting for data

FAIL Error

See also:

soioctl , getsockopt , socket, recvfrom

Remarks:

Recv is used to receive messages from a connected socket.

The routine returns the length of the message on successful completion. If a message is too long to
the supplied buffer, excess bytes may be discarded depending on the type of socket the message is receiv
from (see socket).

If no messages are available at the socket, the receive call waits for a message to arrive, unless the
nonblocking (see soioctl) in which case the value FAIL is returned and the external variable errno
set to EAGAIN. The receive calls normally return any data available, up to the requested amount, ra
than waiting for receipt of the full amount requested; this behavior is affected by the socket-level op
SO_RCVLOWAT and SO_RCVTIMEO described in getsockopt .

The MSG_OOB flag requests receipt of out-of-band data that would not be received in the normal dat
stream. Some protocols place expedited data at the head of the normal data queue, and thus this flag
be used with such protocols. The MSG_PEEK flag causes the receive operation to return data from the
beginning of the receive queue without removing that data from the queue. Thus, a subsequent receive call
will return the same data. The MSG_WAITALL flag requests that the operation block until the full reque
is satisfied. However, the call may still return less data than requested if a signal is caught, an error
connect occurs, or the next data to be received is of a different type than that returned.
2-24 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference

et

illed in.

 fit in
ed

 socket is

ther
tions

a
 cannot

S
A

recvfrom - Receive datagram

Syntax:

#include <net/socket.h>

ssize_t recvfrom(int s, void *buf, size_t len, int flags,
 struct sockaddr *from, int *fromlen);

Description:
Receive datagram from peer

Parameters:

s Socket to receive data from

buf Pointer to receive buffer

len Size of receive buffer

flags Receive options. The following options are supported:

MSG_OOB process out-of-band data

MSG_PEEK peek at incoming message

MSG_WAITALL wait for full request or error

from Pointer to address of peer

fromlen Pointer to length of address

Return values:

Number of bytes Number of bytes received

0 Connection was closed while waiting for data

FAIL Error

See also:

soioctl , getsockopt , socket,recv

Remarks:

Recvfrom is used to receive messages from a socket, and may be used to receive data on a sock
whether or not it is connection-oriented.

If from is non-nil, and the socket is not connection-oriented, the source address of the message is f
Fromlen is a value-result parameter, initialized to the size of the buffer associated with from , and modi-
fied on return to indicate the actual size of the address stored there.

The routine returns the length of the message on successful completion. If a message is too long to
the supplied buffer, excess bytes may be discarded depending on the type of socket the message is receiv
from (see socket).

If no messages are available at the socket, the receive call waits for a message to arrive, unless the
nonblocking (see soioctl) in which case the value FAIL is returned and the external variable errno
set to EAGAIN. The receive calls normally return any data available, up to the requested amount, ra
than waiting for receipt of the full amount requested; this behavior is affected by the socket-level op
SO_RCVLOWAT and SO_RCVTIMEO described in getsockopt .

The MSG_OOB flag requests receipt of out-of-band data that would not be received in the normal dat
stream. Some protocols place expedited data at the head of the normal data queue, and thus this flag
Dr. Kaneff Engineering Consultants 2-25

Socket function reference EUROSplus TCP/IP Networking

st
urs, or
be used with such protocols. The MSG_PEEK flag causes the receive operation to return data from the
beginning of the receive queue without removing that data from the queue. Thus, a subsequent receive call
will return the same data. The MSG_WAITALL flag requests that the operation block until the full reque
is satisfied. However, the call may still return less data than requested if an error or disconnect occ
the next data to be received is of a different type than that returned.
2-26 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference

n-

rn

S
A

send - Send a message from a socket

Syntax:

#include <net/socket.h>

ssize_t send(int s, const void *msg, size_t len, int flags);

Description:
Send data to a socket

Parameters:

s Socket to send data to

msg Pointer to data

len Size of data

flags Send options. Valid flags are:

MSG_OOB process out-of-band data

MSG_DONTROUTE bypass routing, use direct interface

Return values:

Number of bytes Number of bytes successfully sent

FAIL Error

See also:

recv , getsockopt , socket ,sendto

Remarks:

Send is used to transmit a message to another socket. Send may be used only when the socket is in a co
nected state.

No indication of failure to deliver is implicit in a send. Locally detected errors are indicated by a retu
value of FAIL .

If no messages space is available at the socket to hold the message to be transmitted, then send normally
blocks, unless the socket has been placed in non-blocking I/O mode.

The flag MSG_OOB is used to send out-of-band data on sockets that support this notion (e.g.
SOCK_STREAM) ; the underlying protocol must also support out-of-band data. MSG_DONTROUTE is usu-
ally used only by diagnostic or routing programs.
Dr. Kaneff Engineering Consultants 2-27

Socket function reference EUROSplus TCP/IP Networking

en

rn

S
A

sendto - Send message

Syntax:

#include <net/socket.h>

ssize_t sendto(int s, const void *msg, size_t len, int flags,
 const struct sockaddr *to, int tolen);

Description:
Send message to destination

Parameters:

s Socket to send data to

msg Pointer to data

len Size of data

flags Send options. Valid flags are:

MSG_OOB process out-of-band data

MSG_DONTROUTE bypass routing, use direct interface

to Pointer to address of destination

tolen Length of destination address

Return values:

Number of bytes Number of bytes successfully sent

FAIL Error

See also:

recv , getsockopt , socket ,send

Remarks:

Sendto is used to transmit a message to another socket.

The address of the target is given by to with tolen specifying its size. The length of the message is giv
by len . If the message is too long to pass atomically through the underlying protocol, the error EMSG-
SIZE is returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send. Locally detected errors are indicated by a retu
value of FAIL .

If no messages space is available at the socket to hold the message to be transmitted, then send normally
blocks, unless the socket has been placed in non-blocking I/O mode.

The flag MSG_OOB is used to send out-of-band data on sockets that support this notion (e.g.
SOCK_STREAM) ; the underlying protocol must also support out-of-band data. MSG_DONTROUTE is usu-
ally used only by diagnostic or routing programs.
2-28 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference

om net-
ork byte
2.4 Byte order conversion
The byte order conversion functions are used to convert the byte order of 16 bit and 32 bit values fr
work byte order to host byte order and vice versa. When the host byte order is the same as the netw
order, some of these functions are implemented as empty macros.

Function prototypes, macros and data structures are defined in the C header file socket.h .
Dr. Kaneff Engineering Consultants 2-29

Socket function reference EUROSplus TCP/IP Networking

as an

S
A

htonl - Convert byte order

Syntax:

#include <net/socket.h>

u_long htonl(u_long hostlong);

Description:
Convert 32 bit value from host byte order to network byte order

Parameters:

hostlong 32 bit value in host byte order

Return values:
Converted value

See also:

ntohl , lswap

Remarks:
On machines with a host byte order identical to the network byte order this routine is implemented
empty macro.
2-30 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference

as an

S
A

htons - Convert byte order

Syntax:

#include <net/socket.h>

u_short htons(u_short hostshort);

Description:
Convert 16 bit value from host byte order to network byte order

Parameters:

hostshort 16 bit value in host byte order

Return values:
Converted value

See also:

ntohs , bswap

Remarks:
On machines with a host byte order identical to the network byte order this routine is implemented
empty macro.
Dr. Kaneff Engineering Consultants 2-31

Socket function reference EUROSplus TCP/IP Networking

as an

S
A

ntohl - Convert byte order

Syntax:

#include <net/socket.h>

u_long ntohl(u_long netlong);

Description:
Convert 32 bit value from network byte order to host byte order

Parameters:

netlong 32 bit value in network byte order

Return values:
Converted value

See also:

htonl , lswap

Remarks:
On machines with a host byte order identical to the network byte order this routine is implemented
empty macro.
2-32 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference

as an

S
A

ntohs - Convert byte order

Syntax:

#include <net/socket.h>

u_short ntohs(u_short netshort);

Description:
Convert 16 bit value from network byte order to host byte order

Parameters:

netshort 16 bit value in network byte order

Return values:
Converted value

See also:

htons , bswap

Remarks:
On machines with a host byte order identical to the network byte order this routine is implemented
empty macro.
Dr. Kaneff Engineering Consultants 2-33

Socket function reference EUROSplus TCP/IP Networking

S
A

bswap - Swap bytes of a 16 bit value

Syntax:

#include <net/socket.h>

u_short bswap(u_short x);

Description:
Swap bytes of a 16 bit value

Parameters:

x 16 bit value

Return values:
Value with bytes swapped

See also:

lswap

Remarks:
-

2-34 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference

S
A

lswap - Swap bytes of a 32 bit value

Syntax:

#include <net/socket.h>

u_long lswap(u_long x);

Description:
Swap bytes of a 32 bit value

Parameters:

x 32 bit value

Return values:
32 bit value with swapped bytes

See also:

bswap

Remarks:
-

Dr. Kaneff Engineering Consultants 2-35

Socket function reference EUROSplus TCP/IP Networking
2-36 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference

ions.
2.5 Socket utility functions
The socket utility functions are used to query addresses of sockets and to set and query socket opt

Function prototypes, macros and data structures are defined in the C header file socket.h .
Dr. Kaneff Engineering Consultants 2-37

Socket function reference EUROSplus TCP/IP Networking

S
A

getpeername - Get address of connected peer

Syntax:

#include <net/socket.h>

int getpeername(int s, struct sockaddr *name, int *namelen);

Description:
Return address of peer for a connected socket

Parameters:

s Connected socket

name Pointer to socket address buffer

namelen Pointer to length of buffer

Return values:

OK Address returned

FAIL Error

See also:

accept , bind , socket , getsockname

Remarks:

Getpeername returns the address of the peer connected to socket s . The namelen parameter should be
initialized to indicate the amount of space pointed to by name. On return it contains the actual size of the
address returned (in bytes). The address is truncated if the buffer provided is too small.
2-38 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference

S
A

getsockname - Get socket address

Syntax:

#include <net/socket.h>

int getsockname(int s, struct sockaddr *name, int *namelen);

Description:
Return address currently assigned to a socket

Parameters:

s Socket

name Pointer to socket address buffer

namelen Pointer to buffer length

Return values:

OK Address returned

FAIL Error

See also:

bind , socket

Remarks:

Getsockname returns the current address for the specified socket. The namelen parameter should be
initialized to indicate the amount of space pointed to by name. On return it contains the actual size of the
address returned (in bytes).
Dr. Kaneff Engineering Consultants 2-39

Socket function reference EUROSplus TCP/IP Networking

t at

ust be

up-
e set to

 to
 is to

r inter-
w.

n

S
A

getsockopt - Get options on sockets

Syntax:

#include <net/socket.h>

int getsockopt(int s, int level, int optname,
 void *optval, int *optlen);

Description:
Get socket option

Parameters:

s Socket descriptor

level Option level. May either be SOL_SOCKET or protocol number.

optname Name of option

optval Pointer to option value

optlen Pointer to size of option value

Return values:

OK Option successfully retrieved

FAIL Error

See also:

soioctl , socket, setsockopt

Remarks:

Getsockopt and setsockopt manipulate the options associated with a socket. Options may exis
multiple protocol levels; they are always present at the uppermost socket level.

When manipulating socket options the level at which the option resides and the name of the option m
specified. To manipulate options at the socket level, level is specified as SOL_SOCKET. To manipulate
options at any other level the protocol number of the appropriate protocol controlling the option is s
plied. For example, to indicate that an option is to be interpreted by the TCP protocol, level should b
IPPROTO_TCP.

The parameters optval and optlen are used to access option values for setsockopt . For get-
sockopt they identify a buffer in which the value for the requested option(s) are to be returned. For
getsockopt , optlen is a value-result parameter, initially containing the size of the buffer pointed
by optval , and modified on return to indicate the actual size of the value returned. If no option value
be supplied or returned, optval may be NULL.

Optname and any specified options are passed uninterpreted to the appropriate protocol module fo
pretation. The include file net/socket.h contains definitions for socket level options, described belo
Options at other protocol levels vary in format and name.

Most socket-level options utilize an int parameter for optval. For setsockopt , the parameter should
be non-zero to enable a boolean option, or zero if the option is to be disabled. SO_LINGER uses a
struct linger parameter, defined in net/socket.h , which specifies the desired state of the optio
and the linger interval (see below). SO_SNDTIMEO and SO_RCVTIMEO use a uint32 parameter con-
taining a timeout value (TimeLimit standard parameter).
2-40 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference

with

 in a

ms

d
nnec-

ocket
d

for-

he

on

will

g of

g of
Socket level options
The following options are recognized at the socket level. Except as noted, each may be examined
getsockopt and set with setsockopt .

SO_DEBUG enables recording of debugging information;
SO_DEBUG enables debugging in the underlying protocol modules.

SO_REUSEADDR enables local address reuse;
SO_REUSEADDR indicates that the rules used in validating addresses supplied
bind call should allow reuse of local addresses.

SO_REUSEPORT enables duplicate address and port bindings;
SO_REUSEPORT allows completely duplicate bindings by multiple processes if
they all set SO_REUSEPORT before binding the port. This option permits multiple
instances of a program to each receive UDP/IP multicast or broadcast datagra
destined for the bound port.

SO_KEEPALIVE enables keep connections alive;
SO_KEEPALIVE enables the periodic transmission of messages on a connecte
socket. Should the connected party fail to respond to these messages, the co
tion is considered broken and processes using the socket receive errors with errno
set to EPIPE.

SO_DONTROUTE enables routing bypass for outgoing messages;
SO_DONTROUTE indicates that outgoing messages should bypass the standard
routing facilities. Instead, messages are directed to the appropriate network interface
according to the network portion of the destination address.

SO_LINGER linger on close if data present;
SO_LINGER controls the action taken when unsent messages are queued on s
and a soclose is performed. If the socket promises reliable delivery of data an
SO_LINGER is set, the system will block the process on the soclose attempt
until it is able to transmit the data or until it decides it is unable to deliver the in
mation (a timeout period, termed the linger interval, is specified in the setsock-
opt call when SO_LINGER is requested). If SO_LINGER is disabled and a
soclose is issued, the system will process the close in a manner that allows t
process to continue as quickly as possible.

SO_BROADCAST enables permission to transmit broadcast messages;
The option SO_BROADCAST requests permission to send broadcast datagrams
the socket.

SO_OOBINLINE enables reception of out-of-band data in band;
With protocols that support out-of-band data, the SO_OOBINLINE option requests
that out-of-band data be placed in the normal data input queue as received; it
then be accessible with recv calls without the MSG_OOB flag. Some protocols
always behave as if this option is set.

SO_SNDBUF set buffer size for output;
SO_SNDBUF and SO_RCVBUF are options to adjust the normal buffer sizes allo-
cated for output and input buffers, respectively. The buffer size may be increased
for high-volume connections, or may be decreased to limit the possible backlo
incoming data. The system places an absolute limit on these values.

SO_RCVBUF set buffer size for input;
SO_SNDBUF and SO_RCVBUF are options to adjust the normal buffer sizes allo-
cated for output and input buffers, respectively. The buffer size may be increased
for high-volume connections, or may be decreased to limit the possible backlo
Dr. Kaneff Engineering Consultants 2-41

Socket function reference EUROSplus TCP/IP Networking

 the
ing
l

ller
ration

en-
n
fault

r
e low

pts

l
,

ark

ts a
s
di-
ity

check
nous

or
incoming data. The system places an absolute limit on these values.

SO_SNDLOWAT set minimum count for output;
SO_SNDLOWAT is an option to set the minimum count for output operations. Most
output operations process all of the data supplied by the call, delivering data to
protocol for transmission and blocking as necessary for flow control. Nonblock
output operations will process as much data as permitted subject to flow contro
without blocking, but will process no data if flow control does not allow the sma
of the low water mark value or the entire request to be processed. A select ope
testing the ability to write to a socket will return true only if the low water mark
amount could be processed. The default value for SO_SNDLOWAT is set to a conve-
nient size for network efficiency, often 1024.

SO_RCVLOWAT set minimum count for input;
SO_RCVLOWAT is an option to set the minimum count for input operations. In g
eral, receive calls will block until any (non-zero) amount of data is received, the
return with the smaller of the amount available or the amount requested. The de
value for SO_RCVLOWAT is 1. If SO_RCVLOWAT is set to a larger value, blocking
receive calls normally wait until they have received the smaller of the low wate
mark value or the requested amount. Receive calls may still return less than th
water mark if an error occurs, a signal is caught, or the type of data next in the
receive queue is different than that returned.

SO_SNDTIMEO set timeout value for output;
SO_SNDTIMEO is an option to set a timeout value for output operations. It acce
a uint32 parameter with the TimeLimit for waits for output operations to com-
plete. If a send operation has blocked for this much time, it returns with a partia
count or with the error ETIME if no data were sent. In the current implementation
this timer is restarted each time additional data are delivered to the protocol, imply-
ing that the limit applies to output portions ranging in size from the low water m
to the high water mark for output.

SO_RCVTIMEO set timeout value for input;
SO_RCVTIMEO is an option to set a timeout value for input operations. It accep
uint32 parameter with a TimeLimit value used to limit waits for input operation
to complete. In the current implementation, this timer is restarted each time ad
tional data are received by the protocol, and thus the limit is in effect an inactiv
timer. If a receive operation has been blocked for this much time without receiving
additional data, it returns with a short count or with the error EWOULDBLOCK if no
data were received.

SO_ERROR get and clear error on the socket (get only);
Finally, SO_ERROR is an option used only with getsockopt . SO_ERROR returns
any pending error on the socket and clears the error status. It may be used to
for asynchronous errors on connected datagram sockets or for other asynchro
errors.

IP level options
The following options are recognized at IP level, i.e. when level is IPPROTO_IP. Except as noted,
each may be examined with getsockopt and set with setsockopt .

IP_OPTIONS set IP options;
IP options are passed and returned in a struct ip_opts structure.

IP_HDRINCL application passes IP header in data for raw IP socket sends;
When the IP_HDRINCL option is active the application provides the IP header f
2-42 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference

rned

re
is
nt

ize is
outgoing datagrams on raw IP sockets at the beginning of the output data (sendto
call), ie. it provides the entire datagram. When the option is inactive the system
automatically prepends a default header.

IP_TOS set Type-Of-Service for outgoing datagrams;
set the Type-Of-Service byte for future outgoing datagrams.

IP_TTL set Time-To-Live for outgoing datagrams;
set the Time-To-Live byte for future outgoing datagrams.

IP_RECVDSTADDRreceive destination address of UDP datagrams;
saves destination IP address of incoming UDP datagrams. The address is retu
with recvfrom .

IP_RETOPTS see IP_OPTIONS

TCP level options
The following options are recognized at TCP level, i.e. when level is IPPROTO_TCP. Except as noted,
each may be examined with getsockopt and set with setsockopt .

TCP_NODELAY disable Nagle algorithm;
When the Nagle algorithm is enabled (default), small amounts of data to be sent a
buffered until the acknowledgement for a previously sent small amount of data
received. This reduces load on network with long delays (WANs). If it’s importa
that even these small segments are sent immediately TCP_NODELAY can be used to
disable the Nagle algorithm.

TCP_MAXSEG set maximum segment size;
Set a new maximum size of outgoing TCP segments. The maximum segment s
first set when a TCP connection is established. With TCP_MAXSEG the segment
size can be reduced.
Dr. Kaneff Engineering Consultants 2-43

Socket function reference EUROSplus TCP/IP Networking

S
A

setsockopt - Set options on sockets

Syntax:

#include <net/socket.h>

int setsockopt(int s, int level, int optname,
 const void *optval, int optlen);

Description:
Set socket option

Parameters:

s Socket descriptor

level Option level. May either be SOL_SOCKET or protocol number.

optname Name of option

optval Pointer to option value

optlen Size of option value

Return values:

OK Option successfully set

FAIL Error

See also:

getsockopt

Remarks:
See the remarks for getsockopt for a description of socket options.
2-44 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference

/

ket.
is

S
A

soioctl - Set I/O mode for socket

Syntax:

#include <net/socket.h>

int soioctl(int s, int cmd, void *data);

Description:
Set I/O mode for socket Parameters:

Parameters:

s Socket descriptor

cmd Ioctl command

data Pointer to ioctl data

Return values:

OK Operation successful

FAIL Error

See also:
-

Remarks:
The soioctl function sets or queries I/O modes for sockets. Valid values for cmd are:

FIONBIO Sets the socket into non-blocking or blocking I/O (default is blocking). data is
assumed to point to an int containing 0 for blocking I/O or !=0 for non-blocking I
O. In non-blocking mode, when a socket function is called that would block in
blocking mode, an error is reported and errno is set to EWOULDBLOCK.

FIONREAD Queries the number of bytes that are available for reading at the specified soc
data is assumed to point to an int . The number of data bytes are returned in th
variable.

SIOCATMARK data is assumed to point to an int . A value !=0 is returned in this variable when
out-of-band data is available at this socket. Otherwise 0 is returned.
Dr. Kaneff Engineering Consultants 2-45

Socket function reference EUROSplus TCP/IP Networking
2-46 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference

rt them
2.6 Internet address conversion
The internet address conversion functions are used to manipulate internet addresses and to conve
between textual representation and numeric representation.

Function prototypes, macros and data structures are defined in the C header file socket.h .
Dr. Kaneff Engineering Consultants 2-47

Socket function reference EUROSplus TCP/IP Networking

 to the

 the
or spec-

he right
ecifying

rrange-

he C
se, the

S
A

inet_addr - Convert text to Internet address

Syntax:

#include <net/socket.h>

u_long inet_addr(const char *cp);

Description:
Converts given textual representation of Internet address to numeric representation.

Parameters:

cp Pointer to textual representation

Return values:
Numeric representation of address in network byte order. INADDR_NONE is returned for invalid input.

See also:

inet_aton

Remarks:
Values specified using the notation take one of the following forms:

a.b.c.d
a.b.c
a.b
a

When four parts are specified, each is interpreted as a byte of data and assigned, from left to right,
four bytes of an Internet address.

When a three part address is specified, the last part is interpreted as a 16-bit quantity and placed in
right-most two bytes of the network address. This makes the three part address format convenient f
ifying Class B network addresses as 128.net.host.

When a two part address is supplied, the last part is interpreted as a 24-bit quantity and placed in t
most three bytes of the network address. This makes the two part address format convenient for sp
Class A network addresses as net.host.

When only one part is given, the value is stored directly in the network address without any byte rea
ment.

All numbers supplied as parts in a notation may be decimal, octal, or hexadecimal, as specified in t
language (i.e., a leading 0x or 0X implies hexadecimal; otherwise, a leading 0 implies octal; otherwi
number is interpreted as decimal).
2-48 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference

tring is

S
A

inet_aton - Convert text to Internet address

Syntax:

#include <net/socket.h>

int inet_aton(const char *cp, struct in_addr *addr);

Description:
Convert textual representation of internet address to numeric representation

Parameters:

cp Pointer to textual representation

addr Pointer to output buffer

Return values:

1 Address converted

0 Invalid input

Remarks:
The inet_aton routine interprets the specified character string as an Internet address, placing the
address into the structure provided. It returns 1 if the string was successfully interpreted, or 0 if the s
invalid.
Dr. Kaneff Engineering Consultants 2-49

Socket function reference EUROSplus TCP/IP Networking

 part.

S
A

inet_lnaof - Return local network address part

Syntax:

#include <net/socket.h>

u_long inet_lnaof(struct in_addr in);

Description:
Extract local network part from Internet address

Parameters:

in Internet address

Return values:
Local network part of address

See also:

inet_netof

Remarks:
The routine inet_lnaof breaks apart an Internet host address, returning the local network address
2-50 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference

ess

S
A

inet_netof - Return network part of address

Syntax:

#include <net/socket.h>

u_long inet_netof(struct in_addr in);

Description:
Extract network part from Internet address

Parameters:

in Internet address

Return values:
Network part of address

See also:

inet_lnaof

Remarks:
The routine inet_netof breaks apart an Internet host address, returning the network number addr
part.
Dr. Kaneff Engineering Consultants 2-51

Socket function reference EUROSplus TCP/IP Networking

n-

S
A

inet_makeaddr - Construct Internet address

Syntax:

#include <net/socket.h>

struct in_addr inet_makeaddr(u_long net, u_long host);

Description:
Construct Internet address from network part and host part.

Parameters:

net Network part of address

host Host part of address

Return values:
Constructed Internet address

See also:
-

Remarks:
The routine inet_makeaddr takes an Internet network number and a local network address and co
structs an Internet address from it.
2-52 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference

S
A

inet_network - Convert text to network address

Syntax:

#include <net/socket.h>

u_long inet_network(const char *cp);

Description:
Convert textual representation of network address to numeric representation

Parameters:

cp Textual representation of network address

Return values:
Numeric representation of network address in network byte order. INADDR_NONE is returned for invalid
input.

See also:

inet_addr

Remarks:
See inet_addr for a description of valid input strings.
Dr. Kaneff Engineering Consultants 2-53

Socket function reference EUROSplus TCP/IP Networking

ress.

S
A

inet_ntoa - Convert Internet address to text

Syntax:

#include <net/socket.h>

char *inet_ntoa(struct in_addr in);

Description:
The routine inet_ntoa takes an Internet address and returns an ASCII string representing the add

Parameters:

in Internet address

Return values:
Pointer to textual representation

See also:

inet_ntoa_r

Remarks:
The pointer returned by inet_ntoa points to task-local data buffer. Subsequent calls to inet_ntoa
overwrite the contents of this buffer. Tasks intending to call inet_ntoa must be created with the
TDP_USE_NET flag set in their Task Definition Parameters. Otherwise NULL is returned for every call to
inet_ntoa .

A re-entrant version of this call is provided, see inet_ntoa_r .
2-54 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference

e

S
A

inet_ntoa_r - Convert Internet address to text

Syntax:

#include <net/socket.h>

char *inet_ntoa_r(struct in_addr in, char *pDest);

Description:
The routine inet_ntoa_r takes an Internet address and returns an ASCII string representing the
address.

Parameters:

in Internet address

pDest Pointer to destination buffer

Return values:
Pointer to textual representation

See also:

inet_ntoa

Remarks:
This is a re-entrant version of the inet_ntoa call. The pointer returned by this call always points to th
destination buffer passed as parameter.
Dr. Kaneff Engineering Consultants 2-55

Socket function reference EUROSplus TCP/IP Networking
2-56 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference

ctions
fore

n
xecute

ach-

g the

h the

y is
2.7 Resolver functions
The resolver functions can be used to obtain host name information from a name server. These fun
use the Domain Name System (DNS) to obtain this information. The resolver must be initialized be
any query for information can be sent.

The function gethostbyname can be used to get the IP address for a given host name. The functio
gethostbyaddr can be used to get the host name for a given IP address. When these functions e
successfully the return a pointer to a struct hostent structure. The structure is local to the current
task, i.e. multiple tasks can use gethostbyname and gethostbyaddr concurrently. However, when
one task calls these functions, the information of the previous call is overwritten.

When gethostbyname and gethostbyaddr execute unsuccessfully NULL is returned and the global
variable h_errno contains one of the following values:

HOST_NOT_FOUNDThe specified host is unknown.

TRY_AGAIN The information can’t be obtained because of some temporary error (e.g. unre
able name server). The query may be repeated at a later time.

NO_RECOVERY The information can’t be obtained because of some permanent error. Repeatin
query will not help.

NO_DATA The specified host is known, but the requested information is not associated wit
host.

The structure struct hostent consists of the following fields:

h_name A pointer to the official name of the host.

h_aliases An array of pointers to alternative names of the host. The last pointer in the arra
NULL.

h_addrtype The type of the address. This field always contains AF_INET.

h_length The length of one address in bytes.

h_addr_list An array of pointers to addresses of the host. The last pointer in the array is NULL.

h_addr A pointer to the first address in h_addr_list .

Host names must always be fully qualified domain names (e.g. host.domain.com instead of host).
Addresses must always be given in network byte order.

The other resolver functions can be used for general name server queries.
Dr. Kaneff Engineering Consultants 2-57

Socket function reference EUROSplus TCP/IP Networking

-

-

P)

ork

A

res_init - Initialize resolver

Syntax:

#include <net/resolv.h>

int res_init(const tResolverConfig *pConfig);

Description:
Initialize the resolver and configure name servers.

Parameters:

pConfig Pointer to the structure containing configuration information. The structure tRe-
solverConfig is explaned below.

Return values:

OK The resolver was initialized successfully.

FAIL The resolver is not initialized.

See also:
-

Remarks:

res_init must be called before any other resolver function can be used.

The structure tResolverConfig contains the following fields:

retrans Retransmition time interval. This is a TimeLimit value (see Reference Manual,
chapter 1). The interval should be at least 5 seconds.

retry Number of times a query is sent to each name server.

nscount Number of name servers in nsaddr_list . A maximum of 3 name servers is sup
ported.

options Option flags. The following flags are defined:

RES_INIT The resolver is initialized. Do not use this flag.

RES_DEBUG Print debugging information on the console (Debug ver
sion only)

RES_USEVC Always use virtual connections (i.e. TCP instead of UD

RES_PRIMARY Query primary server only

RES_IGNTC Ignore trucation errors

RES_RECURSE Recursion desired

RES_STAYOPEN Leave TCP connections open

RES_DEFAULT Combination of default flags

nsaddr_list Array of name server addresses. Addresses and port numbers must be in netw
byte order.
2-58 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference

A

herror - Print text for current h_errno

Syntax:

#include <net/resolv.h>

void herror(const char *s);

Description:
Print error text for current h_errno value on console.

Parameters:

s Pointer to additional text. When this pointer is NULL only the text for h_errno is
printed.

Return values:
none

See also:
-

Remarks:
-

Dr. Kaneff Engineering Consultants 2-59

Socket function reference EUROSplus TCP/IP Networking

A

gethostbyname - Resolve host name

Syntax:

#include <net/resolv.h>

struct hostent *gethostbyname(const char *pName);

Description:
Query address information associated with the given host name.

Parameters:

pName Pointer to host name. The host name must be a fully qualified domain name.

Return values:

pData Pointer to host information.

NULL No host information retrieved. h_errno contains more specific information.

See also:

gethostbyaddr

Remarks:
The structure pointed to by the return value is local to the current task. The next call to gethostbyname
or gethostbyaddr by the same task will overwrite this information.
2-60 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference

A

gethostbyaddr - Resolve host address

Syntax:

#include <net/resolv.h>

struct hostent *gethostbyaddr(const struct in_addr *pAddr, size_t Len,
 int Type);

Description:
Query name information associated with the given address.

Parameters:

pAddr Pointer to Internet address. The address must be given in network byte order.

Len Length of the address in bytes.

Type Type of address. Must always be AF_INET.

Return values:

pData Pointer to host information.

NULL No host information retrieved. h_errno contains more specific information.

See also:

gethostbyname

Remarks:
The structure pointed to by the return value is local to the current task. The next call to gethostbyname
or gethostbyaddr by the same task will overwrite this information.
Dr. Kaneff Engineering Consultants 2-61

Socket function reference EUROSplus TCP/IP Networking

A

res_mkquery - Prepare query

Syntax:

#include <net/resolv.h>

ssize_t res_mkquery(int Op, const char *pName, uint16 Qclass,
 uint16 Type, const char *pData, size_t Datalen,
 u_char *pBuf, size_t Buflen);

Description:
Prepare a query to a name server. The query can be sent with res_send .

Parameters:

Op Operation type. This parameter can be QUERY for standard queries or IQUERY for
inverse queries.

pName Pointer to the name to query.

Qclass Query class. This Parameter can be any of the C_* macros defined in resolv.h .

Type Query type. This Parameter can be any of the T_* macros defined in resolv.h .

pData Pointer to additional data to be sent. May be NULL.

Datalen Length of the additional data in bytes.

pBuf Pointer to the buffer receiving the query.

Buflen Length of the buffer in bytes.

Return values:

Size Size of the resulting query in bytes.

FAIL An error occured.

See also:

res_send

Remarks:
-

2-62 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference

A

res_send - Send query

Syntax:

#include <net/resolv.h>

ssize_t res_send(const u_char *pBuf, size_t Buflen,
 u_char *pAnswer, size_t Anslen);

Description:
Send query to name servers and receive reply. The query has been prepared with res_mkquery .

Parameters:

pBuf Pointer to buffer containing the query.

Buflen Length of the query in bytes.

pAnswer Pointer to a buffer receiving the reply.

Anslen Length of the buffer pointed to by pAnswer .

Return values:

Size Length of the reply.

FAIL An error occured.

See also:

res_mkquery

Remarks:
-

Dr. Kaneff Engineering Consultants 2-63

Socket function reference EUROSplus TCP/IP Networking

A

dn_comp - Compress domain name

Syntax:

#include <net/resolv.h>

int dn_comp(const u_char *exp_dn, u_char *comp_dn, int length,
 u_char **dnptrs, u_char **lastdnptr);

Description:
Compress domain name

Parameters:

exp_dn Pointer to expanded domain name

comp_dn Pointer to buffer for compressed domain name

length Length of buffer

dnptrs List of pointers to previous compressed names

lastdnptr Pointer to the end of the arrary pointed to by dnptrs

Return values:

Size Size of the compressed name

FAIL An error occured.

See also:

dn_expand

Remarks:
Domain name compression is described in RFC-1035.
2-64 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference

A

dn_expand - Expand compressed domain name

Syntax:

#include <net/resolv.h>

int dn_expand(const u_char *msg, const u_char *eomorig,
 const u_char *comp_dn, u_char *exp_dn, int length)

Description:
Expand compressed domain name

Parameters:

msg Pointer to the beginning of the message

eomorig Pointer to the first location after the message

comp_dn Pointer to compressed domain name

exp_dn Pointer to buffer for expanded domain name

length Length of buffer

Return values:

Size Size of the compressed name

FAIL An error occured.

See also:

dn_comp

Remarks:
Domain name compression is described in RFC-1035.
Dr. Kaneff Engineering Consultants 2-65

Socket function reference EUROSplus TCP/IP Networking
2-66 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference

oes not

s to the

2.8 BOOTP functions
BOOTP functions are used to obtain an IP address from a BOOTP server. The requesting system d
need to have a preconfigured IP address. It uses the MAC address of the network interface to identify itself
to the BOOTP server. The server then responds to the BOOTP requests and assigns an IP addres
client system.

To use BOOTP functions the network component must be initialized (NetInit) and at least one interface
must be attached (netctl). The interface must be enabled.
Dr. Kaneff Engineering Consultants 2-67

Socket function reference EUROSplus TCP/IP Networking

must be

A

BootRequest - Request IP address with BOOTP

Syntax:

#include <net/bootp.h>

int BootRequest(const char *pInterfaceName, int NumTries)

Description:
Request an IP address from a BOOTP server using the BOOTP protocol.

Parameters:

pInterfaceName Name of the interface for which an IP address is to be obtained.

NumTries Maximum number of tries to send a request and wait for a reply.

Return values:

OK The address was successfully obtained.

FAIL An error occured.

See also:

netctl

Remarks:
The interface name is the same as the one used to attach the interface to the network component. The inter-
face must be able to send broadcasts and must have a valid media access address. The interface
enabled.

NumTries is internally limited to 10.

The network mask of the interface is set according to the class of the obtained address.
2-68 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Socket function reference

r.

nd to

r

nnec-

roto-

r to

e
2.9 errno values
When socket functions indicate an error, the external variable errno is set to a value describing the erro
These error values are defined in the C header file errno.h . In addition to standard errno values (see
the EUROSplus Reference Manual) the following network specific values may be returned:

EADDRINUSE Address already in use. This error is generated when two sockets are to be bou
the same IP address/port number pair.

EADDRNOTAVAIL Can’t assign requested address

EAFNOSUPPORT Address family not supported by protocol family. The EUROS Network Manage
only supports the AF_INET address family.

ECONNABORTED Software caused connection abort

ECONNREFUSED Connection refused by peer. The peer may have no server running to accept co
tions for the given port number.

ECONNRESET Connection was reset by peer. This usually happens when the peer detects a p
col error or when it terminates the connection.

EDESTADDRREQ The operation requires a destination address but was not given.

EHOSTDOWN Host is down. This error is generated when the destination host doesn’t answe
ARP requests.

EHOSTUNREACH No route to host

EISCONN Socket is already connected. This happens when connect is called more than once
for a stream socket.

EMSGSIZE Message too long. The protocol can only handle shorter messages.

ENETDOWN Network is down

ENETUNREACH The network of the given destination address is unreachable, i.e. there is no route to
the destination network.

ENOBUFS No buffer space available

ENOPROTOOPT Protocol not available

ENOTCONN Socket is not connected while an established connection is required

ENOTSOCK The descriptor passed to a socket function is not a socket descriptor.

EOPNOTSUPP Operation not supported

EPFNOSUPPORT Protocol family not supported. The EUROS Network Manager only supports th
PF_INET protocol family.

EPROTONOSUPPORTThe given protocol is not supported

EPROTOTYPE The given protocol type is not supported

ETIMEDOUT Operation timed out
Dr. Kaneff Engineering Consultants 2-69

Socket function reference EUROSplus TCP/IP Networking
2-70 Dr. Kaneff Engineering Consultants

EUROSplus TCP/IP Networking Index

9

0
5

4

1
4

2
3

5

4

8

3
3

7
8
5

Index

A
accept. .2-21
AF_INET . 1-6, 2-69
ARP.1-3, 1-9, 2-7, 2-69

B
bind .2-19
BootRequest .2-68
bswap. .2-34
buffer .2-4

C
Client .1-5
cluster. .2-4
connect. 2-14, 2-17, 2-69
Connection .1-5

D
datagram. .2-14
descriptor .2-14
dn_comp. .2-64
dn_expand. .2-65
DNS. .2-57

E
EAGAIN . 2-24, 2-25
ECONNREFUSED. .2-20
EMSGSIZE. .2-28
EPIPE. 2-15, 2-41
errno. 2-15, 2-69
ETIME .2-14

F
fully qualified domain names2-57

G
gethostbyaddr. 2-57, 2-61
gethostbyname. 2-57, 2-60
gethostname. .2-10
getpeername. .2-38
getsockname .2-39
getsockopt. 2-15, 2-24, 2-40

H
h_errno. .2-57
herror. .2-59
host byte. .2-30
Host byte order. .1-5
HOST_NOT_FOUND.2-57
htonl. .2-30
htons .2-31

I
ICMP . 1-9, 2-7

INADDR_ANY . 1-5
inet_addr . 2-48
inet_aton . 2-49
inet_lnaof. 2-50
inet_makeaddr . 2-52
inet_netof. 2-51
inet_network. 2-53
inet_ntoa . 2-54
inet_ntoa_r. 2-55
IP . 1-
IP level options. 2-42

L
listen. 2-2
lswap . 2-3

M
main(). 2-
MSG_DONTROUTE.2-27, 2-28
MSG_OOB 2-24, 2-25, 2-27, 2-28
MSG_PEEK. .2-24, 2-25
MSG_WAITALL 2-24, 2-25

N
netctl. 1-3, 2-5, 2-10, 2-1
NetInit. 2-
Network byte order . 1-5
network byte order. 2-30
NO_DATA . 2-57
NO_RECOVERY . 2-57
ntohl . 2-3
ntohs. 2-3

O
out-of-band . 2-14

P
Peer . 1-
PF_INET. .2-14, 2-69

R
recv .2-14, 2-2
recvfrom .2-15, 2-25
res_init . 2-5
res_mkquery. 2-62
res_send. 2-6
resolver. 1-

S
send .2-14, 2-2
sendto .2-15, 2-2
Server . 1-
sethostname .2-10, 2-11
setsockopt .2-15, 2-44
Dr. Kaneff Engineering Consultants i

Index EUROSplus TCP/IP Networking

4

4

shutdown. .2-18
SO_LINGER. 2-16, 2-40
SO_RCVLOWAT. 2-24, 2-25
SO_RCVTIMEO 2-24, 2-25, 2-40
SO_SNDTIMEO .2-40
SOCK_DGRAM. 2-14, 2-15, 2-17
SOCK_RAW. 2-14, 2-15
SOCK_STREAM 2-14, 2-17, 2-21
socket. 2-4, 2-14
Socket level options. .2-41
soclose . 2-14, 2-16
soioctl. 1-3, 2-45
SOL_SOCKET. .2-40
stream. .2-14

struct hostent . 2-57
struct sockaddr . 1-6
struct sockaddr_in . 1-6
system memory. 2-4

T
TCP 1-6, 1-7, 1-9, 2-1
TCP level options . 2-43
thread stack . 1-5
tResolverConfig . 2-58
TRY_AGAIN . 2-57

U
UDP .1-9, 2-1
ii Dr. Kaneff Engineering Consultants

	EUROSplus TCP/IP Networking
	Chapter 1 Socket programming guide
	1.1 Installation
	1.1.1 Files
	1.1.2 Debug version/No-Debug version
	1.1.3 Attaching network interfaces to the network component

	1.2 Socket programming
	1.2.1 Definitions
	1.2.2 Preparing tasks for network programming
	1.2.3 Basic data structures
	1.2.4 Typical TCP client application
	1.2.5 Typical TCP server application

	1.3 Technical information
	1.3.1 Supported features
	1.3.2 Changes compared to BSD sockets

	Chapter 2 Socket function reference
	2.1 Initialization and configuration
	NetInit - Initialize network component
	netctl - Set parameters of network component
	gethostname - Get name of current host
	sethostname - Set name of current host

	2.2 Main socket calls
	socket - Create an endpoint for communication
	soclose - Close a socket
	connect - Initiate a connection on a socket
	shutdown - shut down part of a full-duplex connection
	bind - Bind a socket to an address
	listen - Listen for connections on a socket
	accept - Accept a connection on a socket

	2.3 Data transfer
	recv - Receive a message from a socket
	recvfrom - Receive datagram
	send - Send a message from a socket
	sendto - Send message

	2.4 Byte order conversion
	htonl - Convert byte order
	htons - Convert byte order
	ntohl - Convert byte order
	ntohs - Convert byte order
	bswap - Swap bytes of a 16 bit value
	lswap - Swap bytes of a 32 bit value

	2.5 Socket utility functions
	getpeername - Get address of connected peer
	getsockname - Get socket address
	getsockopt - Get options on sockets
	setsockopt - Set options on sockets
	soioctl - Set I/O mode for socket

	2.6 Internet address conversion
	inet_addr - Convert text to Internet address
	inet_aton - Convert text to Internet address
	inet_lnaof - Return local network address part
	inet_netof - Return network part of address
	inet_makeaddr - Construct Internet address
	inet_network - Convert text to network address
	inet_ntoa - Convert Internet address to text
	inet_ntoa_r - Convert Internet address to text

	2.7 Resolver functions
	res_init - Initialize resolver
	herror - Print text for current h_errno
	gethostbyname - Resolve host name
	gethostbyaddr - Resolve host address
	res_mkquery - Prepare query
	res_send - Send query
	dn_comp - Compress domain name
	dn_expand - Expand compressed domain name

	2.8 BOOTP functions
	BootRequest - Request IP address with BOOTP

	2.9 errno values

	Index

