
Dr. Kaneff Engineering Consultants

Enhanced Universal Realtime Operating System

EUROSvm

EUROS Virtual Machine
Issue 02/2000
EUROSvm - The Key to Java

EUROSvm is an implementation of the Java
Virtual Machine Specification V1.2. It has
been designed for real-time and embedded
systems and offers unparalleled support for
these target domain. Among the extraordi-
nary features of EUROSvm are

• Hard real-time execution
• Minimal footprint
• ROMizable code
• Native code support
• Dynamic Linking
• Portability
• Fast execution
• Powerful Tools

Hard Real-Time Execution

The EUROSvm provides hard real-time
guarantees for all features of the lan-
guages. This includes dynamic memory
management, which is performed by the
garbage collector. All threads executed by
the EUROSvm are real-time threads, there
is no need to distinguish real-time from non-
real-time threads. Any higher priority thread
is guaranteed to be able to pre-empt lower
priority threads within a fixed worst-case
delay. No language restrictions for real-time
code: Since all code is real-time code, even
real-time tasks can use the full Java lan-
guage, i.e., allocate objects, call library
functions, etc. No special care is needed,

short worst-case execution delays can be
given for any code.

Minimal footprint

The Virtual Machine itself occupies just
about 120kB of memory (depending on the
target platform). The biggest part of the
memory required to store a Java applica-
tions is typically the space needed for the
application's class files. Several measures
are taken to minimize the memory needed
for Java classes:

• Compaction: Classes are represented in
an efficient and compact format to re-
duce the overall size of the application.

• Smart Linking: The EUROSvm analy-
ses the Java application to detect and
remove any code and data that cannot
be accessed at run-time.

The compaction and smart linking process
can be controlled by the user to ensure opti-
mal performance. Compaction typically
reduces the size of applications by over
50%, while smart linking allows for much
higher gains of well over 90% even for non-
trivial applications!

ROMizable code
The EUROSvm allows class files to be
linked with the Virtual Machine code into a
standalone executable. This allows romiza-
tion since all files required by a Java appli-
cation are packed into this executable that

Dr. Kaneff Engineering Consultants
Neutorgraben 17
D-90419 Nürnberg, Germany
Tel. +49-911-33 84 33
Fax +49-911-33 86 06
e-Mail: info@kaneff.de
Web: http://www.kaneff.de

can be loaded into flash-memory or burned
into ROM. There is no need for file-systems
support on the target platform, all data
required for execution is contained in the
romized application.

Native code support
The EUROSvm implements the Java Native
Interface V1.2. This allows for direct embed-
ding of existing native code into your Java
applications, or to encode hardware-
accesses and performance-critical code
sections in C or machine code routines. The
usage of the Java Native Interface provides
execution security even with the presence
of native code, while binary compatibility
with other Java implementations is ensured.

Unlike other implementations, EUROSvm
provides exact garbage collection even with
the presence of native code. Real-time
guarantees for the Java codes are not
affected by the presence of native code.

Dynamic Linking

One of the most outstanding features of
Java is the ability to dynamically load code
in the form of classes during execution, be it
from local files or from a remote server. The
EUROSvm support this dynamic class load-
ing enabling the full power of Java for your
applications. Any softwarecomponent can
be loaded dynamically, allowing on-the-fly
reconfiguration, hot swapping of code,
dynamic additions of new features, applet
execution, ...

Fast Execution
The Interpreter performs several selected
optimizations to ensure optimal perfor-
mance of the Java code. Current implemen-
tations of Java use just-in-time compilation
technologies that are not applicable in real-
time systems: The initial delay for compila-
tion is breaking all real-time constraints.

The Compilation Technology attacks the
performance in a new way:

First, methods and classes can selectively
be compiled as a part of the Romization
process. C-code is used as target code,
allowing easy porting to different target plat-
forms.

Second, classes that are loaded dynami-
cally can be compiled at class-load-time.
Since class-loading is not a real-time opera-
tion, the compilation does not break real-
time constraints as a Just-In-Time compiler-
does. Nevertheless, fully optimised compiler
code can be generated even for any code
that is dynamically loaded at run-time.

The Compiler is tightly integrated with the
memory management system, allowing for
highest performance and reliable real-time
behaviour. No conservative reference find-
ing code is required, allowing fully exact and
predictable garbage collection.

Powerful Tools
The EUROSvm comes with a set of tools
that support the development for real-time
and embedded systems:

• Romizer: A tool for creating a single exe-
cutable image out of the Virtual Machine
and a set of Java classes. This image
can be loaded into flash-memory or
ROM, avoiding the need for a file-sys-
tem in the target platform.

• Memory Analyser: For most efficient
memory usage, this tool finds the
amount of memory that is actually used
by an application.

• Profiler: The profiler can be used to de-
termine an application's hot spots, so
that they can be optimised further. The
information obtained from the profiler
can also be used to guide the compiler,
so that compilation is restricted to the
most important methods, reducing the
memory overhead of compiled code.

	EUROSvm - The Key to Java
	Hard Real-Time Execution
	Minimal footprint
	ROMizable code
	Native code support
	Dynamic Linking
	Fast Execution
	Powerful Tools

