# F<sup>2</sup>MC-8L FAMILY MICROCONTROLLERS

MB89150/150A SERIES HARDWARE MANUAL



# 1. GENERAL

| I.1 Features                 | . 1-3  |
|------------------------------|--------|
| I.2 Product Series           | . 1-4  |
| I.3 Block Diagram            | . 1-5  |
| I.4 Pin Assignment           | . 1-6  |
| 1.5 Pin Function Description | . 1-10 |
| I.6 Handling Devices         | . 1-15 |



The MB89150 and MB89150A series microcontrollers contain various resources such as an LCD controller/driver, timers, serial interfaces, a remote-control carrier frequency generator, and external interrupts, including the compact instruction system.

### 1.1 Features

- CPU core common to MB89600 series
- Double-clock pulse control
- Maximum memory space: 64K bytes
- Minimum instruction execution time: 0.95 μs at 4.2 MHz
- I/O ports: Max. 43
- 21-bit time-base counter
- 8/16-bit PWM timer/counter: 1 channel
- 8-bit serial I/O: 1 channel
- External interrupt input: 4 pins (Edge selection enabled) + 8 pins (Level interrupt)
- Buzzer output
- 15-bit watch prescaler
- LCD controller/driver with 36 segment outputs x 4 common outputs (max. 144 pixels)
- Built-in reference voltage generator and booster for driving LCD
- Built-in remote-control carrier frequency generator
- Internal power-on reset
- Low-power consumption modes (stop mode, sleep mode and watch mode)
- Package: QFP-80, SQFP-80
- CMOS technology



### 1.2 Product Series

Table 1-1 lists the types and functions of the MB89150 series of microcontrollers.

Table 1-1 Types and Functions of MB89150 Series of Microcontrollers

| Model Name                       | MB89151/A                                                                         | MB89152/A                                                                                                                                                                                                                                    | MB89153/A        | MB89154/A        | MB89155/A         | MB89P155/A      | MB89PV150                          |  |  |  |
|----------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|-------------------|-----------------|------------------------------------|--|--|--|
| Classification                   | Mass-produced product (mask ROM product)  Temporary product (small scale product) |                                                                                                                                                                                                                                              |                  |                  |                   |                 |                                    |  |  |  |
| ROM capacity                     | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                            |                                                                                                                                                                                                                                              |                  |                  |                   |                 | 32 K × 8 bits<br>(External<br>ROM) |  |  |  |
| RAM capacity                     | 128 × 8 bits                                                                      |                                                                                                                                                                                                                                              |                  | 256 × 8 b        | its               |                 | 512 × 8 bits                       |  |  |  |
| CPU functions                    |                                                                                   | Number of basic instructions Instruction bit length Instruction length Data bit length Minimum instruction execution time Interrupt processing time  Number of basic instructions 8 bits 1 to 3 bytes 1 to 3 bytes 1 to 3 bytes 9 us/4.2 MHz |                  |                  |                   |                 |                                    |  |  |  |
| Port                             | I/O port (N<br>Output port<br>I/O port (O<br>Output por<br>Total                  | ırrent                                                                                                                                                                                                                                       |                  |                  |                   |                 |                                    |  |  |  |
| Timer counter                    |                                                                                   | 2 channels f                                                                                                                                                                                                                                 | or 8-bit timer c | ounter or 1 cha  | annel for 16-bi   | t event counter |                                    |  |  |  |
| Serial I/O                       | 8-bit lengtl<br>Selectable                                                        |                                                                                                                                                                                                                                              | nificant bit (LS | B) first or most | t significant bit | (MSB) first     |                                    |  |  |  |
| LCD controller<br>and driver     | Common of<br>Segment of<br>Biased po<br>RAM capa<br>Built-in ref<br>Built-in div  | Reference<br>voltage<br>generator<br>and booster<br>for driving<br>LCD not<br>built in                                                                                                                                                       |                  |                  |                   |                 |                                    |  |  |  |
| Number of external interrupts    | 4 (selectal<br>8 (interrup                                                        | ole from rising<br>t for level only                                                                                                                                                                                                          | edge, falling e  | dge, or both ed  | dges)             |                 |                                    |  |  |  |
| Buzzer output                    | 1 (7-type f                                                                       | requencies ar                                                                                                                                                                                                                                | e programmab     | le)              |                   |                 |                                    |  |  |  |
| Remote-control carrier frequency | 1 (pulse width and cycle are programmable)                                        |                                                                                                                                                                                                                                              |                  |                  |                   |                 |                                    |  |  |  |
| Standby mode                     | Watch, sub, sleep, and stop modes                                                 |                                                                                                                                                                                                                                              |                  |                  |                   |                 |                                    |  |  |  |
| Process                          | CMOS                                                                              |                                                                                                                                                                                                                                              |                  |                  |                   |                 |                                    |  |  |  |
| Package*1                        | QFP-80, SQFP-80                                                                   |                                                                                                                                                                                                                                              |                  |                  |                   |                 |                                    |  |  |  |
| Operating voltage*2              | 2.2 to 6.0 V 2.7 to 6.0 V                                                         |                                                                                                                                                                                                                                              |                  |                  |                   |                 |                                    |  |  |  |
| EMROM used                       |                                                                                   |                                                                                                                                                                                                                                              | MBM              | 127C256A-25 (    | LCC package)      | )               |                                    |  |  |  |

<sup>\*1:</sup> Refer to the data sheet for the detail of each package

1-4

<sup>\*2:</sup> Operating voltage varies depending to the condition such as frequency or others. Operation under 2.2 volt will be provided individually.

<sup>\*3:</sup> Selected by the mask option.

### 1.3 Block Diagram

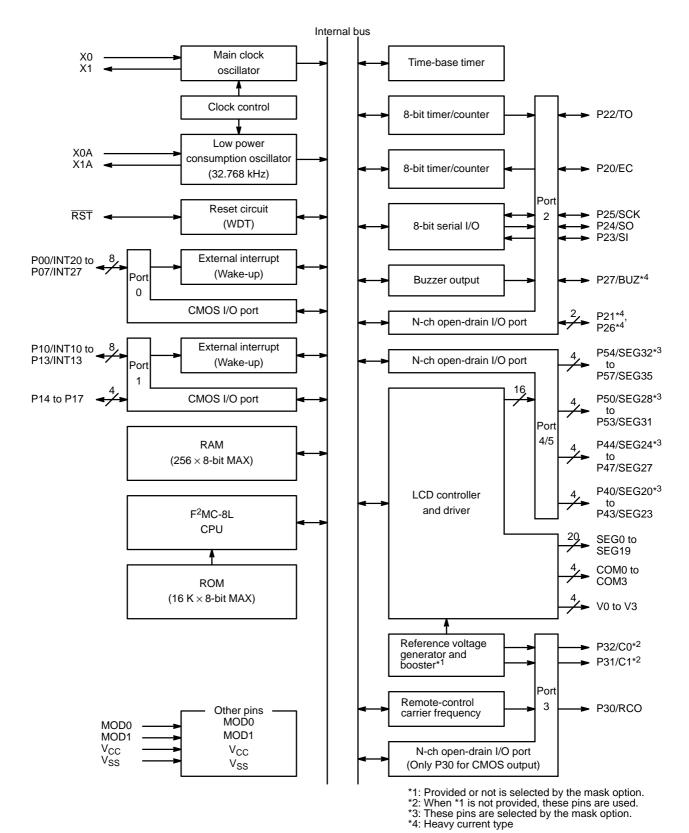



Fig. 1.1 Block Diagram (Mass-produced product)



### 1.4 Pin Assignment

The production of this type is under consideration

Model with this pin assignment: MB8915X/P155

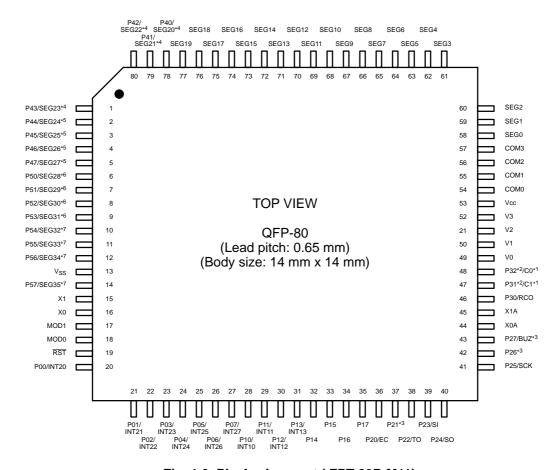



Fig. 1.2 Pin Assignment (FPT-80P-M11)

- \*1: Microcontrollers with built-in booster
- \*2: Microcontrollers without built-in booster
- \*3: N-ch open-drain heavy current type
- \*4 to \*7: These pins are selected by the mask option at four pins.

Model with this pin assignment: MB8915X/P155

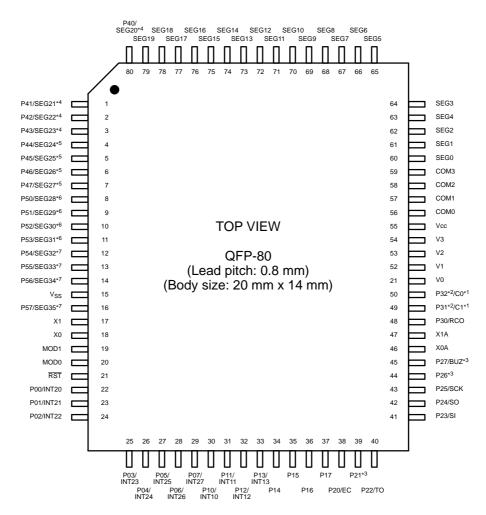



Fig. 1.3 Pin Assignment (FPT-80P-M06)

- \*1: Microcontrollers with built-in booster
- \*2: Microcontrollers without built-in booster
- \*3: N-ch open-drain heavy current type
- \*4 to \*7: These pins are selected by the mask option at four pins.

Model with this pin assignment: MB8915X/P155

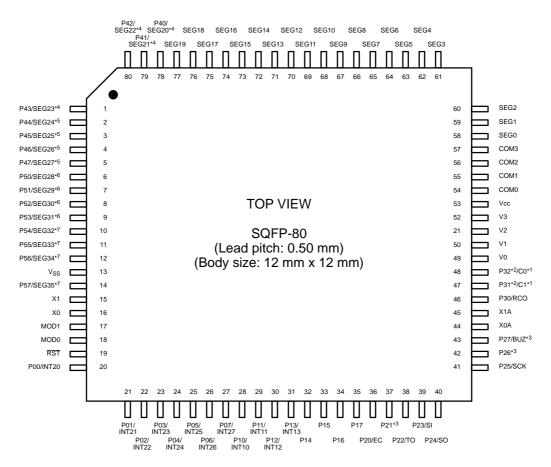



Fig. 1.4 Pin Assignment (FPT-80P-M05)

- \*1: Microcontrollers with built-in booster
- \*2: Microcontrollers without built-in booster
- \*3: N-ch open-drain heavy current type
- \*4 to \*7: These pins are selected by the mask option at four pins.

Model with this pin assignment: MB8915X/P155

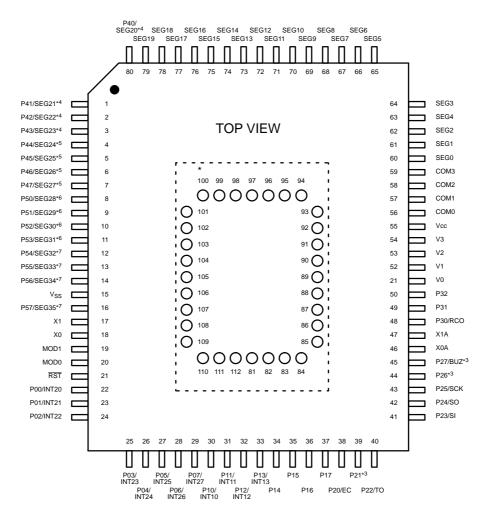



Fig. 1.5 Pin Assignment (MQP-80C-P01)

\*3: N-ch open-drain heavy current type

\*4 to \*7: These pins are selected by the mask option at four pins.



## 1.5 Pin Function Description

Table 1-2 and Table 1-3 lists the pin function and Table 1-3 shows the input/output circuit configurations.

**Table 1-2 Pin Function Description** 

| Pin No.  |          |                              | Cinavit         |                                                                                                                                                                                                              |  |
|----------|----------|------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| QFP 0.65 | QFP 0.80 | Pin Name                     | Circuit<br>type | Function                                                                                                                                                                                                     |  |
| 16       | 18       | X0                           | ^               | Crystal oscillator pins for main clock (Max. 10 MHz)                                                                                                                                                         |  |
| 15       | 17       | X1                           | A               | CR oscillation available (only for mask product)                                                                                                                                                             |  |
| 18       | 20       | MOD0                         | В               | Operation-mode select pins These pins are connected directly to V <sub>SS</sub> .                                                                                                                            |  |
| 17       | 19       | MOD1                         | В               | These pins are connected directly to V <sub>SS</sub> .                                                                                                                                                       |  |
| 19       | 21       | RSTX                         | С               | Reset I/O pin This pin consists of an N-ch open-drain output with a pull-up resistor and hysteresis input. A Low level is output from this pin. The internal circuit is initialized at input of a Low level. |  |
| 20 to 27 | 22 to 29 | P00/INT20<br>to<br>P07/INT27 | D               | General-purpose I/O ports These ports also serve as external interrupt 2 input (wake-up input) pins. Input is hysteresis type.                                                                               |  |
| 28 to 31 | 30 to 33 | P10/INT10<br>to<br>P13/INT13 | D               | General-purpose I/O ports  These ports also serve as pins for input of external interrupt 1. Input of external interrupt 1 is hysteresis type.                                                               |  |
| 32 to 35 | 34 to 37 | P14 to P17                   | Е               | General-purpose I/O port                                                                                                                                                                                     |  |
| 36       | 38       | P20/EC                       | G               | N-ch open-drain type general-purpose I/O port This port also serves as an external clock input pin for the timer. The resource is hysteresis input.                                                          |  |
| 37       | 39       | P21                          | Н               | N-ch open-drain type general-purpose I/O port                                                                                                                                                                |  |
| 38       | 40       | P22/TO                       | Н               | N-ch open-drain type general-purpose I/O port This port also serves as an timer output pin                                                                                                                   |  |
| 39       | 41       | P23/SI                       | G               | N-ch open-drain type general-purpose I/O port This port also serves as an serial I/O data input pin. The resource is hysteresis input                                                                        |  |
| 40       | 42       | P24/SO                       | Н               | N-ch open-drain type general-purpose I/O port This port also serves as an serial I/O data output pin.                                                                                                        |  |
| 41       | 43       | P25/SCK                      | G               | N-ch open-drain type general-purpose I/O port This port also serves as an serial I/O clock output pin. The resource is hysteresis input                                                                      |  |
| 42       | 44       | P26                          | Н               | N-ch open-drain type general-purpose I/O port                                                                                                                                                                |  |
| 43       | 45       | P27/BUZ                      | Н               | N-ch open-drain type general-purpose I/O port This port also serves as an buzzer output pin                                                                                                                  |  |
| 48       | 50       | P32                          | I               | This port serves as an N-ch open-drain type general-purpose output port only for microcontrollers without built-in booster.                                                                                  |  |
| 70       | 50       | C0                           | _               | This port serves as a capacitor connecting pin for microcontrollers with a built-in booster.                                                                                                                 |  |
| 47       | 49       | P31                          | I               | This port serves as an N-ch open-drain type general-purpose output port only for microcontrollers without a built-in booster.                                                                                |  |
| 71       | 70       | C1                           | _               | This port serves as a capacitor connecting pin for microcontrollers with a built-in booster.                                                                                                                 |  |

(Continued)

1-10



| Pin                  | No.                  |                              | Circuit |                                                                                                                                                   |
|----------------------|----------------------|------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| QFP 0.65             | QFP 0.80             | Pin Name                     | type    | Function                                                                                                                                          |
| 46                   | 48                   | P30/RCO                      | F       | General-purpose output-only port This port also serves as a remote-control carrier frequency output pin.                                          |
| 14 to 6              | 16 to 8              | P57/SEG35<br>to<br>P50/SEG28 | I/J     | N-ch open-drain type general-purpose output ports These ports also serve as LCDC segment output pins. They should be switched by the mask option. |
| 5 to 78              | 7 to 80              | P47/SEG27<br>to<br>P40/SEG20 | I/J     | N-ch open-drain type general-purpose output ports These ports also serve as LCDC segment output pins. They should be switched by the mask option. |
| 58 to 77             | 60 to 79             | SEG0 to<br>SEG19             | J       | LCDC segment output-only pins                                                                                                                     |
| 57<br>56<br>55<br>54 | 59<br>58<br>57<br>56 | COM3<br>COM2<br>COM1<br>COM0 | J       | LCDC common output-only pins                                                                                                                      |
| 52<br>51<br>50<br>49 | 54<br>53<br>52<br>51 | V3<br>V2<br>V1<br>V0         | _       | Power pins for driving LCD                                                                                                                        |
| 44                   | 46                   | X0A                          | A'      | Low-speed clock pulse oscillation pin (32 KHz)                                                                                                    |
| 45                   | 47                   | X1A                          |         | 2011 Speed Stook pulse oscillation pill (oz 1412)                                                                                                 |
| 53                   | 55                   | V <sub>CC</sub>              |         | Power pin                                                                                                                                         |
| 13                   | 15                   | V <sub>SS</sub>              | _       | Power (GND) pin                                                                                                                                   |



Table 1-3 Pins for External ROM

| Pin No.                                      |                                                     |              |                                                                     |
|----------------------------------------------|-----------------------------------------------------|--------------|---------------------------------------------------------------------|
| QFP 0.80                                     | Pin Name                                            | Circuit type | Function                                                            |
| 82                                           | $V_{PP}$                                            | Output       | High-level output pin                                               |
| 83<br>84<br>85<br>86<br>87<br>88<br>89<br>90 | A12<br>A7<br>A6<br>A5<br>A4<br>A3<br>A2<br>A1<br>A0 | Output       | Address-output pins                                                 |
| 93<br>94<br>95                               | 01<br>02<br>03                                      | Input        | Data-input pins                                                     |
| 96                                           | V <sub>SS</sub>                                     | Output       | Power (GND) pin                                                     |
| 98<br>99<br>100<br>101<br>102                | 04<br>05<br>06<br>07<br>08                          | Input        | Data-input pins                                                     |
| 103                                          | CEX                                                 | Output       | Chip-enable pin for ROM A High level is output in the standby mode. |
| 104                                          | A10                                                 | Output       | Address-output pin                                                  |
| 105                                          | OEX                                                 | Output       | Output-enable pin for ROM A Low level is always output.             |
| 107<br>108<br>109                            | A11<br>A9<br>A8                                     | Output       | Address-output pins                                                 |
| 110                                          | A13                                                 | Output       | Address-output pin                                                  |
| 111                                          | A14                                                 | Output       | Address-output pin                                                  |
| 112                                          | V <sub>CC</sub>                                     | Output       | Power pin for EPROM                                                 |
| 81<br>92<br>97<br>106                        | NC                                                  | _            | Internal-connection pins. These pins must always be kept open.      |



**Table 1-4 Input/Output Circuit Configurations** 

| Classification | Circuit                                  | Remarks                                                                                                                       |
|----------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| А              | X1<br>X0<br>X0<br>Standby control signal | Used for high speed pulse • Feedback resistor: About 2 MΩ                                                                     |
| A'             | Standby control signal                   | Used for low speed pulse                                                                                                      |
| В              |                                          | Hysteresis input                                                                                                              |
| С              | R Pch                                    | <ul> <li>Output pull-up resistor (P-ch): About 50 kΩ (5 V)</li> <li>Hysteresis input</li> </ul>                               |
| D              | Pch Nch Port Resource                    | CMOS input/output     The resource is hysteresis input.      The pull-up resistor is available (not available for MB89PV150). |
| E              | Pch                                      | CMOS input/output      The pull-up resistor is available (not available for MB89PV150).                                       |

(Continued)



| Classification | Circuit     | Remarks                                                                                                                                                                                                                   |
|----------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F              | Pch         | CMOS output     Pch is driven with heavy current                                                                                                                                                                          |
| G              | Nch         | N-ch open-drain input/output CMOS input The resource is hysteresis input.                                                                                                                                                 |
|                | Resource    | The pull-up resistor is available (not available for<br>MB89P155 and MB89PV150).                                                                                                                                          |
| Н              | Nch         | <ul> <li>N-ch open-drain input/output</li> <li>CMOS input</li> <li>P21, P26, and P27 are heavy-current drive type pins.</li> <li>The pull-up resistor is available (not available for MB89P155 and MB89PV150).</li> </ul> |
|                |             | N-ch open-drain output                                                                                                                                                                                                    |
| l              | Nch         | The pull-up resistor is available (not available for MB89P155 and MB89PV150). P31 and P32 are not provided with a resistor.                                                                                               |
| J              | Pch Nch Nch | LCDC segment output                                                                                                                                                                                                       |



### 1.6 Handling Devices

### (1) Preventing latch-up

Latch-up may occur if a voltage higher than  $V_{CC}$  or lower than Vss is applied to the input or output pins other than port 4, or if voltage exceeding the rated value is applied between  $V_{CC}$  and  $V_{SS}$ .

When latch-up occurs, the supply current increases rapidly, sometimes resulting in overheating and destruction. Therefore, no voltage exceeding the maximum ratings should be used.

### (2) Handling unused input pins

Leaving unused input pins open may cause a malfunction. Therefore, these pins should be set to pull-up or pull-down.

(3) Always set NC (internal connections) open.

### (4) Variations in supply voltage

Although the specified  $V_{CC}$  supply voltage operating range is assured, a sudden change in the supply voltage within the specified range may cause a malfunction. Therefore, the voltage supply to the IC should be kept as constant as possible. The  $V_{CC}$  ripple (P-P value) at the supply frequency (50 - 60 Hz) should be less than 10% of the typical  $V_{CC}$  value, or the coefficient of excessive variation should be 0.1 V/ms max. instantaneous change when the power supply is switched.

### (5) Precautions for external clocks

It takes some time for oscillation to stabilize after changing the mode to power-on reset (option selection) and stop. Consequently, an external clock must be input.

# 2. HARDWARE CONFIGURATION

 2.1 CPU
 2-3

 2.2 Resource Functions
 2-22



### 2.1 CPU

This section describes the CPU hardware composition. The CPU has the following six functions.

- Memory Space
- Arrangement of 16-bit Data in Memory
- Registers
- Operation Modes
- Clock Control Block
- Interrupt Controller

### 2.1.1 Memory space

The MB89150 series of microcontrollers have a memory area of 64K bytes. All I/O, data, and program areas are located in this space. The I/O area is near the lowest address and the data area is immediately above it. The data area may be divided into register, stack, and direct-address areas according to the applications. The program area is located near the highest address and the tables of interrupt and reset vectors and vector-call instructions are at the highest address. Figure 2.1 shows the structure of the memory space for the MB89150 series of microcontrollers.

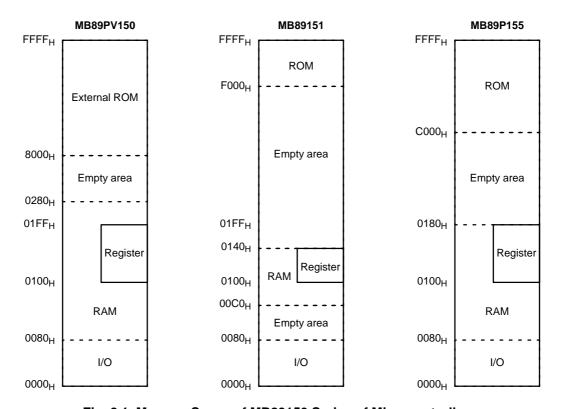



Fig. 2.1 Memory Space of MB89150 Series of Microcontrollers



### (1) I/O area

This area is where various resources such as control and data registers are located. The memory map for the I/O area is given in APPENDIX A.

### (2) RAM area

This area is where the static RAM is located. Addresses from  $0100_{\rm H}$  to  $017F_{\rm H}$  are also used as the general-purpose register area.

### (3) ROM area

This area is where the internal ROM is located. Addresses from  $\mathtt{FFD0}_\mathtt{H}$  to  $\mathtt{FFFF}_\mathtt{H}$  are also used for the table of interrupt and reset and vector-call instructions. Fig. 2.2 shows the correspondence between each interrupt number or reset and the table addresses to be referenced for the MB89150 series of microcontrollers.

|          | Table address     |                   |  |  |  |
|----------|-------------------|-------------------|--|--|--|
|          | Upper data        | Lower data        |  |  |  |
| CALLV #0 | FFC0 <sub>H</sub> | $FFC1_{H}$        |  |  |  |
| CALLV #1 | FFC2 <sub>H</sub> | FFC3 <sub>H</sub> |  |  |  |
| CALLV #2 | FFC4 <sub>H</sub> | FFC5 <sub>H</sub> |  |  |  |
| CALLV #3 | FFC6 <sub>H</sub> | FFC7 <sub>H</sub> |  |  |  |
| CALLV #4 | FFC8 <sub>H</sub> | FFC9 <sub>H</sub> |  |  |  |
| CALLV #5 | FFCA <sub>H</sub> | FFCB <sub>H</sub> |  |  |  |
| CALLV #6 | $FFCC_H$          | FFCD <sub>H</sub> |  |  |  |
| CALLV #7 | FFCE <sub>H</sub> | FFCF <sub>H</sub> |  |  |  |

|               |                              | -                            |  |  |  |  |
|---------------|------------------------------|------------------------------|--|--|--|--|
|               | Table address                |                              |  |  |  |  |
|               | Upper data                   | Lower data                   |  |  |  |  |
| Interrupt #11 | FFE4 <sub>H</sub>            | FFE5 <sub>H</sub>            |  |  |  |  |
| Interrupt #10 | FFE6 <sub>H</sub>            | FFE7 <sub>H</sub>            |  |  |  |  |
| Interrupt #9  | FFE8 <sub>H</sub>            | FFE9 <sub>H</sub>            |  |  |  |  |
| Interrupt #8  | FFEA <sub>H</sub>            | FFEB <sub>H</sub>            |  |  |  |  |
| Interrupt #7  | FFEC <sub>H</sub>            | FFED <sub>H</sub>            |  |  |  |  |
| Interrupt #6  | FFEE <sub>H</sub>            | FFEF <sub>H</sub>            |  |  |  |  |
| Interrupt #5  | FFF0 <sub>H</sub>            | FFF1 <sub>H</sub>            |  |  |  |  |
| Interrupt #4  | FFF2 <sub>H</sub>            | FFF3 <sub>H</sub>            |  |  |  |  |
| Interrupt #3  | FFF4 <sub>H</sub>            | FFF5 <sub>H</sub>            |  |  |  |  |
| Interrupt #2  | FFF6 <sub>H</sub>            | FFF7 <sub>H</sub>            |  |  |  |  |
| Interrupt #1  | FFF8 <sub>H</sub>            | FFF9 <sub>H</sub>            |  |  |  |  |
| Interrupt #0  | $FFFA_H$                     | FFFB <sub>H</sub>            |  |  |  |  |
| Reset mode    |                              | $FFFD_H$                     |  |  |  |  |
| Reset vector  | $\mathtt{FFFE}_{\mathtt{H}}$ | $\mathtt{FFFF}_{\mathtt{H}}$ |  |  |  |  |

Note:  $\mathtt{FFFC}_{\mathtt{H}}$  is already reserved.

Fig. 2.2 Table of Reset and Interrupt Vectors



### 2.1.2 Arrangement of 16-bit data in memory

When the MB89150 series of microcontrollers handle 16-bit data, the data written at the lower address is treated as the upper data and that written at the next address is treated as the lower data as shown in Figure 2.3.

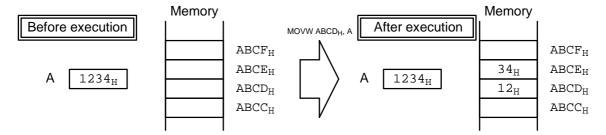



Fig. 2.3 Arrangement of 16-bit Data in Memory

This is the same as when 16 bits are specified by the operand during execution of an instruction. Bits closer to the OP code are treated as the upper byte and those next to it are treated as the lower byte. This is also the same when the memory address or 16-bit immediate data is specified by the operand.

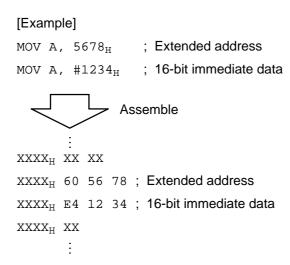



Fig. 2.4 Arrangement of 16-bit Data during Execution of Instruction

Data saved in the stack by an interrupt is also treated in the same manner.



### 2.1.3 Internal registers in CPU

The MB89150 series of microcontrollers have dedicated registers in the CPU and general-purpose registers in memory.

<Dedicated registers>

Program counter (PC)
 16-bit long register indicating location where instructions stored

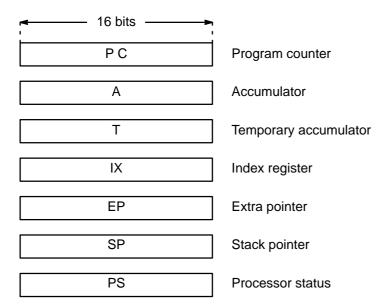
• Accumulator (A) 16-bit long register where results of operations stored temporarily; the lower

byte is used to execute 8-bit data processing instructions.

• Temporary accumulator (T) 16-bit long register; the operations are performed between this register and

the accumulator. The lower one byte is used to execute 8-bit data processing

instructions


Stack pointer (SP)
 16-bit long register indicating stack area

Processor status (PS)
 16-bit long register where register pointers and condition codes stored

• Index register (IX)

16-bit long register for index modification

• Extra pointer (EP) 16-bit long register for memory addressing



The 16 bits of the program status (PS) can be divided into 8 upper bits for a register bank pointer (RP) and 8 lower bits for a condition code register (CCR). (See Figure 2.5.)

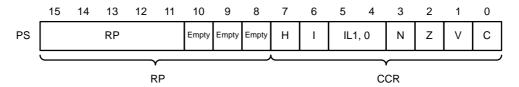



Fig. 2.5 Structure of Processor Status



The RP indicates the address of the current register bank and the contents of the RP; the real addresses are translated as shown in Figure 2.6.

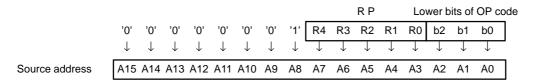



Fig. 2.6 Rule for Translating Real Addresses at General-purpose Register Area

The CCR has bits indicating the results of operations and transfer data contents, and bits controlling the CPU operation when an interrupt occurs.

- H-flag: H-flag is set when a carry or a borrow out of bit 3 into bit 4 is generated as a result of operations; it is cleared in other cases. This flag is used for decimal-correction instructions.
- I-flag: An interrupt is enabled when this flag is 1 and is disabled when it is 0. The I-flag is 0 at reset.
- IL1 and IL0: These bits indicate the level of the currently-enabled interrupt. The CPU executes interrupt
  processing only when an interrupt with a value smaller than the value indicated by this bit is
  requested.

| IL1 | IL0 | Interrupt level | High and low       |
|-----|-----|-----------------|--------------------|
| 0   | 0   | 1               | High               |
| 0   | 1   |                 | <b>1</b>           |
| 1   | 0   | 2               |                    |
| 1   | 1   | 3               | Low = No interrupt |

- N-flag: The N-flag is set when the most significant bit is 1 as a result of operations; it is cleared when the MSB is 0.
- Z-flag: Z-flag is set when the bit is 0 as a result of operations; it is cleared in other cases.
- V-flag: V-flag is set when a two's complement overflow occurs as a result of operations; it is reset when an overflow does not occur.
- C-flag: C-flag is set when a carry or a borrow out of bit 7 is generated as a result of operations; it is
  cleared in other cases. When the shift instruction is executed, the value of the C-flag is shifted
  out.



<General-purpose registers>

General-purpose registers are 8-bit long registers for storing data.

The 8-bit long general-purpose registers are in the register banks in memory. One bank has eight registers and up to 32 banks are available for the MB89151 series of microcontrollers. The register bank pointer (RP) indicates the currently-used bank.

Note: The number of register banks used depends on the RAM capacity.

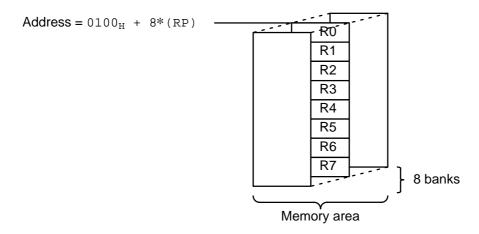



Fig. 2.7 Register Bank Configuration



### 2.1.4 Operation modes and external bus operation

The MB89150 series of microcontrollers have only single-chip mode.

The memory map is as follows:

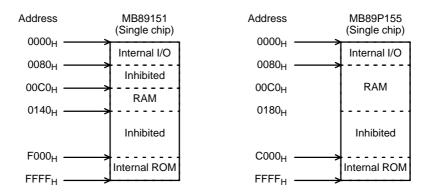
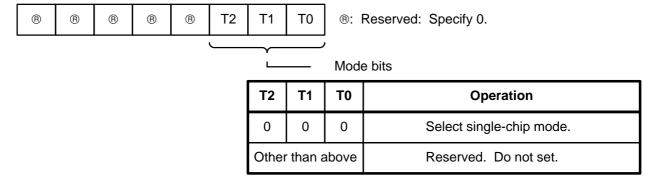




Fig. 2.8 Memory Maps in Various Modes

The relationship between the states and operations of the device-mode pins is shown below. (Only 00 can be set for MB89150.)

| MOD1 | MOD0 | Description                                                                          |  |  |  |  |  |  |
|------|------|--------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 0    | 0    | Reset vectors are read from the internal ROM. The external access does not function. |  |  |  |  |  |  |
| 1    | 1    | Write mode for products containing EPROM.                                            |  |  |  |  |  |  |

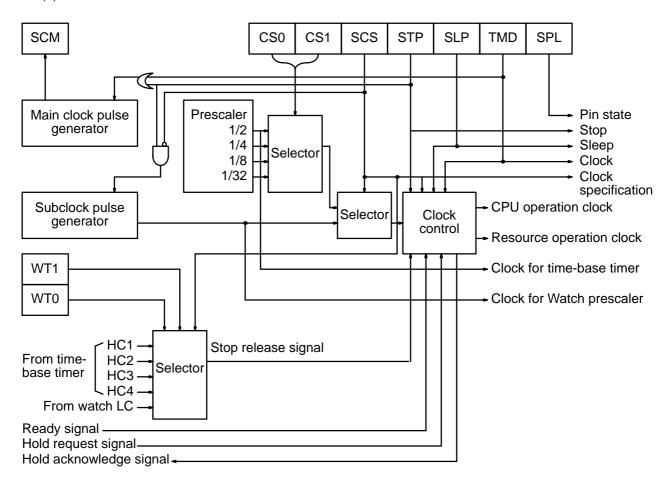
The following functions are selected according to the mode-data setting conditions.



Note: Do not select the single-chip mode with the externally-fetched mode data.



### 2.1.5 Clock control block


This block controls the standby operation, oscillation stabilization time, software reset, and clock switching.

### (1) Register list

|                            | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | System clock                    |
|----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|---------------------------------|
| Address: 0007 <sub>H</sub> | SCM   |       | 1     | WT1   | WT0   | SCS   | CS1   | CS0   | control register<br>(SYCC)      |
|                            |       |       |       |       |       |       |       |       | (0100)                          |
| Address: 0008 <sub>H</sub> | STP   | SLP   | SPL   | RST   | TMD   | 1     |       | _     | Standby control register (STBC) |

### (2) Block diagram

(a) Machine clock control section



### (b) Reset control section





### (3) Description of registers

### (a) STBC (Standby-conrol register)

|                            | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Initial value          |
|----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|------------------------|
| Address: 0008 <sub>H</sub> | STP   | SLP   | SPL   | RST   | TMD   |       | 1     |       | 0001 0XXX <sub>B</sub> |
|                            | (W)   | (W)   | (R/W) | (W)   | (W)   |       |       |       | •                      |

[Bit 7] STP: Stop bit

Bit 7 specifies switching to the stop mode.

| 0 | No operation |
|---|--------------|
| 1 | Stop mode    |

This bit is cleared at reset or stop cancellation.

0 is always read when this bit is read.

[Bit 6] SLP: Sleep bit

Bit 6 specifies switching to the sleep mode.

| 0 | No operation |
|---|--------------|
| 1 | Sleep mode   |

This bit is cleared at reset or stop cancellation.

0 is always read when this bit is read.

[Bit 5] SPL: Pin state specifying bit

Bit 5 specifies the external pin state in the watch or stop mode.

| 0 | Holds state and level immediately before watch or stop mode |
|---|-------------------------------------------------------------|
| 1 | High impedance                                              |

This bit is cleared at resetting.

[Bit 4] RST: Software reset bit Bit 4 resets the software.

| 0 | Generates 4-cycle reset signal |
|---|--------------------------------|
| 1 | No operation                   |

1 is always read when this bit is read.

If a software reset is performed during operation in a submode, one oscillation stabilization period is required to switch to the main mode. Therefore, a reset signal is output during the oscillation stabilization period.

### HARDWARE CONFIGURATION

[Bit 3] TMD: Watch bit

Bit 3 specifies switching to the watch mode.

| 0 | No operation |
|---|--------------|
| 1 | Watch mode   |

Writing at this bit is possible only in the submode (SCS = 0). 0 is always read when this bit is read. This bit is cleared at an interrupt request or reset.

### (b) System clock control register (SYCC)

|                            | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Initial value        |
|----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|----------------------|
| Address: 0007 <sub>H</sub> | SCM   | _     | _     | WT1   | WT0   | scs   | CS1   | CS0   | XM M100 <sub>B</sub> |
|                            | (R)   |       |       | (R/W) | (R/W) | (R/W) | (R/W) | (R/W) |                      |

[Bit 7] SCM: System clock monitor bit

Bit 7 checks whether the current system clock is the main clock or subclock.

| 0 | Subclock (Main clock is stopping or oscillation of main clock stable) |
|---|-----------------------------------------------------------------------|
| 1 | Main clock                                                            |

[Bits 4 and 3] WT1 and WT0: Oscillation stabilization time select bits

Bits 4 and 3 select the oscillation stabilization wait time of the main clock.

| WT1 | WT0 | Oscillation stabilization time   | Oscillation stabilization time at original oscillation of 10 MHz |
|-----|-----|----------------------------------|------------------------------------------------------------------|
| 1   | 1   | Approximate 2 <sup>18</sup> /fch | Approximate 87.4 (ms)                                            |
| 1   | 0   | Approximate 2 <sup>16</sup> /fch | Approximate 21.8 (ms)                                            |
| 0   | 1   | Approximate 2 <sup>12</sup> /fch | Approximate 1.4 (ms)                                             |
| 0   | 0   | Approximate 2 <sup>4</sup> /fch  | Approximate 0 (ms)                                               |

fch: Oscillation frequency of main clock

If the main mode is specified by the system clock select bit (SCS), the mode switches to main mode after the selected wait time has elapsed.

The initial value of this bit is determined by the mask option. Do not rewrite this bit during the oscillation stabilization period nor rewrite it concurrently with switching from low speed to high speed.

The oscillation stabilization time of the main clock is generated by dividing down the frequency of the main clock. Since the oscillation frequency is unstable immediately after oscillation starts, use the above table.

[Bit 2] SCS: System clock select bit Bit 2 selects the system clock mode.

| 0 | Selects subclock (32 kHz) mode |
|---|--------------------------------|
| 1 | Selects main clock mode        |



[Bits 1 and 0] CS1 and CS0: System clock select bits

If the main mode is specified by the system clock select bit (SCS), the system clock is as given in the table below.

| CS1 | Cs0 | Instruction cycle | Minimum instruction execu-<br>tion time at 10 MHz |
|-----|-----|-------------------|---------------------------------------------------|
| 0   | 0   | 64/fch            | 21.3 (μs)                                         |
| 0   | 1   | 16/fch            | 5.33 (μs)                                         |
| 1   | 0   | 8/fch             | 2.67 (μs)                                         |
| 1   | 1   | 4/fch             | 1.33 (µs)                                         |

fch: frequency of main clock

### (4) Description of operation

### (a) Low-power consumption mode

This chip has three operation modes. The sleep mode, and stop mode in the table below reduce the power consumption. In the main mode, four system clocks can be selected according to the system condition to minimize power consumption.

Table 2-1 Operating State of Low-power Consumption Modes

Clock pulse Fach operating clock pulse

| Main operation | (CS1,  | Operation            |                     | pulse<br>ration     | Ea                |                  | ng clock pul<br>nain clock) | se              | Wake-up source in                                   |
|----------------|--------|----------------------|---------------------|---------------------|-------------------|------------------|-----------------------------|-----------------|-----------------------------------------------------|
| mode           | CS0)   | mode                 | Main                | Sub                 | CPU               | Time-base timer  | Each resource               | Clock           | each mode                                           |
|                | (1, 1) | RUN<br>SLEEP<br>STOP | Oscillates<br>Stops | Oscillates          | 1.5 MHz<br>Stops  | 1.5 MHz<br>Stops | 1.5 MHz<br>Stops            | 32 kHz          | Various interrupt requests External interrupt       |
| Main           | (1,0)  | RUN<br>SLEEP<br>STOP | Oscillates<br>Stops | Oscillates          | 750 kHz<br>Stops  | 1.5 MHz<br>Stops | 750 kHz<br>Stops            | 32 kHz          | Various interrupt<br>requests<br>External interrupt |
| mode           | (0,1)  | RUN<br>SLEEP<br>STOP | Oscillates<br>Stops | Oscillates          | 375 kHz<br>Stops  | 1.5 MHz<br>Stops | 375 kHz<br>Stops            | 32 kHz          | Various interrupt requests External interrupt       |
|                | (0,0)  | RUN<br>SLEEP<br>STOP | Oscillates<br>Stops | Oscillates          | 98.4 kHz<br>Stops | 1.5 MHz<br>Stops | 98.4 kHz<br>Stops           | 32 kHz          | Various interrupt<br>requests<br>External interrupt |
| Submode        | _      | RUN<br>SLEEP<br>STOP | Stops               | Oscillates<br>Stops | 32 kHz<br>Stops   | Stops            | 32 kHz<br>Stops             | 32 kHz<br>Stops | Various interrupt<br>requests<br>External interrupt |
| CLOCK<br>mode  |        |                      | Stops               | Oscillates          | Stops             | Stops            | Stops                       | 32 kHz          | Watch external interrupt                            |

- The submode stops oscillation of the main clock.
- The SLEEP mode stops only the operating clock pulse of the CPU; other operations are continued.
- The WATCH mode stops the functions of all chips other than the special resources.
- The STOP mode stops the oscillation. Data can be held with the lowest power consumption in this mode.
- For microcontrollers with a built-in booster (MB89150A), the booster stops when the mode is switched from the subclock mode to the stop mode.



### [1] WATCH mode

### • Switching to WATCH mode

- Writing 1 at the TMD bit (bit 3) of the STBC register switches the mode to WATCH mode. Writing is invalid if 1 is set at the SCS bit (bit 2) of the SYCC register.
- The WATCH mode stops all chip functions except the watch prescaler, external interrupt, and wake-up functions. Therefore, data can be held with the lowest power consumption.
- The input/output pins and output pins during the WATCH mode can be controlled by the SPL bit of the STBC register so that they are held in the state immediately before entering the WATCH mode or so that they enter the high-impedance state.
- If an interrupt is requested when 1 is written at the TMD bit, instruction execution continues without switching to the WATCH mode.
- In the WATCH mode, the values of registers and RAM immediately before entering the WATCH mode are held.

### Canceling WATCH mode

- The WATCH mode is canceled by inputting the reset signal and requesting an interrupt.
- When the reset signal is input during the WATCH mode, the CPU is switched to the reset state and the WATCH mode is canceled.
- When an interrupt higher than level 11 is requested from a resource during the WATCH mode, the WATCH mode is canceled.
- When the I flag and IL bit are enabled like an ordinary interrupt after canceling, the CPU executes the interrupt processing. When they are disabled, the CPU executes the interrupt processing from the instruction next to the one before entering the WATCH mode.
- If the WATCH mode is canceled by inputting the reset signal, the CPU is switched to the oscillation stabilization wait state. Therefore, the reset sequence is not executed unless the oscillation stabilization time is elapsed. The oscillation stabilization time will be that of the main clock selected by the WT1 and WT0 bits. However, when Power-on Reset is not specified by the mask option, the CPU is not switched to the oscillation stabilization wait state, even if the WATCH mode is canceled by inputting the reset signal.

### [2] SLEEP mode

### Switching to SLEEP mode

- Writing 1 at the SLP bit (bit 6) of the STBC register switches the mode to SLEEP mode.
- The SLEEP mode stops the CPU operating clock pulse; only the CPU stops and the resources continue to operate.
- If an interrupt is requested when 1 is written at the SLP bit (bit 6), instruction execution continues without switching to the SLEEP mode. In the SLEEP mode, the values of registers and RAM immediately before entering the SLEEP mode are held.

### Canceling SLEEP mode

- The SLEEP mode is canceled by inputting the reset signal and requesting an interrupt.
- When the reset signal is input during the SLEEP mode, the CPU is switched to the reset state and the SLEEP mode is canceled.
- When an interrupt higher than level 11 is requested from a resource during the SLEEP mode, the SLEEP mode is canceled.
- When the I flag and IL bit are enabled like an ordinary interrupt after canceling, the CPU executes the interrupt processing. When they are disabled, the CPU executes the interrupt processing from the instruction next to the one before entering the SLEEP mode.

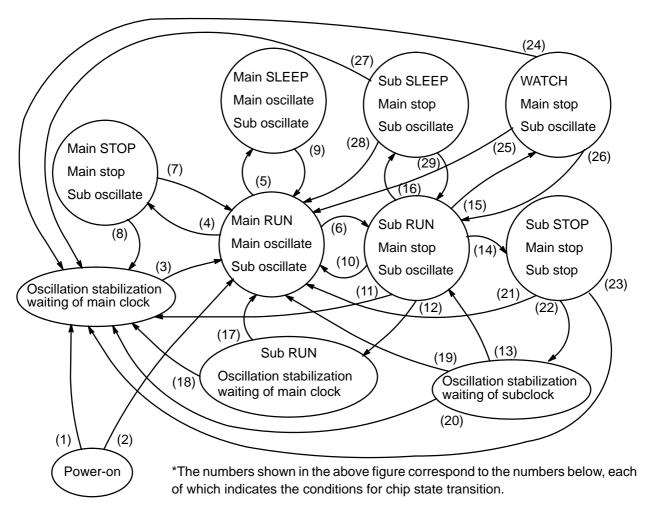


### [3] STOP mode

- Switching to STOP mode
  - Writing 1 at the STP bit (bit 7) of the STBC register switches the mode to STOP mode.
  - The STOP mode varies when the main clock is operating and when the subclock is operating. When the main clock is operating: The main clock stops but the subclock does not stop. All chip functions except the watch function stop.
    - When subclock is operating: Both the main clock and subclock stop. All chip functions stop.
  - The input/output pins and output pins during the STOP mode can be controlled by the SPL bit (bit
     5) of the STBC register so that they are held in the state immediately before entering the STOP mode, or so that they enter in the high-impedance state.
  - If an interrupt is requested when 1 is written at the STP bit (bit 7), instruction execution continues without switching to the STOP mode.
  - In the STOP mode, the values of registers and RAM immediately before entering the STOP mode are held.

### Canceling STOP mode

- The STOP mode is canceled either by inputting the reset signal or by requesting an interrupt.
- When the reset signal is input during the STOP mode, the CPU is switched to the reset state and the STOP mode is canceled.
- When an interrupt higher than level 11 is requested from the external interrupt circuit during the STOP mode, the STOP mode is canceled.
- When the I flag and IL bit are enabled like an ordinary interrupt after canceling, the CPU executes the interrupt processing. When they are disabled, the CPU executes the interrupt processing from the instruction next to the one before entering the STOP mode.
- Four oscillation stabilization times of the main clock can be selected by the WT1 and WT0 bits.
   The oscillation stabilization time of the subclock is fixed (at 2<sup>15</sup>/fcl -- fcl: frequency of subclock).
- If the STOP mode is canceled by inputting the reset signal, the CPU is switched to the oscillation stabilization wait state. Therefore, the reset sequence is not executed unless the oscillation stabilization time is elapsed. The oscillation stabilization time corresponds to the oscillation stabilization time of the main clock selected by the WT1 and WT0 bits. However, when Power-on Reset is not specified by the mask option, the CPU is not switched to the oscillation stabilization wait state even if the STOP mode is canceled by inputting the reset signal.


### [4] Setting low power consumption mode

| S           | Mode        |             |         |  |  |
|-------------|-------------|-------------|---------|--|--|
| STP (Bit 7) | SLP (Bit 6) | TMD (Bit 3) | ivioue  |  |  |
| 0           | 0           | 0           | Normal  |  |  |
| 0           | 0           | 1           | WATCH   |  |  |
| 0           | 1           | 0           | SLEEP   |  |  |
| 1           | 0           | 0           | STOP    |  |  |
| 1           | ×           | ×           | Disable |  |  |

Note: When the mode is switched from the subclock mode to the main clock mode, do not set the stop, sleep, and watch modes. If the SCS bit of the SYCC register is rewritten from 0 to 1, set the above modes after the SCM bit of the SYCC register has been set to 1.

For microcontrollers with a built-in booster (MB89150A), the booster stops when the mode is switched from the subclock mode to the stop mode.

### (b) State transition diagram



- (1) When power-on reset option is selected
- (2) When power-on reset option is not selected
- (3) After oscillation stabilized
- (4) Set STP bit to 1.
- (5) Set SLP bit to 1.
- (6) Set SCS bit to 0.
- (7) External reset when power-on reset option not selected
- (8) External reset or interrupt when power-on reset option selected
- (9) External reset or interrupt
- (10)External reset when power-on reset option not selected
- (11) External reset or other reset when power-on reset option selected
- (12)Set SCS bit to 1.
- (13)After oscillation stabilized
- (14)Set STP bit to 1.
- (15)Set TMD bit to 1.
- (16)Set SLP bit to 1.
- (17)External reset after oscillation stabilized or when power-on reset option not selected

- (18)External reset or other reset when power-on reset option selected
- (19)External reset after oscillation is stabilized or when power-on reset option not selected
- (20)External reset when power-on reset option selected
- (21)External reset when power-on reset option not selected
- (22)Interrupt
- (23)External reset when power-on reset option selected
- (24)External reset when power-on reset option selected
- (25)External reset when power-on reset option not selected
- (26)Interrupt
- (27)External reset when power-on reset option selected
- (28)External reset when power-on reset option not selected
- (29)Interrupt



### (d) Reset

There are four types of resets as shown in Table 2-2.

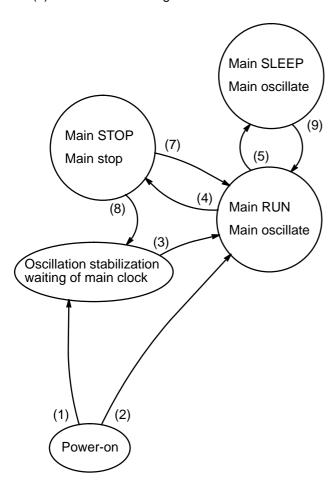
Table 2-2 Sources of Reset

| Reset name         | Description                     |
|--------------------|---------------------------------|
| External-pin reset | Sets external-reset pin to Low  |
| Software reset     | Writes 0 at RST (bit 4) of STBC |
| Watchdog reset     | Overflows watchdog timer        |
| Power-on reset     | Turns power on                  |

When the power-on reset and reset during the stop mode are used, the oscillation stabilization time is needed after the oscillator operates. The time-base timer or watch prescaler controls this stabilization time. Consequently, the operation does not start immediately even after canceling the reset.

However, if Power-on Reset Disabled is selected by the mask option, no oscillation stabilization time is required in any state after external pins have been released from the reset.

Note: If Power-on Reset Disabled is selected, the RST pin must be kept Low until the oscillation stabilization time selected by the option has elapsed after power on.



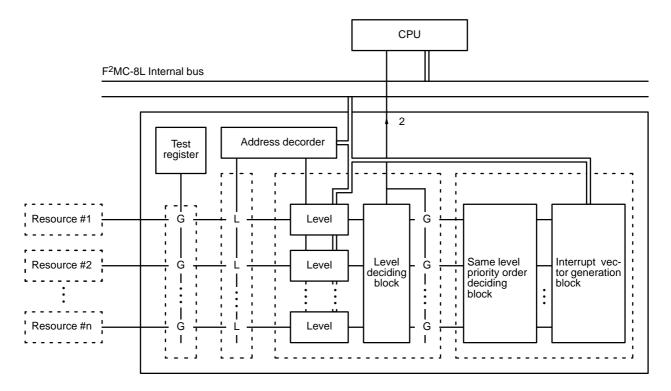

### (5) Single clock

The single clock module can be selected by the mask option. In the single clock operation, the functions are the same as those of the double clock module except that the subclock mode cannot be set. Therefore, the input pin X0A of the subclock should be connected to GND. The X1A pin must be kept open.

Note: For microcontrollers with a built-in booster (MB89150A), do not select the single clock module. The double-clock module should be used.

### (a) State transition diagram




- (1) When power-on reset option selected
- (2) When power-on reset option not selected
- (3) After oscillation stabilized
- (4) Set STP bit to 1.
- (5) Set SLP bit to 1.
- (7) External reset when power-on reset option not selected
- (8) External reset or interrupt when power-on reset option selected
- (9) External reset or interrupt



### 2.1.6 Interrupt controller

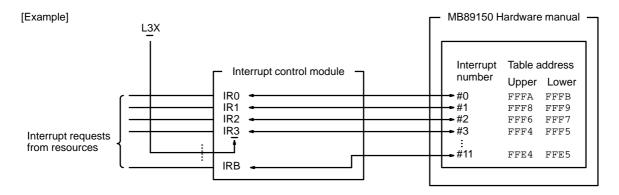
The interrupt controller for the  $F^2MC-8L$  is located between the CPU and each resource. This controller receives interrupt requests from the resources, assigns priority to them, and transfers the priority to the CPU; it also decides the priority of same-level interrupts.

### (1) Block diagram



### (2) Register list

| Address             | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   | Name                        | [Abbreviation] | (Initial value) |
|---------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----------------------------|----------------|-----------------|
| 007C <sub>H</sub>   | L31 | L30 | L21 | L20 | L11 | L10 | L01 | L00 | Interrupt-level register #1 | [ILR1]         | (1111 1111)     |
|                     | ,   |     | 1   |     |     |     |     |     |                             |                |                 |
| $007D_{\mathrm{H}}$ | L71 | ь70 | L61 | L60 | L51 | L50 | L41 | L40 | Interrupt-level register #2 | [ILR2]         | (1111 1111)     |
|                     |     |     |     |     |     |     |     |     |                             |                |                 |
| $007E_{\rm H}$      | LB1 | LB0 | LA1 | LA0 | L91 | L90 | L81 | L80 | Interrupt-level register #3 | [ILR3]         | (1111 1111)     |
|                     |     |     |     |     |     |     |     |     |                             |                |                 |
| $007F_{\rm H}$      | _   | _   | _   | _   | _   | _   | EV  | EN  | Interrupt-test register     | [ITR]          | (00)            |
|                     |     |     |     |     |     |     |     |     |                             |                |                 |




### (2) Description of registers

• Interrupt level register (ILRX: Interrupt Level Register X)



The ILRx sets the interrupt level of each resource. The digits in the center of each bit correspond to the interrupt numbers.



When an interrupt is requested from a resource, the interrupt controller transfers the interrupt level based on the value set at the 2 bits of the ILRX corresponding to the interrupt to the CPU. The relationship between the 2 bits of the ILRX and the required interrupt levels is as follows:

| Lx1 | Lx0 | Required interrupt level |
|-----|-----|--------------------------|
| 0   | Х   | 1                        |
| 1   | 0   | 2                        |
| 1   | 1   | 3 (None)                 |

• Interrupt test register (ITR)



The ITR is used for testing. Do not access it.



### (4) Description of operation

### Interrupt functions

The MB89150 series of microcontrollers have 12 inputs for interrupt requests from each resource. The interrupt level is set by 2-bit registers corresponding to each input. When an interrupt is requested from a resource, the interrupt controller receives it and transfers the contents of the corresponding register to the CPU. The interrupt to the device is processed as follows:

- (1) An interrupt source is generated inside each resource.
- (2) If an interrupt is enabled, an interrupt request is output from each resource to the interrupt controller by referring to the interrupt-enable bit inside each resource.
- (3) After receiving this interrupt request, the interrupt controller determines the priority of simultaneously-requested interrupts and then transfers the interrupt level for the applicable interrupt to the CPU.
- (4) The CPU compares the interrupt level requested from the interrupt controller with the IL bit in the processor status register.
- (5) As a result of the comparison, if the priority of the interrupt level is higher than that of the current interrupt processing level, the contents of the I-flag in the same processor status register are checked.
- (6) As a result of the check in step (5), if the I-flag is enabled for an interrupt, the contents of the IL bit are set to the required level. As soon as the currently-executing instruction is terminated, the CPU performs the interrupt processing and transfers control to the interrupt-processing routine.
- (7) When an interrupt source is cleared by software in the user's interrupt processing routine, the CPU terminates the interrupt processing.

Figure 2.9 outlines the interrupt operation for the MB89150 series of microcontrollers.

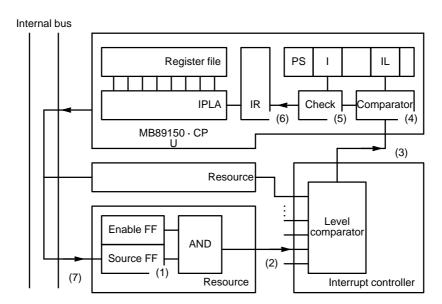



Fig. 2.9 Interrupt-processing Flowchart



### 2.2 Resource Functions

### 2.2.1 I/O ports

- The MB89150 series of microcontrollers have six parallel ports (43 ports). Ports 0, 1, and 2 serve as 8-bit I/O ports; ports 4 and 5 serve as 8-bit output-only ports; and port 3 serves as a 3-bit output-only port.
- Each port is also used as the I/O pin for the resource.
- (1) List of port functions

**Table 2-3 List of Port Functions** 

| Pin name            | Input type | Output type        | Function        | bit7  | bit6  | bit5  | bit4  | bit3  | bit2  | bit1  | bit0  |
|---------------------|------------|--------------------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|
| P00 to P07          | CMOS       | CMOS<br>push-pull  | Parallel port 0 | P07   | P06   | P05   | P04   | P03   | P02   | P01   | P00   |
| F 00 t0 F 07        | Hysteresis | pusii-puii         | Resource        | INT27 | INT26 | INT25 | INT24 | INT23 | INT22 | INT21 | INT20 |
| P10 to P17          | CMOS       | CMOS<br>push-pull  | Parallel port 1 | P17   | P16   | P15   | P14   | P13   | P12   | P11   | P10   |
| 1 10 10 1 17        | Hysteresis | pusii-puii         | Resource        |       |       |       |       | INT13 | INT12 | INT11 | INT10 |
| P20 to P27 CMOS<br> | CMOS       | N-ch<br>open drain | Parallel port 2 | P27   | P26   | P25   | P24   | P23   | P22   | P21   | P20   |
|                     | Hysteresis | open drain         | Resource        | BUZ   |       | sck   | so    | SI    | то    |       | EC    |
| P30 to P32 —        | _          | CMOS<br>push-pull  | Parallel port 3 |       |       |       |       |       | P32   | P31   | P30   |
|                     |            | pusir-puli         | Resource        |       |       |       |       |       | C0    | C1    | RCO   |
| P40 to P47          |            | N-ch<br>open drain | Parallel port 4 | P47   | P46   | P45   | P44   | P43   | P42   | P41   | P40   |
| 1 40 10 1 47        |            | open diam          | Resource        | SEG27 | SEG26 | SEG25 | SEG24 | SEG23 | SEG22 | SEG21 | SEG20 |
| P50 to P57          | _          | N-ch<br>open drain | Parallel port 5 | P57   | P56   | P55   | P54   | P53   | P52   | P51   | P50   |
| 1 30 10 1 37        |            | opon diam          | Resource        | SEG35 | SEG34 | SEG33 | SEG32 | SEG31 | SEG30 | SEG29 | SEG28 |

### Notes:

- 1. Ports 4 and 5 serve as output ports only when they are selected by the mask option for use as ports.
- 2. Ports 3 (excluding port 30) serves as an output ports only for microcontrollers without a built-in booster.



### (2) Port registers

**Table 2-4 Port Registers** 

| Register name                         | Read/Write | Address           | Initial value         |
|---------------------------------------|------------|-------------------|-----------------------|
| Port-0 data register (PDR0)           | R/W        | 0000 <sub>H</sub> | XXXXXXXX <sub>B</sub> |
| Port-0 data direction register (DDR0) | W          | 0001 <sub>H</sub> | 00000000 <sub>B</sub> |
| Port-1 data register (PDR1)           | R/W        | 0002 <sub>H</sub> | XXXXXXXX <sub>B</sub> |
| Port-1 data direction register (DDR1) | W          | 0003 <sub>H</sub> | 00000000 <sub>B</sub> |
| Port-2 data register (PDR2)           | R/W        | 0004 <sub>H</sub> | XXXXXXXX <sub>B</sub> |
| Port-2 data direction register (DDR2) | W          | 0005 <sub>H</sub> | 00000000 <sub>B</sub> |
| Port-3 data register (PDR3)           | R/W        | 000C <sub>H</sub> | XXXXX111 <sub>B</sub> |
| Port-4 data register (PDR4)           | W          | 000E <sub>H</sub> | 11111111 <sub>B</sub> |
| Port-5 data register (PDR5)           | R/W        | 000F <sub>H</sub> | 11111111 <sub>B</sub> |

### (3) Description of functions

P00 to P07 CMOS-type I/O ports

P10 to P17 CMOS-type I/O ports

### · Switching input and output

These ports have a data-direction register (DDR) and port-data register (PDR) for each bit. Input and output can be set independently for each bit. The pin with the DDR set to 1 is set to output, and the pin with the DDR set to 0 is set to input.

#### Operation for output port (DDR = 1)

The value written at the PDR is output to the pin when the DDR is set to 1. When the PDR is read, usually, the value of the pin is read instead of the contents of the output latch. However, when the Read Modify Write instruction is executed, the contents of the output latch are read irrespective of the DDR setting conditions. Therefore, the bit-processing instruction can be used even if input and output are mixed with each other. When data is written to the PDR, the written data is held in the output latch irrespective of the DDR setting conditions.

### • Operation for input port (DDR = 0)

When settings the input, the output impedance goes High. Therefore, when the PDR is read, the value of the pin is read.

## • State when reset

The DDR is initialized to 0 by resetting and the output impedance goes High at all bits. The PDR is not initialized by resetting. Therefore, set the value of the PDR before setting the DDR to output.



# • State in watch and stop modes

With the SPL bit of the standby-control register set to 1, in the watch or stop mode, the output impedance goes High irrespective of the value of the DDR.

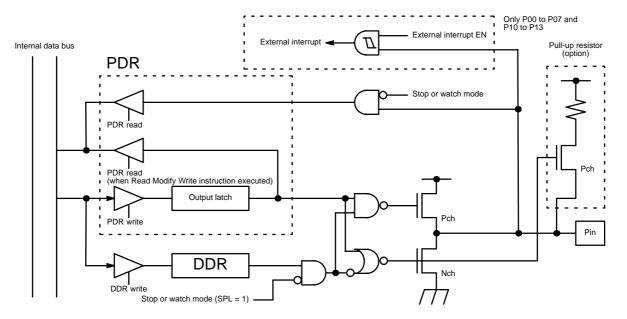



Fig. 2.10 Ports 0 and 1



P20 to P27 N-ch open-drain type I/O ports (also used as resource input/output)

### · Switching input and output

This port has a data-direction register (DDR) and a port-data register (PDR) for each bit. Input and output can be set independently for each bit. The pin with the DDR set to 1 is set to output, and the pin with the DDR set to 0 is set to input.

### Operation for output port (DDR = 1)

The value written at the PDR is output to the pin when the DDR is set to 1. When the PDR is read, usually, the value of the pin is read instead of the contents of the output latch. However, when the Read Modify Write instruction is executed, the contents of the output latch are read irrespective of the DDR setting conditions. Therefore, the bit-processing instruction can be used even if input and output are mixed with each other. When data is written to the PDR, the written data is held in the output latch irrespective of the DDR setting conditions.

### Resource output operation (DDR = 1)

When using as the resource output, setting is performed by the resource output enable bit. (See the description of each resource.) Even if the output from each resource is enabled, the read value of the port is effective except when the Read Modify Write instruction is read, so the pin state can be checked.

### • Operation for input port (DDR = 0)

When used as the input port, the output impedance goes High. Therefore, when the PDR is read, the value of the pin is read.

When the DDR is initialized to 0 by reset, the output impedance of all bits goes High. Since the PDR is not initialized by reset, set the value before setting the DDR to output.

#### State when reset

When reset, the DDR is initialized to 0 and the output impedance goes High at all bits. When reset, the PDR is not initialized. Therefore, set the value of the PDR before setting the DDR to output.

#### State in watch and stop modes

With the SPL bit of the standby-control register set to 1, in the watch or stop mode, the output impedance goes High irrespective of the value of the DDR.

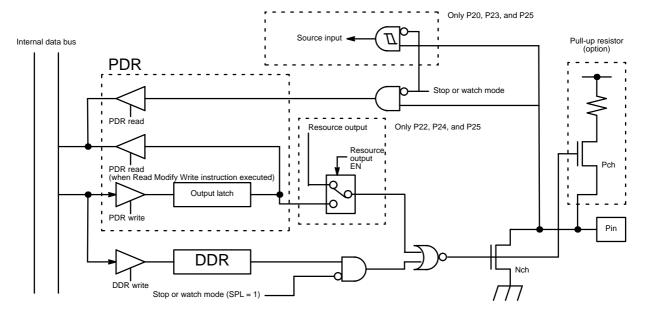



Fig. 2.11 Port 2



P30/RCO CMOS type output-only ports (also used as resource output)

### • Operation for output port

The value written at the PDR is output to the pin. When the PDR is read at this port, the contents of the output latch can always be read instead of the pin state.

#### • Operation for resource output

When using as the resource output, setting is performed by the resource output enable bit. (See the description of each resource.) Even if the output from each resource is enabled, the read value of the port is effective except when the Read Modify Write instruction is read, so the pin state can be checked.

### • State when reset

At reset, the PDR is initialized to 1 and the output transistors of all bits are turned off.

### • State in stop mode

When the SPL bit of the standby-control register is set to 1, in the stop mode, the output impedance goes High irrespective of the value of the PDR.

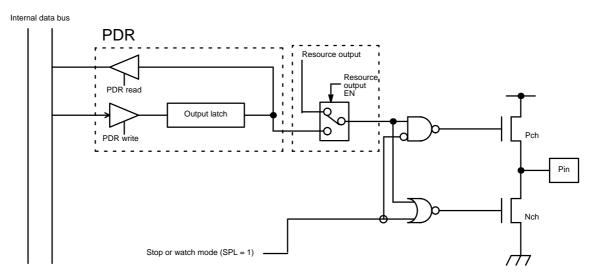



Fig. 2.12 P30



P31 and 32 N-ch open-drain type output ports (used as pins for connecting capacitors C0 and C1 when selected by mask option)

P40 to P47 N-ch open-drain-type output-only ports (also used as segment output)

P50 to P57 N-ch open-drain-type output-only ports (also used as segment output)

#### Operation for output port

The value written at the PDR is output to the pin. When the PDR is read in this port, usually, the contents of the output latch is read instead of the value of the pin.

### Segment output

When selected by the mask option for use as segment pins, ports 4 and 5 serve as segment outputs. In this case, they cannot be used as output ports.

P31 and P32 serve as capacitor connection pins for microcontrollers with a built-in booster (MB89150A). They cannot be used as output ports. P31 and P32 are not available for selection of a pull-up resistor.

#### State when reset

The PDR is initialized to 1 at reset, so the output register is turned off at all bits.

### • State in stop mode

When the SPL bit of the standby-control register is set to 1, in the stop mode, the output impedance goes High irrespective of the value of the PDR.

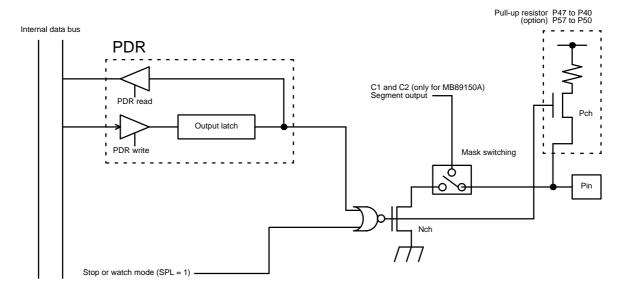
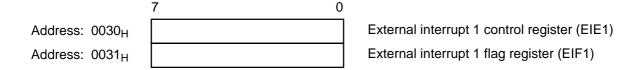



Fig. 2.13 P31, P32, Port 4, and Port 5




## 2.2.2 External interrupt 1

The external interrupt 1 is controlled by the external interrupt control and external interrupt flag registers.

- Four external interrupt inputs
- An interrupt request is output at the falling edge of the input signal.
- Inverting an input signal outputs an interrupt request at the rising edge.
- Usable as wake-up input

## (1) Registers



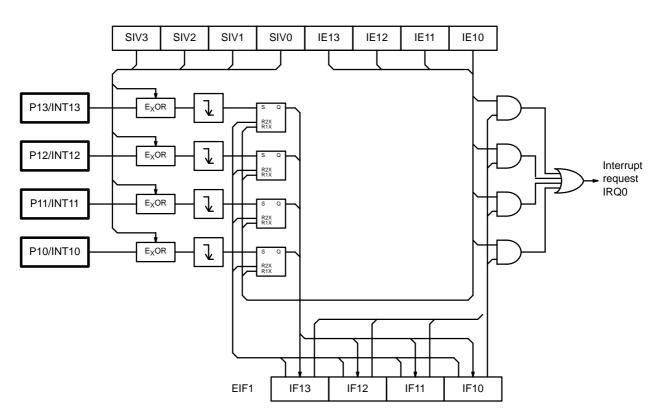



Fig. 2.14 External Interrupt 1 Block Diagram

# (2) Description of registers

(a) External-interrupt 1 control register (EIE1)

|                            | Bit7  | Bit6  | Bit5  | Bit4  | Bit3  | Bit2  | Bit1  | Bit0  | Initial value          |
|----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|------------------------|
| Address: 0030 <sub>H</sub> | SIV3  | SIV2  | SIV1  | SIV0  | IE13  | IE12  | IE11  | IE10  | 0000 0000 <sub>B</sub> |
| '                          | (R/W) | •                      |

[Bit 7]: SIV3

[Bit 6]: SIV2

[Bit 5]: SIV1

[Bit 4]: SIV0

These bits are used to invert external interrupts EI13 to EI10.

| 0 | External interrupt signal not inverted |
|---|----------------------------------------|
| 1 | External interrupt signal inverted     |

[Bit 3]: IE13

[Bit 2]: IE12

[Bit 1]: IE11

[Bit 0]: IE10

These bits are used to enable external interrupts EI13 to EI10.

| 0 | External interrupt disabled (edge detect flag initialized) |
|---|------------------------------------------------------------|
| 1 | External interrupt enabled                                 |

Note: The interrupt flag may be turned on immediately after an interrupt is enabled or an interrupt input is inverted.

## (b) External interrupt 1 flag register (EIF1)

|                            | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Initial value     |
|----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------------------|
| Address: 0031 <sub>H</sub> |       |       | -     | _     | IE13  | IE12  | IE11  | IE10  | 0000 <sub>B</sub> |
| ·                          |       |       |       |       | (R/W) | (R/W) | (R/W) | (R/W) | •                 |

[Bit 3]: IF13

[Bit 2]: IF12

[Bit 1]: IF11

[Bit 0]: IF10

These bits are used to detect the falling edges of EI13 to EI10.

# (When write)

| 0 | Falling edge detect flag cleared |
|---|----------------------------------|
| 1 | No operation                     |

## (When read)

| 0 | Falling edge not detected |
|---|---------------------------|
| 1 | Falling edge detected     |

If the interrupt enable bits (IE13 to IE10) of the external interrupt 1 control register (EIE1) are 1, an interrupt request is output to the CPU when the corresponding falling edge detect flag bits (IF13 to IF10) are set to 1.



## 2.2.3 External interrupt 2

External interrupt 2 is controlled by the external interrupt control and external interrupt flag registers.

- Eight external interrupt input pins
- An interrupt request is output by Low-level input signals.
- Also usable as wake-up input

## (1) Registers

Address: 0032<sub>H</sub>

Address: 0033<sub>H</sub>

External interrupt 2 control register (EIE2)

External interrupt 2 flag register (EIF2)

# (2) Block diagram

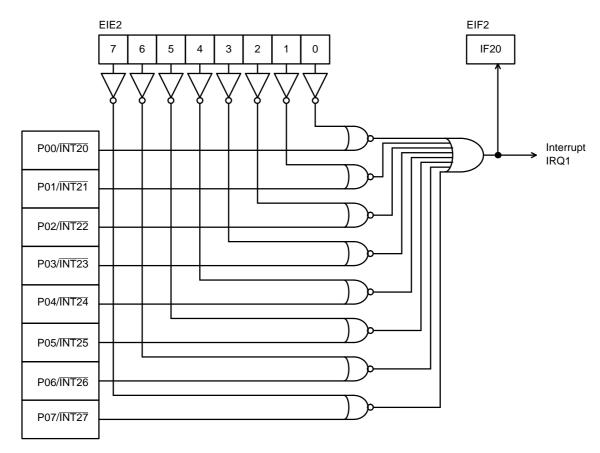
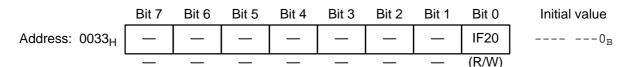



Fig. 2.15 External Interrupt 2 Block Diagram

## (2) Description of registers

(a) External interrupt 2 control register (EIE2)


Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Initial value Address: **IE27** IE26 IE25 IE24 IE23 IE22 IE21 IE20 0000 0000<sub>B</sub> (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)  $0032_{H}$ [Bit 7]: IE27

[Bit 6]: IE26 [Bit 5]: IE25 [Bit 4]: IE24 [Bit 3]: IE23 [Bit 2]: IE22 [Bit 1]: IE21 [Bit 0]: IE20

These bits are used to enable external interrupt of INT27 to INT20.

| 0 | External interrupt disabled |
|---|-----------------------------|
| 1 | External interrupt enabled  |

### (b) External interrupt 2 flag register (EIF2)



[Bit 0]: IF20

This bit is used to detect LOW level.

## (When write)

| 0 | Clears flag for detecting LOW level |
|---|-------------------------------------|
| 1 | No operation                        |

### (When read)

| 0 | No LOW level input       |
|---|--------------------------|
| 1 | LOW level input detected |

If the interrupt enable bits (IE27 to IE20) of the external interrupt 2 control register (EIE2) are 1, the Low-level detect flag bit (IF20) is set to 1 and an interrupt request is output to the CPU when a Low level is input to the port corresponding to this bit.

Note: Unlike other resources, even if the external interrupt 2 control register is disabled for an interrupt, it keeps generating interrupts until the interrupt source is cleared. Therefore, always clear the interrupt source after disabling an interrupt.



## 2.2.4 8/16-bit timer (timer 1 and timer 2)

- Three internal clock pulses and one external clock pulse can be selected.
- Operation in 8-bit 2-ch mode or 16-bit 1-ch mode can be selected.
- A square-wave output function is included.

### (1) Registers

7 0 Timer-2 control register (T2CR) Address: 0018<sub>H</sub> T2CR #2 T1CR #1 Timer-1 control register (T1CR) Address: 0019<sub>H</sub> Timer-2 data register (T2DR) Address: 001A<sub>H</sub> T2DR #2 Address: 001B<sub>H</sub> Timer-1 data register T1DR #1 (T1DR)

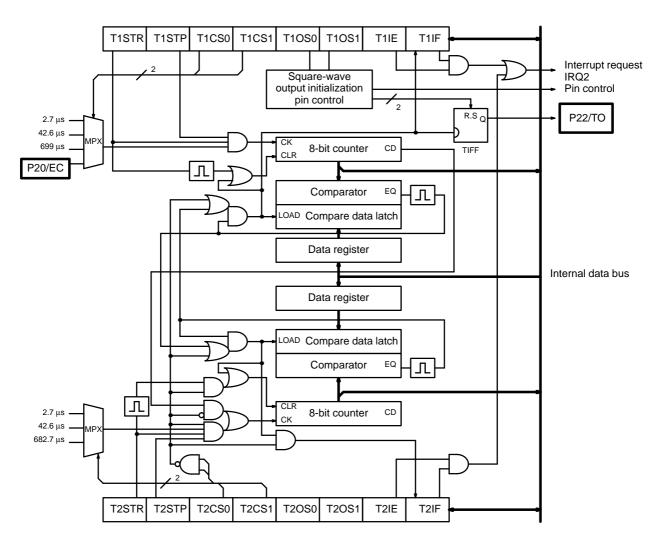



Fig. 2.16 8/16-bit Timer Block Diagram



# (2) Description of registers

## (a) Timer 1 control register (T1CR)

|                            | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Initial value          |
|----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|------------------------|
| Address: 0019 <sub>H</sub> | T1IF  | T1IE  | T10S1 | T1OS0 | T1CS1 | T1CS0 | S1STP | S1STR | X000 XXX0 <sub>B</sub> |
| ,                          | (R/W) |                        |

[Bit 7]: T1IF

This bit is used for the flag requesting an interrupt.

## (When write)

| 0 | Interrupt request flag clear |
|---|------------------------------|
| 1 | No operation                 |

## (When read)

| 0 | No interrupt request       |
|---|----------------------------|
| 1 | Interval interrupt request |

1 is always read when the Read Modify Write instruction is executed.

[Bit 6]: T1IE

This bit is used to enable an interrupt.

| 0 | Interrupt disabled |  |  |
|---|--------------------|--|--|
| 1 | Interrupt enabled  |  |  |

[Bit 5]: T1OS1

[Bit 4]: T1OS0

These bits are used to control the square-wave output when the timer stops. See page 2-37 for the setting of the square-wave output.

| T10S1 | T10S0 |                                                                    |
|-------|-------|--------------------------------------------------------------------|
| 0     | 0     | The output port [P22 (TO)] serves as a general-purpose port.       |
| 0     | 1     | Set the initial value of the timer square wave output to Low.      |
| 1     | 0     | Set the initial value of the timer square wave output to High.     |
| 1     | 1     | Set the square wave output pin of the timer to the set data value. |

The square-wave output is set to the set data value when STR1 is 0.

#### **HARDWARE CONFIGURATION**

[Bit 3]: T1CS1 [Bit 2]: T1CS2

These bits are used to select clock source.

| T1CS1 | T1CS0 | Clock cycle time (When 1/2 of 3 MHz is selected) |                       |            |  |  |
|-------|-------|--------------------------------------------------|-----------------------|------------|--|--|
| 0     | 0     |                                                  | 2 instruction cycle   | 2.7 [μs]   |  |  |
| 0     | 1     | Internal clock                                   | 32 instruction cycle  | 42.6 [μs]  |  |  |
| 1     | 0     |                                                  | 512 instruction cycle | 682.7 [μs] |  |  |
| 1     | 1     | External clock                                   | _                     |            |  |  |

[Bit 1]: T1STP

This bit is used to stop the timer.

| 0 | Continue counting without clearing the counter. |  |  |
|---|-------------------------------------------------|--|--|
| 1 | Suspend counting.                               |  |  |

[Bit 0]: T1STR

This bit is used to start the timer.

| 0 | Stop counting.                       |  |
|---|--------------------------------------|--|
| 1 | Clear the counter to start counting. |  |

Note: When using the timer 1 in the 8-bit 1-ch mode, set bits 3 and 2 of the timer-2 control register to a value other than 11. Use of the timer without setting this register causes a malfunction.

## (b) Timer-2 control register (T2CR)

|                            | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Initial value          |
|----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|------------------------|
| Address: 0018 <sub>H</sub> | T2IF  | T2IE  | T2OS1 | T10S0 | T2CS1 | T2CS0 | T2STP | T2STR | X000 XXX0 <sub>B</sub> |
|                            | (R/W) |                        |

[Bit 7]: T2IF

This bit is used for the flag requesting an interrupt.

### (When write)

| 0 | Interrupt request flag cleared |  |  |
|---|--------------------------------|--|--|
| 1 | No operation                   |  |  |

## (When read)

| 0 | No interrupt request       |  |  |
|---|----------------------------|--|--|
| 1 | Interval interrupt request |  |  |

<sup>1</sup> is always read when the Read Modify Write instruction is executed.



[Bit 6]: T21E

This bit is used to enable interrupt.

| 0 | Interrupt disabled |
|---|--------------------|
| 1 | Interrupt enabled  |

[Bit 5]: T2OS1

[Bit 4]: T2OS0

These are empty bits. Always write 0.

[Bit 3]: T2CS1

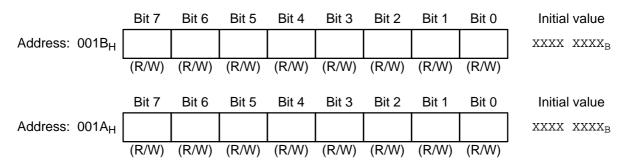
[Bit 2]: T2CS0

These bits are used to select timer clock source.

| T2CS1 | T2CS0 | Clock cycle time (When 1/2 of 3 MHz is selected) |                       |            |  |  |
|-------|-------|--------------------------------------------------|-----------------------|------------|--|--|
| 0     | 0     |                                                  | 2 instruction cycle   | 2.7 [µs]   |  |  |
| 0     | 1     | Internal clock                                   | 32 instruction cycle  | 42.6 [μs]  |  |  |
| 1     | 0     |                                                  | 512 instruction cycle | 682.7 [μs] |  |  |
| 1     | 1     | 16-bit mode                                      | _                     |            |  |  |

[bit 1]: T2STP

This bit is used to stop the timer.


| 0 | Counting is continued without clearing the counter. |  |  |
|---|-----------------------------------------------------|--|--|
| 1 | Counting is suspended                               |  |  |

[Bit 0]: T2STR

This bit is used to start the timer.

| 0 | Counting is stopped                       |
|---|-------------------------------------------|
| 1 | The counter is cleared to start counting. |

(c) Timer-1 and timer-2 data registers (T1DR, T2DR)



The write data is used as the set value of the interval time, and the read data is used as the value of the counter.



### (3) Description of operation

#### (a) 8-bit internal clock mode

In the 8-bit internal clock mode, three internal clock pulses can be selected by setting the clock source specifying bits (T1CS1 and T1CS0) and (T2CS1 and T2CS0) of the timer control registers (T1CR and T2CR). The timer data registers (T1DR and T2DR) are used to set the interval time. To start the timer, set the interval time at the timer data register, write 1 at the timer start bits (T1STR and T2STR) of the timer control register to clear the counter to 00H, and load the value of the timer data register into the compare latch. Then, counting up is started.

When the value of the counter agrees with that of the timer data register, the interval interrupt request flag bits (T1IF and T2IF) are set to 1. At this time, the counter is cleared to 00H and the value of the timer data register is reloaded into the compare latch. Then, counting up is continued. If the interrupt enable bits (T1IE and T2IE) are 1, an interrupt request is output to the CPU.

Assuming the set value is n and the selected clock pulse is F, the interval time (T) can be calculated by the following equation:

$$T = \phi \times (n + 1) [\mu s]$$

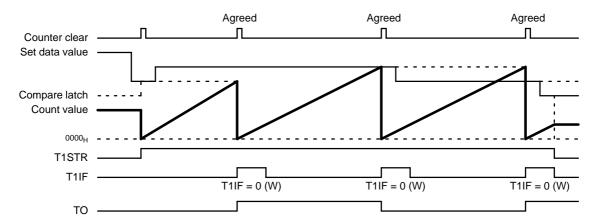



Fig. 2.17 Internal Clock Mode Operation Description Diagram

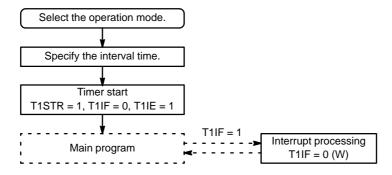



Fig. 2.18 Timer Setting Flow



#### (b) Initializing square-wave output

The square-wave output can be set to any value only when the timer stops (T1STR = 0).

To set, proceed as follows:

- 1. Write the set values (01 and 10) at the initialize bits (T1OS1 and T1OS0) of the square wave output. The values are held in the level latch shown in the figure below and not output to the pin. (Note that the previous square wave state is output to the pin.)
- 2. Write 11 at the same bits. This initializes the square wave output to the set value. If the T1STR bit is set to 0, the square wave output of the pin is set to the set value in 1 during this write cycle. The pin state of the square wave output in 1 and 2 is shown below.
- 3. Start the timer when the T1STR bit is 1.

These initialize bits can be set by the bit manipulation instruction.

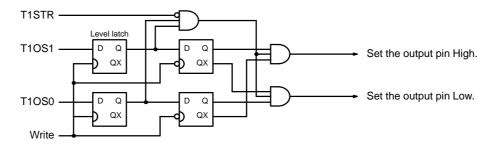
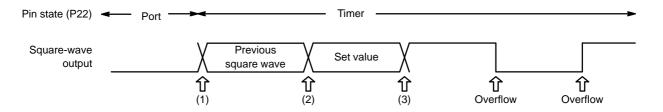




Fig. 2.19 Initialization of Equivalent Circuit



#### (c) 8-bit external clock mode

In the 8-bit external clock mode, the external clock input can be selected by setting the clock source select bits (T1CS1 and T1CS0) of the timer 1 control register (T1CR). External clock input pin of timer 1 is P20 (EC).

To start the timer, write 1 at the timer start bit (T1STR) of the T1CR to clear the counter.

When the value of the counter agrees with that of the timer data register, the interval interrupt request flag bit (T1IF) is set to 1. At this time, if an interrupt is enabled (T1IE = 1), an interrupt request is output to the CPU.



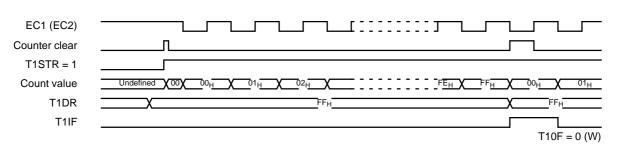



Fig. 2.20 External Cock Mode Operation Description Diagram

#### (d) Precautions for use of timer stop bit

If the timer is stopped by the timer start bit after being suspended by the timer stop bit, the input clock pulse to the timer may increment the count value by 1 as shown in Figure 2.20 (the count value is not incremented when the input clock pulse is High but incremented when it is Low). Therefore, if the timer is suspended by the timer stop bit, read the counter and then write 0 at the timer start bit.

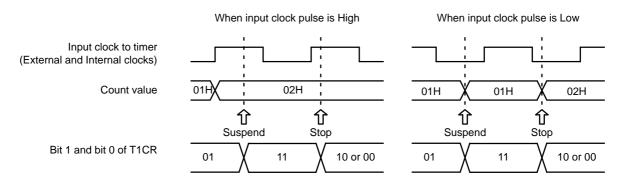
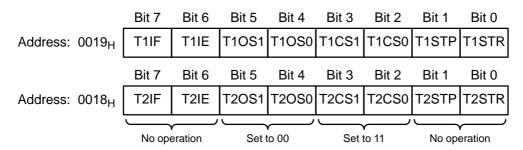




Fig. 2.21 Operation Diagram when Timer Stop Bit is Used

### (e) 16-bit mode

In the 16-bit mode, each bit of the timer control registers is as shown below.



In the 16-bit mode, write 11 at the T2CS1 and T2CS0 bits of the T2CR and set 0 at the T2OS1 and T2OS0 bits.

When in the 16-bit mode, the timer is controlled by the T1CR. The timer data registers T2DR and T1DR use the upper and lower bytes, respectively.

The clock source is selected by the T1CS1 and T1CS0 bits of the T1CR. To start the timer, write 1 at the T1STR bit of the T1CR to clear the counter.



If the value of the counter agrees with that of the timer data register, the T1IF bit is set to 1. At this time, an interrupt request is output to the CPU if the T1IE bit is 1.

Note: To read the value of the counter in the 16-bit mode, always read the value twice to check that it is valid and use the data.

### (f) Starting and suspending timer

The timer 2 is the same as timer 1. Therefore, an explanation is given using timer 1.

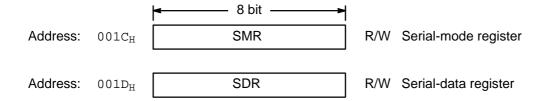
### (1) Clearing counter to start counting

When the T1STR bit is 0, write 01 at the T1STP and T1STR bits, respectively. The timer is cleared at the edge where the T1STR bit is set from 0 to 1 to start counting.

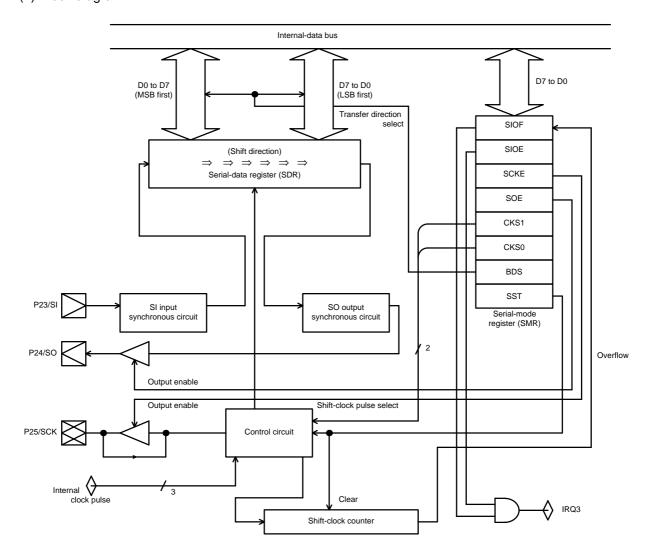
### (2) Suspending timer to start counting without clearing counter

To suspend counting, set the T1STP and T1STR bits to 11. To start counting from the suspended state without clearing the counter, set the T1STP and T1STR bits from 11 to 01.

The state of the timer according to the setting conditions of T1STP and T1STR bits and the operation of the timer when started from the suspended state (when T1STP and T1STR bits = 01) are as follows.


| T1STP | T1STR | Timer state setting   | Operation of timer when started from timer state setting (bits 1 and 0 = 01) |  |  |  |  |  |
|-------|-------|-----------------------|------------------------------------------------------------------------------|--|--|--|--|--|
| 0     | 0     | Counting is stopped   | Counter is cleared to start counting.                                        |  |  |  |  |  |
| 0     | 1     | Counting is started   | Counting is continued                                                        |  |  |  |  |  |
| 1     | 0     | Counting is stopped   | Counter is cleared to start counting.                                        |  |  |  |  |  |
| 1     | 1     | Counting is suspended | Counting is continued without clearing counter.                              |  |  |  |  |  |




#### 2.2.5 8-bit serial I/O

- 8-bit serial data transfer is possible by the clock synchronous method.
- LSB first or MSB first can be selected for data transfer.
- Four shift-clock modes (three internal and one external) can be selected.

## (1) Registers



# (2) Block diagram





## (3) Description of registers

(a) Serial-mode register (SMR)

The SMR is used to control serial I/O.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Initial value Address: 001CH SIOF CKS1 SST SIOE SCKE SOE CKS0 **BDS** 0000 0000<sub>B</sub> (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

[Bit 7] SIOF: Serial I/O interrupt-request flag Bit 7 indicates the serial I/O transfer state.

The meaning of each bit when reading is as follows:

| 0 | Serial data transfer not terminated |
|---|-------------------------------------|
| 1 | Serial data transfer terminated     |

Note that 1 is always read when the Read Modify Write instruction is read. If this bit is set when an interrupt is enabled (SIOE = 1), an interrupt request is output to the CPU.

The meaning of each bit when writing is as follows:

| 0 | This bit is cleared.                            |
|---|-------------------------------------------------|
| 1 | This bit does not change nor affect other bits. |

The end-of-transfer decision may be made by either the SST bit (bit 0) of the SMR or by this bit.

[Bit 6] SIOE: Serial I/O interrupt-enable bit

Bit 6 is used to enable a serial I/O interrupt request.

| 0 | Serial I/O interrupt-output disable |
|---|-------------------------------------|
| 1 | Serial I/O interrupt-output enable  |

[Bit 5] SCKE: Shift-clock output-enable bit

Bit 5 is used to control the shift-clock I/O pins.

| 0 | General-purpose port pin (P25) or SCK input pin |
|---|-------------------------------------------------|
| 1 | SCK (shift clock) output pin                    |

When using the P25/SCK pin as an external clock, always set the DDR to input (bit 5 of PDR2 = 0).

[Bit 4] SOE: Serial-data output-enable bit

Bit 4 is used to control the output pin for serial I/O.

| 0 | General-purpose port pin (P24) |
|---|--------------------------------|
| 1 | SO (serial data) output pin    |

When using P23/SI pin for the external clock, always set the DDR to input (bit 3 of DDR2 = 0).

#### HARDWARE CONFIGURATION

[Bits 3 and 2] CKS1 and CKS0: Shift-clock select bits Bits 3 and 2 are used to select the serial shift-clock modes.

CKS<sub>1</sub> CKS0 Mode SCK (Clock rate) 0 Internal shift-clock mode (instruction cycle) × 2 0 Output 0 1 Internal shift-clock mode (instruction cycle) × 8 Output 0 (instruction cycle) × 32 1 Internal shift-clock mode Output 1 SCK External shift-clock mode Input

[Bit 1] BDS: Transfer direction select bit

At serial data transfer, Bit 1 is used to select whether data transfer is performed from the least significant bit first (LSB first) or from the most significant bit first (MSB first).

| 0 | LSB first |
|---|-----------|
| 1 | MSB first |

Note that when this bit is rewritten after writing data to the SDR, the data become invalid.

[Bit 0] SST: Serial I/O transfer-start bit

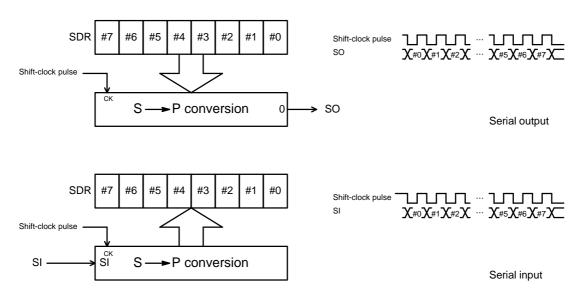
Bit 0 is used to start serial I/O transfer. The bit is automatically cleared to 0 when transfer is terminated.

| 0 | Serial I/O transfer stop  |
|---|---------------------------|
| 1 | Serial I/O transfer start |

Before starting transfer, ensure that transfer is stopped (SST = 0).

### (b) Serial-data register (SDR)

This 8-bit register is used to hold serial I/O transfer data. Do not write data to this register during the serial I/O operation.


Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Initial value Address: 001D<sub>H</sub> XXXX XXXXB (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)



### (4) Description of operation

#### (a) Outline

This module consists of the serial-mode register (SMR) and serial-data register (SDR). At serial output, data in the SDR is output in bit serial to the serial output pin (SO) in synchronization with the falling edge of a serial shift-clock pulse generated from the internal or external clock. At serial input, data is input in bit serial from the serial input pin (SI) to the SDR at the rising edge of a serial shift-clock pulse.



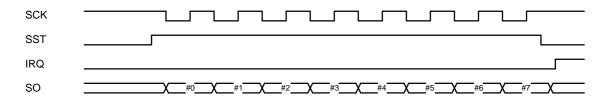
#### (b) Operation modes

The serial I/O has three internal shift-clock modes and one external shift-clock mode, which are specified by the SMR. Mode switching or clock selection should be made with serial I/O stopped (SST bit (bit 0) of SMR = 0).

#### (1) Internal shift-clock mode

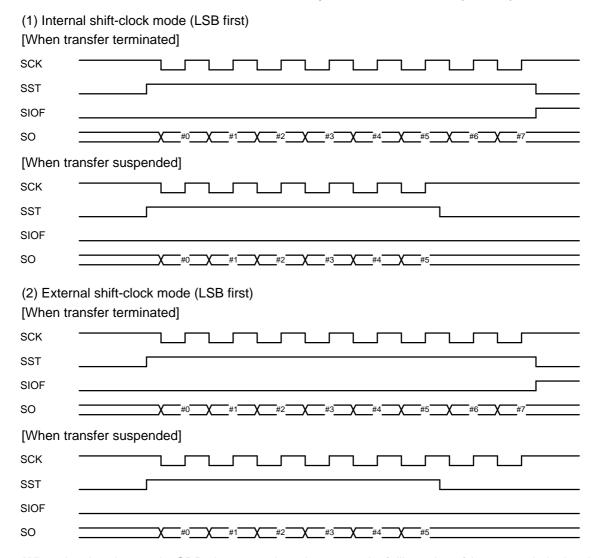
Operation is performed by the internal clock. A shift-clock pulse with a duty of 50% is output from the SCK pin as a synchronous timing output. Data is transferred bit-by-bit at every clock pulse.

#### (2) External shift-clock mode


Data is transferred bit-by-bit at every clock pulse in synchronization with the external shift-clock pulse input from the SCK pin. The transfer speed can be from DC to 1/2 oscillation (two instruction cycles). When one instruction cycle is 2.0 µs (at 2 MHz oscillation), the transfer speed can be up to 0.25 MHz.

Do not write data to the SMR and SDR during the serial I/O operation in either mode.




### (c) Interrupt functions

This module can output an interrupt request to the CPU. To output an interrupt request, set the SIOE bit (bit 6) of the SMR to 1 to enable an interrupt and then set the interrupt flag SIOF (bit 7) of SMR after 8-bit data transfer is terminated.



# (d) Shift start/stop timing

Data transfer starts when 1 is written at the SST bit (bit 0) of the SMR, and stops when 0 is written. When data transfer is terminated, the SST bit is automatically cleared to 0, which stops the operation.



Note: When data is written at the SDR, the output data changes at the falling edge of the external-clock pulse.

Fig. 2.22 Shift Start/Stop Timing



# (e) Input/output shift timing

Data is output from the serial output pin (SO) at the falling edge of the shift-clock pulse, and is input from the serial input pin (SI) to the SDR at the rising edge of the shift-clock pulse.

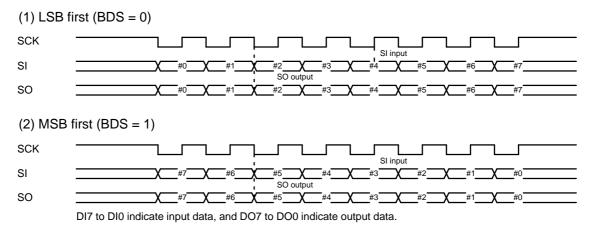
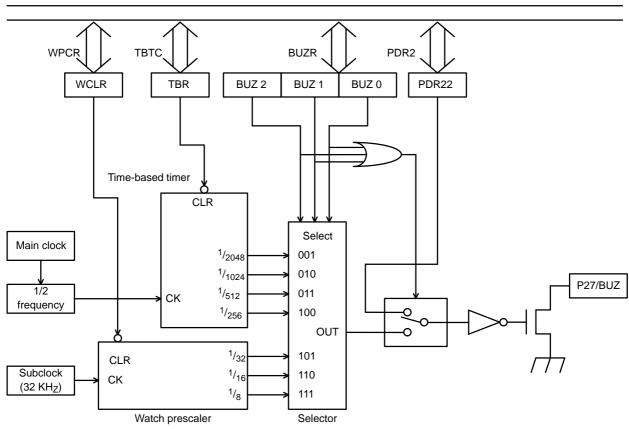



Fig. 2.23 Input/Output Shift Timing




# 2.2.6 Buzzer output circuit

- The buzzer output sound for checking key input can be output from port 27.
- Seven frequencies can be output by setting the registers.

## (1) Registers

## (2) Block diagram

Internal bus





# (3) Detailed description of registers

## (a) Buzzer register (BUZR)

This 3-bit register enables buzzer output and selects the frequency.

|                           | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Initial value          |
|---------------------------|-------|-------|-------|-------|-------|-------|-------|-------|------------------------|
| Address: 00F <sub>H</sub> | _     |       |       | _     | _     | BUZ2  | BUZ1  | BUZ0  | XXXX X000 <sub>B</sub> |
|                           |       |       |       |       |       | (R/W) | (R/W) | (R/W) |                        |

[Bits 2, 1, and 0] BUZ2, BUZ1 and BUZ0: Buzzer-select bits

Bits 2, 1, and 0 are used to enable buzzer output and select the frequency. The buzzer output function is disabled by 000 and the port operates normally. In other cases, the frequencies listed in the table below are selected.

Table 2-5 Buzzer Output Frequencies (at fch = 3 MH<sub>Z</sub> and fcl = 32 kHz)

| BUZ2 | BUZ1 | BUZ0 | Buzzer output frequency        |
|------|------|------|--------------------------------|
| 0    | 0    | 0    | General-purpose port operation |
| 0    | 0    | 1    | 732 Hz                         |
| 0    | 1    | 0    | 1465 Hz                        |
| 0    | 1    | 1    | 2930 Hz                        |
| 1    | 0    | 0    | 5859 Hz                        |
| 1    | 0    | 1    | 1024 Hz                        |
| 1    | 1    | 0    | 2048 Hz                        |
| 1    | 1    | 1    | 4096 Hz                        |

fch: Main clock frequency fcl: Subclock frequency

## (4) Description of operation

This circuit outputs a signal for use as a check sound. The buzzer register is used to enable buzzer output and select the frequency. When values other than 000 are set at the BUZR register, the square wave of the set frequency is output at the port.

## (5) Precautions for buzzer output circuit

Part of the time-base timer or watch prescaler is used as the buzzer output. Therefore, each setting condition of the time-base timer or watch prescaler affects the circuit.



#### 2.2.7 LCD controller/driver

The LCD controller/driver consists of the display controller that generates segment and common signals according to the display data and memory data, and the segment and common drivers that can drive the LCD panel directly.

Its main functions an features are as follows:

- 1. Direct LCD driving
- 2. Built-in reference voltage generator and booster for driving LCD (option)
- 3. Built-in dividing resistor for driving LCD (option)
- 4. Four common outputs (COM0 to COM3) and 36 segment outputs (SEG0 to SEG35)
- 5. 18-byte display data memory
- 6. 1/2, 1/3, or 1/4 selected as duty.
- 7. Main clock and subclock (32 kHz) selected as drive clock source.
- 8. SEG20 to SEG35 used as general-purpose ports (option).

## (1) Registers

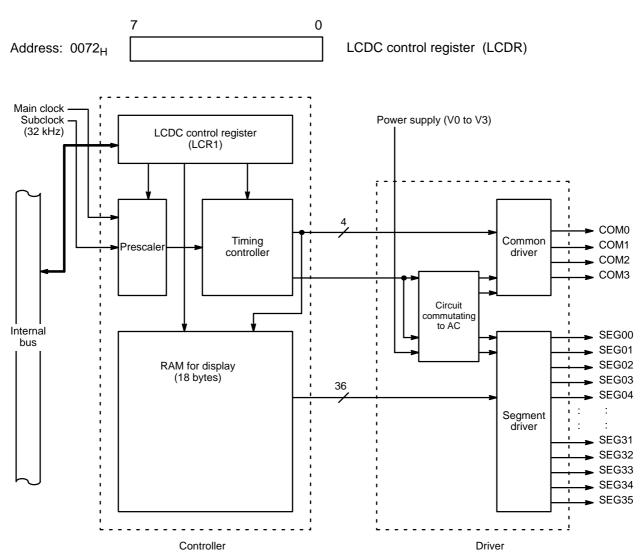



Fig. 2.24 LCDC Block Diagram



# (2) Description of registers

LCDC control register 1 (LCDR)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Initial value Address: 0072<sub>H</sub> CSS FP1 LCEN VSEL BK MS1 MS0 FP0 0001 0000<sub>B</sub> (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

[Bit 7]: Clock Source Select (CSS)

Bit 7 is a frame cycle generation clock select bit.

| 0 | Main clock |
|---|------------|
| 1 | Subclock   |

[Bit 6]: LCEN

Bit 6 is a LCD controller/driver operation enable bit at watch mode

| 0 | Terminates the operation at watch mode |
|---|----------------------------------------|
| 1 | Executes operation at watch mode       |

[Bit 5]: VSEL

<<Microcontrollers without built-in booster>>

Bit 5 is a LCD drive power control bit.

| 0 | Connection of internal resistor for divided voltage enters off state |
|---|----------------------------------------------------------------------|
| 1 | Connection of internal resistor for divided voltage enters on state  |

<<Microcontrollers with built-in booster (MB89150A)>>

This bit is used to control the reference voltage generator.

| 0 | The reference voltage generator and booster starts operation.                  |
|---|--------------------------------------------------------------------------------|
| 1 | The reference voltage generator and booster stops operation (power-down mode). |

[Bit 4]: Blanking (BK)

Bit 4 selects display or display blanking. The segment output in display blanking is an non-conforming waveform.

| 0 | Display          |
|---|------------------|
| 1 | Display blanking |

#### **HARDWARE CONFIGURATION**

[Bit 3]: MS1

[Bit 2]: MS0 (Mode Select 1 to 0)

Bit 3 and 2 select display mode. The mode is set according to the following table.

| MS1 | MS0 | Display mode         | Number of time divisions: N |
|-----|-----|----------------------|-----------------------------|
| 0   | 0   | LCD operation stop   | _                           |
| 0   | 1   | 1/2 duty output mode | 2                           |
| 1   | 0   | 1/3 duty output mode | 3                           |
| 1   | 1   | 1/4 duty output mode | 4                           |

[Bit 1]: FP1

[Bit 0]: FP0 (Frame Period 1 to 0)

Bits 1 and 0 select the LCD clock cycle. The frame frequency is shown below. Calculate the optimum frame frequency and set the register according to the LCD module.

| FP1 | FP0 | Frame frequency (at fch = 3 MHz and fcl = 32 kHz) |                |                          |                |  |
|-----|-----|---------------------------------------------------|----------------|--------------------------|----------------|--|
|     |     | CSS                                               | S = 0          | CSS                      | S = 1          |  |
| 0   | 0   | $fch/(2^{12} \times N)$                           | 183 Hz (N = 4) | $fch/(2^5 \times N)$     | 256 Hz (N = 4) |  |
| 0   | 1   | $fch/(2^{13} \times N)$                           | 92 Hz (N = 4)  | $fch/(2^6 \times N)$     | 128 Hz (N = 4) |  |
| 1   | 0   | $fch/(2^{14} \times N)$                           | 46 Hz (N = 4)  | $fch/(2^7 \times N)$     | 64 Hz (N = 4)  |  |
| 1   | 1   | fch/(2 <sup>15</sup> × N)                         | 23 Hz (N = 4)  | fch/(2 <sup>8</sup> × N) | 32 Hz (N = 4)  |  |

N: Number of time divisions fch: Main clock frequency fcl: Subclock frequency



### (3) RAM for display

The LCD controller/driver contains the 18 x 8-bit RAM for generating a segment output signal. The value of this RAM is automatically read in synchronization with the common signal select timing and the waveform corresponding to this value is output from the segment output pin.

Thirty-six segment signals correspond to 18 locations of the display RAM. Each location bit is in synchronization with the common signal select timing: bits 0 and 4 with COM0, bits 1 and 5 with COM1, bits 2 and 6 with COM2, and bits 3 and 7 with COM3. If the value of each bit is 1, the signal is converted to LCD voltage and if it is 0, the signal is converted to non-LCD and is not output. However, at reset, COM0 to COM3 and SEG0 to SEG36 go Low to provide no LCD display.

The waveform is output from the segment pins in synchronization with the common signal select timing, irrespective of the CPU operation. Therefore, reading and writing from and to the display RAM are possible in any timing.

When using SEG20 to SEG35 as general-purpose output ports, the 8 upper bytes are usually used as RAM. When the external reset signal is input, the impedance of ports 4 and 5 goes High.

| Address          |      |      |      |      |                        |
|------------------|------|------|------|------|------------------------|
| 060 <sub>H</sub> | b3   | b2   | b1   | b0   | SEG00                  |
| OCOM             | b7   | b6   | b5   | b4   | SEG01                  |
| 061 <sub>H</sub> | b3   | b2   | b1   | b0   | SEG02                  |
| ООТН             | b7   | b6   | b5   | b4   | SEG03                  |
| 062 <sub>H</sub> | b3   | b2   | b1   | b0   | SEG04                  |
| 002H             | b7   | b6   | b5   | b4   | SEG05                  |
|                  |      |      | ļ    |      |                        |
| : ;              | :    | : :  | :    | :    | 1<br>1                 |
| : ;              | :    | : :  | :    | :    | 1<br>1                 |
|                  |      |      |      |      | ĺ                      |
| 068 <sub>H</sub> | b3   | b2   | b1   | b0   | SEG16                  |
| OCOM             | b7   | b6   | b5   | b4   | SEG17                  |
| 069 <sub>H</sub> | b3   | b2   | b1   | b0   | SEG18                  |
| OCOM             | b7   | b6   | b5   | b4   | SEG19                  |
| 06A <sub>H</sub> | b3   | b2   | b1   | b0   | SEG20                  |
| :<br>:           | b7   | b6   | b5   | b4   | SEG21                  |
| 06B <sub>H</sub> | b3   | b2   | b1   | b0   | SEG22                  |
| OODH             | b7   | b6   | b5   | b4   | SEG23                  |
| 06C <sub>H</sub> | b3   | b2   | b1   | b0   | SEG24 port 4.          |
| ОООП             | b7   | b6   | b5   | b4   | SEG25                  |
| 06D <sub>H</sub> | b3   | b2   | b1   | b0   | SEG26                  |
| 002 <sub>H</sub> | b7   | b6   | b5   | b4   | SEG27 ノ                |
| 06E <sub>H</sub> | b3   | b2   | b1   | b0   | SEG28                  |
| 33-11            | b7   | b6   | b5   | b4   | SEG29                  |
| 06F <sub>H</sub> | b3   | b2   | b1   | b0   | SEG30                  |
| "                | b7   | b6   | b5   | b4   | SEG31 Multiplexed with |
| 070 <sub>H</sub> | b3   | b2   | b1   | b0   | SEG32 port 5.          |
| ]                | b7   | b6   | b5   | b4   | SEG33                  |
| 071 <sub>H</sub> | b3   | b2   | b1   | b0   | SEG34                  |
| '' [             | b7   | b6   | b5   | b4   | SEG35 ノ                |
|                  | COM3 | COM2 | COM1 | COM0 |                        |



### (4) Operation

First, write the data to be displayed by display RAM. Then, set the value corresponding to the LCD panel to be used to LCR (LCD control register). The, LCD drive waveform is output according to the data in the display RAM, When the clock pulse is supplied. A high-speed clock or watch clock can be selected as clock source. The clock source can be switched during the LCD display. However, the display tends to flicker by switching. Therefore, it is best to stop the display by blanking, etc. before switching the clock.

The display drive output has a 2-frame AC waveform. The combination of bias and duty shown below may be possible, but do not use 1/2 bias. Examples of waveforms are shown in the following pages.

<Combination of biases and duties of microcontrollers without built-in booster>

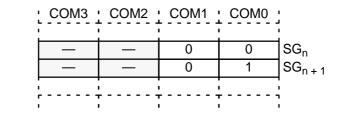
|          | 1/2 duty | 1/3 duty | 1/4 duty |       |
|----------|----------|----------|----------|-------|
| 1/2 bias | 0        | ×        | ×        | ⊚ : F |
| 1/3 bias | ×        | 0        | 0        | × : / |

(iii) : Recommended mode

× : Application disabled

<Combination of biases and duties of microcontrollers with built-in booster>

|          | 1/2 duty | 1/3 duty | 1/4 duty |
|----------|----------|----------|----------|
| 1/2 bias | ×        | ×        | ×        |
| 1/3 bias | ×        | 0        | 0        |


Note: Do not select the single-clock module for microcontrollers with a built-in booster (MB89150A).

The COM2 and COM3 output waveforms are non-conforming waveforms in the 1/2 duty mode. The COM3 output waveform is also a non-conforming waveform at 1/3 duty.

When LCD operation is terminated, both common and segment output waveforms at L level. However, when SEG20 to SEG 35 are specified as general-purpose port by the mask option, segment data are not output.



- (5) LCD drive output waveform
  - (a) Waveform at 1/2 bias and 1/2 duty



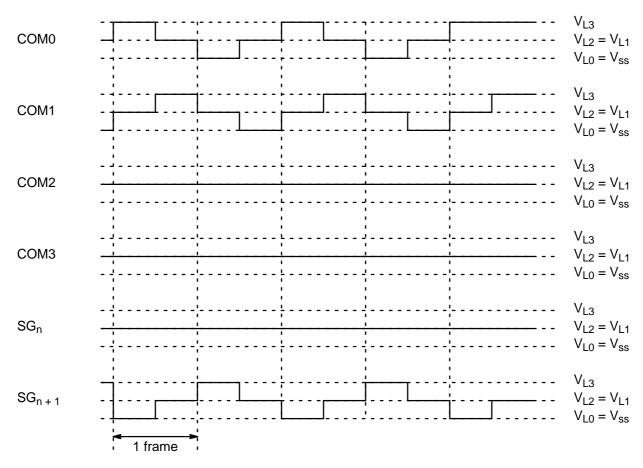



Fig. 2.25 Example of Waveform at Pin Corresponding to the RAM Data for Display

(b) Waveform at 1/3 bias and 1/3 duty

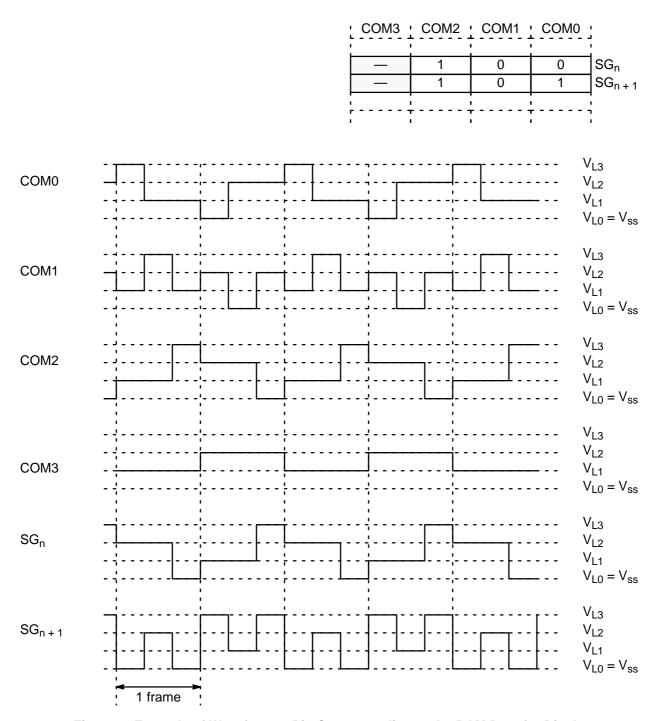



Fig. 2.26 Example of Waveform at Pin Corresponding to the RAM Data for Display



(c) Waveform at 1/3 bias and 1/4 duty

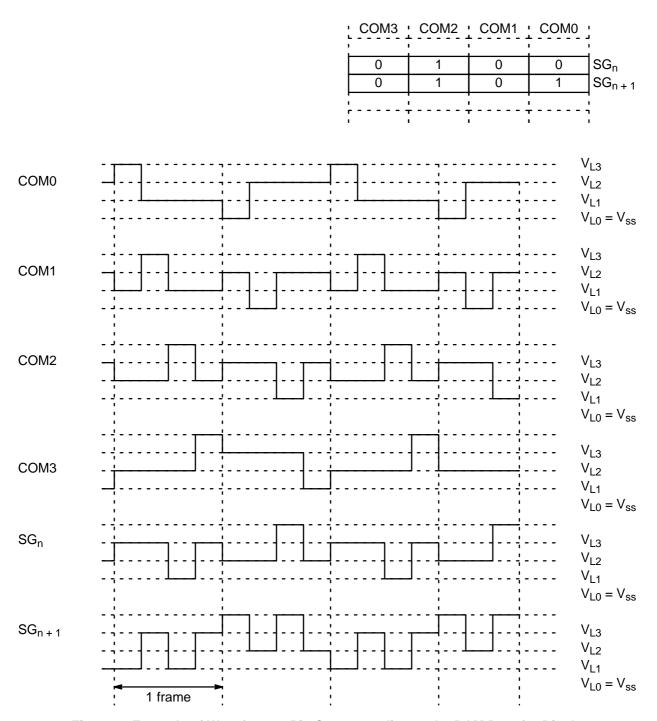
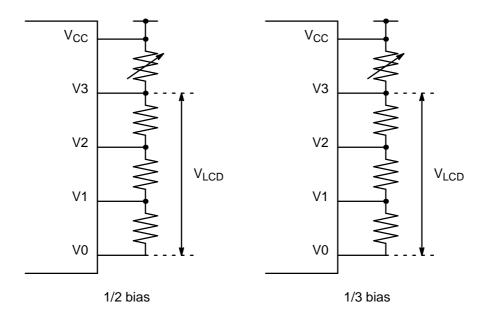



Fig. 2.27 Example of Waveform at Pin Corresponding to the RAM Data for Display

#### **HARDWARE CONFIGURATION**


(6) Voltage setting at power pins ( $V_3$ ,  $V_2$ ,  $V_1$ , and  $V_0$ ) for driving LCD

Set the voltages at the LCD power pins  $(V_3,\,V_2,\,V_1,\,\text{and}\,V_0)$  as shown below.

|          | V3        | V2                   | V1                   | V0  |
|----------|-----------|----------------------|----------------------|-----|
| 1/2 bias | $V_{LCD}$ | 1/2 V <sub>LCD</sub> | 1/2 V <sub>LCD</sub> | GND |
| 1/3 bias | $V_{LCD}$ | 2/3 V <sub>LCD</sub> | 1/3 V <sub>LCD</sub> | GND |

V<sub>LCD</sub>: LCD operating voltage

A connection example for supplying power to drive the LCD is shown below.

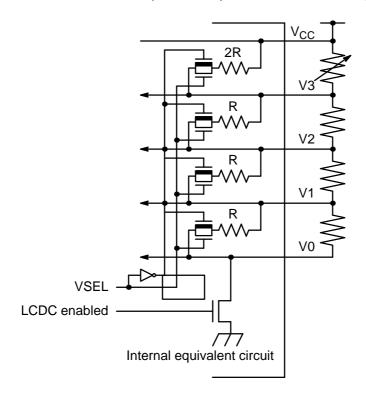


## Notes:

- 1. To set a 1/2 duty when using the external dividing resistor, short-circuit the pins V2 and V1.
- 2. For microcontrollers with a built-in booster (MB89150A), the above pins serve as the external capacitor connection pins (Figure 2.22).



Built-in voltage dividing resistor


The built-in voltage dividing resistors are connected as shown in the next figure.

Writing 1 at the VSEL bit connects the built-in voltage dividing resistors. Therefore, write 1 at the VSEL bit to connect the resistors and set 0 to disconnect the resistors.

The V0 pin is connected to the  $V_{SS}$  through the transistor within chip. Therefore, when using the external resistance divider, connecting  $V_{SS}$  only to the V0 pin cut the current flowing into the resistor when the LCDC stops.

In the figure, the LCDC enable bit becomes inactive in the LCD stop and WATCH modes (LCEN = 0).

Microcontrollers with a built-in booster (MB89150A) do not contain a dividing resistor.





(7) Reference voltage generator and booster for doubling and tripling the voltage (only for microcontrollers with built-in booster (MB89150A))

The reference voltage generator generates the reference voltage of 1.5 V without being affected by fluctuations in the operating voltage. The booster can be used solely without using the internal reference voltage generator by applying an external reference voltage to the V1 pin. This arrangement is optional.

The booster can be connected as shown in the figure below to generate a double or triple reference voltage from 32 kHz input clock pulses and the reference voltage.

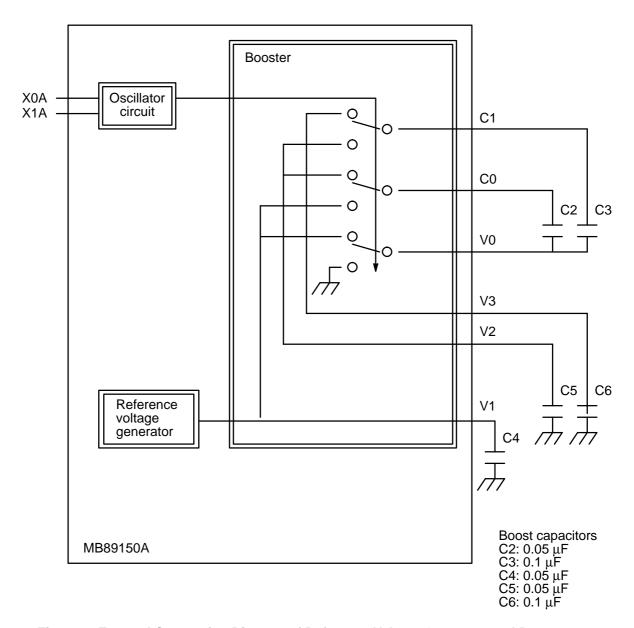
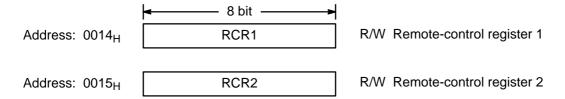
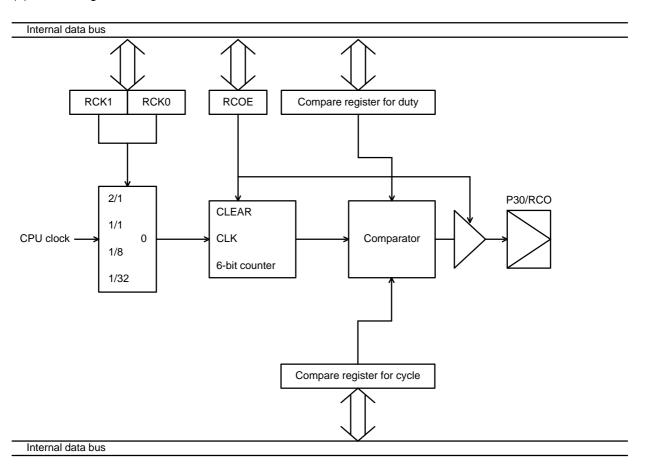



Fig. 2.28 External Connection Diagram of Reference Voltage Generator and Booster


Note: The reference voltage generator and booster function only when microcontrollers with built-in booster (MB89150A) are selected. When microcontrollers without built-in booster are selected, pins V3 to V0 serve as division resistor connection pins. Capacitors C0 and C1 serve as general-purpose output ports (P31 and P32).




# 2.2.8 Remote-control carrier frequency generator

- This generator is a remote-control circuit for generating remote-control carrier frequencies.
- The 6-bit binary counter is built in.
- Four internal clock pulses can be selected to set a duty and cycle.

# (1) Registers



# (2) Block diagram





### (3) Description of registers

### (a) Remote-control register 1 (RCR1)

This register is used to select the reference clock and set the duty of remote-control carrier frequency.

|                            | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Initial value          |
|----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|------------------------|
| Address: 0014 <sub>H</sub> | RCK1  | RCK0  | HSC5  | HSC4  | HSC3  | HSC2  | HSC1  | HSC0  | 0000 0000 <sub>B</sub> |
|                            | (R/W) | •                      |

[Bits 7 and 6] RCK1 and RCK0: Bits for selecting clock source for remote-control carrier frequency. These bits are used to select the clock source for the remote-control carrier frequency.

| RCK1 | RCK0 | Reference clock                       | Reference clock at fch = 3 MHz |
|------|------|---------------------------------------|--------------------------------|
| 0    | 0    | (Instruction cycle time) $\times$ 1/2 | 0.67 μs                        |
| 0    | 1    | (Instruction cycle time) $\times$ 1   | 1.33 μs                        |
| 1    | 0    | (Instruction cycle time) $\times$ 8   | 10.33 μs                       |
| 1    | 1    | (Instruction cycle time) $\times$ 32  | 42.56 μs                       |

Instruction cycle: Selectable from 1/4 to 1/64 oscillations of main clock by setting system clock control register (SYCC).

fch: Oscillation frequency of main clock

[Bits 5 to 0] HSC5 to HSC0: Bits for setting duty of remote-control carrier frequency

These bits are used for the 6-bit compare register to set the duty of the remote-control carrier frequency. To set the duty of the remote-control carrier frequency, set the value calculated from the clock source in binary at these bits. For example, to set a duty of  $26 \,\mu s$ , select clock source = instruction x 1 and set 010100 (1/20 oscillation) at these 6 bits. This enables the selection of any duty.

### (b) Remote-control register 2 (RCR2)

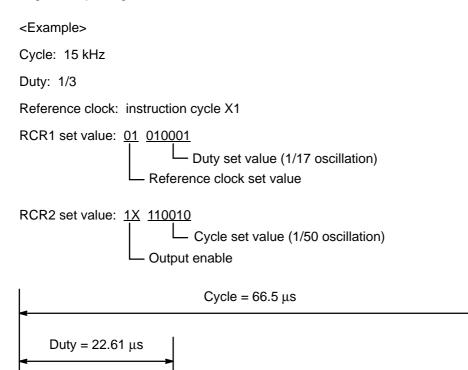
This register is used to enable the output and set the cycle of remote-control carrier frequency.

|                            | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Initial value          |
|----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|------------------------|
| Address: 0015 <sub>H</sub> | RCEN  | _     | SCL5  | SCL4  | SCL3  | SCL2  | SCL1  | SCL0  | 0000 0000 <sub>B</sub> |
|                            | (R/W) |       | (R/W) | (R/W) | (R/W) | (R/W) | (R/W) | (R/W) | •                      |

[Bit 7] RCEN: Bit for enabling output of remote-control carrier frequency

This bit is used to enable the output of remote-control carrier frequency to the P30/RCO pin. Setting this bit to 0 enables clearing of the 6-bit counter.

[Bits 5 to 0] SCL5 to SCL0: Bits for setting cycle of remote-control carrier frequency


These bits are used for the 6-bit compare register to set the cycle of the remote-control carrier frequency. To set the cycle of the remote-control carrier frequency, set the value calculated from the clock source in binary at these bits. For example, to set a cycle of  $66 \,\mu s$ , select reference clock = instruction x 1 and set 110010 (1/50 oscillation) at these 6 bits. This enables selection of a cycle of  $66.5 \,\mu s$ .



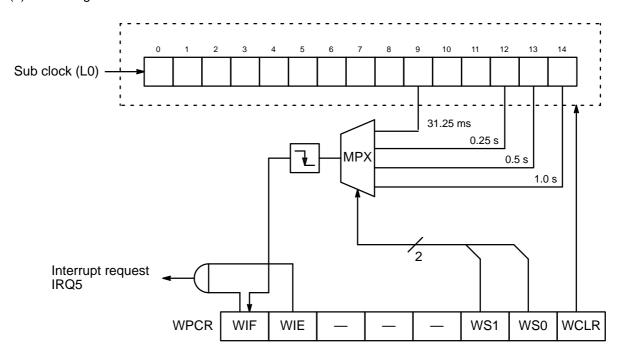
# (4) Description of operation

Remote-control registers 1 and 2 (RCR1 and RCR2) control a 6-bit counter to output the remote-control carrier frequency to the P30/RCO pin.

A usage example is given below.



Note: To set the duty and cycle, the cycle set value must always be greater than the set duty value.




# 2.2.9 Watch prescaler

- This prescaler has a 15-bit binary counter
- Four interval times and three clock pulses can be selected.
- This function cannot be used when the single clock module is selected by the mask option.

# (1) Registers

## (2) Block diagram





## (3) Description of registers

(a) Watch prescaler control register (WPCR)

|                            | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Initial value          |
|----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|------------------------|
| Address: 000B <sub>H</sub> | WIF   | WIE   |       | _     | _     | WS1   | WS0   | WCLR  | 00XX X000 <sub>B</sub> |
| •                          | (R/W) | (R/W) |       |       |       | (R/W) | (R/W) | (R/W) | •                      |

[Bit 7] WIF: Watch interrupt flag

When writing, this bit is used to clear the watch interrupt flag.

| 0 | Clears watch interrupt flag |
|---|-----------------------------|
| 1 | No operation                |

When reading, this bit indicates that the watch interrupt has occurred.

| 0 | Watch interrupt not occurred |
|---|------------------------------|
| 1 | Watch interrupt occurred     |

1 is read when the Read Modify Write instruction is read. If the WIF bit is set to 1 when the WIE bit is 1, an interrupt request is output. This bit is cleared upon reset.

[Bit 6] WIE: Watch interrupt enable bit

This bit is used to enable an interrupt by the watch.

| 0 | Interrupt by watch disabled |
|---|-----------------------------|
| 1 | Interrupt by watch enabled  |

[Bit 2] WS1: Interrupt interval time specification bit by watch

[Bit 1] WS0: Interrupt interval time specification bit by watch

These bits are used to specify the interrupt cycles.

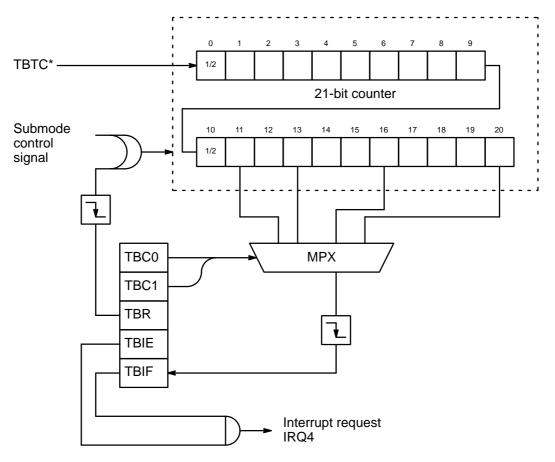
| WS1 | WS0 | Interrupt cycle      | Interrupt cycle at fcl = 32 KHz |
|-----|-----|----------------------|---------------------------------|
| 0   | 0   | 2 <sup>10</sup> /fcl | 31.25 [ms]                      |
| 0   | 1   | 2 <sup>13</sup> /fcl | 0.25 [s]                        |
| 1   | 0   | 2 <sup>14</sup> /fcl | 0.50 [s]                        |
| 1   | 1   | 2 <sup>15</sup> /fcl | 1.00 [s]                        |

/fcl: Subclock oscillation frequency

[Bit 0] WCLR: Bit clearing watch prescaler This bit is used to clear the watch prescaler.

| 0 | Watch prescaler cleared |
|---|-------------------------|
| 1 | No operation            |

<sup>1</sup> is always read when this bit is read.




### 2.2.10 Time-base timer

- This timer has a 21-bit binary counter and uses a clock pulse with 1/2 oscillation of the main clock.
- Four interval times can be selected.
- This function cannot be used when the main clock is stopped.

# (1) Registers

## (2) Block diagram



<sup>\*</sup>TBTC is a clock pulse with 1/2 oscillation of the main clock.



# (3) Description of registers

(a) Time-base timer control register (TBCR)

|                            | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Initial value          |
|----------------------------|-------|-------|-------|-------|-------|-------|-------|-------|------------------------|
| Address: 000A <sub>H</sub> | TBOF  | TBIE  |       | _     | _     | TBC1  | TBC0  | TBR   | 00XX X000 <sub>B</sub> |
|                            | (R/W) | (R/W) |       |       |       | (R/W) | (R/W) | (W)   | •                      |

[Bit 7] TBOF: Interval timer overflow bit

When writing, this bit is used to clear the interval timer overflow flag.

| 0 | Interval timer overflow flag cleared |
|---|--------------------------------------|
| 1 | No operation                         |

When reading, this bit indicates that an interval timer overflow has occurred.

| 0 | Interval timer overflow not occurred |
|---|--------------------------------------|
| 1 | Interval timer overflow occurred     |

1 is read when the Read Modify Write instruction is read. If the TBIF bit is set to 1 when the TBIE bit is 1, an interrupt request is output. This bit is cleared upon reset.

[Bit 6] TBIE: Interval-timer interrupt enable bit

This bit is used to enable an interrupt by the interval timer.

| 0 | Interval interrupt disabled |
|---|-----------------------------|
| 1 | Interval interrupt enabled  |

[Bit 2] TBC1: Interval time specification bit [Bit 1] TBC2: Interval time specification bit

Bits 1 and 2 are used to specify interval timer cycle.

| TBC1 | TBC0 | Interval time        | Interval time at fch = 3 MHz |
|------|------|----------------------|------------------------------|
| 0    | 0    | 2 <sup>13</sup> /fch | 2.73 [ms]                    |
| 0    | 1    | 2 <sup>15</sup> /fch | 10.92 [ms]                   |
| 1    | 0    | 2 <sup>18</sup> /fch | 87.38 [ms]                   |
| 1    | 1    | 2 <sup>22</sup> /fch | 1398.10 [ms]                 |

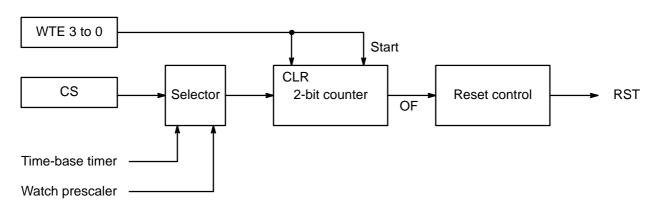
/fch: main clock frequency

[Bit 0] TBR: Time-base timer clear bit This bit is used to clear time-base timer.

| 0 | Time-base timer cleared |
|---|-------------------------|
| 1 | No operation            |

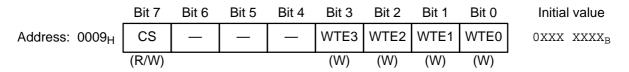
1 is always read when this bit is read.




## 2.2.11 Watchdog timer reset

Either of a signal output from the time-base timer for counting with the main clock or a signal output from the watch prescaler for counting with the subclock can be selected as a clock.

### (1) Registers


Address: 0009<sub>H</sub> WDTE R/W Watchdog timer control register

# (2) Block diagram



### (3) Description of register

• Watchdog timer control register (WDTE)



[Bit 7] CS: Clock source switching bit

Bit 7 is used to select a count clock from either the watch prescaler or time-base timer.

| 0 | Time-base timer Cycle = 2 <sup>22</sup> /fch |
|---|----------------------------------------------|
| 1 | Watch prescaler Cycle = 2 <sup>14</sup> /fcl |

fch: Main clock frequency fcl: Subclock frequency

Set this bit as soon as the watchdog timer is started. Do not change the bit after the timer is started. When using the submode, always select the watch prescaler.



[Bits 3 to 0] WTE3 to WTE0: Watchdog timer control bit Bits 3 to 0 control the watchdog timer.

### First write only after reset

| 0101                 | Watchdog timer started |
|----------------------|------------------------|
| Other than the above | No operation           |

### Second and later write

| 0101                 | Watchdog timer counter cleared |
|----------------------|--------------------------------|
| Other than the above | No operation                   |

The watchdog timer can be stopped only by reset. 1111 is read when these bit are read.

## (4) Description of operation

The watchdog timer enables detection of a program nullfunction.

Starting watchdog timer

The watchdog timer starts when 0101 is written at the watchdog timer control bits.

• Clearing watchdog timer

When 0101 is written at the watchdog timer control bits after start, the watchdog timer is cleared. The counter of the watchdog timer is cleared when changing to the standby mode (STOP, SLEEP, CLOCK) or hold mode.

Watchdog timer reset

If the watchdog timer is not cleared within the time given in the table below, a watchdog timer reset occurs to reset the chip internally.

|              | Clock source      |                 |  |  |
|--------------|-------------------|-----------------|--|--|
|              | Time-based timer  | Watch prescaler |  |  |
| Minimum time | Approx. 1398.1 ms | Approx. 512 ms  |  |  |
| Maximum time | Approx. 2796.2 ms | Approx. 1024 ms |  |  |

at high-speed 3 MHz clock at low-speed 32 kHz clock

Stopping watchdog timer

Once started, the watchdog timer will not stop until a reset occurs.

# 3. OPERATION

| 3.1 Clock Pu  | llse Generator                | 3-3 |
|---------------|-------------------------------|-----|
| 3.2 Reset     |                               | 3-4 |
| 3.3 Interrupt |                               | 3-6 |
| 3.4 Low-pow   | er Consumption Modes          | 3-8 |
| 3.5 Pin State | es for Sleep, Stop, and Reset | 3-9 |
|               |                               |     |



## 3.1 Clock Pulse Generator

The MB89150 series of microcontrollers incorporate the system clock pulse generator. The crystal oscillator is connected to the X0 and X1 pins to generate clock pulses. Clock pulses can also be supplied internally by inputting externally-generated clock pulses to the X0 pin. The X1 pin should be kept open.

The X0A and X1A pins are used for the subclock and function in the same manner as the X0 and X1 pins.

When the single clock module is selected by the option, the X0A pin should be connected to GND and the X1A pin should be kept open.

For microcontrollers with built-in booster, the single clock module cannot be selected by the option. The double-clock module should be used.

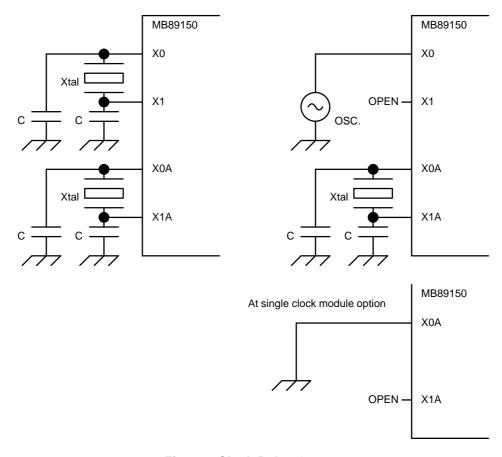



Fig. 3.1 Clock Pulse Generator



### 3.2 Reset

### 3.2.1 Reset operation

When reset conditions occur, the MB89150 series of microcontrollers suspend the currently-executing instruction to enter the reset state. The contents written at the RAM do not change before and after reset. However, if a reset occurs during writing of 16-bit long data, data is written to the upper bytes and may not be written to lower bytes. If a reset occurs around write timing, the contents of the addresses being written are not assured.

When the reset conditions are cleared, the MB89150 series of microcontrollers are released from the reset state and start operation after fetching the mode data from address  $\mathtt{FFFD}_{\mathtt{H}}$ , the upper bytes of the reset vectors from address  $\mathtt{FFFE}_{\mathtt{H}}$ , and the lower bytes from address  $\mathtt{FFFF}_{\mathtt{H}}$ , in that order. Figure 3.2 shows the flow-chart for the reset operation.

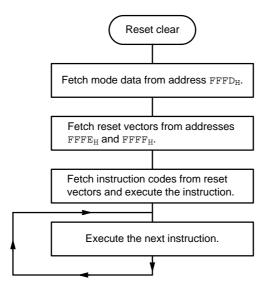



Fig. 3.2 Outline of Reset Operation

Figure 3.3 indicates the structure of data to be stored in addresses FFFDH, FFFEH, and FFFFH.

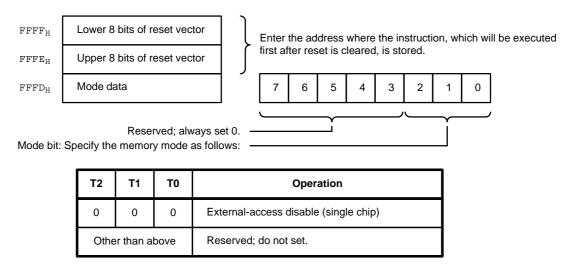



Fig. 3.3 Reset Vector Structure



### 3.2.2 Reset sources

The MB89150 series of microcontrollers have the following reset sources.

(1) External pin A Low level is input to the RSTX pin.

(2) Specification by software 0 is written at the RST bit of the standby-control register.

(3) Power-on The power is turned on when the power-on reset option is selected.
 (4) Watchdog function The watchdog function is enabled by the watchdog-control register and

reaccess to this register is not obtained within the specified time.

When the stop mode is cleared by reset or power-on reset (option selected), operation is started after elapse of the oscillation stabilization time.

For details, see pages 2-16 to 2-18.



### 3.3 Interrupt

If the interrupt controller and CPU are ready to accept interrupts when an interrupt request is output from the internal resources or by an external-interrupt input, the CPU temporarily suspends the currently-executing instruction and executes the interrupt-processing program. Figure 3.4 shows the interrupt-processing flow-chart.

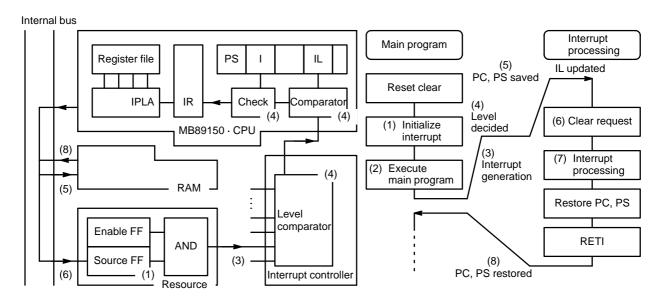



Fig. 3.4 Interrupt-processing Flowchart

All interrupts are disabled after a reset is cleared. Therefore, initialize interrupts in the main program (1). Each resource generating interrupts and the interrupt-level-setting registers (ILR1 to ILR3) in the interrupt controller corresponding to these interrupts are to be initialized. The levels of all interrupts can be set by the interrupt-level-setting registers (ILR1 to ILR3) in the interrupt controller. The interrupt level can be set from 1 to 3, where 1 indicates the highest level, and 2 the second highest level. Level 3 indicates that no interrupt occurs. The interrupt request of this level cannot be accepted. After initializing the registers, the main program executes various controls (2). Interrupts are generated from the resources (3). The highest-priority interrupt requests are identified from those occurring at the same time by the interrupt controller and are transferred to the CPU. The CPU then checks the current interrupt level and the status of the I-flag (4), and starts the interrupt processing.

The CPU performs the interrupt processing to save the contents of the current PC and PS in the stack (5) and fetches the entry addresses of the interrupt program from the interrupt vectors. After updating the IL value in the PS to the required one, the CPU starts executing the interrupt-processing routine.

Clear the interrupt sources (6) and process the interrupts in the user's interrupt-processing routine. Finally, restore the PC and PS values saved by the RETI instruction in the stack (8) to return to the interrupted instruction.

Note: Unlike the F<sup>2</sup>MC-8, A and T are not saved in the stack at the interrupt time.



Table 3-1 lists the relationships between each interrupt source and interrupt vector.

**Table 3-1 Interrupt Sources and Interrupt Vectors** 

| Interrupt source            | Upper vector address         | Lower vector address         |  |  |
|-----------------------------|------------------------------|------------------------------|--|--|
| IRQ0 (External interrupt 1) | $\mathtt{FFFA}_{\mathtt{H}}$ | $\mathtt{FFFB}_{\mathtt{H}}$ |  |  |
| IRQ1 (External interrupt 2) | FFF8 <sub>H</sub>            | FFF9 <sub>H</sub>            |  |  |
| IRQ2 (16-bit timer counter) | FFF6 <sub>H</sub>            | FFF7 <sub>H</sub>            |  |  |
| IRQ3 (8-bit serial I/O)     | FFF4 <sub>H</sub>            | FFF5 <sub>H</sub>            |  |  |
| IRQ4 (Interval timer)       | FFF2 <sub>H</sub>            | FFF3 <sub>H</sub>            |  |  |
| IRQ5 (Watch)                | FFFO <sub>H</sub>            | FFF1 <sub>H</sub>            |  |  |



# 3.4 Low-power Consumption Modes

The MB89150 series of microcontrollers have three standby modes: sleep, stop, and watch to reduce the power consumption. Writing to the standby control register (STBC) switches to these three standby modes. See 2.1.5 for setting and releasing each mode.

The MB89150 series of microcontrollers have a double clock module, and the low-power consumption modes vary with the main clock and subclock modes. Whether or not an oscillation stabilization period is required at release from each low-power consumption mode depends on the mask option of the power-on reset (See pages 2-16 to 2-18).

If the single clock module is specified with the mask option, the MB89150 series of microcontrollers can be used as single clocks. If the microcontrollers are used as single clocks without specifying the single clock module with the mask option, once the subclock mode is entered, it cannot be released. Therefore, when using these controllers as a single clock, specify the single clock module with the mask option.

Main mode Sub mode **Function** Note **SLEEP STOP RUN SLEEP** RUN **STOP** Watch Main clock Operate Operate Stop Stop Stop Stop Stop Subclock Operate Operate Operate Operate Operate Stop Operate Instruction Operate Stop Stop Operate Stop Stop Stop **CPU ROM** Operate Hold Hold Operate Hold Hold Hold **RAM** I/O Hold Hold Hold Operate Hold Hold 0 Operate Watch prescaler Operate Operate Operate<sup>3</sup> Operate Operate Stop Operate Time-base timer Operate Operate Stop Stop Stop Stop Stop X 16-bit timer 0 Operate Operate Stop Operate Operate Stop Stop 8-bit SIO 0 Operate Operate Stop Operate Operate Stop Stop Resource Remote-control carry 0 Operate Operate Stop Operate Operate Stop Stop Stop\*3 **LCDC** 0 Operate\*2 Operate Operate Stop Operate Operate **External interrupt** 0 Operate Operate Operate Operate Operate Operate Operate **Buzzer output** × Operate Operate Operate\*2 Operate\*2 Operate\*2 Stop Operate\*<sup>2</sup> Stop Watchdog timer Operate Stop Operate\*2 Stop Stop X Stop

Table 3-2 Low-power Consumption Mode at Each Clock Mode

### Notes

- O: Clock mode (main mode or submode)does not affects the operation speed or others.
- x: Clock mode (main mode or submode)does not affects the operation speed or others.
- \*1: Watch prescaler can operate counting but watch interrupt cannot be operated.
- \*2: When clock source is used as watch prescaler.
- \*3: For microcontrollers with built-in booster (MB89150A), the booster stops.



# 3.5 Pin States for Sleep, Stop, and Reset

The state of each pin of the MB89150 series of microcontrollers at sleep, stop, and reset is as follows:

- (1) Sleep The pin state immediately before the sleep state is held.
- (2) Stop The pin state immediately before the stop state is held when the stop mode is started and bit 5

of the standby-control register (STBC) is set to 0; the impedance of the output and input/out-

put pins goes High when the bit is set to 1.

(3) Reset When the MOD pin is 00, the impedance of all I/O and resource pins (excluding pins for pull-

up option) goes High.

The detailed pin state in each mode is described on the following pages.

## **OPERATION**



Normal Pins for MB89150 Series of Microcontrollers (in Single-Chip Mode)

| Pin name                  | Normal                 | Sleep                  | Stop<br>SPL = 0 | Stop<br>SPL = 1                  | Reset                  |  |
|---------------------------|------------------------|------------------------|-----------------|----------------------------------|------------------------|--|
| P07/INT27 to<br>P00/INT20 | Port input/output      | Previous state         | Previous state  | High impedance<br>Resource input | High impedance         |  |
| P17 to P14                | Port input/output      | Previous state         | Previous state  | High impedance                   | High impedance         |  |
| P13/INT13 to<br>P10/INT10 | Port input/output      | Previous state         | Previous state  | High impedance<br>Resource input | High impedance         |  |
| X0, X0A                   | Input for oscillation  | Input for oscillation  | High impedance  | High impedance                   | Input for oscillation  |  |
| X1, X1A                   | Output for oscillation | Output for oscillation | H output        | H output                         | Output for oscillation |  |
| MOD0<br>MOD1              | Mode input             | Mode input             | Mode input      | Mode input                       | Mode input             |  |
| RSTX                      | Reset input            | Reset input            | Reset input     | Reset input                      | Reset input *1         |  |
| P27/BUZ                   | Port output            | Previous state         | Previous state  | High impedance                   | High impedance         |  |
| P26                       | Port output            | Previous state         | Previous state  | High impedance                   | High impedance         |  |
| P25/SCK                   | Port output            | Previous state         | Previous state  | High impedance                   | High impedance         |  |
| P24/SO                    | Port output            | Previous state         | Previous state  | High impedance                   | High impedance         |  |
| P23/SI                    | Port output            | Previous state         | Previous state  | High impedance                   | High impedance         |  |
| P22/TO                    | Port output            | Previous state         | Previous state  | High impedance                   | High impedance         |  |
| P21                       | Port output            | Previous state         | Previous state  | High impedance                   | High impedance         |  |
| P20/EC                    | Port output            | Previous state         | Previous state  | High impedance                   | High impedance         |  |
| P32/C0* <sup>2</sup>      | Port output            | Previous state         | Previous state  | High impedance                   | High impedance         |  |
| P31/C1* <sup>2</sup>      | Port output            | Previous state         | Previous state  | High impedance                   | High impedance         |  |
| P30/RCO                   | Port output            | Previous state         | Previous state  | High impedance                   | H output               |  |
| P47/P40* <sup>3</sup>     | Port output            | Previous state         | Previous state  | High impedance                   | High impedance         |  |
| P57/P50* <sup>3</sup>     | Port output            | Previous state         | Previous state  | High impedance                   | High impedance         |  |
| COM0 to COM3              | Common output          | Previous state         | Previous state  | Previous state                   | L output               |  |
| SEG35 to SEG0             | Segment output         | Previous state         | Previous state  | Previous state                   | L output               |  |

<sup>\*1:</sup> The reset pin is used as output pin according to the option setting.

<sup>\*2:</sup> For microcontrollers with a built-in booster (MB89150A), these pins serve as capacitor connecting pins and not as ports.

<sup>\*3:</sup> If segment output is selected, these pins serve as SEG35 to SEG0.

# 4. COMMAND

| 4.1 Transfer Instructions                | . 4-4<br>. 4-5 |
|------------------------------------------|----------------|
| 4.4 Other Instructions                   | . 4-6          |
| 4.5 F <sup>2</sup> MC-8L Instruction Map | . 4-7          |



# 4.1 Transfer Instructions

| NO                         | MNEMONIC                                                               | ~                     | #                     | OPERATION                                                                                                                                                                                                                                                                                                                                                                                                                  | TL                   | тн                        | АН                        | NZVC                     | OP CODE                                |
|----------------------------|------------------------------------------------------------------------|-----------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------|---------------------------|--------------------------|----------------------------------------|
| 1<br>2<br>3<br>4<br>5      | MOV dir,A<br>MOV @IX+off,A<br>MOV ext,A<br>MOV @EP,A<br>MOV Ri,A       | 3<br>4<br>4<br>3<br>3 | 2<br>2<br>3<br>1      | $ \begin{array}{l} (\text{dir}) \leftarrow (\texttt{A}) \\ ((\texttt{IX}) + \text{off}) \leftarrow (\texttt{A}) \\ (\text{ext}) \leftarrow (\texttt{A}) \\ ((\texttt{EP})) \leftarrow (\texttt{A}) \\ (\texttt{Ri}) \leftarrow (\texttt{A}) \end{array} $                                                                                                                                                                  |                      |                           | 11111                     |                          | 45<br>46<br>61<br>47<br>48 to 4F       |
| 6<br>7<br>8<br>9<br>10     | MOV A,#d8<br>MOV A,dir<br>MOV A,@IX+off<br>MOV A,ext<br>MOV A,@A       | 2<br>3<br>4<br>4<br>3 | 2<br>2<br>2<br>3<br>1 | $ \begin{array}{l} (\texttt{A}) \leftarrow \texttt{d8} \\ (\texttt{A}) \leftarrow \texttt{dir} \\ (\texttt{A}) \leftarrow ((\texttt{IX}) + \texttt{off}) \\ (\texttt{A}) \leftarrow (\texttt{ext}) \\ (\texttt{A}) \leftarrow ((\texttt{A})) \end{array} $                                                                                                                                                                 | AL<br>AL<br>AL<br>AL | -<br>-<br>-               | 1 1 1 1                   | + +<br>+ +<br>+ +<br>+ + | 04<br>05<br>06<br>60<br>92             |
| 11<br>12<br>13<br>14<br>15 | MOV A,@EP<br>MOV A,Ri<br>MOV dir,#d8<br>MOV @IX+off,#d8<br>MOV @EP,#d8 | 3<br>4<br>5<br>4      | 1<br>1<br>3<br>3<br>2 | $ \begin{array}{l} (\texttt{A}) \leftarrow ((\texttt{EP})) \\ (\texttt{A}) \leftarrow (\texttt{Ri}) \\ (\texttt{dir}) \leftarrow \texttt{d8} \\ ((\texttt{IX}) + \texttt{off}) \leftarrow \texttt{d8} \\ ((\texttt{EP})) \leftarrow \texttt{d8} \end{array} $                                                                                                                                                              | AL<br>AL<br>-<br>-   | -<br>-<br>-<br>-          | 1 1 1 1                   | + +<br>+ +<br><br>       | 07<br>08 to 0F<br>85<br>86<br>87       |
| 16<br>17<br>18<br>19<br>20 | MOV Ri,#d8<br>MOVW dir,A<br>MOVW @IX+off,A<br>MOVW ext,A<br>MOVW @EP,A | 4<br>4<br>5<br>5<br>4 | 2<br>2<br>2<br>3<br>1 | $ \begin{array}{l} (\text{Ri}) \leftarrow \text{d8} \\ (\text{dir}) \leftarrow (\text{AH}), (\text{dir}+1) \leftarrow (\text{AL}) \\ ((\text{IX}) + \text{off}) \leftarrow (\text{AH}), ((\text{IX}) + \text{off}+1) \leftarrow (\text{AL}) \\ (\text{ext}) \leftarrow (\text{AH}), (\text{ext}+1) \leftarrow (\text{AL}) \\ ((\text{EP})) \leftarrow (\text{AH}), ((\text{EP})+1) \leftarrow (\text{AL}) \\ \end{array} $ | -<br>-<br>-<br>-     | -<br>-<br>-<br>-          | 1 1 1 1 1                 |                          | 88 to 8F<br>D5<br>D6<br>D4<br>D7       |
| 21<br>22<br>23<br>24<br>25 | MOVW EP,A<br>MOVW A,#d16<br>MOVW A,dir<br>MOVW A,@IX+off<br>MOVW A,ext | 2<br>3<br>4<br>5      | 1<br>3<br>2<br>2<br>3 | $ \begin{array}{l} (\texttt{EP}) \leftarrow (\texttt{A}) \\ (\texttt{A}) \leftarrow \texttt{d16} \\ (\texttt{AH}) \leftarrow (\texttt{dir}), (\texttt{AL}) \leftarrow (\texttt{dir}+1) \\ (\texttt{AH}) \leftarrow ((\texttt{IX}) + \texttt{off}), (\texttt{AL}) \leftarrow ((\texttt{IX}) + \texttt{off}+1) \\ (\texttt{AH}) \leftarrow (\texttt{ext}), (\texttt{AL}) \leftarrow (\texttt{ext}+1) \end{array} $           | -<br>AL<br>AL<br>AL  | –<br>AH<br>AH<br>AH<br>AH | -<br>dH<br>dH<br>dH<br>dH | <br>+ +<br>+ +<br>+ +    | E3<br>E4<br>C5<br>C6<br>C4             |
| 26<br>27<br>28<br>29<br>30 | MOVW A,@A<br>MOVW A,@EP<br>MOVH A,EP<br>MOVW EP,#dl6<br>MOVW IX,A      | 4<br>4<br>2<br>3<br>2 | 1<br>1<br>3<br>1      | $ \begin{array}{l} (\mathtt{AH}) \leftarrow ((\mathtt{A})), (\mathtt{AL}) \leftarrow ((\mathtt{A}) + 1) \\ (\mathtt{AH}) \leftarrow ((\mathtt{EP})), (\mathtt{AL}) \leftarrow ((\mathtt{EP}) + 1) \\ (\mathtt{A}) \leftarrow (\mathtt{EP}) \\ (\mathtt{EP}) \leftarrow \mathtt{d16} \\ (\mathtt{IX}) \leftarrow (\mathtt{A}) \end{array} $                                                                                 | AL<br>AL<br>-<br>-   | AH<br>AH<br>-<br>-        | dH<br>dH<br>dH<br>–       | + +<br>+ +<br><br>       | 93<br>C7<br>F3<br>E7<br>E2             |
| 31<br>32<br>33<br>34<br>35 | MOVW A,IX<br>MOVW SP,A<br>MOVW A,SP<br>MOV @A,T<br>MOVW @A,T           | 2<br>2<br>2<br>3<br>4 | 1<br>1<br>1<br>1      | $ \begin{array}{l} (\mathtt{A}) \;\leftarrow\; (\mathtt{IX}) \\ (\mathtt{SP}) \leftarrow\; (\mathtt{A}) \\ (\mathtt{A}) \;\leftarrow\; (\mathtt{SP}) \\ ((\mathtt{A})) \;\leftarrow\; (\mathtt{T}) \\ ((\mathtt{A})) \;\leftarrow\; (\mathtt{TH}), ((\mathtt{A}) + 1) \;\leftarrow\; (\mathtt{TL}) \end{array} $                                                                                                           | -<br>-<br>-<br>-     | -<br>-<br>-<br>-          | dH<br>-<br>dH<br>-        |                          | F2<br>E1<br>F1<br>82<br>83             |
| 36<br>37<br>38<br>39<br>40 | MOVW IX,#d16<br>MOVW A,SP<br>MOVW PS,A<br>MOVW SP,#d16<br>SWAP         | 3<br>2<br>2<br>3<br>2 | 3<br>1<br>1<br>3      | $(IX) \leftarrow d16$ $(A) \leftarrow (PS)$ $(PS) \leftarrow (A)$ $(SP) \leftarrow d16$ $(AH) \Leftrightarrow (AL)$                                                                                                                                                                                                                                                                                                        | -<br>-<br>-<br>-     | -<br>-<br>-<br>-          | -<br>dH<br>-<br>-<br>AL   | <br><br>+ + + +<br>      | E6<br>70<br>71<br>E5<br>10             |
| 41<br>42<br>43<br>44<br>45 | SETB dir:n<br>CLRB dir:n<br>XCH A,T<br>XCHW A,T<br>XCHW A,EP           | 4<br>4<br>2<br>3<br>3 | 2<br>2<br>1<br>1      | $\begin{array}{ll} (\text{dir}) \colon & n & \leftarrow 1 \\ (\text{dir}) \colon & n & \leftarrow 0 \\ (\text{AL}) & \Leftrightarrow & (\text{TL}) \\ (\text{A}) & \Leftrightarrow & (\text{T}) \\ (\text{A}) & \Leftrightarrow & (\text{EP}) \end{array}$                                                                                                                                                                 | -<br>AL<br>AL<br>-   | -<br>-<br>-<br>AH<br>-    | -<br>-<br>дн<br>дн        |                          | A8 to AF<br>A0 to A7<br>42<br>43<br>F7 |
| 46<br>47<br>48             | XCHW A,IX<br>XCHW A,SP<br>MOVW A,PC                                    | 3<br>3<br>2           | 1<br>1<br>1           | $ \begin{array}{ccc} (\mathbb{A}) & \Leftrightarrow & (\mathbb{IX}) \\ (\mathbb{A}) & \Leftrightarrow & (\mathbb{SP}) \\ (\mathbb{A}) & \leftarrow & (\mathbb{PC}) \\ \end{array} $                                                                                                                                                                                                                                        | -<br>-<br>-          | -<br>-<br>-               | dH<br>dH<br>dH            |                          | F6<br>F5<br>F0                         |

#### Notes

- 1. In byte transfer to A,  $T \leftarrow A$  is only for low bytes.
- 2. Operands for two or more operand instructions should be stored in the order designated in MNEMONIC (Opposite order to  $F^2MC-8$  family).



# 4.2 Operation Instructions

| NO                         | MNEMONIC                                                               | ~                       | #                     | OPERATION                                                                                                                                                                                                                                                                                                                                                                                                             | TL                | тн                | АН                        | NZVC                                                | OP CODE                                |
|----------------------------|------------------------------------------------------------------------|-------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|---------------------------|-----------------------------------------------------|----------------------------------------|
| 1<br>2<br>3<br>4<br>5      | ADDC A,Ri<br>ADDC A,#d8<br>ADDC A,dir<br>ADDC A,@IX+off<br>ADDC A,@EP  | 3<br>2<br>3<br>4<br>3   | 1<br>2<br>2<br>2      | $(A) \leftarrow (A) + (Ri) + C$<br>$(A) \leftarrow (A) + dB + C$<br>$(A) \leftarrow (A) + (dir) + C$<br>$(A) \leftarrow (A) + ((IX) + off) + C$<br>$(A) \leftarrow (A) + ((EP)) + C$                                                                                                                                                                                                                                  | -<br>-<br>-<br>-  |                   | 11111                     | + + + +<br>+ + + +<br>+ + + +<br>+ + + +            | 28 to 2F<br>24<br>25<br>26<br>27       |
| 6<br>7<br>8<br>9<br>10     | ADDCW A ADDC A SUBC A,Ri SUBC A,#d8 SUBC A,dir                         | 3<br>2<br>3<br>2<br>3   | 1<br>1<br>1<br>2<br>2 | $(A) \leftarrow (A)+(T)+C$ $(AL)\leftarrow (AL)+(TL)+C$ $(A) \leftarrow (A)-(Ri)-C$ $(A) \leftarrow (A)-dB-C$ $(A) \leftarrow (A)-(dir)-C$                                                                                                                                                                                                                                                                            | -<br>-<br>-<br>-  |                   | dH<br>-<br>-<br>-         | + + + +<br>+ + + +<br>+ + + +<br>+ + + +            | 23<br>22<br>38 to 3F<br>34<br>35       |
| 11<br>12<br>13<br>14<br>15 | SUBC A,@IX+off<br>SUBC A,@EP<br>SUBCW A<br>SUBC A<br>INC Ri            | 4<br>3<br>3<br>2<br>4   | 2<br>1<br>1<br>1      | $ \begin{array}{lll} (\mathtt{A}) &\leftarrow & (\mathtt{A}) - ((\mathtt{IX}) + \mathtt{off}) - \mathtt{C} \\ (\mathtt{A}) &\leftarrow & (\mathtt{A}) - ((\mathtt{EP})) + \mathtt{C} \\ (\mathtt{A}) &\leftarrow & (\mathtt{T}) - (\mathtt{A}) - \mathtt{C} \\ (\mathtt{AL}) &\leftarrow & (\mathtt{TL}) - (\mathtt{AL}) - \mathtt{C} \\ (\mathtt{Ri}) &\leftarrow & (\mathtt{Ri}) + \mathtt{1} \end{array} $         |                   |                   | -<br>dH<br>-<br>-         | + + + +<br>+ + + +<br>+ + + +<br>+ + + -            | 36<br>37<br>33<br>32<br>C8 to CF       |
| 16<br>17<br>18<br>19<br>20 | INCW EP INCW IX INCW A DEC Ri DECW EP                                  | 3<br>3<br>4<br>3        | 1<br>1<br>1<br>1      | $(EP) \leftarrow (EP) + 1$ $(IX) \leftarrow (IX) + 1$ $(A) \leftarrow (A) + 1$ $(Ri) \leftarrow (Ri) - 1$ $(EP) \leftarrow (EP) - 1$                                                                                                                                                                                                                                                                                  | -<br>-<br>-<br>-  |                   | -<br>dH<br>-<br>-         | <br><br>+ +<br>+ + + -                              | C3<br>C2<br>C0<br>D8 to DF<br>D3       |
| 21<br>22<br>23<br>24<br>25 | DECW IX<br>DECW A<br>MULU A<br>DIVU A<br>ANDW A                        | 3<br>3<br>19<br>21<br>3 | 1<br>1<br>1<br>1      | $(IX) \leftarrow (IX) - 1$ $(A) \leftarrow (A) - 1$ $(A) \leftarrow (AL) * (TL)$ $(A) \leftarrow (T) / (AL), MOD \rightarrow (T)$ $(A) \leftarrow (A) \land (T)$                                                                                                                                                                                                                                                      | -<br>-<br>dL<br>- | -<br>-<br>00<br>- | -<br>dH<br>dH<br>00<br>dH |                                                     | D2<br>D0<br>01<br>11<br>63             |
| 26<br>27<br>28<br>29<br>30 | ORW A XORW A CMP A CMPW A RORC A                                       | 3<br>2<br>3<br>2        | 1<br>1<br>1<br>1      | $(A) \leftarrow (A) \lor (T)$ $(A) \leftarrow (A) \forall (T)$ $(TL) - (AL)$ $(T) - (A)$ $C \rightarrow A$                                                                                                                                                                                                                                                                                                            | -<br>-<br>-<br>-  |                   | dH<br>dH<br>-<br>-        | + + R -<br>+ + R -<br>+ + + +<br>+ + + +            | 73<br>53<br>12<br>13<br>03             |
| 31                         | ROLC A                                                                 | 2                       | 1                     | C ← A <b>《</b>                                                                                                                                                                                                                                                                                                                                                                                                        | _                 | _                 | -                         | + + - +                                             | 02                                     |
| 32<br>33<br>34<br>35       | CMP A,#d8<br>CMP A,dir<br>CMP A,@EP<br>CMP A,@IX+off                   | 2<br>3<br>3<br>4        | 2<br>2<br>1<br>2      | (A)- d8<br>(A)- (dir)<br>(A)- ((EP))<br>(A)- ((IX)+off)                                                                                                                                                                                                                                                                                                                                                               |                   | -<br>-<br>-       |                           | + + + +<br>+ + + +<br>+ + + +                       | 14<br>15<br>17<br>16                   |
| 36<br>37<br>38<br>39<br>40 | CMP A,Ri<br>DAA<br>DAS<br>XOR A<br>XOR A,#d8                           | 3<br>2<br>2<br>2<br>2   | 1<br>1<br>1<br>1<br>2 | $ \begin{array}{c} (\text{A})- & (\text{Ri}) \\ \text{decimal adjust for addition} \\ \text{decimal adjust for subtraction} \\ (\text{A}) \leftarrow (\text{AL}) \ \forall \ (\text{TL}) \\ (\text{A}) \leftarrow (\text{AL}) \ \forall \ \text{d8} \\ \end{array} $                                                                                                                                                  | -<br>-<br>-<br>-  |                   | 1 1 1 1                   | + + + +<br>+ + + +<br>+ + + +<br>+ + R -<br>+ + R - | 18 to 1F<br>84<br>94<br>52<br>54       |
| 41<br>42<br>43<br>44<br>45 | XOR A,dir<br>XOR A,@EP<br>XOR A,@IX+off<br>XOR A,Ri<br>AND A           | 3<br>3<br>4<br>3<br>2   | 2<br>1<br>2<br>1<br>1 | $ \begin{array}{l} (\texttt{A}) \;\leftarrow\; (\texttt{AL}) \;\;\forall\; (\texttt{dir}) \\ (\texttt{A}) \;\leftarrow\; (\texttt{AL}) \;\;\forall\; (\texttt{(EP)}) \\ (\texttt{A}) \;\leftarrow\; (\texttt{AL}) \;\;\forall\; (\texttt{(IX)+off}) \\ (\texttt{A}) \;\leftarrow\; (\texttt{AL}) \;\;\forall\; (\texttt{Ri}) \\ (\texttt{A}) \;\leftarrow\; (\texttt{AL}) \;\;\;\;\;\; (\texttt{TL}) \\ \end{array} $ | -<br>-<br>-<br>-  |                   | 1 1 1 1                   | + + R -<br>+ + R -<br>+ + R -<br>+ + R -<br>+ + R - | 55<br>57<br>56<br>58 to 5F<br>62       |
| 46<br>47<br>48<br>49<br>50 | AND A,#d8<br>AND A,dir<br>AND A,@EP<br>AND A,@IX+off<br>AND A,Ri       | 2<br>3<br>3<br>4<br>3   | 2<br>2<br>1<br>2<br>1 | $(A) \leftarrow (AL) \wedge d8$ $(A) \leftarrow (AL) \wedge (dir)$ $(A) \leftarrow (AL) \wedge ((EP))$ $(A) \leftarrow (AL) \wedge ((IX) + off)$ $(A) \leftarrow (AL) \wedge (Ri)$                                                                                                                                                                                                                                    | -<br>-<br>-<br>-  |                   | 1 1 1 1 1                 | + + R -<br>+ + R -<br>+ + R -<br>+ + R -<br>+ + R - | 64<br>65<br>67<br>66<br>68 to 6F       |
| 51<br>52<br>53<br>54<br>55 | OR A OR A,#d8 OR A,dir OR A,@EP OR A,@IX+off                           | 2<br>2<br>3<br>3<br>4   | 1<br>2<br>2<br>1<br>2 | $ \begin{array}{l} (\mathtt{A}) \;\leftarrow\; (\mathtt{AL}) \;\vee\; (\mathtt{TL}) \\ (\mathtt{A}) \;\leftarrow\; (\mathtt{AL}) \;\vee\; \mathtt{d8} \\ (\mathtt{A}) \;\leftarrow\; (\mathtt{AL}) \;\vee\; (\mathtt{dir}) \\ (\mathtt{A}) \;\leftarrow\; (\mathtt{AL}) \;\vee\; ((\mathtt{EP})) \\ (\mathtt{A}) \;\leftarrow\; (\mathtt{AL}) \;\vee\; ((\mathtt{IX}) + \mathtt{off}) \\ \end{array} $                | -<br>-<br>-<br>-  | -<br>-<br>-<br>-  | 1 1 1 1                   | + + R -<br>+ + R -<br>+ + R -<br>+ + R -<br>+ + R - | 72<br>74<br>75<br>77<br>76             |
| 56<br>57<br>58<br>59<br>60 | OR A,Ri<br>CMP dir,#d8<br>CMP @EP,#d8<br>CMP @IX+off,#d8<br>CMP Ri,#d8 | 3<br>5<br>4<br>5<br>4   | 1<br>3<br>2<br>3<br>2 | (A) ← (AL) ∨ (Ri)<br>(dir) - d8<br>((EP))- d8<br>((IX)+off) - d8<br>(Ri) - d8                                                                                                                                                                                                                                                                                                                                         | -<br>-<br>-<br>-  |                   | 1 1 1 1 1                 | + + R -<br>+ + + +<br>+ + + +<br>+ + + +            | 78 to 7F<br>95<br>97<br>96<br>98 to 9F |
| 61<br>62                   | INCW SP<br>DECW SP                                                     | 3<br>3                  | 1<br>1                | (SP)← (SP) + 1<br>(SP)← (SP) - 1                                                                                                                                                                                                                                                                                                                                                                                      | _<br>_            | _<br>_            | _<br>_                    |                                                     | C1<br>D1                               |



# 4.3 Branch Instructions

| NO                         | MNEMONIC                                                         | ~                     | #                     | OPERATION                                                                                                                                                                                                          | TL               | тн               | АН               | NZVC        | OP CODE                                |
|----------------------------|------------------------------------------------------------------|-----------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|-------------|----------------------------------------|
| 1<br>2<br>3<br>4<br>5      | BZ/BEQ rel<br>BNZ/BNE rel<br>BC/BLO rel<br>BNC/BHS rel<br>BN rel | 3 3 3 3               | 2<br>2<br>2<br>2<br>2 | if Z=1 then PC ←PC+rel<br>if Z=0 then PC ←PC+rel<br>if C=1 then PC ←PC+rel<br>if C=0 then PC ←PC+rel<br>if N=1 then PC ←PC+rel                                                                                     |                  |                  | 11111            |             | FD<br>FC<br>F9<br>F8<br>FB             |
| 6<br>7<br>8<br>9<br>10     | BP rel<br>BLT rel<br>BGE rel<br>BBC dir:b,rel<br>BBS dir:b,rel   | 3<br>3<br>5<br>5      | 2<br>2<br>2<br>3<br>3 | if N=0 then PC $\leftarrow$ PC+rel if V $\forall$ N=1 then PC $\leftarrow$ PC+rel if V $\forall$ N=0 then PC $\leftarrow$ PC+rel if (dir:b)=0 then PC $\leftarrow$ PC+rel if (dir:b)=1 then PC $\leftarrow$ PC+rel | -<br>-<br>-<br>- | -<br>-<br>-<br>- | 1 1 1 1          | <br><br>- + | FA<br>FF<br>FE<br>B0 to B7<br>B8 to BF |
| 11<br>12<br>13<br>14<br>15 | JMP @A<br>JMP ext<br>CALLV #vct<br>CALL ext<br>XCHW A,PC         | 2<br>3<br>6<br>6<br>3 | 1<br>3<br>1<br>3<br>1 | (PC)←(A)<br>(PC)←ext<br>vector call<br>subroutine call<br>(PC)←(A), (A)←(PC)+1                                                                                                                                     | -<br>-<br>-<br>- | -<br>-<br>-<br>- | -<br>-<br>-<br>- |             | E0<br>21<br>E8 to EF<br>31<br>F4       |
| 16<br>17                   | RET<br>RETI                                                      | 4<br>6                | 1                     | return from subroutine<br>return from interrupt                                                                                                                                                                    | _                | _                | _                | <br>restore | 20<br>30                               |



# 4.4 Other Instructions

| NO                    | MNEMONIC                            | 2                | #                | OPERATION | TL    | TH        | АН                | NZVC       | OP CODE                    |
|-----------------------|-------------------------------------|------------------|------------------|-----------|-------|-----------|-------------------|------------|----------------------------|
| 1<br>2<br>3<br>4<br>5 | PUSHW A POPW A PUSHW IX POPW IX NOP | 4<br>4<br>4<br>4 | 1<br>1<br>1<br>1 |           | 11111 | 1 1 1 1 1 | -<br>dH<br>-<br>- |            | 40<br>50<br>41<br>51<br>00 |
| 6<br>7<br>8<br>9      | CLRC<br>SETC<br>CLRI<br>SETI        | 1<br>1<br>1      | 1<br>1<br>1      |           | 1111  | 1 1 1 1   | 1 1 1 1           | R<br>S<br> | 81<br>91<br>80<br>90       |

# 4.5 F<sup>2</sup>MC-8L Instruction Map

| 5. | MASK OPTIONS |
|----|--------------|
|    |              |
|    |              |
|    |              |
|    |              |
|    |              |



**Table 5-1 Mask Options** 

| NO | Туре                                                                                                                                                                        | MB8915X/A                                                                                                                | MB89P155                                                                                                                                                                                                                | MB89PV150                                        |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| NO | Specification method Select when ordering ma                                                                                                                                |                                                                                                                          | Set by EPROM writer                                                                                                                                                                                                     | Cannot be set                                    |
| 1  | Pull-up resistor  ( P00 to P07, P10 to P17  P20 to P27, P40 to P47  P50 to P57                                                                                              | Can be selected for each pin.  However, P40 to 47 and P50 to P57 are specified only when segment output is not selected  | can be selected for each pin (Only P40 to P47, P50 to P57 to P57 are specified only when segment output is not  can be selected for each pin (Only P40 to P47, P50 to P57 and P20 to P27 do not have pull-up resistor.) |                                                  |
| 2  | Power-on reset available Power-on reset not available                                                                                                                       | Can be selected                                                                                                          | Can be set                                                                                                                                                                                                              | Power-on reset available                         |
| 3  | Oscillation stabilization time Initial value of oscillation stabilization time of main clock can be set by selecting the values of WTM1 and WTM0 shown in the light columns | Can be selected WTM1 WTM0 0 0: 2 <sup>2</sup> /f 0 1: 2 <sup>12</sup> /f 1 0: 2 <sup>16</sup> /f 1 1: 2 <sup>18</sup> /f | Can be set  WTM1 WTM0  0 0: 2 <sup>2</sup> /f  0 1: 2 <sup>12</sup> /f  1 0: 2 <sup>16</sup> /f  1 1: 2 <sup>18</sup> /f                                                                                                | Oscillation stabilization:<br>2 <sup>16</sup> /f |
| 4  | Types of main clock oscillation<br>Crystal or ceramic oscillator<br>CR                                                                                                      | Can be selected                                                                                                          | Only crystal or ceramic oscillator                                                                                                                                                                                      | Only crystal or ceramic oscillator               |
| 5  | Reset pin output Reset output available Reset output not available                                                                                                          | Can be selected                                                                                                          | Can be set                                                                                                                                                                                                              | Reset output available                           |
| 6  | Clock mode selection Double clock mode Single clock mode                                                                                                                    | Can be selected                                                                                                          | Can be set                                                                                                                                                                                                              | Double clock mode                                |
| 7  | Selection of reference voltage supply method Internally generated voltage Externally input voltage Selectable only for MB89150A                                             | Can be selected                                                                                                          | Can be set                                                                                                                                                                                                              | _                                                |



Table 5-1 Mask Options (continued)

| NO | Туре                                                                                                                                                                            | Type MB89151 MB89P155                   |                                      | Type MB89151 MB89P155      |  | MB89PV150 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------|----------------------------|--|-----------|
|    | Specification method                                                                                                                                                            | Select when ordering mask               | Selected by version number           | Selected by version number |  |           |
| 8  | Segment output switching selection  36: Port unselected 32: P57 to P54 selected 28: P57 to P50 selected 24: P57 to P50, P47 to P43 selected 20: P57 to P50, P47 to P40 selected | Selectable Select by number of segments | –101<br>–102<br>–103<br>–104<br>–105 | :: 32<br>:: 28<br>:: 24    |  |           |

**Table 5-2 Configuration of Product Series** 

| Product series | Temporary product                                                            | Piggyback/evaluation product                                                      | Number of segments         | Booster    |
|----------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------|------------|
| MB89150A       | MB89P155-201<br>MB89P155-202<br>MB89P155-203<br>MB89P155-204<br>MB89P155-205 | -                                                                                 | 36<br>32<br>28<br>24<br>20 | Provided   |
| MB89150        | MB89P155-101<br>MB89P155-102<br>MB89P155-103<br>MB89P155-104<br>MB89P155-105 | MB89PV150-101<br>MB89PV150-102<br>MB89PV150-103<br>MB89PV150-104<br>MB89PV150-105 | 36<br>32<br>28<br>24<br>20 | Unprovided |

# **APPENDIX**

| APPENDIX A | I/O MAP                    | App. 3 |
|------------|----------------------------|--------|
| APPENDIX B | EPROM SETTING FOR MB89P155 | App. 5 |
| APPENDIX C | ELECTRICAL CHARACTERISTICS | App. 7 |



# APPENDIX A I/O MAP

Addresses  $00_{H} - 17_{H}$ 

| Address           | Read/Write | Register | Description of register          |  |  |  |
|-------------------|------------|----------|----------------------------------|--|--|--|
| 00 <sub>H</sub>   | (R/W)      | PDR0     | Port-0 data register             |  |  |  |
| 01 <sub>H</sub>   | ( W )      | DDR0     | Port-0 direction register        |  |  |  |
| 02 <sub>H</sub>   | (R/W)      | PDR1     | Port-1 data register             |  |  |  |
| 03 <sub>H</sub>   | ( W )      | DDR1     | Port-1 direction register        |  |  |  |
| 04 <sub>H</sub>   | (R/W)      | PDR2     | Port-2 data register             |  |  |  |
| 05 <sub>H</sub>   | (R/W)      | DDR2     | Port-2 direction register        |  |  |  |
| 06 <sub>H</sub>   | _          | _        | _                                |  |  |  |
| 07 <sub>H</sub>   | (R/W)      | SYCC     | System clock control register    |  |  |  |
| 08 <sub>H</sub>   | (R/W)      | STBC     | Standby-control register         |  |  |  |
| 09 <sub>H</sub>   | (R/W)      | WDTC     | Watchdog-timer control register  |  |  |  |
| 0A <sub>H</sub>   | (R/W)      | TBTC     | Time-base timer control register |  |  |  |
| 0B <sub>H</sub>   | (R/W)      | WPCR     | Watch prescaler control register |  |  |  |
| 0C <sub>H</sub>   | (R/W)      | PDR3     | Port-3 data register             |  |  |  |
| $0D_{\mathrm{H}}$ | _          | _        | _                                |  |  |  |
| 0E <sub>H</sub>   | (R/W)      | PDR4     | Port-4 data register             |  |  |  |
| 0F <sub>H</sub>   | (R/W)      | PDR5     | Port-5 data register             |  |  |  |
| $10_{ m H}$       | (R/W)      | BZCR     | Buzzer register                  |  |  |  |
| $11_{ m H}$       | _          | _        | _                                |  |  |  |
| $12_{ m H}$       | _          | _        | _                                |  |  |  |
| 13 <sub>H</sub>   | _          | _        | _                                |  |  |  |
| $14_{ m H}$       | (R/W)      | RCR1     | Remote-control register 1        |  |  |  |
| 15 <sub>H</sub>   | (R/W)      | RCR2     | Remote-control register 2        |  |  |  |
| 16 <sub>H</sub>   | _          | _        | _                                |  |  |  |
| 17 <sub>H</sub>   | _          | _        | _                                |  |  |  |



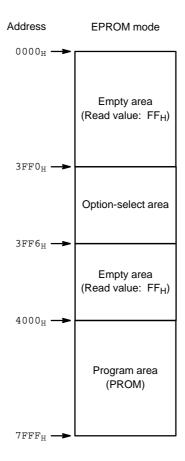
Address  $18_{\rm H} - 7F_{\rm H}$ 

| Address                                | Read/Write     | Register | Description of register                 |  |  |  |
|----------------------------------------|----------------|----------|-----------------------------------------|--|--|--|
| 18 <sub>H</sub>                        | (R/W)          | T2CR     | Timer 2 control register                |  |  |  |
| 19 <sub>H</sub>                        | (R/W)          | T1CR     | Timer 1 control register                |  |  |  |
| 1A <sub>H</sub>                        | (R/W)          | T2DR     | Timer 2 data register                   |  |  |  |
| $1B_{\mathrm{H}}$                      | (R/W)          | T1DR     | Timer 1 data register                   |  |  |  |
| 1C <sub>H</sub>                        | (R/W)          | SMR1     | Serial mode register                    |  |  |  |
| $1D_{\mathrm{H}}$                      | (R/W)          | SDR1     | Serial data register                    |  |  |  |
| $1E_{\mathrm{H}}$ to $2F_{\mathrm{H}}$ | _              | _        | _                                       |  |  |  |
| 30 <sub>H</sub>                        | (R/W)          | EIE1     | External interrupt 1 control register 1 |  |  |  |
| $31_{ m H}$                            | (R/W)          | EIF1     | External interrupt 1 flag register 1    |  |  |  |
| 32 <sub>H</sub>                        | (R/W)          | EIE2     | External interrupt 2 control register 2 |  |  |  |
| 33 <sub>H</sub>                        | (R/W)          | EIF2     | External interrupt 2 flag register 2    |  |  |  |
| $34_{\rm H}$ to $5F_{\rm H}$           | _              | _        | _                                       |  |  |  |
| $60_{ m H}$ to $71_{ m H}$             | (R/W)          | VRAM     | RAM for displaying data                 |  |  |  |
| 72 <sub>H</sub>                        | (R/W)          | LCR1     | LCDC control register 1                 |  |  |  |
| $73_{ m H}$ to $7B_{ m H}$             | _              | _        | _                                       |  |  |  |
| 7C <sub>H</sub>                        | (W)            | ILR1     | Interrupt-level register 1              |  |  |  |
| 7D <sub>H</sub>                        | (W)            | ILR2     | Interrupt-level register 2              |  |  |  |
| 7E <sub>H</sub>                        | ( W )          | ILR3     | Interrupt-level register 3              |  |  |  |
| $7 \mathrm{F_H}$                       | Access disable | ITR      | Interrupt-test register                 |  |  |  |



### APPENDIX B EPROM SETTING FOR MB89P155

MB89P155 is provided with the function corresponding to MBM27C256A by EPROM setting. The setting can be performed by writing program data with general-purpose EPROM writer through adaptor for exclusive use.


- Setting
  - (1) Set the EPROM writer to MBM27C256A.
  - (2) Load the program data from address \$4000\_H\$ to address \$7FFF\_H\$ of EPROM writer.

    (The data is loaded from address \$8000\_H\$ to address \$0FFFF\_H\$ in the operation mode, and from address \$4000\_H\$ to address \$7FFF\_H\$ in the EPROM mode.)

    Load the option information from address \$3FF0\_H\$ to address \$3FF6\_H\$ of the EPROM writer.

    (For the correspondence between the addresses and options, see the Bit Map on the next page.)
  - (3) Write the data with the EPROM writer.

The memory space in the EPROM mode is as follows:





# • Bit Map for PROM Option

|                   | 7                              | 6                              | 5 4                            |                                | 3                              | 2                              | 1                              | 0                              |
|-------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| 3FF0 <sub>H</sub> | Empty                          | Empty                          | Oscillation sta<br>WTM1        | bilization time<br>WTM0        | Empty                          | Reset pin                      | Clock mode<br>Output           | Poewr-on<br>selection          |
|                   | Readable                       | Readable                       | See Mask                       | See Mask option list           |                                | 1: Available<br>0: Unavailable | 1: Double<br>0: Single         | 1: Available<br>0: Unavailable |
| 3FF1 <sub>H</sub> | P07<br>Pull-up<br>register     | P06<br>Pull-up<br>register     | P05<br>Pull-up<br>register     | ull-up Pull-up Pu              |                                | P02<br>Pull-up<br>register     | P01<br>Pull-up<br>register     | P00<br>Pull-up<br>register     |
|                   | 1: Unavailable<br>0: Available |
| 3FF2 <sub>H</sub> | P17<br>Pull-up<br>register     | P16<br>Pull-up<br>register     | P15<br>Pull-up<br>register     | P14<br>Pull-up<br>register     | P13<br>Pull-up<br>register     | P12<br>Pull-up<br>register     | P11<br>Pull-up<br>register     | P10<br>Pull-up<br>register     |
|                   | 1: Unavailable<br>0: Available |
| 3FF3 <sub>H</sub> | Empty                          |
|                   | Readable                       |
| 3FF4 <sub>H</sub> | Empty                          |
|                   | Readable                       |
| 3FF5 <sub>H</sub> | Empty                          |
|                   | Readable                       |

Notes:
1. The initial value of each bit is 1.
2. Do not set 0 at empty bits.
The read value of each empty bit is 1 unless 0 is set.



# APPENDIX C ELECTRICAL CHARACTERISTICS

# 1. Absolute Maximum Rating

 $(V_{SS} = 0.0 V)$ 

| Davamatar                              | Count of           | Requir                | ements                 | l lm:t | Remarks                                                                                                                          |  |
|----------------------------------------|--------------------|-----------------------|------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------|--|
| Parameter                              | Symbol             | Min.                  | Max.                   | Unit   | Remarks                                                                                                                          |  |
| Supply voltage                         | V <sub>CC</sub>    | V <sub>SS</sub> - 0.3 | V <sub>SS</sub> + 7.0  | V      |                                                                                                                                  |  |
| Supply voltage for LCD                 | V0 to V3           | V <sub>SS</sub> – 0.3 | V <sub>SS</sub> + 7.0  | ٧      | V0, V2 and V3 cannot exceed Vcc.                                                                                                 |  |
| Supply voltage for EPROM program       | V <sub>PP</sub>    | V <sub>SS</sub> - 0.3 | V <sub>CC</sub> + 15.0 | V      | Applicable to MOD1 pin of MB89P155/A                                                                                             |  |
| Input voltage                          | V <sub>I1</sub>    | V <sub>SS</sub> - 0.3 | V <sub>CC</sub> + 0.3  | V      | All the pins must not exceed Vss + 7.0 V, excluding P20 to P27 without a pull-up resistor                                        |  |
|                                        | V <sub>I2</sub>    | V <sub>SS</sub> - 0.3 | V <sub>SS</sub> + 7.0  | V      | Applicable to P20 to P27 without a pull-up resistor                                                                              |  |
| Output voltage                         | V <sub>O1</sub>    | V <sub>SS</sub> - 0.3 | V <sub>CC</sub> + 0.3  | V      | All the pins must not exceed Vss + 7.0 V, excluding P20 to P27, P31 to P32, P40 to 47, and P50 to P57 without a pull-up resistor |  |
| Output Voltage                         | V <sub>O2</sub>    | V <sub>SS</sub> - 0.3 | V <sub>SS</sub> + 7.0  | V      | Applicable to P20 to P27, P31 to P32, P40 to P47, and P50 to P57 without a pull-up resistor                                      |  |
| Output current (L level)               | I <sub>OL1</sub>   | _                     | 10                     | mA     | Applicable to all pins excluding P21, P26, and P27, and power supply pins                                                        |  |
|                                        | I <sub>OL2</sub>   | _                     | 20                     | mA     | Applicable to P21, P26, and P27                                                                                                  |  |
| Average output current (L level)       | I <sub>OLAV1</sub> | _                     | 4                      | mA     | Specified as average value in 1 hour.<br>Applicable to all pins excluding, P21, P26,<br>P27, and power pins.                     |  |
|                                        | I <sub>OLAV2</sub> | _                     | 8                      | mA     | Specified as the average value in 1 hour. Applicable to P21, P26, and P27.                                                       |  |
| Total output maximum current (L level) | $\Sigma I_{OL}$    | _                     | 40                     | mA     |                                                                                                                                  |  |
| Output current (H level)               | I <sub>OH1</sub>   | _                     | <b>-</b> 5             | mA     | Applicable to all pins excluding, P30 and power pins.                                                                            |  |
|                                        | I <sub>OH2</sub>   | _                     | -10                    | mA     | Applicable to P30                                                                                                                |  |
| Average output current (H level)       | I <sub>OHAV1</sub> | _                     | -2                     | mA     | Specified as the average value in 1 hour. Applicable to P30 and power pins                                                       |  |
|                                        | I <sub>OHAV2</sub> | _                     | -4                     | mA     | Specified as the average value in 1 hour. Applicable to P30                                                                      |  |
| Total output maximum current (H level) | ΣΙΟΗ               | _                     | -10                    | mA     |                                                                                                                                  |  |
| Power consumption                      | P <sub>d</sub>     | _                     | 300                    | mW     |                                                                                                                                  |  |
| Operation temperature                  | Та                 | -40                   | +85                    | °C     |                                                                                                                                  |  |
| Storage temperature                    | T <sub>stg</sub>   | <b>-</b> 55           | +150                   | °C     |                                                                                                                                  |  |

Note: Permanent device damage may occur if the above ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.



# 2. Recommended Operation Condition

 $(V_{SS} = 0.0 V)$ 

| Parameter                                | Symbol           | Requir                          | ements                              | Unit | Remarks                                                                                             |
|------------------------------------------|------------------|---------------------------------|-------------------------------------|------|-----------------------------------------------------------------------------------------------------|
| Farameter                                | Symbol           | Min.                            | Max.                                | Onic | Remarks                                                                                             |
| Supply voltage                           | Vaa              | 2.2*1                           | 6.0                                 | V    | Usual operation guarantee range                                                                     |
| Supply voltage                           | V <sub>CC</sub>  | 1.5                             | 6.0                                 | V    | RAM-data-holding guarantee range at stop mode                                                       |
| Supply voltage for LCD                   | V0 to V3         | V <sub>SS</sub> V <sub>CC</sub> |                                     | ٧    | V0 to V3 pins for MB89150 The voltage range supplied to LCD and its optimum value depend on the LCD |
| Input voltage (H level)                  | V <sub>IH</sub>  | 0.7 V <sub>CC</sub>             | V <sub>CC</sub> + 0.3               | V    | P00 to P07, P10 to P17, P20 to P27                                                                  |
| input voltage (Trievel)                  | V <sub>IHS</sub> | 0.8 V <sub>CC</sub>             | V <sub>CC</sub> + 0.3               | V    | RST, MOD0, MOD1, EC,SI, SCK, INT10 to INT13, INT20 to INT27                                         |
| Input voltage (L level)                  | V <sub>IL</sub>  | V <sub>SS</sub> – 0.3           | 0.3 V <sub>CC</sub>                 | V    | P00 to P07, P10 to P17, P20 to P27                                                                  |
| iliput voltage (E level)                 | $V_{ILS}$        | V <sub>SS</sub> – 0.3           | 0.2 V <sub>CC</sub>                 | V    | RST, MOD0, MOD1, EC,SI, SCK, INT10 to INT13, INT20 to INT27                                         |
| Applied voltage at open-drain output pin | V <sub>D</sub>   | V <sub>SS</sub> – 0.3           | V <sub>SS</sub> + 6.0* <sup>2</sup> | ٧    | Applicable to P20 to P27, P31 to P32, P40 to P47, P50 to P57 without pull-up resistor               |
| Operation temperature                    | Та               | -40                             | +85                                 | °C   |                                                                                                     |

<sup>\*1:</sup> The minimum operating power supply voltage varies with the set values of frequency and instruction execution time (instruction cycle time) used.

$$(Ta = -40^{\circ} \text{ to } 85 {\,}^{\circ}\text{C}, \, V_{SS} = 0.0 \, \text{V})$$

| Parameter      | Instruction                 | Minimum           | operating po | wer supply vo | oltage (V) | Remarks              |
|----------------|-----------------------------|-------------------|--------------|---------------|------------|----------------------|
| raiametei      | cycle<br>time* <sup>3</sup> | MB8915X           | MB8915XA     | MB89P155/A    | MB89PV150  | Kemarks              |
|                | >0.95 µs                    | 2.7               | 2.7          |               |            | fch = 4.2 MHz, N = 4 |
| Cupply voltage | >1.33 µs                    | 2.2               |              | 2.7           | 2.7        | fch = 3 MHz, N = 4   |
| Supply voltage | ≥2.00 µs                    | 2.2* <sup>4</sup> | 2.2          | 2.1           | 2.1        | fch = 2 MHz, N = 4   |
|                | ≥4.00 μs                    | 2.2*4             |              |               |            | fch = 1 MHz, N = 4   |

<sup>\*3:</sup> Instruction cycle time = N/fch (fch: frequency of main clock, N: gear set value = 4, 8, 16, 64)

<sup>\*2:</sup> P31 and P32 are applicable for the MB89150 and P40 to P47 and P50 to P57 are applicable when port output is selected.

<sup>\*4:</sup> If the minimum operating power supply voltage is below 2.2 V, the guaranteed value should be treated individually.



# 3. DC Characteristics

(Ta =  $-40^{\circ}$  to 85 °C,  $V_{CC}$  = 5.0 V,  $V_{SS}$  = 0.0 V)

| Parameter                                           | Symbol                                                              | Pin                                                                                       | Condition                                 | Rec  | uiren | nents | Unit | Remarks                                 |
|-----------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------|------|-------|-------|------|-----------------------------------------|
| Farameter                                           | Syllibol                                                            | PIII                                                                                      | Condition                                 | Min. | Тур.  | Мах.  | Onic | Remarks                                 |
| Output voltage<br>(H level)                         | V <sub>OH1</sub>                                                    | P00 to P07, P10 to P17                                                                    | $I_{OH} = -2.0 \text{ mA}$                | 2.4  | _     | _     | ٧    |                                         |
| (H level)                                           | V <sub>OH2</sub>                                                    | P30                                                                                       | $I_{OH} = -6.0 \text{ mA}$                | 4.0  | _     | _     | V    |                                         |
| Output voltage<br>(L level)                         | V <sub>OL1</sub>                                                    | P00 to P07, P10 to P17,<br>P20, P22 to P25, P30,<br>P31 to P32, P40 to P47,<br>P50 to P57 | I <sub>OL</sub> = 1.8 mA                  | _    | _     | 0.4   | V    |                                         |
|                                                     | V <sub>OL2</sub>                                                    | RST                                                                                       | I <sub>OL</sub> = 4.0 mA                  | _    | _     | 0.4   | V    |                                         |
|                                                     | V <sub>OL3</sub>                                                    | P21, P26, P27                                                                             | I <sub>OL</sub> = 8.0 mA                  | _    | _     | 0.4   | V    |                                         |
| Input leak current<br>(Hi-z output leak<br>current) | I <sub>LI1</sub>                                                    | MOD0, MOD1, P30,<br>P00 to P07, P10 to P17                                                | 0.45 V < V <sub>I</sub> < V <sub>CC</sub> | _    | _     | ±5    | μΑ   | When pull-up available is not specified |
| Open-drain output leak current (off state)          | I <sub>LO1</sub>                                                    | P20 to P26, P30 to P32,<br>P40 to P47, P50 to P57                                         | 0.45 V < V <sub>I</sub> < V <sub>CC</sub> | _    | _     | ±1    | μА   | When pull-up available is not specified |
| Pull-up<br>resistance value                         | R <sub>PULL</sub>                                                   | P00 to P07, P10 to P17,<br>P20 to P27, P40 to P47,<br>P50 to P57, RST                     | V <sub>I</sub> = 0.0V                     | 25   | 50    | 100   | kΩ   | When pull-up available is specified     |
| Common output impedance                             | R <sub>VCO</sub>                                                    | COM0 to COM3                                                                              | V1 to V3 = 5.0 V                          | _    | _     | 2.5   | kΩ   |                                         |
| Segment output impedance                            | R <sub>VSEG</sub>                                                   | SEG0 to 35                                                                                | V1 to V3 = 5.0 V                          | _    | _     | 15    | kΩ   |                                         |
| LCD divided resistance                              | R <sub>LCD</sub>                                                    | V <sub>CC</sub> to V0                                                                     |                                           | 300  | 500   | 750   | kΩ   | Only MB89150                            |
| LCD leak current                                    | CD leak current I <sub>LCDL</sub> V0 to V3, COM0 to COM3, SEG0 to S |                                                                                           |                                           | _    | _     | ±1    | μА   |                                         |
| Output voltage for                                  | V <sub>OV3</sub>                                                    | V3                                                                                        |                                           | TBD  | 4.5   | TBD   | V    |                                         |
| poosting LCD                                        | V <sub>OV2</sub>                                                    | V2                                                                                        | $I_{IN} = 0\mu A$                         | TBD  | 3.0   | TBD   | V    | Only MB89150A                           |
|                                                     | V <sub>OV1</sub>                                                    | V1                                                                                        |                                           | TBD  | 1.5   | TBD   | V    |                                         |
| Input capacitance                                   | C <sub>IN</sub>                                                     | Other than $V_{CC}$ and $V_{SS}$                                                          | f = 1 MHz                                 | _    | 10    | _     | pF   |                                         |

Note: For pins for selection of segments (SEG20 to SEG35) and ports (P40 to P47, P50 to P57), see the limits values of ports when port output is selected and those for segments when segment output is selected. P31 and P32 are applicable only for the MB89150 (for the MB89150A, external capacitor connection pins are applicable).

(Ta =  $-40^{\circ}$  to 85 °C,  $V_{SS}$  = 0.0 V)

|                        |                    |                                                                                  |   | R    | equir | ement    | s           |     |      |                                                       |
|------------------------|--------------------|----------------------------------------------------------------------------------|---|------|-------|----------|-------------|-----|------|-------------------------------------------------------|
| Parameter              | Symbol             | Condition                                                                        | М | B891 | ΣX    | MB8915XA |             |     | Unit | Remarks                                               |
|                        |                    |                                                                                  |   | Тур. | Max.  | Min.     | Min. Typ. N |     |      |                                                       |
|                        | Icc                | $fc_H = 3 \text{ MHz}, Vcc = 5 \text{ V}$<br>$t_{INST} = 4/fc_H$                 | _ | 5    | 10    |          | 5           | 10  | mA   | Main RUN mode t <sub>INST</sub> = 1.3 μs              |
|                        | Icc <sub>2</sub>   | $fc_H = 3 \text{ MHz}, Vcc = 3 \text{ V}$<br>$t_{INST} = 64/fc_H$                | _ | TBD  | TBD   | _        | TBD         | TBD | mA   | Main RUN mode<br>t <sub>INST</sub> = 21 μs            |
|                        | Iccs               | $fc_H = 3 \text{ MHz}, Vcc = 5 \text{ V}$<br>$t_{INST} = 4/fc_H$                 | _ | 2.5  | 5     | _        | 2.5         | 5   | mA   | Main sleep mode $t_{\text{INST}} = 1.3  \mu \text{s}$ |
| Power supply voltage*1 | Icc <sub>S2</sub>  | $fc_H = 3 \text{ MHz}, \text{Vcc} = 3 \text{ V}$<br>$t_{\text{INST}} = 64/fc_H$  | _ | TBD  | TBD   | _        | TBD         | TBD | mA   | Main sleep mode t <sub>INST</sub> = 21 μs             |
|                        | Icc <sub>SB</sub>  | $fc_L = 32 \text{ kHz}, \text{ Vcc} = 3 \text{ V}$<br>$t_{\text{INST}} = 2/fc_L$ | _ | 50   | 100   | _        | TBD         | TBD | μА   | Sub RUN mode<br>t <sub>INST</sub> = 64 μs             |
|                        | Icc <sub>SBS</sub> | fc <sub>L</sub> = 32 kHz, Vcc = 3 V                                              | _ | 25   | 50    | _        | TBD         | TBD | μΑ   | Subsleep mode                                         |
|                        | Icc <sub>T</sub>   | $fc_L = 32 \text{ kHz}, \text{ Vcc} = 3 \text{ V}$                               | _ | 10   | 15    | _        | TBD         | TBD | μΑ   | Watch mode                                            |
|                        | Icc <sub>H</sub>   | Ta = 25°C, Vcc = 5 V                                                             | _ | 0.1  | 1     | _        | _           |     | μΑ   | Stop mode                                             |

<sup>\*1:</sup> Specified under conditions where external clock and output pin kept open. t<sub>INST</sub> is the set value to the instruction execution time (instruction cycle time).

(Ta =  $-40^{\circ}$  to 85  $^{\circ}$ C, V<sub>SS</sub> = 0.0 V)

|                        |                   |                                                                                  |   | R     | equire | ement    | s    |      |      |                                             |  |  |
|------------------------|-------------------|----------------------------------------------------------------------------------|---|-------|--------|----------|------|------|------|---------------------------------------------|--|--|
| Parameter              | Symbol            | Condition                                                                        | М | B8915 | 5X     | MB8915XA |      |      | Unit | Remarks                                     |  |  |
|                        |                   |                                                                                  |   | Тур.  | Max.   | Min.     | Тур. | Max. |      |                                             |  |  |
|                        | Icc               | $fc_H = 3 \text{ MHz}, Vcc = 5 \text{ V}$<br>$t_{INST} = 4/fc_H$                 | _ | TBD   | TBD    | _        | TBD  | TBD  | mA   | Main RUN mode<br>t <sub>INST</sub> = 1.3 μs |  |  |
| Power supply voltage*2 | Icc <sub>2</sub>  | $fc_H = 3 \text{ MHz}, Vcc = 3 \text{ V}$<br>$t_{INST} = 64/fc_H$                | 1 | TBD   | TBD    | 1        | TBD  | TBD  | mA   | Main RUN mode<br>t <sub>INST</sub> = 21 μs  |  |  |
| voltage <sup>-2</sup>  | Icc <sub>SB</sub> | $fc_L = 32 \text{ kHz}, \text{ Vcc} = 3 \text{ V}$<br>$t_{\text{INST}} = 2/fc_L$ | _ | TBD   | TBD    | 1        | TBD  | TBD  | μА   | Sub RUN mode t <sub>INST</sub> = 64 μs      |  |  |
|                        | Icc <sub>H</sub>  | Ta = 25°C, Vcc = 5 V                                                             | _ | 0.1   | 10     | _        | _    | _    | μΑ   | Stop mode                                   |  |  |

<sup>\*2:</sup> Defined under the condition of external clock and output pins opened. t<sub>INST</sub> is the set value of instruction execution time (instruction cycle time). See the limit values of the MB8915X/15XA for the other specifications of the power supply voltage.



# 4. AC Standard

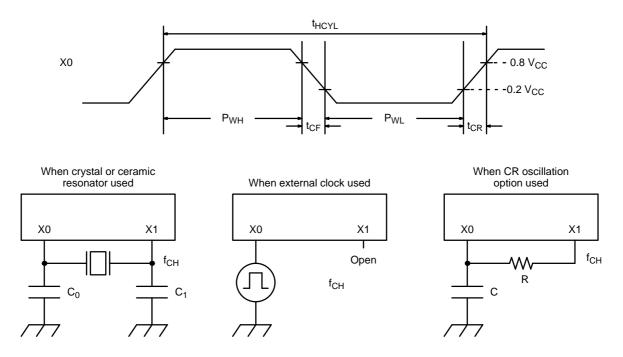
# • Clock timing

 $(Ta = -40^{\circ} \text{ to } 85^{\circ}\text{C}, V_{SS} = 0.0 \text{ V})$ 

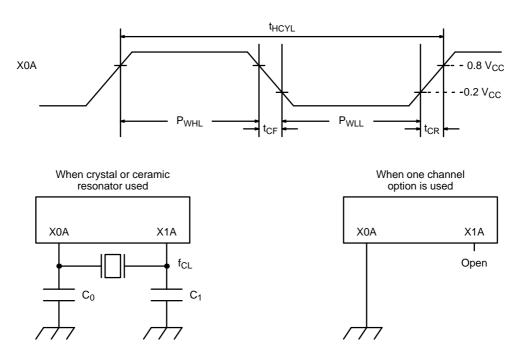
| Parameter                        | Symbol                             | Pin      | Re   | equiremen | nts  | Unit | Remarks                           |
|----------------------------------|------------------------------------|----------|------|-----------|------|------|-----------------------------------|
| Farameter                        | Symbol                             | FIII     | Min. | Тур.      | Max. | Oill | Remarks                           |
| Clock frequency                  | fc <sub>H</sub>                    | X0, X1   | 1    | _         | 4.2  | MHz  | Main clock                        |
| Glock frequency                  | fc <sub>L</sub>                    | X0A, X1A | _    | 32.768    |      | kHz  | Subclock                          |
| Clock cycle time                 | t <sub>HCYL</sub>                  | X0, X1   | 238  | _         | 1000 | ns   | Main clock                        |
| Clock cycle time                 | t <sub>LCYL</sub>                  | X0A, X1A | _    | 30.5      | _    | μs   | Subclock                          |
| Input clock duty ratio*1         | duty                               | X0       | 30   |           | 70   | %    |                                   |
| input clock duty fatio           | duty <sub>1</sub>                  | X0A      | 30   |           | 70   | 70   | Applied when using external clock |
| Input clock pulse rise/fall time | t <sub>CR</sub><br>t <sub>CF</sub> |          |      | _         | 10   | ns   | CIOCK                             |

<sup>\*1:</sup>  $duty = P_{WH}/t_{HCYL}$  $duty_1 = P_{WHL}/t_{HCYL}$ 

# • Instruction cycle time


(Ta =  $-40^{\circ}$  to  $85^{\circ}$ C,  $V_{SS}$  = 0.0 V)

| Parameter                     | Symbol            | Pin | Re   | quiremer | nts | Unit | Remarks                 |
|-------------------------------|-------------------|-----|------|----------|-----|------|-------------------------|
| r arameter                    | Symbol            |     | Min. | Тур.     |     |      | Kemarks                 |
| Minimum instruction execution | tuus              | *1  | 0.95 |          | 64  | μs   | At main clock operation |
| time (Instruction cycle time) | <sup>t</sup> INST | *2  | _    | 61.036   | _   | μs   | At subclock operation   |

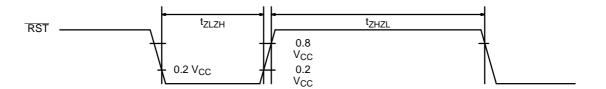

 $<sup>^{\</sup>star}1$ :  $t_{INST}$  in the main clock mode varies with the setting of the instruction execution time (gear) over the range of  $4/fc_{H}$  to  $64/fc_{H}$ .

 $<sup>^{\</sup>star}2:\ t_{INST}$  in the subclock mode is 2/fcL.

# - Main clock timing and application condition



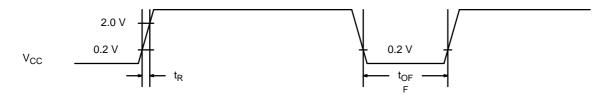
## - Subclock timing and application condition






# • Reset timing

(Ta = 
$$-40^{\circ}$$
 to  $85^{\circ}$ C,  $V_{CC}$  = 5.0 V  $\pm 10\%$ ,  $V_{SS}$  = 0.0 V)


| Parameter            | Symbol            | Condition | Require             | ements | Unit | Remarks |
|----------------------|-------------------|-----------|---------------------|--------|------|---------|
| Faranietei           | Syllibol          | Condition | Min.                | Max.   | Oiii | Kemarks |
| RST LOW pulse width  | tzLZH             |           | 8 t <sub>HCYL</sub> |        | ns   |         |
| RST HIGH pulse width | t <sub>ZHZL</sub> |           | 4 t <sub>HCYL</sub> | _      | ns   |         |



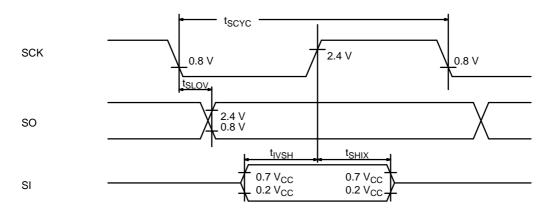
### • Power-on reset

(Ta = 
$$-40^{\circ}$$
 to  $85^{\circ}$ C, AV<sub>SS</sub> = V<sub>SS</sub> = 0.0 V)

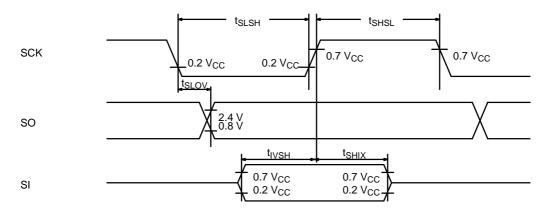
| Parameter       | Svmbol           | Condition | Require | ements | Unit | Remarks                           |
|-----------------|------------------|-----------|---------|--------|------|-----------------------------------|
| Farameter       | Symbol           | Condition | Min.    | Max.   | Onic | Remarks                           |
| Power rise time | t <sub>R</sub>   |           | _       | 50     | ms   | Only when Power-on reset provided |
| Power off time  | t <sub>OFF</sub> |           | 1       | _      | ms   | At repetitive operation           |



Note: If Power-on Reset Provided is selected, an abrupt change in the power supply voltage could cause a power-on reset. When changing the power supply voltage during operation, voltage fluctuations should be two or less times for smooth start-up.




# • Serial I/O timing

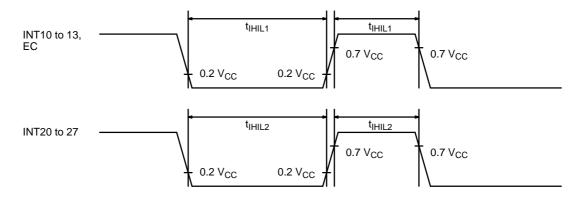

(Ta =  $-40^{\circ}$  to  $85^{\circ}$ C,  $V_{CC}$  = 5 V  $\pm 10\%$ ,  $V_{SS}$  = 0.0 V)

| Parameter                                                  | Symbol                                                | Pin     | Conditions     | Require               | ements | Unit | Remarks |
|------------------------------------------------------------|-------------------------------------------------------|---------|----------------|-----------------------|--------|------|---------|
| raiailletei                                                | Symbol                                                | F       | Conditions     | Min.                  | Max.   | Oill | Remarks |
| Serial clock cycle time                                    | t <sub>SCYC</sub>                                     | SCK     |                | 2 t <sub>INST</sub>   |        | ns   |         |
| $SCK \downarrow \Rightarrow SO  time$                      | 0.00                                                  |         | Internal clock | -200                  | 200    | ns   |         |
| Effective SI $\Rightarrow$ SCK $\uparrow$                  | ective SI $\Rightarrow$ SCK $\uparrow$ $t_{IVSH}$ SI, |         | operation      | 0.5 t <sub>INST</sub> | _      | ns   |         |
| $SCK \uparrow \Rightarrow effective \; SI \; hold \; time$ | t <sub>SHIX</sub>                                     | SCK, SI |                | 0.5 t <sub>INST</sub> | _      | ns   |         |
| Serial clock pulse width at HIGH level                     | t <sub>SHSL</sub>                                     | SCK     |                | t <sub>INST</sub>     | _      | ns   |         |
| Serial clock pulse width at LOW level                      | t <sub>SLSH</sub>                                     | SCK     | External clock | t <sub>INST</sub>     | _      | ns   |         |
| $SCK \downarrow \Rightarrow SO$ time                       | t <sub>SLOV</sub>                                     | SCK, SO | operation      | 0                     | 200    | ns   |         |
| Effective SI $\Rightarrow$ SCK $\uparrow$                  | t <sub>IVSH</sub>                                     | SI, SCK |                | 0.5 t <sub>INST</sub> | _      | ns   |         |
| $SCK \uparrow \Rightarrow effective \; SI \; hold \; time$ | t <sub>SHIX</sub>                                     | SCK, SI |                | 0.5 t <sub>INST</sub> | _      | ns   |         |

# - Serial I/O Timing (Internal Clock Mode)



# - Serial I/O Timing (External Clock Mode)






# • Source input timing

(Ta =  $-40^{\circ}$  to  $85^{\circ}$ C,  $V_{CC}$  = 5.0 V  $\pm 10\%$ ,  $V_{SS}$  = 0.0 V)

| Parameter                       | Symbol             | Pin                | Requir             | ements | Unit  | Remarks |
|---------------------------------|--------------------|--------------------|--------------------|--------|-------|---------|
| raiailletei                     | Symbol             | FIII               | Min. Max.          |        | o iii | Remarks |
| Source input H<br>Pulse width 1 | t <sub>ILIH1</sub> | INT10 to INT13, EC | t <sub>INST</sub>  |        | μs    |         |
| Source input L<br>Pulse width 1 | t <sub>IHIL1</sub> | INT10 to INT13, EC | t <sub>INST</sub>  |        | μs    |         |
| Source input H<br>Pulse width 2 | t <sub>ILIH2</sub> | INT20 to INT27     | 2t <sub>INST</sub> | _      | μs    |         |
| Source input L<br>Pulse width 2 | t <sub>IHIL2</sub> | INT20 to INT27     | 2t <sub>INST</sub> |        | μs    |         |



| п             | ш             | D             | C             | В             | >                 | 9                 | <b>o</b>          | 7                 | 6                 | Οī              | 4                 | ω             | N                 | _              | 0             | _   |
|---------------|---------------|---------------|---------------|---------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------|-------------------|---------------|-------------------|----------------|---------------|-----|
| MOV<br>A,R7   | MOV<br>A,R6   | MOV<br>A,R5   | MOV<br>A,R4   | MOV<br>A,R3   | MOV<br>A,R2       | MOV<br>A,R1       | MOV<br>A,RO       | MOV<br>A,@EP      | MOV<br>A,@IX+d    | MOV<br>A,dir    | MOV<br>A,#d8      | RORC          | ROLC<br>A         | MULU<br>A      | NOP           | о . |
| CMP<br>A,R7   | CMP<br>A,R6   | CMP<br>A,R5   | CMP<br>A,R4   | CMP<br>A,R3   | CMP<br>A,R2       | CMP<br>A,R1       | CMP<br>A,R0       | CMP<br>A,@EP      | CMP<br>A,@IX+d    | CMP<br>A,dir    | CMP<br>A,#d8      | CMPW<br>A     | CMP<br>A          | DIVU           | SWAP          | 1   |
| ADDC<br>A,R7  | ADDC<br>A,R6  | ADDC<br>A,R5  | ADDC<br>A,R4  | ADDC<br>A,R3  | ADDC<br>A,R2      | ADDC<br>A,R1      | ADDC<br>A,R0      | ADDC<br>A,@EP     | ADDC<br>A,@IX+d   | ADDC<br>A,dir   | ADDC<br>A,#d8     | ADDCW<br>A    | ADDC<br>A         | JMP<br>addr16  | RET           | 2   |
| SUBC<br>A,R7  | SUBC<br>A,R6  | SUBC<br>A,R5  | SUBC<br>A,R4  | SUBC<br>A,R3  | SUBC<br>A,R2      | SUBC<br>A,R1      | SUBC<br>A,RO      | SUBC<br>A,@EP     | SUBC<br>A,@IX+d   | SUBC<br>A,dir   | SUBC<br>A,#dB     | SUBCW<br>A    | SUBC<br>A         | CALL<br>addr16 | RETI          | 3   |
| MOV<br>R7,A   | MOV<br>R6,A   | MOV<br>R5,A   | MOV<br>R4,A   | MOV<br>R3,A   | MOV<br>R2,A       | MOV<br>R1,A       | MOV<br>R0,A       | MOV<br>@EP,A      | MOV<br>@IX+d,A    | MOV<br>A,dir    |                   | XCHW<br>A,T   | XCH<br>A,T        | PUSHW<br>IX    | PUSHW<br>A    | 4   |
| XOR<br>A,R7   | XOR<br>A,R6   | XOR<br>A,R5   | XOR<br>A,R4   | XOR<br>A,R3   | XOR<br>A,R2       | XOR<br>A,R1       | XOR<br>A,R0       | XOR<br>A,@EP      | XOR<br>A,@IX+d    | XOR<br>A,dir    | XOR<br>A,#d8      | XORW<br>A     | XOR<br>A          | POPW           | POPW<br>A     | 5   |
| AND<br>A,R7   | AND<br>A,R6   | AND<br>A,R5   | AND<br>A,R4   | AND<br>A,R3   | AND<br>A,R2       | AND<br>A,R1       | AND<br>A,RO       | AND<br>A,@EP      | AND<br>A,@IX+d    | AND<br>A,dir    | AND<br>A,#d8      | ANDW<br>A     | AND<br>A          | MOV<br>ext,A   | MOV<br>A,ext  | 6   |
| OR<br>A,R7    | OR<br>A,R6    | OR<br>A,R5    | OR<br>A,R4    | OR<br>A,R3    | OR<br>A,R2        | OR<br>A,R1        | OR<br>A,R0        | OR<br>A,@EP       | OR<br>A,@IX+d     | OR<br>A,dir     | OR<br>A,#d8       | ORW A         | OR A              | MOVW<br>PS,A   | MOVW<br>A,PS  | 7   |
| MOV<br>R7,#d8 | MOV<br>R6,#d8 | MOV<br>R5,#d8 | MOV<br>R4,#d8 | MOV<br>R3,#d8 | MOV<br>R2,#d8     | MOV<br>R1,#d8     | MOV<br>R0,#d8     | MOV<br>@EP,#d8    | MOV @             | MOV<br>dir,#d8  | DAA               | MOVW<br>@A,T  | MOV<br>@A,T       | CLRC           | CLRI          | 8   |
| CMP<br>R7,#d8 | CMP<br>R6,#d8 | CMP<br>R5,#d8 | CMP<br>R4,#d8 | CMP<br>R3,#d8 | CMP<br>R2,#d8     | CMP<br>R1,#d8     | CMP<br>R0,#d8     | CMP<br>@EP,#d8    | CMP @<br>IX+d,#d8 | CMP<br>dir,#d8  | DAS               | MOVW          | MOV<br>A,@A       | SETC           | SETI          | 9   |
| SETB<br>dir:7 | SETB<br>dir:6 | SETB<br>dir:5 | SETB<br>dir:4 | SETB<br>dir:3 | SETB<br>dir:2     | SETB<br>dir:1     | SETB<br>dir:0     | CLRB<br>dir:7     | CLRB<br>dir:6     | CLRB<br>dir:5   | CLRB<br>dir:4     | CLRB<br>dir:3 | CLRB<br>dir:2     | CLRB<br>dir:1  | CLRB<br>dir:0 | Þ   |
| BBS dir       | BBS dir<br>:2,rel | BBS dir<br>:1,rel | BBS dir<br>:0,rel | BBC dir<br>:7,rel | BBC dir           | BBC dir         | BBC dir<br>:4,rel | BBC dir       | BBC dir<br>:2,rel | BBC dir        | BBC dir       | В   |
| INC<br>R7     | INC<br>R6     | INC<br>R5     | INC<br>R4     | INC<br>R3     | INC<br>R2         | INC<br>R1         | INC<br>R0         | MOVW<br>A,@EP     | MOVW<br>A,@IX+d   | MOVW<br>A,dir   | MOVW<br>A,ext     | INCW          | INCW              | INCW           | INCW<br>A     | С   |
| DEC<br>R7     | DEC<br>R6     | DEC<br>R5     | DEC<br>R4     | DEC<br>R3     | DEC<br>R2         | DEC<br>R1         | DEC<br>RO         | MOVW<br>@EP,A     | MOVW<br>@IX+d,A   | MOVW<br>dir,A   | MOVW<br>ext,A     | DECW          | DECW              | DECW<br>SP     | DECW<br>A     | D   |
| CALLV<br>#7   | CALLV<br>#6   | CALLV<br>#5   | CALLV<br>#4   | CALLV<br>#3   | CALLV<br>#2       | CALLV<br>#1       | CALLV<br>#0       | MOVW<br>EP,#d16   | MOVW<br>IX,#d16   | MOVW<br>SP,#d16 | MOVW<br>A,#d16    | MOVW<br>EP,A  | MOVW<br>IX,A      | MOVW<br>SP,A   | JMP<br>@A     | т   |
| BLT<br>rel    | BGE<br>rel    | BZ<br>rel     | BNZ<br>rel    | BN<br>rel     | BP<br>rel         | BC<br>rel         | BNC<br>rel        | XCHW<br>A,EP      | XCHW<br>A,IX      | XCHW<br>A,SP    | XCHW<br>A,PC      | MOVW<br>A,EP  | MOVW<br>A,IX      | MOVW<br>A,SP   | MOVW<br>A,PC  | п   |