FUJITSU SEMICONDUCTOR
CONTROLLER MANUAL

CM42-00326-1E

FZMC-16L/16LX/16/16H/16F

HITRONZ2.01 SPECIFICATIONS COMPLIANT

SOFTUNE REALOS/907
ANALYZER MANUAL

[o®)
FUJITSU

FZMC-16L/16LX/16/16H/16F

HITRONZ2.01 SPECIFICATIONS COMPLIANT

SOFTUNE REALOS/907
ANALYZER MANUAL

FUJITSU LIMITED

PREFACE

m Objectives

The Softune REALOS/907 analyzer (referred to as REALOS Analyzer in this manual) is an
analysis tool. It is used to debug a system that uses Softune REALOS/907, which conforms to

the ITRONZ2.01 specifications, on the Fujitsu F°MC-16 Family of 16-bit microprocessors. It runs
under Softune Workbench, which is part of the Fujitsu SoftuneV3 integrated development
environment.

This manual provides information needed to set up and use the REALOS Analyzer.

This manual assumes that the following operating environment is used.

O [Host computer]
* IBM PC/AT compatible machine (Fujitsu FMV Series) running Windows 95/98/NT4.0

¢ Operating environment: 150 MHz or higher Pentium processor (200 MHz or higher
recommended), 48M bytes of memory for Windows 95/98/NT4.0 (64M bytes
recommended), hard disk space of 40M bytes or more
O [Real-time OS]
e Softune REALOS/907

O [Required development tools]

« Softune Workbench for FZMC-16 Family

m Trademarks
TRON is an abbreviation of The Realtime Operating system Nucleus.
ITRON is an abbreviation of Industrial TRON.
ITRON is an abbreviation of Micro Industrial TRON.
Softune is a trademark of Fujitsu Limited.

REALOS (REALtime Operating System) is a registered trademark of Fujitsu Limited.

F2MC is an abbreviation of Fujitsu Flexible Microcontroller and is a registered trademark of
Fujitsu Limited.

Microsoft, Windows, and Windows NT are registered trademarks of Microsoft Corporation in the
United States and other countries.

Other system names and product names in this manual are the trademarks of their respective
companies or organizations. The symbols ™ and ® are sometimes omitted in the text.

m Intended Reader

This manual is intended for engineers developing various types of products using Softune
Workbench and Softune REALOS/907 and explains how they can use the REALOS Analyzer to
debug applications. Be sure to read this manual completely.

m Organization of This Manual

This manual consists of four chapters and an appendix.

CHAPTER 1 OVERVIEW

This chapter provides precautionary information relating to application analysis using the
Softune REALOS/907 analyzer and outlines the Softune REALOS/907 analyzer.

CHAPTER 2 TASK ANALYSIS MODULE

This chapter outlines the task analysis module of the Softune REALOS/907 analyzer and
describes the installation procedure in an application. Be sure to read this chapter when
using the task trace function.

CHAPTER 3 BASIC OPERATION

This chapter describes basic operations for analyzing applications with the Softune
REALOS/907 analyzer.

CHAPTER 4 WINDOW

This chapter describes the information displayed in each Softune REALOS/907 analyzer
window.

APPENDIX

The appendix describes the limitations on and configuration of the Softune REALOS/907
analyzer. It also lists error messages and provides sample programs.

. The contents of this document are subject to change without notice. Customers are advised to consult
with FUJITSU sales representatives before ordering.

. The information and circuit diagrams in this document are presented as examples of semiconductor
device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is
unable to assume responsibility for infringement of any patent rights or other rights of third parties
arising from the use of this information or circuit diagrams.

. The contents of this document may not be reproduced or copied without the permission of FUJITSU
LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office
automation and other office equipments, industrial, communications, and measurement equipments,
personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal
operation may directly affect human lives or cause physical injury or property damage, or where
extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls,
sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to
consult with FUJITSU sales representatives before such use. The company will not be responsible for
damages arising from such use without prior approval.

. Any semiconductor devices have inherently a certain rate of failure. You must protect against injury,
damage or loss from such failures by incorporating safety design measures into your facility and
equipment such as redundancy, fire protection, and prevention of over-current levels and other
abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain
restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior
authorization by Japanese government should be required for export of those products from Japan.

©1999 FUJITSU LIMITED Printed in Japan

Manual Set

m Softune REALOS/907 Manual Set

The Softune REALOS/907 manual set consists of the following four volumes. A first-time user
of Softune REALOS/907 should read the User’'s Guide before reading the other manuals.

This manual explains the procedure for generating application systems
and important points regarding the overall system. The manual also
explains the debugger macro commands used when debugging
REALOS/907 applications using the debugger.

F2MC-16L/16LX/16/16H/16F
Softune REALOS/907
User's Guide

F2MC-16L/16LX/16/16H/16F
Softune REALOS/907
Kernel Manual

This manual explains information required for
user program development.

Softune REALOS This manual explains the REALOS configurator
Configurator Manual functions and how to use them.

Softune REALOS/907 This manual explains the Softune REALOS/907
Analyzer Manual analyzer functions and how to use them.

READING THIS MANUAL

m Page Layout

The contents of each section are summarized underneath the title. Reading these summaries
will give you a quick overview of the REALOS Analyzer.

Also, higher-level section headings are given in lower-level sections so that you always know to
which section the text you are currently reading belongs.

m Product Names
Product names in this manual are abbreviated as follows:
Microsoft® Windows® 95 operating system: Windows 95
Microsoft® Windows® 98 operating system: Windows 98
Microsoft® Windows NT® Workstation operating system Version 4.0: Windows NT 4.0

Vi

CONTENTS

CHAPTER 1 OVERVIEW ..ottt et e et e e et e e e e eaaas 1
1.1 Precautionary INformation @bOUL USEc..eiiiiiiiiiiiiiiiii et 2
1.2 REALOS ANAIYZEIN FEAIUIESccieieeeiieieieieeieietett s e s e s e e e e e s et e e e e e e e eaaaaeeeee e e aaaeaeetesaeetntntntananan e eeeaeaeaaaeees 4
1.3 FUNCHON OVEIVIEW ...ttt et e e e e ettt et e e e e e e ok b bbbttt ettt e e e e e e oo aa b bt bt e et e e e e e e s eaaaabbbebeeeeeeaeeeeeeaaannnnneneees 5

1.3.1 REALOS PrOjECE WINTOWcoiiiiiiiiiiiiiiiie ettt ettt sttt ettt bttt e sabb et e e s et et e e s bbn e e e e e e snnnneee s 6
1.3.2 Softune Workbench Operator COmMmMAaNdoooiiiiiiiiiiiiii e e e e e e e e e e e e e e e e e e aeee e, 7
G TR T @ o] 1= Tox A 1011 o] =Y PR 8
1.3.4 Stack ULIliZation ANGIYSIScoiiiiiiiiaiiiiiie ettt ettt ettt e e e sabe e e s bbb e e e sanneee s 10
R N -] I = (o =TT TP PSP 12
IR TG T |V T 1 o 4 T T PP 14

CHAPTER 2 TASK ANALYSIS MODULE ..ot 15
2.1 Task ANAlYSIS MOUUIE OVEIVIEWcuuuiiiiiiiiieie ettt ettt e et e e e e b e e e e e bbb e e e e annns 16
2.2 Customizing the Task AnalysisS MOAUIEccccoiiiiiiiii e e e e e e e e e e e e e e e e aeaaaens 18
2.3 Task Analysis Module INStallationcooiiiiiiiii ee e e raraanne 20
2.4 Initializing the Task ANAIYSIS MOAUIEcouiiiiiiiiie e 21

CHAPTER 3 BASIC OPERATION ..ot 23
3.1 Starting REALOS ANAIYZEL ... e e st e ae e e eeesaesra s 24
3.2 Terminating REALOS ANAIYZELccci oot s e e e e e e e e e e e e e e e e et et e et e ee et aaaes s 25
3.3 COllECtiNg REALOS DALAeeeeiiitiiiiee ittt ee sttt ee ettt ekttt e e st e e e e aabe et e e e s sbe e e e e e aab et eeesabbbeeeeeeeanbeeeeeaas 26
IR (Y =T o U TP TT PP TP TPTPRRRR 27
TR T o To] | o = = TP TP UPPTPTPPPPRP 30
TN T = 1 L1 LS = - T S 32
3.7 REALOS ProjeCt WINAOWuuiiieiiie ittt s e s e e e e e e e e e e e e e e aaeeee e e e e e e e as 34
R T 0o 111 1o F= T o To LSOO PPPPRTN 35
e B O o T=Tot B 1T o] - | PP OUPPPPPPTPPRRN 36
700 0 T = (o QTSP PP TOPTPPPPPI 38
700 I R I T I = Lo PP PPPPPPPPPPRP 39
R 2 | 1N T o [T Vo TP PP OUPPPPPPPPPRRN 43
G 701 e T | T T 71 () [T 44

CHAPTER 4 WINDOWS ..ottt et e e et e e e e e e eeanns 45
o R B 4 A @ I (o] 1= o YA T T [0 46

4.1.1 Information Displayed in the REALOS Project WiNAOWccooiiiiiiiiiiiiieiiiee e 47
4.1.2 REALOS Project WiNdOW POPUP MENUSuuuiiiiiiii ittt e 50
o © 1 T T= ox i VAT o o 52
4.2.1 Information Displayed in the Object WINAOWcooiiiiiiiiiiiiie e 53
4.2.2 ODbject WINAOW POPUD IMENUSuuiiiieiiieiiiiiieie e iees s e s et e e e e e e e e e aeaeeeeeeeeeeeeeesateseeststnrenannsns s aa e eeeeeees 65
4.3 SEACK ULHZALION LIST ...eiiiiiiiiiiiiiie ettt e e e e e e e e bbbttt e e e e e e e e e e e e s abbbebbeeeaeaeeean 67
0 Tt R - Yod Q1= 2 T) o SRR 68
4.3.2 Information Displayed in the Stack ULilization LiStc.oooiiiiiiiiiiir e 69
4.3.3 Stack Utilization LISt VIEW SELHNGuuruiieiiiiie et s e e e e e e e e e 71
N T S - od QL U 11 = 1 o o @ 1= o PR 72

Vii

4.3.5 Stack ULIHZAtion Grapheeoiiiiie e et e 73

N -] I = ot =3 o T =YY/ T o o Y PSP 74
4.4.1 Information Displayed in the Task Trace Figure WIiNdOWccooiiiiiiiiiiiiiiieei e 75
4.4.2 Task Trace Figure WINAOW TOOIDAIcoiiiiiiiiiiiii e e 80
4.4.3 Task Trace Figure WINAOW STatuS Baroouiiiiiiiiiiiiiiiiiiiiiieiis e e e e e e eeeeeeeeee e e e eeeeeeeeeeeeeneneennnnnn s 84
4.4.4 Task Trace Figure WIiNAOW POPUP MENUSuvuiiiiiiiiiieiieis e e s e e e et e e eeee e s 85
4.45 Printing @ Task Trace FIQUIEeiiiiiiieiiiiiiee ettt et e e st e e e st e e e e enneee 86
4.4.6 RUNNING TIME GraPR .oeiiiiii i e s e e e e e e e e e e e e e e e e et et et e e e e e e te e e e eas 87
4.4.7 Task Trace Figure Information Dialog BOXuuvuiuiimiiiiiiiiiieieieieeeeeee e e ee v s 90

45 Task Trace Tre€ WINUOWuuuiiiiiiiieeie ittt e e e e ettt e e e e e e e s e e s s s ae et eeeeeeesaasnnsensssnnneeeeaeeens 92
45.1 Information Displayed in a Task Trace Tree WINAOWccoooiiiiiiiiiiiiiiiieiie e 93
4.5.2 Task Trace Tree WINAOW TOOIDAIcooiiiiiiiiiii et e e e e 95
4.5.3 Displaying a Graph in the Task Trace Tree WINAOWc.uoeeiiiiiiiiiiiiiiie et 96

I @ o =T ox A I = Vot = I VAV T o o PP 98
4.6.1 Information Displayed in the Object Trace WINAOWcccooiiiiiiiiiiiieiie e 99

o A /(o 11 (o 1o T RSP TOU PRSPPI 101
4.7.1 Information Displayed in the Task Status Monitor Windowccccoevvviiiiirieeecec e, 102
4.7.2 Information Displayed in the Stack Monitor WindOWcccoeeviiiiiiiieiiiiiiceeeee e 105

N TS 1= (U] o PO PP 107
0 T N /(o To [T PPPPP PR TRTRPPP 108
O T 1= 1= Tor 1= 1 O o] [T o R 114
R T - 11 G I - T = PR EERRR 116

e I o L= o TP PP TP PPN 117
e T R o 11| o T 10 oo 118
e A o o U B = S 04T PR 119

N o = | 5 1 PP 121

APPENDIX A RESIICHONS ittt ittt e ettt ettt e e e e e e s e bbb ettt e e e e aeeeaa s s e s nnbeneneeeeas 122

APPENDIX B CONFIQUIALION ...oiiiiiiiieiiiiiiiiiee i e i e s e e e e e e e et ettt s s e s e s e e e e eaeeeeeeesssenessnsnnes 124

APPENDIX € EITOF IMESSAUTES .. .ueiettieieeieeeaeeias ittt et e e e et s st e ettt e e e s e e s e e et e ee e e e e e s nennne snr e e nneees 125

APPENDIX D SAmMPIE PrOQraAIMSuuueiiiiiiiiiii e i e i e ie e e e e et e e e e e ettt ettt e et a st s see s s e s e saeeaeaeaeesannrnrnnes 127

IN D E X ettt e e e e et et et n e e et e e aa e aaaes 131

viii

FIGURES

Figure 1.3-1
Figure 1.3-2
Figure 1.3-3
Figure 1.3-4
Figure 1.3-5
Figure 2.1-1
Figure 2.4-1
Figure 2.4-2
Figure 3.1-1
Figure 3.3-1
Figure 3.5-1
Figure 3.5-2
Figure 3.5-3
Figure 3.6-1
Figure 3.9-1
Figure 3.9-2
Figure 3.9-3
Figure 3.11-1
Figure 3.11-2
Figure 4.1-1
Figure 4.1-2
Figure 4.2-1
Figure 4.2-2
Figure 4.2-3
Figure 4.3-1
Figure 4.3-2
Figure 4.3-3
Figure 4.3-4
Figure 4.4-1
Figure 4.4-2
Figure 4.4-3
Figure 4.4-4
Figure 4.4-5
Figure 4.4-6
Figure 4.4-7

Example of the REALOS ProjeCt WIiNAOWcovviiiiiiiiiiiiiiii i s e ssss e e e e e e e e eeeeeaaeaeeeeeeeeeannnnnn 6
Example of Object Display WINAOWSooiiiiiiiiiiiiiieeeee s e s e s e e e e e e e e e aeaaaaaeeeaenanenne 9
Example of Displaying Detail Stack Informationccccceeeiiiiiiiiii e, 10
Example of Task Trace RESUILScccooeiiiiii i e e e e e e e e e e e e e aeaeeeaaaaes 13
Example of Task Status Monitor and Stack Monitor Displayccccceeeeeiiiiiiieeeeeee s 14
Outline of the Task Analysis Module Operationccccoeeeeiiiiii i 17
Definition of the Initialize Handler (Softune Workbench Screen)ccc i, 21

Example of Addition of the Initialization Routine of the Task Analysis Module (Editor Screen) 22

Example of Starting REALOS ANAIYZETcoeeeiiiiiiiiiiiiiisisies s et st e e e e e s e e e e e e e aeaaaeaeeeaeeeaeaeeeannes 24
Example of Collecting Data Dialog BOXcccevuiiiiimiiiiiiiiiiiiii e e ee e es e e e e e e e eeee e e e e eeeeeeeeee e 26
Example of Main TOOIDANiiiiiiii e e e e e e e e e e e e e aeeeaeaeeesaaen 30
Example of WINAOW TOOIDAY ..o s e e e e e e e e e e e e e e aaeaeeesanees 30
Example of SEtUP TOOIDANccooiiiii i e e e e e e e e e e e e e e e e e e e araeeeranne 31
EXaMPIe Of SEATUS BTuuiiiiii i e s s e e e e e e e e e e e e e aa e e e e e e e aee e rarernaaaa 33
Example of SOrting DY PriOFItYccoooe i s e e e e s e e e e e e e e e e e e e e e e e eeeaaeareearnee 36
Example of Displaying the Free BIOCK HIStOrYovvvviiviiiiiiiiiciiii s ee e 37
Example of Displaying the Jump Function (Task Waiting for Message[***] Task List Window) 37
Names of Split Windows in @ Task Trace FIQUIEeeuuuiirumiiiiiiiiiesieisieeeeeeeeeeeeeeseeseeeeeeeeesnnnn 40
Example of Scrolling the Detail Window by Clicking the Highlighted Areaccccovvvvvvvvennnnes 41
L SN @ ST o 1] =T ex AV s o [0 PSP 47
Concept of Task DIiSPatCh Breakeeeiiiiiiiiiiiiiiiiiiis s e e 51
(@ o= o M 1Y/ T o [0 1T 53
Queue List Window (From Left to Right: Ready Queues, Timer Queues, Alarm Queues) 58
Toolbar in the QUeue LiSt WINUOWuuuuiiiiiiiiieii e e e e e ae e 58
SEACK ULIHZALION LIST ..eeeiiriiiieiiieec ettt s e e 69
Stack Utilization LiSt VIEW SELHNQcovviviiiiiiiiiiiiiiiiiie s is s e s s e e e e e e e e e e e e e e e e e e e aeeeeee e e s 71
Results of Checking for Free Stack Space (Check with 0x50 Bytes Specified)cccccvvvvevnnnes 72
Graph Showing Maximum Available Stack Spacecccccceeeiiii e 73
Example of Time Display in the Time Display WIiNAOWcccooiiiiiiiiiniiiiieeie e 75
Task Trace Figure WIindow TOOIDAIuuuuiiiiiiiiiii e e e e 80
Example of Sequentially Sorting DISPAtCNESuuuuiiiiieiiiiiiiiii s ee e 81
Example of Task Trace Figure Window Status Barcccccceiiiiiiiiiiiiiiie e eeeeeeeeecececeeeeeeeiens 84
Displaying the Running Time Graph ... s e e e e e e e e e e e e e e aeeaeaans 87
Trace Figure Information DIalog BOXuuuiiiiiiiiii i e e e e e e 90
Displaying the Related EVENL LIStcccooiiiiiiiiiieeeeee s e e e e e e e e e e e e e e e aaeaeeenenees 91

Figure 4.5-1
Figure 4.5-2
Figure 4.6-1
Figure 4.7-1
Figure 4.7-2
Figure 4.8-1
Figure 4.8-2
Figure 4.8-3
Figure 4.9-1
Figure A-1

Figure B-1

Example of the Task Trace Tre€ WINUOWcc.eeiiiiiiiiiiiiiiiee et 93

Task Trace Tree WINAOW TOOIDAIooiiiiiiiiii e 95
Example of an Object Trace WINGOWcooiiiiiiiiiiiiiiiie ittt 99
Task Status MONItOr WINGOWcoiiiiiiiiiiiiiiiie ettt et 102
StACK MONITOr WINAOWeeiiiiiiiiie ettt e e bt e e e e e sabeeeee e 106
Select Task, Object DIialog BOXiuuiiiiiiiiiieie et e e 114
Monitoring and ODJECE TIACE SEIUPeeiiiiriiiiiiiiiie et 115
Overview of Trace Data BUfEIINGveiiiiiiiiii e 116
AbOUL fra907S€ DIalog BOXcciiuuiiiiiiiiiiiiieiitiiie ettt 119
Contents Of Trace BUFTEIooiiiiiii e 123
Configuration of Softune REALOS ANalyzer Filescccuiiiiiiiiieiiieee e 124

TABLES

Table 4.1-1
Table 4.1-2
Table 4.2-1
Table 4.2-2
Table 4.2-3
Table 4.2-4
Table 4.2-5
Table 4.2-6
Table 4.2-7
Table 4.2-8
Table 4.2-9
Table 4.2-10
Table 4.2-11
Table 4.2-12
Table 4.2-13
Table 4.2-14
Table 4.2-15
Table 4.2-16
Table 4.2-17
Table 4.2-18
Table 4.2-19
Table 4.2-20
Table 4.3-1
Table 4.4-1
Table 4.4-2
Table 4.4-3
Table 4.4-4
Table 4.4-5
Table 4.7-1
Table 4.7-2
Table 4.8-1
Table 4.8-2
Table 4.8-3
Table 4.8-4
Table 4.8-5

Items Displayed in the REALOS Project WINUOWuuuueiiiiiiiiii it i e eeee e 47
REALOS Project WindOW POPUP MENUSoooviiiiiiiiiiiiieiiiiiiiie s s s s ss e e e e e s e aeaaaeaaaaeaseeesessasasesnnnne 50
TaASK LISt WINGOW ...ttt et e e e e e e e e ne et e e s na e e e e e e nnnneeeenns 54
TASK STATUSES ..ottt ettt e e e e b e e e e sttt e e s e n e e e e e a e e e s e eeee e 54
SY=T 0 F= T T T = I 1Y YA T o [0 55
V=T oL = Vo T IS A YAV o o PRIt 55
MaIIDOX LIST WINGOW ...ttt ettt e e st e e e e e e 55
Y T g To] 2 =do o I I ES] A YAV s o (o PRIt 56
(@Yo [Tl o =T o | 1= o £ AT [0 1 56
Alarm Handler LiSt WINGOW ouviiiiiiiieiee ettt 57
Display ItemS iN Tre@ FOIM ..o e s e e e e e e e e e e e e e e eaeaeeeaaenes 57
Ready Queue DiSPlay ItEMScciiiii i s a e e e e e e e e e e e e 58
Timer Queue DiSplay ITEMS ... e a e e e e e e e e 59
Alarm QUEUE DISPlay [EEIMSueeeiiiiiiiie erae e aaa—a 59
1coNS iN the Task LIST WINCGOWocueiiiiiiiieeie et 59
Icons in the Semaphore LisSt WINAOWoooiiiiiiiiir s s s s eaeaeeeananes 61
Icons in the Event Flag LiSt WINAOWoooiiiiiiiiiieeee s e e e e e e e e e e e e e e e e e e eeeeeeeanenes 61
Icons in the MailboX LiSt WINAOW coiiiiiiiiiiie e 62
Icons in the MemoryPool LiSt WINGOWoooiiviiiiiiiiiiiiiiiiiii s s s e s e s e e e e e e e e e aeaeseeeseeeaeaeeeanenes 62
Icons in the Cyclic Handler List WINAOWcooviiiiiiiiiiiiii s s s s e e e e e e e e e e e e e e eeee e anenes 63
Icons in the Alarm Handler LiSt WINAOWcooiiiiiioiiiiiie e 64
Popup Menus of an ObJeCt WINAOWcoooiiiiiiiiiic s s s s e s e s e e e e e e e e e e e e e e e eneeeeaaanes 65
Items Displayed in the Stack ULIlization LIStvvviiiiiiiiiiiiiiiiie e eee e e e e eeeeeeeeeenenes 69
Icons Indicating Event Other Than Issuing of a System Call ..., 75
Icons Indicating Event Other Than Issuing of a System Call ..., 78
Line Types for Indicating Task STatUScccooiiiiiiiiiiieierre e e e e e e e e e e e e eae e eeananes 78
Display Items for Each Type of Traced EVENtooovviiiiiiiiiiiiiiiie e 82
INFOrMAtioON LISt IEEIMS ...oeeiiiiiiiie e e e e 88
[0} 0 PP PP 102
Task Statuses and Stack POINtEr VAIUEceeviiiiiiiiie e 105
TaSK LISTWINAOW .ottt e e s e e e e e e 109
Semaphore LiSt WINUOWcooiviieeeeiiii st e e et s a s e nn e e e e e e e e aeaeaeeas 110
V=T o | o F= Vo T IS A YAV T o o PPN 110
MaUIDOX LIST WINGOWeeiieiiiiieiie ittt e e e e s e e e e e 111
T g pTo] 4 =de o I I ES] A YAV T s o [0 1SRN 111

Xi

Table 4.8-6
Table 4.8-7
Table 4.8-8
Table A-1

Xii

Cyclic Handler LiSt WINAOWceiiiiieiiiiie ettt e e e e e e e e e e e e e e e s s snnneeeneeeeaeeeeeeeeannes 112
Alarm Handler LiSt WINGOW ooiiiiiieiiiee ettt 112
QUEUE WINUOW .. et e st et eeeeeeeeaens 113
Processing Time and Size of Task Analysis Modulecccccoiiiiiiiiiie e 122

CHAPTER1 OVERVIEW

This chapter provides precautionary information about use of the Softune REALOS/
907 Analyzer (REALOS Analyzer) and outlines its functions.

1.1 Precautionary Information about Use
1.2 REALOS Analyzer Features

1.3 Function Overview

CHAPTER 1 OVERVIEW

1.1 Precautionary Information about Use

This section provides precautionary information about use of the Softune REALOS/907

Analyzer.

m Notes on Development Environments

0 Softune REALOS/907 is required.

The Softune REALOS/907 Analyzer is a tool that analyzes application programs using Softune
REALOS (referred to as application programs hereafter).

Fujitsu integrated development environment Softune Workbench is required.

The REALOS Analyzer cannot be activated independently and must be activated from Softune
Workbench.

The REALOS Analyzer operates linked to a debugger.

The REALOS Analyzer operates linked to a Softune Workbench debugger. The analyzer
cannot be used by another debugger such as Third party.

If processing is stopped during data collection, check whether an error has occurred in the
debugger.

m Notes on Use of the Emulator Debugger

0 When external memory is used

The REALOS Analyzer accesses the REALOS/907 data area (including the task stack area)
and the data area of the task analysis module immediately after a target file is loaded or a reset
is executed. If the REALOS Analyzer is unable to access the area, it will not operate correctly.

Therefore, if the above data areas are allocated in external memory, the external memory must
be made accessible (with any method) before the target file is loaded. As an example, a
command procedure file describing processing that enables access to external memory can be
executed.

When a monitoring function is used

The monitoring function is required only under the conditions listed below. If it is used
otherwise, an error occurs on the emulator debugger side. This is because monitoring is
implemented by a function that reads memory while the emulator debugger is operating.

- Condition for using the monitoring function

 When the REALOS/907 data area (including the task stack area) is allocated in external
memaory

-> The area must be allocated in emulation memory.

 When the REALOS/907 data area (including the task stack area) is allocated in internal
memaory

1.1 Precautionary Information about Use

-> The internal memory area must be mirrored.

m Note on Use of the Monitor Debugger

O Monitoring function

The monitoring function cannot be used because the monitor debugger cannot read memory
while debugging is being executed.

m Notes on Module Configuration

O Task trace function requires the task analysis module.

For the task analysis module, see Chapter 2 "Task Analysis Module".

O Do not install the task analysis module in a product.

Be sure to replace the task analysis module with the OS object file (dbgfk.obj) provided by
Softune REALOS before delivering the analyzer as a product.

0 The execution time is delayed.
The execution time is delayed if the task analysis module is installed.
m Terms
This manual uses the following definitions:

O Task trace

Trace of events such as task dispatch and system call issuance

O Trace buffer

Buffer that stores task trace information

0 Task analysis module

Program for implementing a task trace

O Monitoring

Function that obtains information at predetermined intervals

O Idle loop

OS routine that is executed if no tasks are being executed

O Idle task

Endless-loop task that does not enter the wait state. Provided by the user.

CHAPTER 1 OVERVIEW

1.2 REALOS Analyzer Features

The REALOS Analyzer has the following features.

m REALOS Analyzer Features

0 Task trace figure
The task trace fiture of the REALOS Analyzer enables tasks to be checked, with time stamps, to
see if they are executed at the expected times in the expected sequence.

O Object list display
The REALOS Analyzer displays a list of objects, which can be used to check the status of each
object. The history of REALOS management information changes can also be checked.

O Display of graphs
While the task trace function of the REALOS Analyzer is being executed, each object and task
can be checked to see if each is being used effectively.

0 Used stack analysis
The stack utilization of each task of the REALOS Analyzer can be checked to see if it is within
the estimated range.

0 Monitoring function
This function enables the status of each task and the status of stack utilization to be checked
during execution.

0 Operation by three types of debuggers

The REALOS Analyzer can use a simulator, emulator, and monitor debugger to perform
analysis provided the tool is a Softune Workbench debugger.

1.3 Function Overview

1.3 Function Overview

This section describes the functions of the Softune REALOS/907 analyzer.

m Notes on Function Overview
This section explains the overview of the functions of the Softune REALOS/907 analyzer.

For the basic operation of each function, see Chapter 3. For the displayed information, see
Chapter 4.

1.3.1 REALOS Project Window

1.3.2 Softune Workbench Operator Command
1.3.3 Object Display

1.3.4 Stack Utilization Analysis

1.3.5 Task Trace

1.3.6 Monitoring

CHAPTER 1 OVERVIEW

1.3.1 REALOS Project Window

The REALOS project window displays REALOS management information
hierarchically.

m REALOS Project Window

The REALOS project window is added to the Softune Workbench project window when Softune
Workbench starts a debugger.

This window displays hierarchically the initial information of each object set by the configurator.

From this window, source line jumps and breaks can be set, and the data size of each object
can be checked.

Figure 1.3-1 shows an example of the REALOS project window.

Figure 1.3-1 Example of the REALOS Project Window

g= Softune Workbench - ra_sample : Debug

File Edit View Project Debug Setup Window Help

= weldlo] 2 Bn B& 28|
] = e Y ey P N N P e]

E‘E Tazk @ mid_task.c
=T 1D =1 [First_Task] 4: tinclude "sample.h"
o i Initial pricrity = 1 [~
Control table address = H'0T10078 i
E'E D = _.-_-'r-.-1|.:|||.3T.a:5:l:: Jump Source Line ? TASK HMiddle Task() F=
i ey Initial priorty = 3 8: {
¢ [Conbrol table add Code break » 9: ER ercd;
1D = 3 [Center_Task Tazk dizpatch break » 1 BE UINT flgptn2;
- Tl 1D = 4 [Alloc_Task] — n: .
#-Ta 1D =6 [In_Task] ks 12: ercd - wai_sem(sem2);
: - 13:
- Jag] 1D =B [Out_T ask,
D=7 {Fr:e_ Ta:sll] i’ Th: funci();
a1t 1D =8 [} K] = 15: ercd = clr_flg(flg2, @
: =oline_ad =k 16: ercd = wai Fla(&Flaptn
[T 1D =9 [ldle_Tazk] 'l I I
H-{4 Semaphare =
=@ - T
i el Initial count =0 -7 270}
Control table add =H'0101 8
Py Ir.gr: 2-:-n ral table address c & M[=F3
lﬁl D=2 ~ercd = H'0004 !
- Eventilag = pk_tsks = struct {...}
- Mailbox .. tskstat = H'18
& 1D =1 L. tskpri = H'@&1
=5 D=2
-5 1D =3
g Memomnpool
- Cyclic handler
- @ Alam handler I
o)

1.3 Function Overview

1.3.2 Softune Workbench Operator Command

Softune Workbench debugging can be executed, aborted, and reset from the REALOS
Analyzer.

m Softune Workbench Operator Command
Softune Workbench debugging can be executed, aborted, and reset from the REALOS
Analyzer.
Execute the processing from the [Command] menu or toolbar.

CHAPTER 1 OVERVIEW

1.3.3 Object Display

When a debugger stops, the current status of an application-defined REALOS obiject is
displayed. A window is provided for each object type.

m Object Display

When a debugger stops, the current status of an application-defined REALOS object is
displayed. The following object display windows are provided:

» Task List window

» Semaphore List window

» Event Flag List window

» Mailbox List window

* MemoryPool List window

» Cyclic Handler List window

» Alarm Handler List window

* Queue List window (ready queue, timer queue, alarm handler queue)

Each object display window displays list-format information and queued tasks hierarchically.

m Standard Functions of Object Display Windows
Each object display window has the following standard functions:
» Sorting of information
» Display of history of changes for each information item
e Jump to a related window or item

Figure 1.3-2 shows an example of object display windows.

1.3 Function Overview

Figure 1.3-2 Example of Object Display Windows

task entry name | break paint fi status wait chiectid | wake up count | suspend count | time out count | stack poiter | queus postion | IP reqister | cotibiol arsa
First_Task na 1 1 waifsem] 1¢-0 i i i h4Ba <0 1¢0 hte01ED h10078
Midde_Task no 2 k] Teady 0 i i i hoed<-h0 0 hted1® k10086
Center_Task no 3 h 1eady 0 i i i hEGd<-h0 O hfel224 h10094
Alloc_Task no 4 2 U 0 0 0 0 h76d<-h0 0 - h100a2
In_Task ha 5 4 1eady 0 i i i heed<-h0 O hfeBbe h100b0
(Out_Task na B f 1eady 0 i i i h964<-h0 0 hfeldd h100be
Free_Task o 7 7 1eady il]]] habd<-HO 0 htel2fe K100ce
Inc_Task no 3 8 teady 1] 0 0 0 hbEd<-HO 0 h'elBac h100da
dle_Task no 3 16 Teady 0 0 0 0 hegd<-h0 0 hfe338 h100ed
& Semaphore _[O] |
1D count initial count | wait task hum | contiol area j
—|H 0 0 10 h108:
a2 0 0 0 hio1ed
g3 i 0 i h1018e
Note:

If the PC is in the kernel, the information displayed by the REALOS Analyzer is not assured
because of ongoing kernel processing.

CHAPTER 1 OVERVIEW

1.3.4 Stack Utilization Analysis

This function analyzes the maximum amount of stack space used on the stack
allocated to a task. When an application system is not initialized yet, the stack area is
filled with a specific pattern. This function displays maximum use by analyzing the
change of the pattern when the application stops.

m Stack Utilization Analysis

When [Initialize] on the [Stack] menu is clicked, this function fills the stack area with a specific
pattern before an application system is initialized. (If "Display this dialog Next Time" is selected,
this function automatically fills the area with the pattern after each reset.)

This function analyzes the pattern and displays the result when [Used Stack] on the [Stack]

menu is clicked.

m Detail Stack Information Display

When [Used Stack] is clicked, this function displays the results of stack utilization analysis.

The results, displayed in list format, can be sorted by item. The following functions can be

executed for the results:

» Checking the remaining stack area

» Display in graph format

Figure 1.3-3 shows an example of displaying detail stack information.

Figure 1.3-3 Example of Displaying Detail Stack Information

Stack Information

Setting

LERELLL by

Close |

task ety name | D | use | emply | alea gize | stack pointer | peek stack painter | dea | COmmon |

sygtem - hie hdZ b0 . habd b9 . haeh -
First_Task 1 ha hE k30 . h'388 B380 . 3t
Middle_Task. 2 bl H26 K50 . h3d6 B30, b3
Center_Task 1 ha b k40 . h418 P40 . 43
Alloc_Task 4 hB h18 k40 et h458 440, a7
N 5 h3 ho k30 . 1480 H480 . hdal
E hB it il . h4b8 Hdb0.. hddf
7 hD ho k30 . h4eD fidel.. 501

Inc_Task g ha i il . h520 RS0 REH -

de_Task 9 hu he k30 . h5dc R0 hSE -

s

. may: 5P

[emsty

10

1.3 Function Overview

Note:

If the PC is in the kernel. the information displayed by the REALOS Analyzer is not assured
because of ongoing kernel processing.

11

CHAPTER 1 OVERVIEW

1.3.5 Task Trace

This function

uses icons to display the results of tracing task dispatch occurrence and

system call issuance in trace figures and trace tree windows.

m Task Trace

When a Softune Workbench debugger stops, the Task Analysis Module (R_D_dbgA.obj) traces
the timing of task dispatching that has occurred and system calls that have been issued since
the last time the debugger stopped (task trace).

The REALOS Analyzer collects the results of the task trace, indicates the events in the form of
icons (dispatch occurrence and system call issuance), and displays the results in a task trace
figure and a hierarchical task trace tree.

m Display of Analysis Results in Graphs

m Object Trace

12

This function displays analysis information for task traces in graphs. The following results of
analysis are displayed in graphs:

» Ratio of running time/running-enabled time/wait time/dormant time of a task
» Maximum continuous running time of a task

* Minimum continuous running time of a task

» Task dispatch count

» System call issuance count of each task

» Issuance count of each system call type

In synchronization with an ordinary task trace, the status transit history of each object can be
checked.

Figure 1.3-4 shows an example of the results of a task trace.

1.3 Function Overview

Figure 1.3-4 Example of Task Trace Results

Task Trace Figure O] x]
%nt| [[Lgmph| P‘Historyl w..gram| [Irit Helr sta_tsk b1 =« | > |
task entryn... |10 | priority | |Tooto1.000 ' o002 000 '
inihdr — — W ————————————————————————
interrupt — — IR @ R e T e e R R L L e
First_Task 1 1 : e i -
Middle_Task 2 3 i --- -I© ----------------- - -
Center_Task 3 B : = e T
Alloc_Task 4 2 f T e B IS
: =], :
In_Task 5 4 i £ - T
I I I
Qut_Task 4] 4] | | j_i'fﬂi‘iﬂ‘ - .- @ mc',-‘p—
Free_Task 7 i , , 'EEF-I -
Inc_Task 8 6 : | S R
I I I
Idle_Task 9 16 : : :
idle loop - = Pommmoeommiooiees Pommmoemmmeeoiees ro--
HAREAKEEHEER = = ®
Hun Time Analysis [_ O] x|
tazk Entr tazk id | running time | running rate | running mas | running min | dizp num —"
1 First_Task k1 ooom .11 157 OOOODEGS 00000448 2 - |0] x|
Bulfe [2 Middie_Task b2 00000914 12.88 00000750 00000164 2 00007103 (0007.102)
[T 3: Center_Task h3 00000185 0261 00000185 00000185 1
55 4 Aloc_Task b4 onoonA4E 0772 0ooo037 oooooavE 2 @ History af Tasks =]
B35 I Task WS 000OOA7T 0249 0O0001F7 00000AF7 1 =18 1 First_Task
g6 Du_Task W 00000177 02.49 00000177 00000177 1 = @ wai_sem
1 7: Free Task b7 00001.235 17.40 00000472 00000363 3
[: Ine_Task ho 00000143 02.09 00000149 00000143 1
o9 e Task b9 ooool.eX 2282 00000860 00000258 3
1] | 2: Middle_Task
j (@) wai_sem
Run, Ready, Wait, Suspend, Dormant Retes (36 Fe chflg
- wai_flg
an —
o i i EI E 3: Center_Task
{ (@) wai_sem
... 8 § B 8 8§ 3 §- 1R 4 os Tk
i 2 3 4 3 g 7 g]
=] rev_msg
[Rur B Reacy [vt B suspend [] Dormart - L get_bik
- [U] get_blk
F-[L] get_blk
EIE B:ln_Task
| mm ey s j

Note:

If the PC is in the kernel, the information displayed by the REALOS Analyzer is not assured
because of ongoing kernel processing.

Some graphs cannot be displayed depending on the setting of [Mode] and [Task Trace] on
the [Setup] menu.

13

CHAPTER 1 OVERVIEW

1.3.6 Monitoring

This function monitors task statuses and stack utilization during execution of a
Softune Workbench debugger.

m Monitoring

This function monitors task statuses and stack pointers at predetermined intervals during
execution.

Figure 1.3-5 shows an example of task status monitor and stack monitor display.

Figure 1.3-5 Example of Task Status Monitor and Stack Monitor Display

'ﬁ Stack Monitor I] B3

S First_Task ID:6, Out_Task

ID:2, Middle_Tas.. ID:7, Free_Task

ID:3, Center_Tas.. 1D:8, Inc_Task

ID:4, Alloc_Task 1D:9, Idle_Task

ID:E, In Task '; Task Status Monitor Mi=] E3
FistTask WP o™
Middle Tas.. W BB P B E &

Center Tas. I M B DM REEEREBE
AMloc Task &MU & & & W WK
In_Task ORBMEHEQOO OO
Out_Task EETERANEEE W
FreeTask O BEBEBRBROOOO0
Inc_Task =z EEERE = =T
deTask WEhEEEEERE2ER®

Note:

The monitoring function cannot be used by the monitor debugger.

14

CHAPTER 2 TASK ANALYSIS MODULE

This chapter outlines the task analysis module and describes the customization,
installation, and initialization methods necessary for using the task trace function of
the REALOS Analyzer.

Be sure to read this chapter before using the task trace function.

2.1 Task Analysis Module Overview
2.2 Customizing the Task Analysis Module
2.3 Task Analysis Module Installation

2.4 Initializing the Task Analysis Module

15

CHAPTER 2 TASK ANALYSIS MODULE

2.1

Task Analysis Module Overview

Before the task trace function can be implemented with the REALOS Analyzer, the
Task Analysis Module dedicated to the REALOS Analyzer must be linked.

m Task Analysis Module Overview

The REALOS/907 analyzer can implement the task trace function with the Task Analysis
Module installed in an application. If the task trace function is not used, this module does not
have to be installed.

The task analysis module contains the following files:
* R_D_dbgA.obj
* R_D_trcA.asm

By changing the contents of R_D_trcA.asm, you can customize the size of the trace buffer used
for storing trace results and customize timer processing for time measurement.

The object-format file R_D_dbgA.obj enables the REALOS Analyzer to implement the task trace
function.

To construct an application program by using Softune REALOS/907, you must link one of the
following three files:

OS object file: dbgfk.obj

This file is provided with Softune REALOS/907 for installing products that support only the
Softune Workbench object display function during debugging.

Debug module: r_d_dbg.obj

This file is provided with the F2MC-16 Family Softune Workbench for debugging that
supports the object display function, system call issuance, and dispatch breaks.

Task analysis module: R_D_dbgA.obj, R_D_trcA.asm

These files are provided with the Softune REALOS/907 analyzer. (They are stored in
\\install-folder\sample\907\ra_sample.)

A file in an install folder is automatically linked if the REALOS Analyzer is selected as the debug
setting of the configurator. For more information, see the "Configurator Manual."

m Overview of Task Analysis Module Operation

16

The task analysis module is a program that adds processing that is applied when a REALOS
kernel program dispatches a task or issues a system call. Thus, this module implements task
tracing.

When task tracing is implemented with a time stamp, the REALOS system clock is used. Figure
2.1-1 outlines the operation of the task analysis module.

2.1 Task Analysis Module Overview

Figure 2.1-1 Outline of the Task Analysis Module Operation

User Program Task Dispatch System Call issue

REALOS

Task Analysis
Module
buffer

buffer

>

Trace buffer

The task analysis module includes a debug module function (r_d_dbg.obj) that is provided by
the Softune Workbench. Therefore, if the task analysis module is linked to the analyzer, the
analyzer implements functions such as the issuing of system calls by Softune Workbench.

m Task Analysis Module Customization
The following task analysis module items can be customized:
* Resource timer (reload timer) to be used for the system clock

« Buffer size (expandable to handle up to 2048 events)

Note:

The task analysis module is not designed for installation in a product. When delivering the
analyzer as a product, be sure to remove this module.

Excluding the task trace function, functions such as the object list function and monitoring
function can operate even though the task analysis module is not installed.

17

CHAPTER 2 TASK ANALYSIS MODULE

2.2 Customizing the Task Analysis Module

This section describes the procedure for customizing the task analysis module.
The timer processing and trace buffer size can be customized.
To do so, change the contents of the following file:

R_D_trcA.asm

m Customizing the Task Analysis Module

18

The provided task analysis module is designed for systems with the following specifications:
* Microcomputer: MB90550A Series

» System clock timer: INT25 16-bit reload timer O (reload value: 1000)

If this module is used with another system, the module must be customized.

To customize the module, change parts of the R_D_trcA.asm file.

Timer
The time measurement timer uses the Softune REALOS/907 system clock.
Be sure to install the system clock.

Use the 16-bit reload timer in the microcontroller for the system clock. The reload timer channel
and reload timer value can be customized.

» Changing the reload timer channel

* To change the reload timer channel used for the system clock, change the following
symbol definition values in the R_D_trcA.asm file. The default values are the addresses
of the TMR (16-bit timer register) and TMCSR (control status register). These values are
effective when MB90550A reload timer channel 0 is used.

RELOAD_TIMER_ADDR equ H'5c
RELOAD_TIMER_CTRL equ Hba

For the 16-bit timer register and control status register, see the "MB90XX Hardware Manual."
» Changing the reload value of the reload timer

» Change the definition value of R_D_RELOAD_TIMER in the R_D_TrcA.asm file to match
the reload timer value used for the REALOS/907 system clock. D’1000 is defined as the
default value of R_D RELOAD_TIMER as shown below (2 ms per system clock pulse at
16 MHz).

R_D_RELOAD_TIMER .equ D'1000

Trace buffer size

The trace buffer size is defined by TRC_DATA_NUM in the R_D_trcA.asm file. A value from O

2.2 Customizing the Task Analysis Module

to 2048 can be specified for TRC_DATA_NUM.

The default value for the trace buffer is the size for 50 steps.

TRC_DATA_NUM . equ 50

The trace buffer size can also be set with the debug setting of the configurator.
Note:

The task debug module in the \\install-folder\sample\907\ra_sample folder provided with the
REALOS Analyzer is designed for the MB90550A Series. To use other chips and timers,
you must customize R_D_trcA.asm.

This section explains how to install the task analysis module.

19

CHAPTER 2 TASK ANALYSIS MODULE

2.3 Task Analysis Module Installation

This section explains how to install the task analysis module.

m [nstallation

To build an application with Softune Workbench, select [REALOS Analyzer Use] as the debug
setting of the configurator.

The task trace buffer size can be set with the configurator.

Generally, link the provided task analysis module. (File stored in \install-
folder\sample\907\ra_sample)

For more information, see the "Configurator Manual."

m [nstallation (When Softune Workbench Is Not Used)

If Softune Workbench is not being used, link the task analysis module (R_D_dbgA.obj,
R_D_trcA.asm) with debug information.

m Allocation Section

20

The task analysis module is allocated in the R97_CODE and R97_DATA sections.

Be sure to link the module with debug information.

Note:

The trace buffer is allocated in the DBGDAT section.

2.4 Initializing the Task Analysis Module

2.4 Initializing the Task Analysis Module

The task analysis module must be initialized before it can be used.

To initialize the module, add a call to the task analysis module initialization routine
(r97_d_init) in the initialize handler. Call the initialization routine before issuing the

system call.

m |nitialize Handler

The initialize handler is defined in [Configuration File Setting] of Softune Workbench as shown

in Figure 2.4-1.

Figure 2.4-1 Definition of the Initialize Handler (Softune Workbench Screen)

Set Configuration File

Pl | Spstemt |

System 2 I
Eventflag I b ailbo I

b ermony Pool Definition

Bezet Vectar Entry: Is_us_entr_l,l

|ritizlize Handler Entry: I_iﬂihdd

I Tazk | Semaphare
"echor | Debug

— Interupt Handler Entry

M urnber | E rikry -
011
012
013
04
015

D16 -
< | »

Mumber: ID'11

Entru: I

“Initialize Handler" points
at Handler defined with
this Edit BEox.

]|

k. I Cancel

m Adding the Task Analysis Module Initialization Routine

As shown in Figure 2.4-2, add processing to call the initialization routine (r97_d_init) to the

initialize handler.

Be sure to call the initialization routine before making a system call.

21

CHAPTER 2 TASK ANALYSIS MODULE

Example: The initialize handler (_inihdr) is in the Init.asm file.

Figure 2.4-2 Example of Addition of the Initialization Routine of the Task Analysis Module (Editor

Screen)
I Init_azm M=l E3
L 1 1 1 1 1]‘
21633 © .IHPORT”™ suw object)
217|* "~ _IMPORT"r97_d_init)
218
219~ ~ _EXPORT"_inihdr)
228| inihdr:* mov’rp,.H#B8° ° ;5et register hank Ho.
221
222|;:° 7 callp”™ _uvart_init) P
22327~ callp” _sclk_init) candoggthe|mna”;anon
22u|::% * mu™ a,#XSOFID] routing "ra7_d_imit"of | |
225(;;° ° scall”™ sig_sem) "Task Analysys Module"
226|;;° 7 mv” a,#FLG_T) with "InitializeHandler".
227 |;:" ¢ scall™ set_flgl
228|:;:" " mw” a,#FLG_R|
229):;" © scall®™ set flal >
| | »
2221 | | | 4

22

CHAPTER 3 BASIC OPERATION

This chapter explains basic operation of each REALOS Analyzer function used from
Softune Workbench.

3.1 Starting REALOS Analyzer
3.2 Terminating REALOS Analyzer
3.3 Collecting REALOS Data
3.4 Menus

3.5 Toolbars

3.6 Status Bar

3.7 REALOS Project Window
3.8 Commands

3.9 Object Display

3.10 Stack

3.11 Task Trace

3.12 File Handling

3.13 Monitoring

23

CHAPTER 3 BASIC OPERATION

3.1 Starting REALOS Analyzer

Start the REALOS Analyzer by selecting [Project] - [REALOS Analyzer] - [Start] from
Softune Workbench.

m Starting the REALOS Analyzer

The REALOS Analyzer is started from Softune Workbench. To start the REALOS Analyzer,
select [Project] - [REALOS Analyzer] - [Start] from the Softune Workbench menu.

If debugging is not started by Softune Workbench, the REALOS Analyzer cannot be started.
Conversely, after debugging has been started, the REALOS Analyzer can be started anytime.

Figure 3.1-1 shows an example of starting the REALOS Analyzer.

Figure 3.1-1 Example of Starting REALOS Analyzer

g= Softune Workbench - ra_zample : Debug

File Edit “iew Ba{==8® Debug Setup Window Help

St
—_— Add Member. .. —
| il}l '{_}ll 9 Setup Tool Option. ..]
b ' Include Dependencies e =
—————— Compie = —
=l rasame Shift+F2 E
-0 Sowe 0 CulsFg | SYs_entry:
- Inclu o 470/
[=-Z1 Objer tap
REALOS Analyzer m|
Eitazt
-4 JFEBBBAL
1:
A JFEBBBG6: 51A6

Note:

Even though fran907s.exe is executed in \bin of the directory where the REALOS Analyzer is
installed, the REALOS Analyzer does not operate normally. The REALOS Analyzer must
always be started from Softune Workbench.

24

3.2 Terminating REALOS Analyzer

3.2 Terminating REALOS Analyzer

Terminate the REALOS Analyzer with either of the following methods:
» Selecting [REALOS Analyzer] - [Exit] from the [Project] menu of Softune Workbench
» Selecting [File] - [Exit] from REALOS Analyzer

m Terminating the REALOS Analyzer
You can terminate the REALOS Analyzer from either Softune Workbench or REALOS:
¢ Terminating the REALOS Analyzer from Softune Workbench
¢ Select [REALOS Analyzer] - [Exit] from the [Project] menu of Softune Workbench.
¢ Terminating the REALOS Analyzer from REALOS
¢ Select [Exit] from the [File] menu of the REALOS Analyzer.

When debugging terminates, the REALOS Analyzer terminates automatically.

25

CHAPTER 3 BASIC OPERATION

3.3 Collecting REALOS Data

The REALOS Analyzer collects REALOS management information from Softune
Workbench. The data collection dialog box is displayed when REALOS data is being
collected by the REALOS Analyzer.

m Collecting REALOS Data

The REALOS Analyzer collects REALOS management information from Softune Workbench
while Softune Workbench is in the debugging state.

m Collecting Data Dialog Box

The Collecting Data dialog box is displayed in the REALOS Analyzer during communication.
The Collecting Data dialog box displays a progress bar indicating the progress of processing.
The amount of processing completed is displayed as a percentage.

Figure 3.3-1 shows an example of the Collecting Data dialog box.

Figure 3.3-1 Example of Collecting Data Dialog Box

Callecting Data

1%

m Communication Time

26

The communication time is slower in the order e simulator debugger, monitor debugger, and
emulator debugger. It also slower as the number of the objects being used by the application
and trace buffer size increase.

In the emulator and monitor debuggers, the memory access time influences the communication
time.

For this reason, communication with an ICE or board should be set as a LAN connection or RS
connection at a fast baud rate.

Note:

Even though the Collecting Data dialog box is closed manually, communication itself
continues.

3.4 Menus

3.4 Menus

This section explains REALOS Analyzer menus.

m [File] Menu

O [Open]

Opens a data file that has already been created.

O [Save]

Saves task trace data to a file.
O [Exit]

Terminates the application.

m [Command] Menu

0 [Debugger-Go]

Executes the debugger from Softune Workbench.

O [Debugger-Abort]
Stops the debugger from Softune Workbench.

0 [Debugger-Reset]
Resets the MCU of the debugger from Softune Workbench.

O [Update]

Updates REALOS data.

m [Object] Menu

O [Task]

Lists all the task information being used by the application program.

O [Semaphore]
Lists hierarchically all the semaphore information being used by the application program and the
queuing state of a task waiting for a semaphore.

O [Eventflag]

Lists hierarchically all the event flag information being used by the application program and the
queuing state of a task waiting for an event flag.

27

CHAPTER 3 BASIC OPERATION

O [Mailbox]

Lists hierarchically all the mailbox information being used by the application program and the
message queuing state of a task waiting for a message.

O [Memorypool]

Lists hierarchically all the memorypool information being used by the application program and
the memory block queuing state of a task waiting for a memory block.

O [Cyclic Handler]

Lists all the cyclically activated handler information being used by the application program.

O [Alarm Handler]

Lists all the alarm handler information being used by the application program.

O [Queue]
Lists hierarchically information for any of the following queues:
* Ready queue
» Timer queue

» Alarm queue

m [Stack] Menu

O [Initialize]

Embeds the initial pattern for analyzing stack utilization (at reset).
0 [Used Stack]

Lists stack utilization levels.

m [Trace] Menu

O [Task Trace Figure]

Displays the task trace results in a transition diagram.

O [Task Trace Tree]

Displays the task trace results hierarchically (tree).

O [Object Trace]

Displays the object trace in a transition diagram according to the results of the task trace.

m [Monitor] Menu

O [Task Status]

Monitors the task status.

28

O [Stack Monitor]

Monitors the stack pointer.

m [Setup] Menu

O [Mode]
Selects simple or detail mode.
(Initial setting: Simple mode)
O [Select Task, Object]
Selects the task object to be analyzed and displayed.

(Initial setting: All task objects)

O [Task Trace]
Selects ring buffer mode or buffer full mode of task trace.

(Initial setting: Ring buffer mode)

® [Window] Menu

Window display function of an ordinary Windows application

m [Help] Menu

O [Help Topics]
Opens the help file.
O [About fran907s]

Displays information about the program, and the version and copyright information

3.4 Menus

29

CHAPTER 3 BASIC OPERATION

3.5 Toolbars

This section explains the REALOS Analyzer toolbars.

m Toolbar

The main window has the following three toolbars:

m Main Toolbar

Main toolbar
Window toolbar

Setup toolbar

Figure 3.5-1 shows an example of the main toolbar.

Figure 3.5-1 Example of Main Toolbar

(=] =[=[2] @] 2

The main toolbar includes the following functions:

(From the left to right)

File Open

File Save
Debugger-Go
Debugger-Abort
Debugger-Reset
Update

Help Topics

m Window Toolbar

30

Figure 3.5-2 shows an example of the window toolbar.

Figure 3.5-2 Example of Window Toolbar

Ble ro| @ 0w & x|

The window toolbar includes the following functions:

(From left to right)

Open Task list Window

Open Semaphore list Window
Open Eventflag list Window
Open Mailbox list Window

m Setup Toolbar

Open Memorypool list Window
Open Cyclic Handler list Window
Open Alarm Handler list Window
Open Queue list Window

Open Stack Information

Open Task Trace Figure

Open Task Trace Tree

Execute Task Status Monitor

Execute Stack Monitor

Figure 3.5-3 shows an example of the setup toolbar.

Figure 3.5-3 Example of Setup Toolbar

Olm| & i ¥%|w|e| &

The setup toolbar includes the following functions:

{From left to right}

Set Simple Mode

Set Detail Mode

Select Task and Object
Initialize Stack

Set Ring Buffer Mode
Set Full Buffer Mode

3.5 Toolbars

31

CHAPTER 3 BASIC OPERATION

3.6 Status Bar

The following four types of information are displayed on the status bar of the REALOS
Analyzer:
Debugger execution information
PC information

Initialization information

Module information

Status Bar

The following four types of information are displayed on the status bar of the main window:
« Debugger execution information

* PC information

* Initialization information

¢ Module information

m Explanation of Information

32

The following explains debugger execution information, PC information, initialization information,
and module information in this order, which is the order, from left to right, of information on the
status bar.

Debugger execution information

During debugger execution, "Execute” is displayed.

PC information

Information indicating whether the current PC is in the REALOS kernel is displayed.

* Inside kernel: The current PC is inside the REALOS kernel.

* Outside kernel: The current PC is outside the REALOS kernel.

When the current PC is in the REALOS kernel, the information displayed by the REALOS
Analyzer is not guaranteed because the kernel is performing processing.

Initialization information

Information indicating whether REALOS initialization has been completed is displayed.

* Uninitialized: REALOS initialization has not been completed.

» Initialized: REALOS initialization has been completed.

If REALOS initialization is not complete, time is not displayed in the REALOS Analyzer task
trace information because the system clock has not been initialized. Time is only displayed in
the information generated after REALOS initialization has been completed.

Module information

Information indicating whether the task analysis module is built into the module being debugged
is displayed.

3.6 Status Bar

« Disable trace: A task analysis module dedicated to the REALOS Analyzer is not built into
the module being debugged. The task trace function cannot be used.

« Enable trace: A task analysis module dedicated to the REALOS Analyzer is built into the
module being debugged.

Figure 3.6-1 shows an example of the status bar.

Figure 3.6-1 Example of Status Bar

linzide kermel — |initialized |enable tace 2

33

CHAPTER 3 BASIC OPERATION

3.7 REALOS Project Window

This section explains the basic operation of the REALOS project window.

m Adding the REALOS Project Window

When the REALOS project is opened by Softune Workbench and debugging started, the
REALOS project window is automatically added to the Softune Workbench project window.
(The REALOS Analyzer must be installed, however, before the REALOS project window is
added.)

m Basic Functions of the REALOS Project Window

The basic functions of the REALOS project window are explained below.

O Hierarchical display of REALOS management objects
REALOS management objects are hierarchically displayed in the following format:

» Object name - each object ID [entry name (valid for task)] - each information item

Example) Task—ID=D'1 [taskl]-- Start priority :D'3
TCB address :h'010180

O Popup menus displayed by right-clicking
¢ Object name popup menu
« Defined number: The total number of selected and defined objects is displayed.

« Used memory: The size of the REALOS management data for the selected object is
displayed.

e Popup menu for task ID or handler number

e Jump Source Line: The REALOS Analyzer jumps to the first line of the selected task or
handler.

« Break Setting: A break is set at the beginning of the selected task.

34

3.8 Commands

3.8 Commands

The REALOS Analyzer uses the following commands to control the Softune
Workbench debugger:

» Debugger-Go/DebuggerAbort/Debugger-Reset

» Update

m Types of Commands

The commands that control Softune Workbench debugging are explained below.

0 [Debugger-Go]
Executes the Softune Workbench debugger.

O [Debugger-Abort]
Stops the Softune Workbench debugger.

0 [Debugger-Reset]
Resets the MCU of the Softune Workbench debugger.

O [Update]

Information collected the previous time the Softune Workbench debugger stopped is not
updated because no information is collected when the debugger executes a step. Use this
function to update information.

When break or abort is executed, the REALOS Analyzer automatically collects information from
Softune Workbench and reflects it in the window.

35

CHAPTER 3 BASIC OPERATION

3.9 Object Display

Besides information display, the following functions for REALOS Analyzer object
display are provided:

Sort function

History function

Jump function

Sort Function
Clicking the heading of a column sorts the items in the column.
Clicking the column heading again restores the previous display order.

Figure 3.9-1 shows an example of sorting by priority.

Figure 3.9-1 Example of Sorting by Priority

B Task M=
task entry name | break point | 1D prionty -, | statuz control area -
oo First_T ask no 1 1 "5 domant h'B0c

E Middle_Task no 2 3 dormnant KEla

E Center_Task no 3] dornant H'E28

IJ@.-ﬁ-.llcuz_Taslcz no 4 2 wait{mem] h'B36

E In_Tazk no b 4 dormant h'B44 LI

Sorting

B Task =]
task entry name | break point | 1D prionky ghatuz control area -
ool First_T ask o 1 1 darmant h'B0e

IJ@.-’-\-.Ih:u:_TasIc; o 4 2 waltfmem] hHE36

E Middle_Task no 2 3 dormnant KEla

E In_Task o] 4 dornant KB4

E Center_T azk hio 3 5 darmant h'B23 LI

m History Function

The history function displays the history of changes for a data item. The display order is left to
right, from the most recent to the least recent. The history is limited to 255 characters. If there
have been no changes, no history is displayed.

Figure 3.9-2 shows an example of displaying the history when the number of free blocks in the
memorypool has changed from 0 to 4 to 0.

36

3.9 Object Display

Figure 3.9-2 Example of Displaying the Free Block History

i M emorypool M=l E3
10 empty block | control area
1 0440 H'EbE
2 3 h'Ebc
3 3 h'Bc2

m Jump Function

When a related object is double-clicked, the REALOS Analyzer jumps to the item in a related
window.

Suppose, for example, that a task waiting for a flag exists in the Eventflag list window. Double-
clicking the task highlights the line with the selected task ID and opens the Task list window.

Figure 3.9-3 Example of Displaying the Jump Function (Task Waiting for Message[***] Task List Window)

=10]]

task enty name | break point | D priority zhatus wait object id | wake up count | suspend count | time out count | stack g

3k ho 1 1 waitffla_... 1 0 0 107100fg) h'386

[3] Hiddle_Tazk no 2 3 ready 1] 1] 0 i} h'abe

Center_Task na 3 5 ready 0 0 0 i} h'd24

ho 1 2 Tun a a a a h'453

3] In_Task no 5} 4 ready 0 0 0 i} h'494

Out_Task na [[ready 0 0 0 i} h'dcd

3] Free_Tazk no 7) ready 1] 1] 0 i} H'dt4
B nc Task no

3] |dl=_T ask [ls}

B> fig

I D I pattern I initial pattern I wait tagk num I control area I
1

1 hi0 ho h7la By id=hl
2 Fififf ittt 0 Srals R =Y st sk
3 it hif 0 h7le] igeh2

[id=h'3

m Differences in Display Modes

The REALOS Analyzer provides two modes: simple and detail. Which mode to select depends
on the amount of the data that the REALOS Analyzer exchanges with Softune Workbench.

When simple mode is selected for object display, fewer items in the list are displayed and the
window displaying waiting tasks is not displayed.

m Update Timing

Object display information is automatically updated when the debugger stops because of a
break or execution stop (excluding step execution).

When a step is executed, information must be updated by clicking [Update] from the [Command]
menu because updating is not automatic.

37

CHAPTER 3 BASIC OPERATION

3.10 Stack

Collect stack utilization information with the following procedure:

You can check each stack area by clicking [Initialize] from the [Stack] menu before
executing the application. You can also check stack utilization by clicking [Used
Stack] from the [Stack] menu after executing the application.

m Procedure for Analyzing the Stack Utilization

Analyze stack utilization in the following order:

O [Stack] - [Initialize]

This operation pads memory in the stack area with the pattern specified by the REALOS
Analyzer. The operation can be executed according to the following timing:

» At reset or when, before r97_entry is executed, the debugger is inactive and REALOS has
not been initialized .
[Stack] - [Used Stack]

When this operation is executed, the REALOS Analyzer allocates memory in the stack area and
searches for the boundary on which the previously padded pattern was rewritten. Execution
occurs on the following timing:

» Debugger is inactive after execution

m Basic Functions of Stack Information List window

38

The Stack Information List window has the following functions:
e Setup

* Check

« Graph display

[0 Setup

The setup function sets check items.
The setup function can also set (select) a check for amount of unused area and a check for
simultaneous use of the shared stack. The set information is used at check.
Check
The check function checks the following two functions:
* Function that searches for the tasks where the amount of unused area is few
« The setup function determines the amount of unused area to be checked.

« Function that searches for tasks simultaneously using a shared stack

Graph

The graph function displays stack utilization in a graph and the current stack pointer.

3.11 Task Trace

3.11 Task Trace

When debugging execution stops, the REALOS Analyzer can display the results of a
task trace in a format of task trace figure or task trace tree, or object trace.

The REALOS Analyzer can also analyze task trace data from various aspects and
create a graph.

m Methods for Displaying Task Trace Data

When debugging execution stops, the task analysis module can use the following three
methods to display accumulated task trace data:

e Task trace figure
e Task trace tree

¢ Object trace

m Update Timing

Task trace data is automatically updated when the debugger stops because of a break or
execution stop (excluding step execution). Each window is also updated automatically at the
same time.

m Setting Trace Buffer Mode
In a task trace, ring buffer mode or buffer full mode can be selected as the trace buffer mode.
* Ring buffer mode

* In ring buffer mode, only the most recent data is stored up to the size of the buffer is
stored.

« Buffer full mode

¢ In buffer full mode, sampling stops when the buffer becomes full. However, although the
buffer becomes full, debugger execution does not stop. In this mode, the executable and
wait states are also indicated with lines.

m Task trace figure

The task trace figure is a state transition diagram plotted horizontally against time. In the task
trace figure, each task is positioned vertically. This diagram makes it easier for the user to
understand state changes because timing is handled intuitively.

Figure 3.11-1 shows the names of the split windows in a task trace figure.

39

CHAPTER 3 BASIC OPERATION

Figure 3.11-1 Names of Split Windows in a Task Trace Figure

Task list
window

Time axis window

Detail window

Complete view window

The contents of each split window are explained below.

O Task list window

Entry name, ID, and priority are listed from left to right.

The following are listed vertically:
* Initialization

+ Interrupt processing

» Task x number of definitions (in order by ID)

» Idle group

If you select a task by clicking [Setup]- [Select Task Object], the items are displayed in the

following order:
+ Initialization

* Interrupt processing

» Task x number of selected tasks (in order by ID)

+ ID group

If there are too many items to be displayed, a scroll bar is displayed to the right of the task list.
When you use the scroll bar, the task transition diagram displayed in the detail window moves in

unison.

O Time axis window

The time axis window displays time.

The unit of time is one system clock.

O Detail window

Main window for the task transition diagram. This window displays events such as the issuance

of system calls as icons and the execution of a task as a solid line.

O Complete view window

The complete view window displays a complete view of the task transition diagram. The range
currently displayed in the detail window is highlighted. The icons representing events are not

displayed in this window.

m Basic Operation of the Task Trace Figure

O Scrolling

The task trace figure contains a detail window and a complete view window.

40

In the complete

3.11 Task Trace

view window, the area displayed as the detail window is highlighted. To scroll the information in
the detail window, click and drag the highlighted area or click the drag destination. Figure 3.11-
2 is an example of scrolling the detail window by clicking the highlighted area. You can also use
the left and right scroll buttons on the toolbar to scroll the detail window 100 points at a time.

Figure 3.11-2 Example of Scrolling the Detail Window by Clicking the Highlighted Area

Task Trace Figure M=] &3
Srint ll_LgWP"lf'Historyl '|-Erdcr| IUUDD --------- Irit Har sta_tsk b1 j LI _>I
task entry name | 1D | priority [1"oooooooo™ © © " " " " Topdorooe” T " 7
inibdr — — A S S T T T T W
interrupt — — e A e
First_Task 1 1 COGEREEEEELEEEEEE : O
Middle_Task 2 3 Foomomoooemmmeoooeeooes Fosoomoooes
Center_Task 3 5 R E bbb Pommmooee- =i
Alloc_Task 4 2 e LTLEP L P T TP e
In_Task B 4 R
COut_Task 6 & bommmmmmmoomooooo oo RREEEEEEEEEEEEE LR
Free_Task 7 7 P L REEEEEEEE L
Inc_Task 8 6 e R
Idle_Task 9 16 EREEEEEEEEEEPEEPTEEE EEEEREEEEEEEE T
idle loop — — R LR R RREEEEEEEE R
® ® . ®
L U
Ring Buffer \0047/0050 | 00000000 - 0000, 385 (00006 384]

Task Trace Figure

Gnt| ||] 0000 —— it Har sta_tsk b

EELE R

task entry name | 1,

Vononz aos

inibdr
interrupt
First_Task
Middle_Task
Canter_Task
Alloc_Task
In_Task
Qut_Task
Free_Task
Inc_Task
Idle_Task
idle [oop

000 - O O e Do N2 —
| |

| priority | | oo0o2.50s°

|—‘O')-th')Jb-l\)O'IC.0—‘|
(=]

a--T--

HHXHHHH KR

Ring Buffer

00470050

00000.000 - 00006, 385 (00006.334)

O Scaling function

The scaling function enlarges the detail window size at a rate of "twice" at a time up to "ten

41

CHAPTER 3 BASIC OPERATION

times". It can also reduce the size at a rate of "1/2" at a time down to "1/10". Use the popup
menu to enlarge and reduce the detail window size.

Item sort function

As with the Object display window, you can sort the items in the Task Trace Figure window by
column (entry name, ID, priority) by clicking a task list window column where each task is listed
vertically.

Icon information display

Clicking an icon in the detail window displays information for the icon in the dialog box and the
combo box on the toolbar. Use the dialog box to retrieve related trace data.

Jump to a selected frame

The REALOS Analyzer can jump to the frame selected in the combo box on the toolbar.

Print function

The detail window of the Task Trace Figure window can be printed. Print it by clicking the [print]
button on the toolbar of the Task Trace Figure window.

Displaying an execution time graph

The execution time and dispatch count for each task can be displayed in a list form or graph
form.

m Task trace tree

m Object trace

42

The task trace tree displays the following three events hierarchically, allowing statistical analysis
from different points of view:

» System call issuance for each task
» Issuing task for each system call
» System call issuance sequenced by time

You can switch the display by clicking a button on the toolbar of the Task Trace Tree window.
Clicking the [Graph] button displays a graph.

An object trace displays the state transitions of each object. The state changes can be verified
with respect to timing because the object trace displays state transitions in conjunction with the
task trace figure. (Beforehand, set [Task Trace] to [Full Buffer] and [Mode] to [Detail] on the
[Setup] menu.)

You can also display an object trace by clicking [Object Trace] on the [Trace] menu. In addition,
you can display an object trace by clicking a button on the toolbar in the Task Trace Figure
window.

To see the state transitions of an object, select the object you want to display from the window
on the left in which objects are hierarchically displayed.

Note:

If task trace execution stops in the kernel, time information for the last or first frame may be
incorrect.

3.12 File Handling

3.12 File Handling

If the task trace figure will be redisplayed, the REALOS Analyzer can save the data in a
file and open a previously saved file.

m REALOS Analyzer Data File

Data file that the REALOS Analyzer uses to display the task trace figure. The extension for the
file is (*.ran).

m Opening a Previously Saved File

When active, the REALOS Analyzer can open a previously saved REALOS Analyzer data file
and display the task trace figure contained in it.

m Saving Data

When debugging stops and the task trace figure opens, the REALOS Analyzer can save data
for drawing the task trace figure. In this case, if the execution time graph is already open, the
REALOS Analyzer can also save the data in CSV format.

43

CHAPTER 3 BASIC OPERATION

3.13 Monitoring

Monitoring is executed to sample data when debugging is executed.

m Executing Monitoring

Opening the task status monitor or stack monitor executes monitoring. If the debugger has
stopped, monitoring is started when debugging is executed.

m Monitoring Setup

In the monitoring setup, a monitoring interval and monitoring task can be selected from [Set
Monitor/Object Trace] of [Select Task, Object] on the [Setup] menu.

Note:

If monitoring is executed before REALQOS initialization is complete, sampling occurs before
REALOS has been initialized. This may cause the display to be incorrect. Be sure to
execute monitoring after REALOS initialization has been completed.

The first selected tasks are ID=1 to ID=10. If the number of the tasks defined in the
application is less than 10, all the tasks are selected.

44

CHAPTER 4 WINDOWS

This chapter explains the windows used by the REALOS Analyzer.

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

REALOS Project Window
Object Window

Stack Information

Task Trace Figure Window
Task Trace Tree Window
Object Trace Window
Monitoring

Setup

Help

45

CHAPTER 4 WINDOWS

4.1 REALOS Project Window

A REALOS project window is a Softune Workbench project window in which the initial
information managed by REALOS is displayed.

m 4.1 Notes on REALOS Project Window

This section explains the information displayed in and the popup menu of the REALOS Project
Window.

4.1.1 Information Displayed in the REALOS Project Window
4.1.2 REALOS Project Window Popup Menus

46

4.1 REALOS Project Window

4.1.1 Information Displayed in the REALOS Project Window

The REALOS project window displays the initial information for objects managed by
REALQOS, such as tasks and semaphores. The objects are sorted by ID.

m REALOS Project Window

Figure 4.1-1 shows an example of the REALOS project window.

Figure 4.1-1 REALOS Project Window

= "@ Tas

=T D 1 [First_T ask]

Y Initial priority = 1

m Control table address = H'00060:
10 = 2 [Middle_T ask]

- 1D =3 [Center_Task]
T 10 = 4 [lloc_Task]
T 1D =5 [In_Task]
T 10 =B [Out_Task]
T 10 =7 [Free_Task]
- 10 = 8 [Inc_Task]
- 1D =9 [Idle_Task]
= J_.')_I Semaphore
{9 1D =1

i m Initial count =0

m Control table address = H'000720
1 10=2

-3 ID=3

o[Eventflag

- Mailbox

-y Memorpaal

]--@ Cyclic handler

- e Alarm handler

T[]

SRC M

m Information Displayed in the REALOS Project Window
Table 4.1-1 lists the items displayed in the REALOS project window.

Table 4.1-1 Items Displayed in the REALOS Project Window

Root Icon Object Icon Item Description
ID ID and entry name set by the
|:[configurator
Priority of Activation priority set by the
E@ Task T activation configurator

Control table Start address of the task control
address area maintained by the kernel

&
=
=,

0

47

CHAPTER 4 WINDOWS

Table 4.1-1 Items Displayed in the REALOS Project Window (Continued)

Root Icon Object Icon Item Description
ID ID set by the configurator
e
Initial value The initial count of semaphores
oy Semaphore o
=] num
Control table | Start address of the semaphore
0 address control area maintained by the
adr kernel
ID ID set by the configurator
Initial pattern | Initial patterns of event flags
l l Eventflag P
1 I1e
Control table | Start address of the event flag
= address control area maintained by the
adr kernel
ID ID set by the configurator
Mailbox
Control table | Start address of the mailbox control
= address area maintained by the kernel
adr
ID ID set by the configurator
Block start Address at which the first block is
E] address allocated
adr
Block count Number of blocks
@ Memorypool Foo
num
Block size Block unit size.
"Siz
Control table | Start address of the memorypool
E] address control area maintained by the
E—Hr kernel

48

4.1 REALOS Project Window

Table 4.1-1 Items Displayed in the REALOS Project Window (Continued)

Root Icon Object Icon ltem Description
ID Handler number set by the
G configurator
Cyclic
o Handler Control table | Start address of the cyclic handler
i address control area maintained by the
adr kernel
ID Handler number set by the
b configurator
Alarm
b Handler Control table | Start address of the alarm handler
EE] address control area maintained by the
adr kernel
Note:

The REALOS project window is registered only after it is activated by the debugger.

49

CHAPTER 4 WINDOWS

4.1.2

REALOS Project Window Popup Menus

You can display the popup menus of the REALOS project window by doing the

following:

* Right-clicking an object type
* Right-clicking an object

m REALOS Project Window Popup Menus

50

Table 4.1-2 lists the popup menus of the REALOS project window.

Table 4.1-2 REALOS Project Window Popup Menus

Popup menu

Object right-
clicked

Item name

Function to be
executed

Defined nurmber

I1zed memaory

Object type

Defined Number

The number of
definitions for the
selected object is
displayed.

Used Memory

The amount of OS data
for the selected object is
displayed.

Jurnp Source Line

Code break, r
T azk dizpatch break »

Task

Jump source
line

The start position of the
source line of the
selected task is
displayed.

Jump Source Line |

Code break Set
Task digpatch break. » [Fatiee]
Eratle

[Disabile

Task

Break point

Popup menu

Set

Sets a break point at the
beginning of the source.

Cancel

Removes the break
point from the beginning
of the source.

Enable

Enables the break point
at the beginning of the
source.

Disable

Disables the break point
at the beginning of the
source.

4.1 REALOS Project Window

Table 4.1-2 REALOS Project Window Popup Menus (Continued)

Task dispatch break »

[EaticEl

Popup menu Object right- Item name Function to be
clicked executed
Dispatch break Popup menu
Jump Source Line | Set Sets a dispatch break.
Code bieak | Task Cancel Removes the dispatch

break.

Figure 4.1-2 shows how the dispatch function can be used with the REALOS project window.

Figure 4.1-2 Concept of Task Dispatch Break

Task ID=2

Task ID=3

Task ID=4

—>
] Dispatch

-

l_

Task ID=1

4

BREAK

If a dispatch break is set for task 1, a break occurs when another task is dispatched to task 1.

51

CHAPTER 4 WINDOWS

4.2 Object Window

The object window displays information about objects managed by REALOS. Object
windows specific to each object are provided.

You can choose whether the display area of an object window is arranged in list form
or in tree form (only list form is available for tasks, cyclic handlers, and alarm
handlers).

m 4.2 Notes on Object Window
This section explains the Information displayed in and the popup menu of the Object Window.

4.2.1 Information Displayed in the Object Window
4.2.2 Object Window Popup Menus

52

4.2.1

Information Displayed in the Object Window

4.2 Object Window

An object window for the REALOS Analyzer displays information about objects
managed by REALOS. A pane in list form displays information about objects, and a

pane in tree form displays queues for the object.

m Object Window

Figure 4.2-1 shows examples of object windows.

Figure 4.2-1 Object Windows

-3l]
task entry hame | break point | ID prionity | status wait objectid | wake up count | suspend count | lime out count | stack pointer | queue postion | 1P register | contiol aiea
First_Task no 1 1 wat{sem] 1¢-0 I I i R4Ba¢-hl 10 hfed1B0 K10078
Midde Task o 2 3 ready 0 0 0 i WSE4¢-h0 0 hfel191 K10088
Center Task no 3 g ready i i i i WEE4<-hD 0 hfel224 h10094
loc_Tak no 4 2 1 i i i i W64 ¢kl 0 . h100a2
In_Task ha 5 4 ready I I I i Wagd<-hl 0 hfelBbe h100BD
Out_Task no f f eady I I I i H94¢-hl 0 hfelldd h100be
Free_Task o 7 7 ready 0 0 0 0 habd<-h0D 0 hfel2Be h100cc
Inc_Task fo 3 3 ready 0 0 0 0 hbed<-H0D 0 hfelfac h100da
Idle_Task ho q 16 ready i i i i Webd<-hl 0 hfel338 h100eB
& Semaphore 0]
0 count nitial count | wait bagk rum | contral area
=l 0 1¢0 K018
L2 i 0 0 h1018d
L3 i 0 0 h1018e

m Functions Common to All Object Windows

The REALOS Analyzer includes a window that displays information about objects managed by

REALOS.

A pane in list form displays information about objects.

A pane in tree form displays queues for the object.

The following three functions are common to all object windows:

¢ Sort function
¢ History function

¢ Jump function

For information about these functions, see Section 3.9, "Object Display".

53

CHAPTER 4 WINDOWS

m List Form of Object Window

Tables 4.2-1 to 4.2-8 list the items displayed in the list form of an object window.

O Task List window

Table 4.2-1 Task List Window

Column name

Description

Task entry name

Task entry name

54

Break point State of the break point at the task start address
ID Task ID

Priority Task priority

Status Task status (See Table 4-2.2 for the possibilities.)

Wait object id

ID of an object placed in the wait state

Wake up count

Time left before a task wakes up (in detail mode)

Suspend count

Suspend count (in detail mode)

Time out count

Time remaining before time-out (in detail mode)

Stack pointer

Stack pointer value (in detail mode)

Queue position

Queued object sequence number (in detail mode)

IP register

IP register value (in detail mode)

Control area

Start address of the task control area

Table 4.2-2 Task Statuses

Representation Status
run Run state
ready Ready for run state
dormant Dormant state
suspend Suspended state
wait(slp)* Wait state (slp_tsk)
wait(tim)* Wait state (wai_tsk)
wait(sem)* Semaphore wait state
wait(flg)* 1-bit event flag wait state

wait(flg_clr)*

1-bit event flag wait state (with clear)

wait(flg_or)*

16-bit event flag wait state (OR wait)

wait(flg_and)*

16-bit event flag wait state (AND wait)

The flag pattern is displayed in the event flag wait state.

4.2 Object Window

Table 4.2-2 Task Statuses (Continued)

Representation

Status

wait(flg_cor)*

16-bit event flag wait state (OR wait with clear)

wait(flg_cand)*

16-bit event flag wait state (AND wait with clear)

wait(flg_mbx)*

Message wait state

wait(flg_mpl)*

Memory block acquisition wait state

*: sus-wait(xxx) Double wait state

O Semaphore List window

Table 4.2-3 Semaphore List Window

Column name

Description

ID Semaphore ID
count Current count value
initial count Initial count value (in detail mode)

wait task num

Number of tasks placed in the wait state (in detail mode)

control area

Start address of the semaphore control area

O Event Flag List window

Table 4.2-4 Event Flag List Window

Column name

Description

ID

Event flag ID

pattern

Current flag pattern

initial pattern

Initial flag pattern

wait task num

Number of tasks placed in the wait state (in detail mode)

control area

Start address of the event flag control area

O Mailbox List window

Table 4.2-5 Mailbox List Window

Column name

Description

Mailbox ID

55

CHAPTER 4 WINDOWS

Table 4.2-5 Mailbox List Window (Continued)

Column name

Description

wait num

Number of tasks and messages placed in the wait state (in

detail mode)

control area

Start address of the mailbox control area

O MemoryPool List window

Table 4.2-6 MemoryPool List Window

Column name

Description

ID

memorypool ID

Empty block

Number of empty blocks

block num

Maximum number of blocks (in detail mode)

block size

Block size (in detail mode)

wait num

IDs or block addresses of tasks placed in the wait state

control area

Start address of the memorypool control area

0 Cyclic Handler List window

Table 4.2-7 Cyclic Handler List Window

Column name

Description

handler No.

Handler number

activation

Activated state of the handler

time

Time remaining before handler activation

interval

Time interval the handler activation

handler address

Start address of the handler

control area

Start address of the cyclic handler control area

56

O Alarm Handler List window

Table 4.2-8 Alarm Handler List Window

4.2 Object Window

Column name

Description

handler No.

Handler number

time

Time remaining before handler activation

handler address

Start address of the handler

control area

Start address of the alarm handler control area

m Tree Form of Object Window

The following items are displayed in the tree form of an object window.

O Display in tree form

Semaphores, event flags, mailboxes, and memorypools are displayed in a tree structure, as
shown in Table 4.2-9. For mailboxes and memorypools, however, an object-specific item may
be displayed as an additional LEVEL 2 item.

Table 4.2-9 Display Items in Tree Form

LEVELO LEVEL1 LEVEL2
Task entry name in the wait state (common)
Object name Object ID Message (only for mailboxes)
number

Memory block address (only for memorypools)

Note:

LEVEL indicates a level in the tree structure.

m Queue List Window

A Queue List window displays ready queues, timer queues, and alarm queues in tree form.
Figure 4.2-2 shows an example of the Queue List window.

57

CHAPTER 4 WINDOWS

58

Figure 4.2-2 Queue List Window (From Left to Right: Ready Queues, Timer Queues, Alarm Queues)

(=} Queue
(o] | e | (o | A |
E‘E rdvg = E% brirg El:e almng
I pris1 =& cpe Nal -z alam Mol
=M pi=2 P time 1 o tine: 30
M Alloc Task =@ cye No.2
..... l" |:If|=3 time 5
..... 11 pri=4 E task id=7
..... 11 pr|=5 L t||TIE 3':'
..... 11 pri:E
..... 11 pri:?
..... It pi-t
----- H =9
----- It pi=io hd

O Toolbar in the Queue List window

The Queue List window has the toolbar shown in Figure 4.2-3. The buttons on the toolbar
function as follows:

« [RDQ)] button

« Displays only ready queues.
* [TMRQ)] button

« Displays only timer queues.
* [ALMQ] button

« Displays only alarm queues.
¢ [ALL] button

« Displays ready, timer, and alarm queues.

Figure 4.2-3 Toolbar in the Queue List Window
(0] | e | A | e |

0 Ready queue display items
Ready queues are displayed arranged in three hierarchical levels, as shown in Table 4.2-10.

When you click a task entry name that is in the ready state, you jump to a task object window.

Table 4.2-10 Ready Queue Display Items

LEVELO LEVEL1 LEVEL2

Ready queue "rdyq" Priority Task entry name in the ready state
(Root level of tree display)

4.2 Object Window

O Timer queue display items

Timer queues are displayed arranged in three hierarchical levels, as shown in Table 4.2-11.

Table 4.2-11 Timer Queue Display Items

LEVELO LEVEL1 LEVEL2

Timer queue "tmrg" Task ID

(Root level of tree display)

Time remaining
Cyclic handler number

O Alarm queue display items

Alarm gueues are displayed arranged in three hierarchical levels, as shown in Table 4.2-12.

Table 4.2-12 Alarm Queue Display Items

Alarm gqueue "almq" Alarm handler number | Time remaining
(Root level of tree display)

m |cons in Object Windows

Tables 4.2-13 to 4.2-19 list the icons used in object windows.

O Task List window

Table 4.2-13 Icons in the Task List Window

Icon Description

Initial state

Dormant state

Ready state

Run state

Suspend state

o & & B

59

CHAPTER 4 WINDOWS

60

Table 4.2-13 Icons in the Task List Window (Continued)

Icon

Description

2]

Event flag wait state

B

Message wait state

B

Memorypool wait state

B3

Semaphore wait state

T

B

Sleep state

Timer wait state

Suspend - event flag wait state

Suspend - message wait state

Suspend - memorypool wait state

Suspend - semaphore wait state

Suspend - sleep state

Suspend - timer wait state

O Semaphore List window

Table 4.2-14 Icons in the Semaphore List Window

4.2 Object Window

Icon Description
o Initial state
Count=0
L
EI Count=1
Count>1

At least one task is queued.

B [

Queued task

O Event Flag List window

Table 4.2-15 Icons in the Event Flag List Window

Icon

Description

Initial state

There are no queued tasks.

At least one task is queued.

61

CHAPTER 4 WINDOWS

62

Table 4.2-15 Icons in the Event Flag List Window (Continued)

Icon Description
E@ Queued task
0 Mailbox List window
Table 4.2-16 Icons in the Mailbox List Window
Icon Description

Initial state

There are no messages.

There is at least one message.

B ¥ b

At least one task is queued.

&S

Queued task

Queued message

O MemoryPool List window

Table 4.2-17 Icons in the MemoryPool List Window

Icon

Description

i)

Initial state

Table 4.2-17 Icons in the MemoryPool List Window (Continued)

4.2 Object Window

Icon

Description

i)

Empty memory blocks are available.

i)

No free memory blocks.

iiss

At least one task is queued.

o

Queued task

T

Queued block

O Cyclic Handler List window

Table 4.2-18 Icons in the Cyclic Handler List Window

Icon

Description

@

Initial state

D

Not defined

=
=

Defined (activation state: off)

Left time of less than 15%

O 0

Left time of 15% to 30%

63

CHAPTER 4 WINDOWS

64

Table 4.2-18 Icons in the Cyclic Handler List Window (Continued)

Icon Description
@ Left time of 30% to 50%
@ Left time of more than 50%
O Alarm Handler List window
Table 4.2-19 Icons in the Alarm Handler List Window
Icon Description

Initial state

Defined to be off

Defined to be on

4.2 Object Window

4.2.2 Object Window Popup Menus

When you right-click in the display area of a list form object window, a popup menu is
displayed (only for tasks, cyclic handlers, and alarm handlers).

m Task List Popup Menu
The popup menu for tasks provides the following functions:
e Jump to the source line
¢ Break point operation

» Dispatch break operation

m Cyclic Handler and Alarm Handler Popup Menu
The popup menu for cyclic handlers and alarm handlers provides the following function:

e Jump to the source line

m Popup Menu Functions

The functions of the popup menus for an object window are the same as those provided by the
popup menus for the REALOS object window (see Section 4.1.2, "Popup Menus of REALOS
Project Window"). Table 4.2-20 lists the popup menu functions.

Table 4.2-20 Popup Menus of an Object Window

Popup menu Item right- Item name Function to be executed
clicked

The start position of the source

Task line of the selected task appears.
Jumnp Source Line Cyclic Jump source

handler .
Code break. r Alarm line

Tazk dizpatch break * handler

Break point Popup menu

Sets a break point at the

Set beginning of the source.
Junp SouceLie | cancel Removes the break point from
Cade break Task the beginning of the source.
Tazk dispatch break ¥ [Eanze]
Enablz Enable Enables the break point at the
Dizzble beginning of the source.
Disable Disables the break point at the

beginning of the source.

65

CHAPTER 4 WINDOWS

Table 4.2-20 Popup Menus of an Object Window (Continued)

Popup menu Item right- Item name Function to be executed
clicked

Dispatch Popup menu
break

Jump Source Line | Set Set di tch b K

e ets a dispatch break.
Code break, [| Task P
; Cancel Removes the dispatch break.

Note:

In Windows 98, the function of jumping to the source line does not bring Softune Workbench

to the foreground.

66

4.3 Stack Utilization List

4.3 Stack Utilization List

The stack utilization list is a window for displaying how tasks use stacks and for
displaying stack area information.

m 4.3 Notes on Stack Utilization List

This section explains the stack initialization, and the information displayed in and the settings of
the Stack Utilization List.

4.3.1 Stack Initialization

4.3.2 Information Displayed in the Stack Utilization List
4.3.3 Stack Utilization List View Setting

4.3.4 Stack Utilization Check

4.3.5 Stack Utilization Graph

67

CHAPTER 4 WINDOWS

4.3.1 Stack Initialization

Execute stack initialization.
After a reset or before REALOS initialization (before the execution of r97_entry), the
stack areas must be initialized with the specified pattern.

m Stack Initialization
Execute stack initialization at the following point:
« After a reset, but before REALOS initialization (before the execution of r97_entry)

Outside this period, initialization cannot be executed and display of the associated control
display is grayed out. If you want to analyze stack utilization, execute stack initialization each
time the application program is reset.

Stack initialization is essential processing for the analysis of stack utilization.

68

4.3.2

4.3 Stack Utilization List

Information Displayed in the Stack Utilization List

The stack utilization list displays the following information:

Task entry name
Task ID

Stack pointer
Peak stack pointer
Used

Free

Area

Area size
Common stack

Example of Stack Utilization List

Figure 4.3-1 shows an example of a stack utilization list.

Stack Information

Figure 4.3-1 Stack Utilization List

Setting | Check. |

tazk entry name | 10 | Lze I empty I area size | ghack. pointer | peek stack pointer I area | COMMOon |
apztem - h'2e hdZ k100 - h'abd h'9ek . h'aeh
Firzt_T ask 1 h2a HE h'30 h'386 h'386 h'380 .. h'3af
Middle_Tazk 2 h2a hZE h's0 h'3dE h'adE h'3k0 .. b3
Center_Taszk 3 K2 hla h'40 H'41a hdla W400 .. h'43f
Alloc_Task 4 k28 h18 h'40 - h'458 H'440 .. h'47f
In_Task 5 kW30 KO h'30 h'480 h'480 h'480 .. h'4af
Out_Taszk B hZ8 he h'30 h'4b8 H'4b3 h'ab0 .. h'4df
Free_Tazk 7 k30 hOD h'30 h'4d8 H'4e0 h'del .. h'B0f
Inc_T ask 8 k20 k10 h'30 h'520 h'520 h510 .. h'B3f
Idle_Tazk 9 kW24 ke h'30 h'5dc h'5dc h'540 .. h'BEf

|

Items Displayed in the Stack Utilization List

Table 4.3-1 lists the items displayed in the stack utilization list.

Table 4.3-1 Items Displayed in the Stack Utilization List

Item name

Description

task entry name

The entry name of a task that uses a stack

task ID

ID of a task that uses a stack

stack pointer

Current stack pointer value

69

CHAPTER 4 WINDOWS

70

Table 4.3-1 Items Displayed in the Stack Utilization List (Continued)

Item name Description
peak stack pointer After filling, the greatest stack pointer value
used The amount of stack used (in bytes)
empty The amount of free stack (in bytes)
area The lower-limit and upper-limit addresses of a stack area
area size The size of the stack area is displayed.
common stack When a common stack is used, the IDs of the tasks that
share the stack are displayed.

Note:

Use the values for "used" after the stack area has been initialized. If initialization has not

been executed, the display may indicate that no space is available.

If internal execution of the REALOS kernel stops, the stack pointer value may be unreliable.

The items "stack pointer", "peak stack pointer”, "used”, and "empty" are displayed only when

you select a task with [Setup] - [Select Task, Object].

4.3 Stack Utilization List

4.3.3 Stack Utilization List View Setting

When you click the [Set] button in the Stack Utilization List window, the Stack
Utilization List View Setting dialog opens. The following can be selected:

* Check Empty byte

» Use Common Stack at the same time

A check function selected in this window is executed as described in Section 4.3.4,
"Stack Utilization Check."

m Stack Utilization List View Setting

Figure 4.3-2 shows an example of the setting dialog box.

Figure 4.3-2 Stack Utilization List View Setting

Setting of Stack Analyze |

— Select Check Button's Function

E mpty Eyte Mum

@ CheckEmply byte> | [Byte

™ Usze Comman Stack at the zame time

k. I Cancel

O Check Empty byte

Specify the amount of stack space you expect to be free. A task for which the amount of free
stack space is less than the specified stack amount is highlighted in the list.

You must enter a value for number of free bytes to perform this check. Use a hexadecimal
value.
O Use Common Stack at the same time

This check is made to see whether there is concurrent use of a common stack during the break
state. If concurrent use is found, the stack is highlighted in the list.

71

CHAPTER 4 WINDOWS

4.3.4 Stack Utilization Check

When you click the [Check] button in the Stack Utilization List window, either of the
following check functions is executed:

Check Empty byte

Use Common Stack at the same time
The selection of a check function is made as described in Section 4.3.3, "Stack

Utilization List View Setting."

m Executing a Stack Utilization Check Function

Click the [Check] button in the Stack Utilization List window (see Section 4.3.2, "Information
Displayed in the Stack Utilization List").

Task entries that meet a certain condition are highlighted in the stack usage list.

If you want to remove the highlighting, click the [Check] button again.

Figure 4.3-3 shows an example of execution of a check for free stack space.

Figure 4.3-3 Results of Checking for Free Stack Space (Check with 0x50 Bytes Specified)

Stack Information

tazk entry name | n] | LizE | empty | area size | gtack pointer | peek stack pointer | area

| COMmmon |

aughem - h'Ze
First_T azk 1 h'2a
iddle_T ask 2 h'2a
Center_Taszk 3 h'26
Alloc_Taszk, 4 h'28
k 4] h'an

B h'2a

2k, 7 h'30
Ihiz_Tazk a h'20
Idle_Task 9 h'24

Setting |

h'd2
H'E
h'2h
h1a
k18
Hd
H'&
HO
h10
h'z

h'100
h'30
h'50
h'40
h'40
h'30
h'30
h'30
h'30
h'30

h336
h'3d6
H'41a

h'430
H'4bg
h'4dg
h'520
hEdc

h'abd
h'336
h'3d6
h'41a
h'458
h'4a0
h'4ba
h'del
h'520
h'Bdc

[araph |

h'9e6 ..
h'380 ..
h'3b0 ..
H'400 ..
H'440 ..
H'480 ..
H'4b0 ..
H'4el ..
H510..
H'E40 ..

h'ash
h'3af
h'3if

h'43f
k47
h'daf
h'4dr
h'a0f
h'a3f
h'5EF

Cloze |

72

4.3.5 Stack Utilization Graph

4.3 Stack Utilization List

When you click the [Graph] button in the Stack Utilization List window, a stack

utilization graph is displayed.

The vertical axis of the bar graph represents stack area size. The horizontal axis
represents the task ID. Task ID S, which is displayed in the first position, means a

system stack.

m Stack Utilization Graph

In the graph window, three bars, with different colors, are displayed for each task.

¢ Yellow bar

< Indicates the current stack pointer value ("SP" in the graph).

¢ Red bar

¢ Indicates the peak stack pointer value after the stack area has been filled ("max SP" in

the graph).
e White bar

¢ Indicates the amount of unused area ("no used" in the graph).

Figure 4.3-4 shows an example of graph display.

Figure 4.3-4 Graph Showing Maximum Available Stack Space

Stack Max Usze Graph

180

120

[Fyte]

G0

s it NN]

(o]

Cloze |

i

[]s=r

. max SP

|:| empty

m When Task Not Selected

If a task is not selected with [Setup] - [Select Task, Object], the bar graph for the task indicates
that its stack area is completely free.

Note:

If the stack area has not been filled, the stack utilization graph may consist entirely of red

bars.

73

CHAPTER 4 WINDOWS

4.4 Task Trace Figure Window

The Task Trace Figure window displays the results of a task trace in a trace figure. The
tasks are listed on the vertical axis. The horizontal axis represents time.

m 4.4 Notes on Task Trace Figure Window

This section explains the information displayed in and the functions of the Task Trace Figure
Window.

4.4.1 Information Displayed in the Task Trace Figure Window
4.4.2 Task Trace Figure Window Toolbar

4.4.3 Task Trace Figure Window Status Bar

4.4.4 Task Trace Figure Window Popup Menus

4.4.5 Printing a Task Trace Figure

4.4.6 Running Time Graph

4.4.7 Task Trace Figure Information Dialog Box

74

4.4.1

4.4 Task Trace Figure Window

Information Displayed in the Task Trace Figure Window

Four kinds of information are displayed in the Task Trace Figure window:
Time at which an event occurs: Displayed in the time display window.
Event: An icon associated with the event that has occurred is displayed.
Task status: A specific line type designates a specific task status.
Dispatch: Indicated by an arrow.

Information Displayed

in the Task Trace Figure Window

Four kinds of information are displayed in the Task Trace Figure window:

e Time at which an event occurs: Displayed in the time display window.

e Event:

An icon associated with the event that has occurred is displayed.

e Task status: A specific line type designates a specific task status.

« Dispatch: Indicated by an arrow.

m Time at Which an Event Occurs

The time

at which an event occurs is displayed in the time display window.

Figure 4.4-1 shows an example of time display in the time display window.

Figure 4.4-1 Example of Time Display in the Time Display Window

[[Taador foo”

TG L 01 20O e 1] | s I ~ I
Vonoozooo©

m Task Trace Figure Icons

There are two major categories of event indicator icons:

* Icons indicating that a system call was issued

* Icons indicating an event such as a time-out occurred

Table 4.4-1 lists the icons related to issuing of system calls.

Table 4.4-1 Icons Indicating Event Other Than Issuing of a System Call

Icon System call name
5TA Sta_tSk
A
E%T ext_tsk
Y

75

CHAPTER 4 WINDOWS

76

Table 4.4-1 Icons Indicating Event Other Than Issuing of a System Call (Continued)

Icon System call name
TEFR ter_tsk
~ip-
T l chg_pri
@ rot_rdq
oo tsk_sts
TSk
5US sus_tsk
-
REM rem_tsk
RSM frsm_tsk
-
5LR slp_tsk
™
WAI wai_tsk
e
WuE wup_tsk
|
wupF can_wup
cdl
O sig_sem
@ wai_sem
@ preg_sem
F
sem_sts

Table 4.4-1 Icons Indicating Event Other Than Issuing of a System Call (Continued)

4.4 Task Trace Figure Window

Icon

System call name

F:_ set_flg
F:_ clr_flg
C
r wai_flg
cwai_flg
F
pol_flg
P
cpol_flg
P
oo flg_sts
FLiS
= snd_msg
E rcv_msg
@ prcv_msg
oo mbx_sts
BN
M get_blk
EE pget_blk
rel_blk
H —
oo mpl_sts
MPF

77

CHAPTER 4 WINDOWS

Table 4.4-1 Icons Indicating Event Other Than Issuing of a System Call (Continued)

Icon

System call name

SET set_tim

E] act_cyc

oo cyh_sts
G
oo alh_sts
ALm
oot get_ver
WER

Table 4.4-2 lists icons that an event other than issuing of a system call.

Table 4.4-2 Icons Indicating Event Other Than Issuing of a System Call

Icon Event indicated by icon Display location
e Time-out Task

-D-

L 4 First event after completion of initialization Initialization process

m Line Types for Indicating Task Status

78

Table 4.4-3 Line Types for Indicating Task Status

Table 4.4-3 lists the line types used to indicate the status of a specific task.

Line Color Status
Lo Red Run state
(Solid line)
None None Dormant state
o Light blue Ready for run state
(Solid line)
. Light blue Wait state
— - — - — (Dash-dot line) g

4.4 Task Trace Figure Window

Table 4.4-3 Line Types for Indicating Task Status (Continued)

Line Color Status

— .. — .. — (Dash-two-dot line) Light blue Suspended state

— .+ — .. — (Dash-two-dot line) Red Double wait state

m Dispatch Indication
Dispatching is indicated by a black solid line with an arrow that is perpendicular to the time axis.

The end of the solid line indicates the dispatching source of a task and the location pointed to by
the arrow indicates its destination.

m System Clock Reset Indication
The REALOS Analyzer displays time based on the system clock.

If the system clock time is changed during task tracing by set_tim or other operation, the change
affects the time display.

If set_tim is executed to change the system clock time, a blue solid line, perpendicular to the
time axis, is drawn from the point of set tim execution to indicate that the time has been
changed.

If, however, the system clock time is changed by an action other than set_tim, the solid line
indicating task execution and the line indicating task status may overlap or may be too long.

Note:

Of the system calls supported by REALOS/907, the get_tid task control function, the ret_int,
ret_ wup, chg_ilv, and ilv_sts interrupt control functions, and the get_tim, def _cyc, def alm,
and ret_tmr time control functions are not within the scope of task tracing. These system
calls, therefore, are not displayed in a Task Trace Figure provided by the REALOS Analyzer.

If the trace buffer mode is a ring buffer, only the line indicating run state is displayed.

79

CHAPTER 4 WINDOWS

4.4.2 Task Trace Figure Window Toolbar

The Task Trace Figure window toolbar includes the following six functions:

Print

Display running time graph window

Display Object Trace window

Sort dispatches sequentially

Display task trace information list (combo box)
Scroll

80

Task Trace Figure Window Toolbar

Figure 4.4-2 shows the Task Trace Figure window toolbar.

Figure 4.4-2 Task Trace Figure Window Toolbar

'I.Erd-:rl IEIEIEIEI --------- Imit Helr sta_tsk b1 | | > |

The following functions are assigned to the toolbar buttons from left to right:

Eine | luswen| i,

e Print

« Display running time graph window

« Display Object Trace window

« Sort dispatches sequentially

« Display task trace information list (combo box)
e Scroll (to the left and the right)

Print
Prints the contents of the detail window of a Task Trace Figure.

See Section 4.4.5, "Printing a Task Trace Figure,” for more information.

Display Running Time Graph Window

Analyzes the running time of the tasks obtained from the task trace data, and opens the running
time graph window to display the results of analysis in graph form.

See Section 4.4.6, "Running Time Graph," for more information.

Display Object Trace Window

Analyzes the data about objects obtained from the task trace data, and creates and displays a
trace figure of the objects. The operation is the same as selecting [Object Trace] from the
[Trace] menu. A mode setting is required to open an Object Trace window. See Section 4.6,
"Object Trace Window," for more information.

4.4 Task Trace Figure Window

m Sort Dispatches Sequentially
This function sorts tasks in the order in which they were dispatched.

When there are many tasks and dispatching between them is frequent, it is difficult to check
task-to-task transitions with the detail window. Sorting the tasks sequenced according to time
dispatched places the more recently processed tasks at the top of the list, making it easier to
understand the circumstances of task-to-task transitions. Figure 4.4-3 shows an example of
such a sequential sort.

Figure 4.4-3 Example of Sequentially Sorting Dispatches

e P A o]
|tk iy e [1D | ooty | | o i ' o o
i I C o I::I
i r
(L _.- .!. il
o1 L.IL | R | 1
- | — d
Bt R0y Q0] 3800 - MO S T |
i i Vs ________________________ ‘o
bl Sl T B 'IJ o
& s (]
wade, T — ;
L. |
r
Roas PR RO RO 0 T

m Display Task Trace Information List (Combo Box)

Task trace data is displayed in the combo box on the Task Trace Figure window toolbar. The
combo box contains the task trace data displayed in the following format:

81

CHAPTER 4 WINDOWS

event-number_time_event-type_task-ID_system-call_parameter

0 event-number
0 to (number of traced events - 1) (2047 maximum)

0 is the oldest trace data. As this number is incremented, more recent event data is displayed.

0 time
It is not a time relative to the beginning of the displayed trace.

This is the time indicated by the timer.

[0 event-type
Event type is the type of an event, identified with an event number, that has occurred.
There are the following event types:
« task: A system call that has been issued from a task
e inihdr: A system call that has been issued from an initialization process
e interrupt: A system call that has been issued from an interrupt process
* timeout: Time-out event

« dispatch: Dispatch event

0 task-id

Task ID identifies the task associated with an event that has occurred. Task ID is displayed
only for a system call that has been issued from a task and for time-out and dispatch events.

O system-call

If the event is issuing of a system call, the issued system call name is displayed in this position.

[0 parameter
An argument for the system call is displayed in this position.

However, display of parameters is not enabled for all system calls.

Table 4.4-1 defines what display items are enabled for the type of traced event.

Table 4.4-4 Display Items for Each Type of Traced Event

Time Task ID System call Parameter

task O O O A
inihdr >< >< O A

82

4.4 Task Trace Figure Window

Table 4.4-4 Display Items for Each Type of Traced Event (Continued)

Time TaskID | Systemcall | Parameter
interrupt O X O A
timeout O O X X
dispatch O O X X
O:Enabled x : Disabled A\ : Partially enabled
Note:

Parameter display is enabled for issuance of a system call.
arguments, such as an ext_tsk parameter, parameter display is disabled.

However, if there are no

If a system call returns an error code without terminating normally, it is not traced. For

example, prcv_msg is traced only when a message has been acquired.

83

CHAPTER 4 WINDOWS

4.4.3 Task Trace Figure Window Status Bar

The following three items are displayed on the Task Trace Figure window status bar:
» Mode of trace buffer

» Buffer size and data size

» Trace time

m Task Trace

Figure Window Status Bar

The following three items are displayed on the Task Trace Figure window status bar from left to
right:

* Mode of trace buffer
« Buffer size and data size
* Trace time

Figure 4.4-4 shows an example of the Task Trace Figure window status bar.

Figure 4.4-4 Example of Task Trace Figure Window Status Bar

Ring Buffer 0034./0050 00000.000 - 00003287 [00003.857)

m Mode of Trace Buffer

m Buffer Size

Displays the trace mode set with [Setup] - [Task Trace]. Either ring buffer or full buffer is
displayed.

and Data Size

The trace buffer size and trace data size are displayed in the following format:

trace data size / trace buffer size

m Trace Time

The time for tracing event number 0 and the time for tracing the last event are displayed in the
following format:

first event time - last event time (total trace time)

84

4.4 Task Trace Figure Window

4.4.4 Task Trace Figure Window Popup Menus

The Task Trace Figure window popup menus provide the following functions:
* [Enlarge/Reduce]
[Search]

m Task Trace Figure Window Popup Menus
The Task Trace Figure window popup menus provide the following functions:
¢ [Enlarge/Reduce]
e [Search]
m [Enlarge/Reduce]
Enlarges or reduces the time scale of a trace figure.
m [Search]

Searches for data related to:
e semaphore

« eventflag

¢ mailbox

e memorypool

e time

and displays all related events in a dialog box.

85

CHAPTER 4 WINDOWS

4.4.5 Printing a Task Trace Figure

A currently displayed Task Trace Figure can be printed.

m Printing a Task Trace Figure

The print size of a Task Trace Figure is the same as the displayed diagram.

Note:

Because most task diagrams are longer horizontally, using landscape mode to print it is
recommended.

86

4.4 Task Trace Figure Window

4.4.6 Running Time Graph

You can display the results of analyzing task running time in a format that includes:
* Running time (%)

* Longest running time

» Shortest running time

» Dispatching count

» Time per status (%)

® Running Time Graph

When you select display of the running time graph from the Task Trace Figure window toolbar,
a running time graph is displayed. The window for the graph consists of an upper and a lower
half. The following information is displayed in the window:

¢ Information list in the upper half
¢ Graph representation in the lower half

Figure 4.4-5 shows a display example.

Figure 4.4-5 Displaying the Running Time Graph

®]Run Time Analysis M=
tazk Entry tazk id | running time | running rate | running max | running min | disp num | ready rate | wait rate | suspend rate | domant rate

1:First_Task 1 oooota1e 287 (0000668 O00OO.448 2 233 43.47 0o.00 05.47

D@ 2 Middle_Task h'2 0ooooed4 04.21 00000164 00000164 1 3820 51.50 0o.00 0e.07

D@ 3: Center_Task h'3 Qoooogs 0478 00000185 00000185 1 46,97 4216 0o.00 0e.07

D@ 4 Alloc_Task h'4 000001ve 0458 000001ve 000007E 1 2562 B5.72 0o.00 14.09

D@ 5:ln_Task h'5 00000177 0458 00000177 0000077 1 31.56 46.595 0000 16.92

D@ G:Out_Task hE 00000177 0458 00000177 0000077 1 TR 37E 0000 20,29

'ﬂ 7:Free_Task h7 00000763 19.65 00000400 00000363 2 3956 oo.oo 0000 40,77

D@ 8:Inc_Task h'8 Qoooo143 0383 00000149 00000143 1 4659 24.44 00.00 2513

'm 9:lde Task h9 0o0o0o.0o0 00.00 00000000 00000000 O T4.60 0o.oo 00.00 25.39

Run, Ready, Wait, Suspend, Dormant Rates (%)

100
a0
&0
40
a8 8 1 1 0
1 2 3 4 5 [7 g 9
. Run . Ready D it . Suzpend D Darnant

m Information List

Information about running time is displayed in list form.

87

CHAPTER 4 WINDOWS

Table 4.4-5 lists the items contained in the information list.

Table 4.4-5 Information List Items

ltem Description Graph Required setting
entry name Task entry name >< None.
task ID Task ID >< None.
running time The total time that the task ran >< None.
. Total running time/total trace
running rate time O None.
running max Longest continuous run time O None.
running min Shortest continuous run time O None.
. Number of dispatches to the
disp num task O None.
Total of time that the task was
ready rate Buffer full
ready to run O
wait rate Tot_a_l time that the task was Buffer full
waiting O
Total time that the task was
suspend rate Buffer full
suspended O
dormant rate Total time that the task was Buffer full
dormant ><

m Graph
Displays an item in the information list in graph form.

To display an item in the information list in graph form, click the column for the item. See Table
4.4-5 for the items that can be selected.

The basic graph displayed differs depending on the trace buffer setting.
» Ring buffer mode: Running rate graph

« Buffer full mode: Status time rates graph (The displayed graph includes all applicable
statuses.)

To return to the basic graph after checking a different type of graph, click [running time].

88

4.4 Task Trace Figure Window

m Viewing the Graph
The values for the selected item are indicated by the vertical axis.
¢ Rate value: %

e Time value: Time of 1 system clock (When the time for 1 system clock is set at 1 ms, the
value is in milliseconds)

e Count value: Number of times
Task entry numbers are given on the horizontal axis.
If, for example, a normal task ID is 1, the horizontal axis indicates 1 for the task.

Because a sort or the selection of a task alters the number sequence on the horizontal axis, a
number does not always match the ID.

A task entry number appearing on the horizontal axis of the graph precedes the task name in
the information list. After a sort or the selection of a task, check the task entry numbers.

Note:

Sometimes, the total of the rates for statuses does not equal 100%. This is an error
generated by the calculation process. One double wait state is counted as one suspended
state.

89

CHAPTER 4 WINDOWS

4.4.7 Task Trace Figure Information Dialog Box

The Task Trace Figure information dialog box opens when an icon indicating an event
in a Task Trace Figure is clicked. The dialog box displays information about the event
associated with the clicked icon.

m Task Trace Figure Information Dialog Box

When you click an icon indicating an event in a Task Trace Figure, the Task Trace Figure
information dialog box opens.

The dialog box displays information about the event associated with the clicked icon.

Figure 4.4-6 shows an example of the dialog box.

Figure 4.4-6 Trace Figure Information Dialog Box

zelect lcon Info |

|_ Iru:'-.f_msg

Heading | Contents

frame 0016

tirne 00001826

event spztem callT ask)

D H'O5 [In_Tazk]

sustem call rov_Ms

parameter h'2

dl

R elation Reflect Wigw |

m Information Dialog Box

The information dialog box displays the following information:

O Icon indicating the event type

Displays the icon selected by clicking.

O System call name
Displays the system call name indicated by the selected icon if the event type is issuance of a
system call.

O Event information list

Displays event information in list form.
m Buttons in the Information Dialog Box

When you click a button in the information dialog box, the appropriate function is implemented
as indicated below.

90

4.4 Task Trace Figure Window

O [Related]
Displays the related events in list form.

Figure 4.4-7 shows a display example.

Figure 4.4-7 Displaying the Related Event List

select lcon Info [x| |
Irn::v_msg

frame | Time I Ewvent I 10 I System Call | para |
12 000071.485 systemn callTask] K4 rev_msg 1
16 00001.826 system callTazk] KBS rev_meg 2
20 00002189 swstem cal(Task] h'E row_mag 3

EN— | [Ficflect View | 0K

O [Reflectin the Trace Figure]

Only related events are displayed in the Task Trace Figure.

O [Close]

Closes the information dialog box.

m Related Events

Related events refer to events whose data is obtained by manipulating the same type of object
for the selected event.

If the selected event is obtained without manipulating an object, the events whose data is
obtained without manipulating an object are listed as related events.

Example) ext_tsk when sta_tsk is selected

91

CHAPTER 4 WINDOWS

45 Task Trace Tree Window

A Task Trace Tree window displays the results of tracing of tasks in tree form.

m 4.5 Notes on Task Trace Tree Window

This section explains the information displayed in and the functions of the Task Trace Tree
Window.

4.5.1 Information Displayed in a Task Trace Tree Window
4.5.2 Task Trace Tree Window Toolbar
4.5.3 Displaying a Graph in the Task Trace Tree Window

92

4.5 Task Trace Tree Window

4.5.1 Information Displayed in a Task Trace Tree Window

A Task Trace Tree window displays the results of tracing tasks. The information is
arranged hierarchically according to how the trace data is sorted. The following types
of sorts are provided:

e Sorting issued system calls by task

» Sorting by system call the tasks from which a system call has been issued

» Sorting the system calls sequentially by time issued

m Information Displayed in a Task Trace Tree Window

A Task Trace Tree window displays the results of tracing tasks. The information is arranged
hierarchically according to how the trace data is sorted. The following types of sorts are
provided:

e Sorting issued system calls by task

¢ Sorting by system call the tasks from which a system call has been issued
¢ Sorting the system calls sequentially by time issued

The window also displays the sorted trace data in graph form.

Figure 4.5-1 shows an example of the Task Trace Tree window.

Figure 4.5-1 Example of the Task Trace Tree Window

m Syztem Call History =

'@Tnsxll ml@rlMEl ll_u,aﬁnml

Eﬁ Histary of T asks -
=98 1 Fist_Task [task-count]
=I-[®) wai_zem 7
m tirme . Q0002000
ﬂ frame Mo. - 0000 6

“ofE] parameter : 1 .
= wai_fig 3

m time - 00004000

i frame Mo, : 000G

] parameter : b e
[H-EXT emt_tsk

[—]E 2 Middle_Task

- (@) wai_zem 2
[33 cl_flg
r wai_flg 1

fminl |
[—]E 3: Center_Task 0 ! ! ! i i _ .

#1-@) wai_sem 1 2 3 4 5 B 7 B

r‘ wai_flg [task]
[T eat_tsk
S A Allae Tasl ﬂ

[court]

m System Calls Sorted by Task
Issued system calls are sorted by task and displayed.

The tasks are listed in ID order.

93

CHAPTER 4 WINDOWS

The trace data per task is arranged hierarchically as shown below.

number marked on the horizontal axis of the graph :

event number

parameter

task entry name system call name time at which the system call was issued

m Tasks from Which System Calls Have Been Issued

The tasks from which system calls have been issued are sorted by system call and displayed.

The trace data per system call is arranged hierarchically as shown below.

number indicated on horizontal axis of graph :

event number

parameter

system call name task entry name time at which the system call was issued

m System Calls Sorted by Time Issued

Issued system calls are sorted according to time issued and displayed.

The trace data per task is arranged hierarchically as shown below.

number marked on horizontal axis of graph :

event number

parameter

task entry name (time) system call name time at which the system call was issued

m Changing the Sorting Method

To change from one type of sort to another type, use the buttons on the Task Trace Tree

window toolbar.

For information about the toolbar buttons, see Section 4.5.2, " Task Trace Tree Window

Toolbar."

m Graph Display

By using the [Graph] button on the Task Trace Tree window toolbar, you can display the sorted

trace data in graph form.

For the information about the [Graph] button, see Section 4.5.2, " Task Trace Tree Window

Toolbar."

For the information about the graph, see Section 4.5.3, " Displaying a Graph in the Task Trace

Tree Window."

94

4.5 Task Trace Tree Window

45.2 Task Trace Tree Window Toolbar

Using the Task Trace Tree window toolbar, you can change how trace data to be
displayed is sorted and view the sorted trace data in graph form.

m Task Trace Tree Window Toolbar

Using the Task Trace Tree window toolbar, you can change how trace data to be displayed is
sorted and view the sorted trace data in graph form.

Figure 4.5-2 shows the Task Trace Tree window toolbar.

Figure 4.5-2 Task Trace Tree Window Toolbar

st | svom | Orime | Lusrers

The following functions are assigned to the toolbar buttons from left to right:
e System calls sorted by task

e Tasks from which system calls have been issued

e System calls sequenced by time issued

» Display of graph

m System Calls Sorted by Task
When selected, the leftmost task button makes displays issued system calls sorted by task.

For information about how the system calls sorted by task are displayed, see Section 4.5.1,
"Information Displayed in the Task Trace Tree Window."

m Tasks from Which System Calls Have Been Issued

When selected, the second button displays the tasks from which System Calls Have Been
issued. Sorting is by system call.

For information about how tasks sorted by system call are displayed, see Section 4.5.1,
"Information Displayed in the Task Trace Tree Window."

m System Calls Sequenced by Time Issued
When selected, the third button displays system calls sorted in sequence by time issued.

For information about how the system calls sorted by time issued are displayed, see Section
4.5.1, "Information Displayed in the Task Trace Tree Window."

m Display of Graph

When selected, the fourth button displays in graph form on the right side of the window the
hierarchical trace data currently displayed on the left. Clicking this button when a graph is
already displayed ends the display of the graph.

For the information about displaying the graph, see Section 4.5.3, "Displaying a Graph in the
Task Trace Tree Window."

95

CHAPTER 4 WINDOWS

4.5.3 Displaying a Graph in the Task Trace Tree Window

In the Task Trace Tree window, the hierarchical trace data currently selected is
displayed in graph form on the right side of the window.

m Displaying a Graph in the Task Trace Tree Window

In the Task Trace Tree window, the hierarchical trace data currently selected is displayed in
graph form on the right side of the window.

m System Calls Sorted by Task

The graph displays issued system calls sorted by task.
The vertical and horizontal axes indicate the following:
» Vertical axis: Indicates the number of times system calls have been issued from a task.

* The bar graph represents the number of all system calls that have been issued from the
task. Colors are used to differentiate among the system calls.

» Horizontal axis: Sequential numbers indicate the names of task entries for which trace data
is currently displayed in a hierarchical form.

For information about how system calls sorted by task are displayed in tree form, see Section
4.5.1, "Information Displayed in the Task Trace Tree Window."

m Tasks from Which System Calls Have Been Issued

The graph displays the tasks from which system calls have been issued sorted by system call.
The vertical and horizontal axes indicate the following:
» Vertical axis: Indicates the number of times the system call was called.

* The bar graph represents the number of times the system call was called from a task.
Colors are used to differentiate tasks.

» Horizontal axis: Sequential numbers indicate names of system calls for which trace data is
currently displayed in a hierarchical form.

For information about how the tasks sorted by system call are displayed in tree form, see
Section 4.5.1, "Information Displayed in the Task Trace Tree Window."

m System Calls Sorted by Time Issued

96

The graph displays system calls sorted according to the time they were issued.
The vertical and horizontal axes indicate the following:
» Vertical axis: Indicates the number of times the system call was called.

* The bar graph represents the number of times a system call was called from a task.
Colors are used to differentiate among the system calls.

» Horizontal axis: 10 equal divisions of the task trace time.

For example, if the total task trace time is 10,000, one division is 1,000. The bar displayed at
position 1 indicates the number of system calls issued from the first event to 1,000.

4.5 Task Trace Tree Window

For information about how system calls sorted by time issued are displayed in tree form, see
Section 4.5.1, "Information Displayed in the Task Trace Tree Window."

97

CHAPTER 4 WINDOWS

4.6 Object Trace Window

An Obiject Trace window displays the history of status transitions of an object based
on the results of tracing the tasks.

m 4.6 Notes on Object Trace Window
This section explains the information displayed in the Object Trace Window.

4.6.1 Information Displayed in the Object Trace Window

98

4.6 Object Trace Window

4.6.1 Information Displayed in the Object Trace Window

An Object Trace window displays a trace figure of an object used by an application.

m Information Displayed in the Object Trace Window
An Object Trace window displays a trace figure of an object used by an application.

Figure 4.6-1 shows an example of an Object Trace window.

Figure 4.6-1 Example of an Object Trace Window

Object Trace - mpl 1
=l obiect
- sem 3
..... i1 e T T ——— _
..... Jil Z e _
..... B, 3
= fig L
..... P 1 1p~""""~="="=------ -
..... P 2 e R T -
..... P. 3 Y ~
[—:I---@mb:-: __________________________
..... D1 4
..... 9 2 Y il -
&agyg Bh o m o :
=@ mpl | Sl . _
7
..... & i]
..... {5 2
..... i3 3

This window consists of two panes. In the left pane, the objects used by the application are
displayed in hierarchical form. When you double-click an object in the left pane, the trace figure
for the selected object is displayed in the right pane.

m Vertical Axis of the Object Trace Window
The vertical axis of the Object Trace window indicates the following:

e The scale from 0 upwards indicates the amount of resources for the object. For a
memorypool, the upper limit is the number of blocks that has been set.

« Position 0 indicates that nothing is linked to the object queue.

¢ The scale from 0 downwards indicates the number of task queues.

m Horizontal Axis of the Object Trace Window
The horizontal axis of the Object Trace window indicates time.
The current size set for the window represents the total task trace time.

In this trace figure, the point currently displayed in conjunction with a Task Trace Figure is
colored green.

99

CHAPTER 4 WINDOWS

Note:

The Object Trace display window can be opened only if [Full Buffer] has been selected for
[Setup] - [Task Trace] and [Detail] selected for [Setup] - [Mode].

If the kernel has stopped, a phase mismatch is possible for the object display.

100

4.7 Monitoring

4.7 Monitoring

The provided monitoring facilities are a task status monitor and a stack monitor. Use
these monitors to monitor the status and the stacks of tasks selected during
execution.

m 4.7 Notes on Monitoring

This section explains the information displayed in the Task Status Monitor window and the
Stack Monitor window.

4.7.1 Information Displayed in the Task Status Monitor Window

4.7.2 Information Displayed in the Stack Monitor Window

101

CHAPTER 4 WINDOWS

4.7.1 Information Displayed in the Task Status Monitor Window

The Task Status Monitor window monitors the status of the selected tasks during the
execution of the debugger, and monitoring results are periodically updated and
displayed. Tasks are listed vertically, and their update histories is displayed
horizontally.

m Information Displayed in the Task Status Monitor Window

The Task Status Monitor window monitors the status of the tasks during execution of the
Softune Workbench debugger.

The selected tasks are listed vertically, and the passage of time is represented horizontally.
Ten buffers are used to stored monitoring data, with the more recent buffers on the right. The
initial setting for tasks is 10.

Figure 4.7-1 Task Status Monitor Window

‘B Task Status Monitor =] E3

FistTask W PrPREH BB ERERE B
Middle Tas.. W D R P EH B E B B
Center Tas.. W B B B0 W W W W
MlocTask S WME &5 & & W WX
In_Task OBMEARMO O QO QO
Out_Task 7 o0 [ol o o B v R e R o R
Free Task OB BEBERR®RB O OO
Inc_Task zmEEme= ="
Idle_Task o0 o [oo [e s o sl o [l

m [cons

Table 4.7-1 lists the icons used in the Task Status Monitor window.

Table 4.7-1 Icons

Icon color Status indicated by icon

Light blue Initial state
E g

102

Table 4.7-1 Icons (Continued)

4.7 Monitoring

Zz

Icon color Status indicated by icon
i White Dormant state

™ Blue Ready state

e Red Run state

= Gray Suspend state

O Yellow Semaphore wait state

> Red Event flag wait state

& White Memorypool wait state

= White Message wait state

o White Time-out wait state

. White Sleep state

O Gray Suspend - semaphore wait state
| Gray Suspend - event flag wait state
& Gray Suspend - memorypool wait state
= Gray Suspend - message wait state

o© Gray Suspend - time-out wait state

Gray Suspend - sleep state

103

CHAPTER 4 WINDOWS

Table 4.7-1 Icons (Continued)

Icon color Status indicated by icon

>< Black A data acquisition error occurred

Note:
Up to 10 tasks can be selected for monitoring by the task status monitor.
A task in the run state is displayed as a task in the ready for run state.

The monitoring function executes memory access during MCU execution. If a free bus
cannot be acquired during MCU execution, data acquisition fails and the icon indicating a
data acquisition error is displayed.

104

4.7 Monitoring

4.7.2 Information Displayed in the Stack Monitor Window

The Stack Monitor window monitors the stack pointer of the selected tasks during
execution of the debugger, and the monitoring results are periodically updated and
displayed. Stack size (%) is displayed vertically, and the update history horizontally.

m Information Displayed in the Stack Monitor Window

The Stack Monitor window monitors the stack pointer of a task at regular intervals during
execution of the Softune Workbench debugger.

Stack size (%) is displayed vertically, and the update history horizontally.
The more recent data is displayed toward the right.

Ten buffers are used to stored monitoring data, with the more recent buffers on the right. The
initial setting for tasks is 10.

Stack pointer data for the run and dormant states is not reliable. Table 4.7-2 lists the stack
pointer states, which vary according to the task status.

Table 4.7-2 Task Statuses and Stack Pointer Value

Status Stack pointer value
Run Invalid value (The previous stack pointer state is inherited.)
Read for run Valid value
Dormant Stack pointer when stack is not in use
Suspended Valid value
Wait Valid value

Figure 4.7-2 shows a display example.
¢ A blue line indicates a stack pointer.

« Arred line indicates the maximum stack pointer value monitored.

105

CHAPTER 4 WINDOWS

Figure 4.7-2 Stack Monitor Window

‘| Stack Monitor =] E3
i ID:6, Out_Task

N\

ID:2, Middle_Tas.. ID:7, Free_Task
ID:3, Center_Tas.. ID:8, Inc_Task
ID:4, Alloc_Task ID:9, Idle_Task

N\

ID:5, In_Task

Note:
Up to 10 tasks can be selected for monitoring by the stack monitor.
A stack pointer in the run state inherits its previous state.

A stack pointer in the dormant state is regarded as the stack point of a stack that is not being
used.

106

4.8 Setup

4.8 Setup

This section explains the setup required for executing the REALOS Analyzer.

m Notes on Setup

This section explains the setup.
4.8.1 Mode

4.8.2 Select Task, Object
4.8.3 Task Trace

107

CHAPTER 4 WINDOWS

4.8.1 Mode

Simple mode and detail mode are available.

m Simple Mode and Detail Mode

O Simple mode
* Only the information for some items is acquired.
* Queue information is not acquired.

« Communication time is less than for detail mode.

0 Detail mode
» Allitems are displayed in a list.

* Queue information can be acquired.
m Differences Between Simple Mode and Detail Mode

Tables 4.8-1 to 4.8-8 list the differences between simple mode and detail mode for each type of
object window.

108

O Task List window

Table 4.8-1 Task List Window

Item name

Simple mode

Detail mode

Task entry name

O

O

Break point

Priority

Status

Wait object ID

Wake-up count

Suspend count

Time-out count

Stack pointer

Queue position

IP register

XX X X X X | X |0 |0 |0 |0

Control area

O

o000 |0 0|0 |0 |0 0|00

O :Displayed X :Not displayed

4.8 Setup

109

CHAPTER 4 WINDOWS

O Semaphore List window

Table 4.8-2 Semaphore List Window

Item name Simple mode Detail mode
v O O
Count
Initial count

Wait task num

Control area

O O
X O
X O
O O

O :Displayed X :Not displayed
O Event Flag List window

Table 4.8-3 Event Flag List Window

Item name Simple mode Detail mode

ID O O

Pattern

Initial pattern

Control area

O |0 O |0

O
O
Wait task num e
O

O :Displayed X :Not displayed

110

O Mailbox List Window

Table 4.8-4 Mailbox List Window

4.8 Setup

ltem name Simple mode Detail mode

ID O O

Wait num >< O

Control area O O
ODisplayed X :Not displayed

O MemoryPool List window

Table 4.8-5 MemoryPool List Window

ltem name Simple mode Detail mode
ID O O
Empty block O O
Block num >< O
Block size >< O
Wait num >< O
Control area O O
ODisplayed X :Not displayed

111

CHAPTER 4 WINDOWS

112

O

O

Cyclic Handler List window

Table 4.8-6 Cyclic Handler List window

Item name Simple mode Detail mode
v O O
Activation
Time
Interval

Handler address

Control area

o |0 |0 |O |O

o O |0 O |O

O:Displayed X :Not displayed

Alarm Handler List window

Table 4.8-7 Alarm Handler List Window

Item name

Simple mode

Detail mode

Handler number

O

O

Time

Handler address

Control area

O
O
O

O
O
O

O :Displayed X :Not displayed

0 Ready queue, timer queue, and alarm queue window display

Table 4.8-8 Queue Window

4.8 Setup

Simple mode

Detail mode

X

O

O Displayed X :Not displayed

113

CHAPTER 4 WINDOWS

4.8.2 Select Task, Object

Open the Select Task, Object dialog box to select the tasks and objects to be displayed
in the windows.

m Select Task, Object Dialog Box
Using the tab dialog box, select tasks and objects for which you want to obtain trace data.

Move tasks or objects for which you want to obtain trace data to [selected list] and tasks or
objects for which you do not want to obtain trace data to [unselected list].

After selecting a task or object, move it using the arrow buttons provided in the center of the
dialog box window.

When selection is complete, press the [OK] or [Apply] button. The setting is updated.

Figure 4.8-1 Select Task, Object Dialog Box

Select Taszk or Object |
Cyclic Handler I Alarm Handler I
Setting of Manitar and Objectview's Histomy
Task | Semaphare I Ewvent Flag I b ail Box I Memary Poal

Mo Select List Selected List

B In_Tazk - 1 Firzt_Tazk -

G Out_Taszk _I 2 Middle_Tazk _I

7 Free_Task 5 3 Center_Task

3 Inc_Task 4 Alloc_Task

9 ldle_Taszk

ak Cancel Apply

m Monitoring and Object Trace Setup Dialog Box

Using this dialog box, set up a monitoring function and the object view history display.

114

0 Monitoring setup

4.8 Setup

¢ Select the tasks to be monitored by the task status monitor and the stack monitor.

e The initial setting is 10 tasks.

¢ Set a monitoring interval:

e 1 sec, 2sec, 3sec, 4sec, 5sec, 10 sec, 20 sec

O Object view history display

Choose whether the object view history is to be displayed.

As the initial setting, the [Display the history] check box is checked.

Figure 4.8-2 Monitoring and Object Trace Setup

Select Tazk or Object

Cyclic Handler

Taszk | Semaphore | Event Flag | bl ail Bio | b emony Poal

Alarm Handler

Setting of Monitar and Objectiew's Hizton

— Monitoring Interval

1 zeC

Hiztory of Objectwindw

¥ Display history

— Select Monitaring

Mo Select List Selected List
4 Alloc_Task [« 1 Firzt_Taszk -
B In_Tazk _I 2 Middle_Task _I
B Out_Task 3 Center_Tazk
7 Free_Tazk
2 Inc_Task
- b 9 Idie_Tazk
2k, Cancel Apply

Note:

Up to 10 tasks can be selected and set for monitoring.
same for the task status monitor and the stack monitor.

Task selection and setup are the

115

CHAPTER 4 WINDOWS

4.8.3 Task Trace

Two buffer modes, ring buffer mode and full buffer mode, are available for trace data
buffering.

m Trace Buffer
Two buffer modes, ring buffer mode and full buffer mode, are available for trace data buffering.
The primary difference between these modes is as follows:
» Ring buffer mode: The latest information is always acquired.
» Full buffer mode: Buffering terminates when the buffer is full of data.

Figure 4.8-3 provides an overview of trace data buffering.

Figure 4.8-3 Overview of Trace Data Buffering

Buffer Full Mode Ring Buffer Mode
Start Trace > P s ersennnnnnesannnnnas
A :
Buffer
Size
All Event
Number
Buffer Valid
Size Data
End Trace _Y_g : >

m Object Trace and Status Line Display
The display of object histories and status lines is enabled only in full buffer mode.

In addition, the object trace display requires detail mode.

116

4.9 Help

4.9 Help

This section explains the functions that are executed to use the [Help] menu.

m 4.9 Notes on Help

This section explains the functions that are executed in the Help menu and the displayed
information.

4.9.1 Help Topics
4.9.2 About fra907se

117

CHAPTER 4 WINDOWS

4.9.1 Help Topics

The Help Topics command is described below.

m Help Topics

Activates online help.

118

4.9.2 About fra907se

4.9 Help

Version information is described below.

m About fra907se
Figure 4.9-1 shows an example of the About fra907se dialog box.

The following are displayed as version information:

Softune REALOS/907 Analyzer version
License and copyright
REALOS version

MITRON version

Figure 4.9-1 About fra907se Dialog Box

Wersionlfradlyse)

Softune REALOS/ 907 Analyzer W30LOOR0G

ALL RIGHTS RESERWED, COPYRIGHTIZY FUJITSU LIMITED 19293-1233
LICEMZED MATERIAL - PROGRAKM PROPERTY OF FUJITSU LIMITED

119

CHAPTER 4 WINDOWS

120

APPENDIX

The appendixes explain the restrictions on each REALOS Analyzer function, the
structure of REALOS Analyzer files, error messages, and the sample programs
supplied with the REALOS Analyzer.

APPENDIX A Restrictions
APPENDIX B Configuration
APPENDIX C Error Messages
APPENDIX D Sample Programs

121

APPENDIX A Restrictions

APPENDIX A Restrictions

This appendix explains the restrictions on the Softune REALOS/907 analyzer.

m Restrictions

If Softune Workbench is debugging a program with the monitor debugger, the monitoring

function cannot be used.

In Windows 98, the source line jump function cannot display Softune Workbench in the

foreground.

The REALOS Analyzer reads and writes to memory during Softune Workbench processing. For
this reason, drawing with Softune Workbench when the REALOS Analyzer is used may be

slower than drawing with Softune Workbench when the REALOS Analyzer is not used.

m Processing Time and Size of Task Analysis Module

When the task analysis module is built into the REALOS Analyzer, processing time and size

increase as shown in the following table.

Table A-1 Processing Time and Size of Task Analysis Module

Size
Code about 1100 bytes
Data about 740 bytes
(including 50 events in the trace buffer; 1 event=14 bytes)

Processing time (measured with the FMC-16LX simulator)

System call issuance (no dispatching)

about 500 cycles

Dispatch to a task by issuing of a system call

about 1060 cycles

Conversion to the idle loop by issuing of a system call

about 1000 cycles

Dispatch from the idle loop to a task by issuing of a system call

about 1250 cycles

Dispatch from one task to another because of a time-out

about 960 cycles

Dispatch from the idle loop to a task because of a time-out

about 960 cycles

Execution of idle loop (when a system clock is generated)

about 160 cycles

Note: Depending on the conditions, the above data may be off a little.

m Contents of Trace Buffer

122

The trace buffer is a ring buffer. In this of structure, each time any of the following events
occurs, one event is stored in the trace buffer. (Starting with the oldest data, data in the trace

buffer is overwritten with new data.)
» Task dispatch (including dispatch to the idle loop)

* Issuing of a system call

APPENDIX A Restrictions

* Time-out

One event in the trace buffer corresponds to one frame. One frame consists of 14 bytes (for
example, 100 steps require 1,400 bytes).

Figure A-1 Contents of Trace Buffer

1 frame = 14 bytes

< >
| 2bytes | 6 bytes | 2byes | 2bytes | 2bytes |
T A A f
Time Parameter
Event Kinds TCB Address
- Task Dispatch
- System Call Issue System Call Entry Address
- Time Out

m Time Measurement got Task Trace Figure

Since the emulator and monitor debuggers measure time based on the system clock used by
REALOS, they can continue time measurement for a time that is less than the system clock. In
time measurement by the simulator debugger, however, one system clock becomes the
minimum time unit.

For example, when the system clock timer interrupt is set to 1,000 cycles, the timer value 1.000
also becomes 1,000 cycles. In the simulator debugger, values after the decimal point are
ignored.

To use Softune REALOS/907 system clocks, build the system calls of the time management
function into the REALOS Analyzer.

m Number of Frames That Can Be Displayed in a Task Trace Figure

Since up to 2,048 frames can be displayed in the Task Trace Figure, set the trace buffer to
2,048 or less.

123

APPENDIX B Configuration

APPENDIX B Configuration

This appendix explains the configuration of Softune REALOS/907 analyzer files.

m Configuration of Files

Figure B-1 Configuration of Softune REALOS Analyzer Files
| Softune REALOS/907 Analyzer Install Folder |

| fra907.txt Softune REALOS/907 Analyzer English Release Note
| fra907j.txt Softune REALOS/907 Analyzer Release Note

bin Execute File Folder

| fra907s.exe REALOS Analyzer Execute Module
fra907se.dll REALOS Analyzer English Resource File
SiRa907.dll REALOS Analyzer Addin DLL
SiRa907e.dll REALOS Analyzer Addin DLL English Resource File

lib Help File Folder

907
| Frana.cnt
Franae.cnt
| Frana.hlp REALOS Analyzer help File
| Franae.hlp REALOS Analyzer English help File
sample
907

| ra_sample | REALOS Analyzer Sample Project Folder

124

APPENDIX C Error Messages

APPENDIX C Error Messages

This appendix explains the Softune REALOS/907 analyzer error messages.

m Memory File Errors (E46xxM)

E4601M DATA FILE CANNOT BE OPENED

[Explanation] The data file cannot be opened.
[Operator response] The specified data file does not exist. If the file exists in another
folder, browse to it from the file dialog box or check the state of the host machine.

E4602M DATA FILE CANNOT BE ACCESSED

[Explanation] An error occurred during access to the data file.
[Operator response] Check the status of the host machine disk.

E4603 HELP FILE CANNOT BE ACCESSED

[Explanation] The help file (frana.hlp) does not exist in the specified folder.

[Operator response] When the specified folder is installed correctly, the help file is usually
under \lib\907 in that folder. If the help file (frana.hlp) is not under \lib\907, the folder may
have not been installed correctly. Reinstall the folder.

E460M INVALID FILE FORMAT

[Explanation] Correct data could not be read from the specified file.
[Operator response] The format of the specified file is different. Specify the correct file.

E4610M INSUFFICIENT MEMORY

[Explanation] There is not enough free memory area on the host machine to execute
commands.

[Operator response] Quit unnecessary applications or drivers. Alternatively, increase
memory and restart the REALOS Analyzer.

m Memory File Errors (E45xxM)

E4510M MEMORY ACCESS ERROR OR NO SYMBOL

[Explanation] Memory read/write failed or no symbol exists.

[Operator response] Check whether the memory area to which the REALOS data area and
task analysis module data area were allocated can be read and written to. Also check
whether the memory area was compiled and linked together with debug information.

m Fatal Errors (F95xxMM)

F9501M INSTALLATION INFORMATION CANNOT BE OBTAINED

125

APPENDIX C Error Messages

126

[Explanation] Softune REALOS/907 analyzer installation information is invalid.
[Operator response] Possible causes are as follows:

1. Softune REALOS/907 analyzer installation information was damaged.

2. The Softune REALOS/907 analyzer is not installed correctly.

3. The installed file was moved.

4. For 3, return the file to its original location. In other cases, reinstall the analyzer.

F9502M COMMUNICATION ERROR

[Explanation] An internal error occurred during communication with Softune Workbench.
[Operator response] If this error occurs during data collection, collect the data again by
clicking [Update] on the [Command] menu.

If this error occurs frequently, call your Fujitsu sales representative.

APPENDIX D Sample Programs

APPENDIX D Sample Programs

This appendix explains the sample programs supplied with the REALOS Analyzer.

m Configuration of Sample Program Files
Sample programs are stored in the sample\907\ra_sample folder.

The ra_sample configuration is as follows:

127

APPENDIX D Sample Programs

sample 907 ra_sample Abs = ra_sample.abs
— l.st — ra_sample.mp
— Obj = ra_sample.
— Opt [~ ra_sample.
— Alloc_Task
— Src [
— Rirst_Task
— Free_Task
— func.c
Sample task
— ldle_Task.c source files
— In_Task.c
— Inc_Task.c
— Mid_Task.c
— Out_Task.c
— Set hdr.c
— ra_sample.prj Project file
— ra_sample.ref Configuration file
— ra_sample.dat Link information
— sample.prc Batch file for loading
— Initasm } Initialization and
— Timerl6.asm timer files
— R_D_dbgA.obj } Task analysis
— R_D_trcA.asm modules

m Sample Program System Configuration

The number of objects used by sample programs and the operating environment are as follows:

O Number of objects
¢ Number of tasks: 9

¢ Number of semaphores: 3

128

APPENDIX D Sample Programs

¢ Number of event flags: 3

¢ Number of mailboxes: 3

¢ Number of memorypools: 1

« Number of cyclically activated handlers: 2

* Number of alarm handlers: 1

O Task Names
e First_Task
e Middle_Task
e Center_Task
e Alloc_Task
e In_Task
e Out_Task
e Free_Task
e Inc_Task
e Idle_Task

O Operating Environment
¢ CPU: MB90550A Series
e Timer: INT 25 16-bit reload timer (reload value: 1000)
 ICE: MB2141A
e Support board: MB2176-01

m Example of Sample Program Execution

The figure below is an example of displaying the Task Trace Figure when sample programs are
executed for ext_tsk() in Free_Task.

129

APPENDIX D Sample Programs

Task Trace Figure =]

lga’rintl lI_LgrarPT'IPHistoruI 'LErderI |DDDD --------- Init Hdr sta_tsk h'l =< | 5 |

task entryn... [1D | priority | 1Toooooboo™ T " Toooot.oon”
inibdr — — A S e e e o e T W Foomm -
interrupt : :
First_Task
Middle_Task
Center_Task
Alloc_Task
In_Task
Out_Task
Free_Task
Inc_Task
Idle_Task
idle loop

|(.OOO-JO)O'IJE-C,0I\J—‘|

|—‘O')-—~JO')J§-I\)O'IC.0—‘|
[83]

Fing Buffer Biuffer Fulll0050] |UDDDD.DUD - 00007103 [00007.102)

130

INDEX

INDEX

The index follows on the next page.
This is listed in alphabetic order.

131

INDEX

Index

A

about fra907Secoovviiiiiiiiie e 119
alarm handler popup MeNnUccccvveccceeieieeeeeennn, 65
ALL BUON ..., 58
allocation SeCtioN...........cuvvviiiiiiieiee e 20
ALMQ BULEON ..o 58
analysis result in graphcccooiiie, 12
B

buffer full mode ... 39
buffer size and data Sizecccccccviiiiiiiiiiennn. 84
C

check function for stack utilization.......................... 72
collecting data dialog boX.............vvvniiiiiiiiiinennnn, 26
collecting REALOS data............coevvvvvvneneiiiiiiieeeenn, 26
COMbBO DOX...cooiiiiec 81
COMMANA MENU ..coeeiiiiiiiiiiiiiiee e 27
command, type Ofoooviriiriii 35
communication timeccccevieeeeee e, 26
complete view WINAOWccvvevvvvvvvnininiininenn, 40
customization for task analysis module............ 17, 18
cyclic handler and alarm handler popup menu....... 65
D

data file for REALOS Analyzer........cccoeeeeeeieiiieeennn. 43
0Ata SIZE ...eveiiiiiiiiie e 84
data, SAVINGeeveiieeeee e 43
debugger execution information.............cccceeeeeeennn. 32
detail MOde......ouiviiiiiiii 108
detail stack information displayccccceveerinneen. 10
detail WINAOW.......cooooviiiiiiiiiiee e 40
development environmMent.........cccccceeeviviiinieiiieeeeeeene, 2
dialog box for task trace figure information 90
dispatch indication..............cceuvvviieiiiiiiiiiiicieeeee e, 79
dispatch, sorting sequentiallyc.cccceeeeeeeeeeeen. 81
display mode, difference inccccccvviiiveeininnnn. 37
E

emulator debugger ... 2
ENIAIGE i 85
event OCCUIreNncCe tiMecvevveevveeeeees e, 75

132

F

feature for REALOS Analyzer.......cccccceeevviiiieeeeeennn, 4
file MeNU ... 27
G

OrAPN e 88
graph display.......cccovveiiieeeee e 94
graph for running time.........ccccovvivieiiieeeee e, 87
graph for stack utilizationccccveeeeriiiiiininnn. 73
graph in task trace tree windoweceeee. 96
graph, VIEWING........ooooiiiiieieeee e 89
H

help MeNU ... 29
help tOPIC. . .ueeieiiiee e 118
history function.............cccc e 36
I

(o]] o PP 102
icon for task trace figure..........cccevvvvvvveiiiiiiiiiininnnnn, 75
icon in object WiNdOWccevvvviiviiivininiiinn, 59
TA1E 100D ...ttt 3
1A1E TASK...eveeiee e 3
information dialog boX...........ccovvviiiiiiiiiiciiiiiiieien, 90
information dialog box, button in.............cccc.coeens 90
information liSt.........cccuuiiiiiiiiiii e, 87
initialization information............cccooeiviiiiiiiinns 32
initialization routine for task analysis module......... 21
initialize handler ..., 21
J

JUMP FUNCLION. ... 37
L

list form of object WindOw...........cccceviviiiiiiniinnen, 54
M

Main tooIbar ... 30
module configuration...............cceevvviiiiiiiiiiie 3
module informationcccccceeeiiiiiiii e 32
monitor debugger.........ooooiviiiiiiii e 3
MONITOT MENU ..ottt 28
[agTe] o 11 o] ¢ oo PRSP 3,14

monitoring and object trace setup dialog box 114
MONItONNG SELUP ..coeviieiieeeeeee e 44
MONItOriNG, EXECULINGccvvvveiiiiiiiiiiie e ee e e e 44
N

note on development environment............c.cccccee..... 2
note on module configuration..........c.cceeeveiiieeeeeennn. 3
note on use of emulator debugger......................... 2
note on use of monitor debugger.........ccccoeeeriinneen. 3
O

ObjeCt dISPlayovvevveeeiei e 8
object display window, standard function of............. 8
ODJECt MENU ..ot 27
object selection dialog bOX......cccceeeeeiviiiieiennnnennn. 114
(o] o] [=To1 0 1 7> o] = 12, 42
object trace and status line displaycc....... 116
object trace setup dialog boXccccoevveeiiinnnnnnnn. 114
object trace window, displayingccc.oooee. 80
object trace window, horizontal axis of 99
object trace window, information displayed in........ 99
object trace window, vertical axis of...................... 99
0bJeCt WINAOWeeeeiiiiiiii e, 53
object window, function commonto..................... 53
object window, iCON Ncccceeiiiiiiiiieiie e, 59
object window, list form ofcccccceeiiiiiiiiiennn. 54
object window, tree form ofc 57
operator command for softune workbench 7
overview of task analysis module operation 16
P

PC informationc.uveeeiiiiiiiniiieeeeee s 32
[020] ¢ 18] o 4 11=] 01 PSSP SP 65
popup menu for cyclic handler and alarm handler. 65
popup menu for REALOS project window 50
popup menu for task list.........cccccceiiiiiiieiiiiiieeeee, 65
popup menu for task trace figure window 85
previously saved file, opening.........ccceeeeveveeeeenen.n. 43
PINING o 80
printing task trace figure..........ccccveiieeiinine e, 86
Q

queue liSt WINAOW...........cevvvurerninmiiiiiiiiie e eeeeeeeeeeenns 57
R

RDQ bUttON ... 58
REALOS Analyzer data file..........cccceevviiiiininnnnn. 43
REALQOS Analyzer featureccccoevvvvvvvvvvvvnnnnnnnnnnn. 4

REALOS Analyzer, startingcccccoovveeeeiniieeeennnns 24
REALOS Analyzer, terminatingccccevvevvvennns 25
REALQOS data, collecting............eceeeeveviviiiieiiieeeeees 26
REALOS project WiNdOWccceeeviivieneeininnenn. 6, 47
REALQOS project window popup menu................... 50
REALQOS project window, addingcceevvvveeeees 34
REALOS project window, basic function of 34
REALOS project window, information displayed in 47
FEAUCE ... ettt 85
related eVent.........oooo i 91
ring buffermodecc 39
running time graph...........ccccoev i, 87
running time graph window, displaying................... 80
S

SEAICH ... 85
select task, object dialog boX..........ccceeeeveieeennn. 114
SELUP MENU...ciiiiiiiiiiiiiiiie e 29
Setup tooIbar.........coooiii e 31
simple mode and detail mode...........ccccceeeeieieennnn. 108
softune workbench operator command 7
SOIt FUNCHION .. 36
SEACK . 68
SACK MENU ..., 28
stack monitor window, information displayed in ...105
stack utilization analysisccccceveveieiiiiiiieeeneeeen, 10
stack utilization check function, executing.............. 72
stack utilization graph.............cccciiiiiiiiiiiiiieeeeeee, 73
stack utilization list window, basic function of......... 38
stack utilization list, example ofccccvverrnnnn. 69
stack utilization list, item displayed in..................... 69
stack utilization, procedure for analyzing................ 38
starting REALOS Analyzerccoocovveeviiieeenniinen. 24
SEATUS DAeeeiiiiiiieeie 32
status bar for task trace figure window................... 84
status line displayccccevviieeeinine e 116
system call being issued, task from which........ 94, 96
system call sorted by taskevvevevnininnnnnn. 93, 96
system call sorted by time issued..................... 94, 96
system clock reset indication...........cccceeeeeeeeeeenn. 79
T

task analysis modulecccooovviiiiiii 3
task analysis module customization 17,18
task analysis module initialization routine, adding..21
task analysis module operationccceeveeeees 16
task analysis module overview............ccccceevvveeeennn. 16
task list pOPUP MENU.....ccoeveieiiiiiieeeeeeeeeeeeeeeeeeeeeee 65

133

INDEX

task liSt WINAOWoooviiiiiiiiiiiieecee e, 40
task not being selectedccccoeeeiiiiiiiin, 73
task status monitor window, information displayed in
102
task status, line type for indicatingcccceee.... 78
TASK trACE ... e 3,12
task trace data.......c.ccooviiiiiiiiiiiieee e 39
task trace figure........ccoovveieiiie 39
task trace figure iCoONccccevviiieiiiiiii e, 75
task trace figure information dialog box.................. 90
task trace figure window popup menu.................... 85
task trace figure window status bar....................... 84
task trace figure window toolbar............................ 80
task trace figure window, information displayed in.75
task trace figure, basic operation of 40
task trace figure, printing........cccceevvveiiieieeeeeeee, 86
task trace information list (combo box)................... 81
tASK traCe treecoveieeiiiiieeee e 42
task trace tree window toolbarcccuvviieeeeen. 95
task trace tree window, graph inccccceeeenn 96

134

task trace tree window, information displayed in ... 93

terminating REALOS Analyzer..............ccccoeevee. 25
fime axiS WINAOW..........viviiiiiiiieeeeeee e 40
TMRQ BULtON .o 58
(0 10] | o= | 30
toolbar for task trace figure window 80
toolbar for task trace tree Windowccoeeeeeeeee 95
trace buffer.....ccooooeeiiiiii e, 3,39, 116
trace buffer, mode Of.........ccoovviiiiiiii e, 84
TrACE MENU . .iniiiiii e e eaeees 28
TrACE tIME .. 84
tree form of object window ..., 57
U

update timingcccveeeiiiieee e 37, 39
W

WINAOW MENU ..uviiiiiiiiie e e 29
WINAOW t00IbAr ..o, 30

CM42-00326-1E

FUJITSU SEMICONDUCTOR « CONTROLLER MANUAL

F2MC-16L/16LX/16/16H/16F
M ITRONZ2.01 SPECIFICATIONS COMPLIANT

SOFTUNE REALOS/907
ANALYZER MANUAL

July 1999 the first edition

Published FUJITSU LIMITED Electronic Devices

Edited Technical Communication Dept.

P
FUJITSU

FUJITSU SEMICONDUCTOR F2MC-16L/16LX/16/16H/16F M ITRON2.01 SPECIFICATIONS COMPLIANT SOFTUNE REALOS/907 ANALYZER MANUAL

