
FUJITSU SEMICONDUCTOR
CONTROLLER MANUAL

FR FAMILY  F2MC FAMILY
32/16/8-BIT MICROCONTROLLER

SOFTUNE Workbench
        USER'S MANUAL

CM81-00306-2E





FUJITSU LIMITED

FR FAMILY  F2MC FAMILY
32/16/8-BIT MICROCONTROLLER

SOFTUNE Workbench
        USER'S MANUAL





1. The contents of this document are subject to change without notice.  Customers are advised to consult
with FUJITSU sales representatives before ordering.

2. The information and circuit diagrams in this document are presented as examples of semiconductor
device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is
unable to assume responsibility for infringement of any patent rights or other rights of third parties
arising from the use of this information or circuit diagrams.

3. The contents of this document may not be reproduced or copied without the permission of FUJITSU
LIMITED.

4. FUJITSU semiconductor devices are intended for use in standard applications (computers, office
automation and other office equipments, industrial, communications, and measurement equipments,
personal or household devices, etc.).
CAUTION:
Customers considering the use of our products in special applications where failure or abnormal
operation may directly affect human lives or cause physical injury or property damage, or where
extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls,
sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to
consult with FUJITSU sales representatives before such use. The company will not be responsible for
damages arising from such use without prior approval.

5. Any semiconductor devices have inherently a certain rate of failure.  You must protect against injury,
damage or loss from such failures by incorporating safety design measures into your facility and
equipment such as redundancy, fire protection, and prevention of over-current levels and other
abnormal operating conditions.

6. If any products described in this document represent goods or technologies subject to certain
restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior
authorization by Japanese government should be required for export of those products from Japan.

©1999 FUJITSU LIMITED Printed in Japan



i

PREFACE

What is SOFTUNE WORKBENCH?

SOFTUNE WORKBENCH is a software program supporting a global development

environment for Fujitsu microcontrollers (FR Family, FFMC-16 Family and FF MC-

8L Family).

Construction

This manual contains the following chapters.

Chapter 1  MCU Common Functions
This chapter describes the functions common to all MCUs.

Chapter 2  FR Family
This chapter describes the functions dependent on the FR family dependent
functions.

Chapter 3  FFMC-16 Family
This chapter describes the functions dependent on the FFMC-16 family dependent
functions.

Chapter 4  FFMC-8L Family

This chapter describes the functions dependent the FFMC-8L family dependent

functions.



ii



iii

Table of Contents

Chapter 1  MCU Common Functions ....................................................................... 1

1.1 Project Management Function .....................................................................................2

1.2 Make/Build Function ....................................................................................................3

1.3 Include Dependencies Analysis Function .....................................................................4

1.4 Functions for Setting Tool Options...............................................................................5

1.5 Error Jump Function ....................................................................................................6

1.6 Editor Functions ..........................................................................................................8

1.7 Setting External Editor.................................................................................................9

1.8 Setting External Tool ................................................................................................. 11

1.9 Setting Operating Environment.................................................................................. 13

1.10 Debugger Types ........................................................................................................ 15

1.11 Memory Operation Functions..................................................................................... 16

1.12 Register Operations................................................................................................... 17

1.13 Line Assembly and Disassembly................................................................................ 18

1.14 Symbolic Debugging.................................................................................................. 19

1.14.1 Referring to Local Symbols ............................................................................................. 21

1.14.2 Referring to C Variables .................................................................................................. 22

Chapter 2  FR Family .............................................................................................. 25

2.1 Simulator................................................................................................................... 27

2.1.1 Instruction Simulation ......................................................................................................... 28

2.1.2 Memory Simulation............................................................................................................. 29

2.1.3 I/O Port Simulation ............................................................................................................. 30

2.1.4 Interrupt Simulation ............................................................................................................ 31

2.1.5 Reset Simulation ................................................................................................................ 32

2.1.6 Power-Save Consumption Mode Simulation........................................................................ 33

2.2 Emulator.................................................................................................................... 34

2.2.1 Setting Operating Environment ........................................................................................... 35

2.2.1.1 MCU Operation Mode...................................................................................................... 36

2.2.1.2 DRAM Refresh Control .................................................................................................... 37

2.2.1.3 Cache Flash Control........................................................................................................ 38

2.2.1.4 Auto-wait Control ............................................................................................................ 39

2.2.2 Notes on Executing Program .............................................................................................. 40

2.2.3 Command Execution while Executing Program ................................................................... 41

2.3 Monitor Debugger...................................................................................................... 42

2.3.1 Resources Used by Monitor Program.................................................................................. 43



iv

2.4 Suspension of Program Execution (SIM, EML, MON)................................................... 44

2.4.1 Software Breaks (EML, MON) ............................................................................................... 46

2.4.2 Hardware Breaks (EML) ........................................................................................................ 47

2.4.3 Code Event Breaks (EML) ..................................................................................................... 48

2.4.4 Data Event Breaks (EML) ...................................................................................................... 49

2.4.5 Trace Buffer Full Break (EML) ............................................................................................... 50

2.4.6 Alignment Error Break (EML) ................................................................................................ 51

2.4.7 External Trigger Break (EML) ................................................................................................ 52

2.4.8 Break Points (SIM) ................................................................................................................ 53

2.4.9 Data Break Points (SIM) ........................................................................................................ 54

2.4.10 Guarded Access Breaks (SIM) ............................................................................................... 56

2.4.11 Task Dispatch Break (SIM, EML, MON).................................................................................. 57

2.4.12 System Call Break (SIM, EML, MON) .................................................................................... 58

2.4.13 Forced Break (SIM, EML, MON) ............................................................................................ 59

2.5 Analyzing Program Execution (SIM, EML, MON).......................................................... 60

2.5.1 Trace (SIM, EML) .................................................................................................................. 61

2.5.2 Trace Data (SIM, EML) ......................................................................................................... 62

2.5.3 Tracing Function (SIM, EML) ................................................................................................. 63

2.5.4 Setting Trace (SIM, EML) ...................................................................................................... 64

2.5.5 Displaying Trace Data (SIM, EML) ........................................................................................ 65

2.5.6 Display Format of Trace Data (SIM, EML) ............................................................................. 66

2.5.7 Searching Trace Data (SIM, EML) ......................................................................................... 67

2.5.8 Clearing Trace Data (SIM, EML) ............................................................................................ 68

2.5.9 Notes on Use of Tracing Function (SIM, EML) ....................................................................... 69

2.5.10 Task Trace (SIM, EML, MON) ............................................................................................... 71

2.5.11 Task Trace Data (SIM, EML, MON) ....................................................................................... 72

2.5.12 Task Trace Function (SIM, EML, MON) ................................................................................. 73

2.5.13 Setting Task Trace (SIM, EML, MON) ................................................................................... 74

2.5.14 Clearing Task Trace Data (SIM, EML, MON) ......................................................................... 75

2.5.15 Measuring Execution Time (EML)........................................................................................... 76

2.5.16 Measuring Execution Time (SIM)............................................................................................ 77

2.5.17 Measuring Execution Time (MON).......................................................................................... 78

Chapter 3  FFMC-16 Family....................................................................................... 79

3.1 Simulator......................................................................................................................... 81

3.1.1 Instruction Simulation ............................................................................................................ 82

3.1.2 Memory Simulation ................................................................................................................ 83

3.1.3 I/O Port Simulation ................................................................................................................ 84

3.1.4 Interrupt Simulation................................................................................................................ 85

3.1.5 Reset Simulation.................................................................................................................... 86

3.1.6 Power-Save Consumption Mode Simulation ........................................................................... 87



v

3.2 Emulator.......................................................................................................................... 88

3.2.1 Setting Operating Environment .............................................................................................. 89

3.2.1.1 MCU Operation Mode......................................................................................................... 90

3.2.1.2 Debug Area........................................................................................................................ 92

3.2.1.3 Memory Area Types ........................................................................................................... 93

3.2.1.4 Memory Mapping ............................................................................................................... 95

3.2.1.5 Timer Minimum Measurement Unit..................................................................................... 97

3.2.2 Notes on Commands for Executing Program ......................................................................... 98

3.2.3 On-the-fly Executable Commands.........................................................................................100

3.2.4 On-the-fly Memory Access....................................................................................................102

3.2.5 Events ..................................................................................................................................104

3.2.5.1 Operation in Normal Mode ................................................................................................106

3.2.5.2 Operation in Multitrace Mode.............................................................................................108

3.2.5.3 Operation in Performance Mode........................................................................................110

3.2.6 Control by Sequencer ...........................................................................................................112

3.2.6.1 Setting Sequencer .............................................................................................................113

3.2.6.2 Break by Sequencer ..........................................................................................................115

3.2.6.3 Trace Sampling Control by Sequencer...............................................................................116

3.2.6.4 Time Measurement by Sequencer .....................................................................................118

3.2.6.5 Sample Flow of Time Measurement by Sequencer.............................................................119

3.2.7 Real-time Trace....................................................................................................................121

3.2.7.1 Function of Single Trace....................................................................................................123

3.2.7.2 Setting Single Trace ..........................................................................................................125

3.2.7.3 Multitrace Function............................................................................................................127

3.2.7.4 Setting Multitrace ..............................................................................................................129

3.2.7.5 Displaying Trace Data Storage Status ...............................................................................131

3.2.7.6 Specifying Displaying Trace Data Start..............................................................................132

3.2.7.7 Display Format of Trace Data............................................................................................133

3.2.7.8 Reading Trace Data On-the-fly ..........................................................................................136

3.2.8 Measuring Performance........................................................................................................138

3.2.8.1 Performance Measurement Procedures .............................................................................139

3.2.8.2 Displaying Performance Measurement Data ......................................................................141

3.2.9 Measuring Coverage.............................................................................................................142

3.2.9.1 Coverage Measurement Procedures ..................................................................................143

3.2.10 Measuring Execution Time Using Emulation Timer ...............................................................145

3.2.11 Sampling by External Probe..................................................................................................146

3.3 Monitor Debugger .......................................................................................................... 148

3.3.1 Resources Used by Monitor Program....................................................................................149

3.4 Abortion of Program Execution (SIM, EML, MON) ......................................................... 150

3.4.1  Instruction Execution Breaks (SIM, EML) .............................................................................151

3.4.2 Data Access Breaks (SIM, EML) ..........................................................................................153

3.4.3 Software Break (MON)..........................................................................................................154

3.4.4 Sequential Break (EML) .......................................................................................................155



vi

3.4.5 Guarded Access Breaks (SIM) ............................................................................................ 156

3.4.6 Trace-Buffer-Full Break (SIM, EML) ..................................................................................... 157

3.4.7 Performance-Buffer-Full Break (EML) .................................................................................. 158

3.4.8 Task Dispatch Break (SIM, EML, MON) ............................................................................... 159

3.4.9 System Call Break (SIM, EML, MON) ............................................................................... 160

3.4.10 Forced Break (SIM, EML) ................................................................................................. 161

Chapter 4  FFMC-8L Family..................................................................................... 163

4.1 Simulator....................................................................................................................... 164

4.1.1 Instruction Simulation .......................................................................................................... 165

4.1.2 Memory Simulation .............................................................................................................. 166

4.1.3 I/O Port Simulation .............................................................................................................. 167

4.1.4 Interrupt Simulation.............................................................................................................. 168

4.1.5 Reset Simulation.................................................................................................................. 169

4.1.6 Power-Save Consumption Mode Simulation ......................................................................... 170

4.2 Emulator........................................................................................................................ 171

4.2.1 Setting Operating Environment ............................................................................................ 172

4.2.1.1 MCU Operation Mode ....................................................................................................... 173

4.2.1.2 Operation Made with Piggy back/Evaluation Chip ............................................................. 174

4.2.1.3 Memory Area Types.......................................................................................................... 175

4.2.1.4 Memory Mapping.............................................................................................................. 176

4.2.1.5 Timer Minimum Measurement Unit ................................................................................... 178

4.2.2 On-the-fly Executable Commands........................................................................................ 179

4.2.3 On-the-fly Memory Access ................................................................................................... 181

4.2.4 Events ................................................................................................................................. 183

4.2.5 Control by Sequencer........................................................................................................... 184

4.2.6 Real-time Trace ................................................................................................................... 185

4.2.7 Measuring Performance ...................................................................................................... 186

4.2.8 Measuring Coverage ............................................................................................................ 187

4.2.9 Measuring Execution Time Using Emulation Timer............................................................... 188

4.2.10 Sampling by External Probe................................................................................................. 189

4.3 Monitor Debugger.......................................................................................................... 190

4.4 Abortion of Program Execution (SIM, EML) ................................................................... 191

4.4.1 Instruction Execution Breaks (SIM, EML).............................................................................. 192

4.4.2 Data Access Breaks (SIM, EML) ......................................................................................... 194

4.4.3 Sequential Break (EML) ...................................................................................................... 195

4.4.4 Guarded Access Breaks (SIM, EML) ................................................................................... 196

4.4.5 Trace-Buffer-Full Break (SIM, EML) ..................................................................................... 197

4.4.6 Performance-Buffer-Full Break (EML) .................................................................................. 198

4.4.7 Task Dispatch Break (SIM, EML) ......................................................................................... 199

4.4.8 System Call Break (SIM, EML) ............................................................................................ 200

4.4.9 Forced Break (SIM, EML) .................................................................................................... 201





1

  

Chapter 1  MCU Common Functions

This chapter describes the functions common to the FR, FFMC-16, and FFMC-8L
families.

1.1 Project Management Function

1.2 Make/Build Function

1.3 Include Dependencies Analysis Function

1.4 Functions for Setting Tool Options

1.5 Error Jump Function

1.6 Editor Functions

1.7 Setting External Editor

1.8 Setting External Tool

1.9 Setting Operating Environment

1.10 Debugger Types

1.11 Memory Operation Functions

1.12 Register Operations

1.13 Line Assembly and Disassembly

1.14 Symbolic Debugging

1.14.1 Referring to Local Symbols

1.14.2 Referring to C Variables



2

  

1.1  Project Management Function

This section describes the project management function in SOFTUNE WORKBENCH.

Project

SOFTUNE WORKBENCH processes and manages jobs in projects.  A project has all data such as

the files and procedures required for generating a target file.  All the data managed by the

project is stored in the project file.

Project Management Function

The project manages all information for developing a micro-controller system, particularly, the

most important function of the project is managing the information required to generate a

target file.

The project manages the following information:

- Target file name and directory

- Information on constituent source files, include files, other object files, library files

- Information on options for language tools used for compiling/assembling and linking

source files when generating target file

- Debugger setup information required to debug target file



3

  

1.2  Make/Build Function

This section describes the SOFTUNE WORKBENCH Make/Build function.

Make Function

Make function generates a target file by compiling/assembling only updated source files from

all source files registered in a project, and then joining all required object files.

This function allows compiling/assembling only the minimum of required files. The time

required for generating a target file can be sharply reduced, especially, when debugging.

For this function to work fully, the dependence between source files and include files should be

accurately grasped.  To do this, SOFTUNE WORKBENCH has a function for analyzing include

dependence.  For further details, see Section 1.3 Include Dependencies Analysis Function.

Build Function

Build function generates a target file by compiling/assembling all source files registered with a

project, regardless of whether they have been updated or not, and then by joining all required

object files.  Using this function causes all files to be compiled/assembled, resulting in the time

required for generating the target file longer.  Although the correct target file can be generated

from the current source files.

The execution of Build function is recommended after completing debugging at the final stage

of program development.

<Note>

When executing the Make function using a source file restored from backup, the integrity between an object file

and a source file may be lost.  If this happens, executing  the Build function again.



4

  

1.3  Include Dependencies Analysis Function

This section describes the function of the Include Dependencies Analysis.

Analyzing Include Dependencies

A source file usually includes some include files.  When only an include file has been modified

leaving a source file unchanged, SOFTUNE WORKBENCH cannot execute the Make function unless it

has accurate and updated information about which source file includes which include files.

For this reason, SOFTUNE WORKBENCH has a built-in Include Dependencies Analysis function.

This function can be activated by selecting the [Project] -[Include Dependencies] command.

By using this function, uses can know the exact dependencies, even if an include file includes

another include file.

SOFTUNE WORKBENCH automatically updates the dependencies of the compiled/assembled files.

<Note>

When executing the [Project] - [Include Dependencies] command, the Output window is redrawn and replaced by

the dependencies analysis result.

If the contents of the current screen are important (error message, etc.), save the contents to a file and then

execute the Include Dependencies command.



5

  

1.4  Functions for Setting Tool Options

This section describes the functions to set options for the language tools activated from
SOFTUNE WORKBENCH.

Setting Tool Options

Options for language tools such as a compiler, assembler and linker, must be defined to use

these tools to generate the required target file.  In SOFTUNE WORKBENCH, the options for each tool

are registered and managed with a project.

There are two types of option settings:  setting options valid for all source files, and setting

options valid for a specific source file (Individual Option Setup).

- Setting options valid for all source files

Options that are set using the [Project] - [Setup Tool Option] command are valid for all

source files registered with a project.

- Individual Option Setup

The valid compile/assemble options can be set only for a specific source file by right-

clicking a registered source file name in the Project window to view the short-cut menu,

and then selecting the [Setup Tool Option] - [Individual Option Setup] command.

Tool Options

For further details on options available for each tool, please refer to the manual for each tool.

Reference Section

Setup Tool Option

Individual Option Setup

Development Environment



6

  

1.5  Error Jump Function

This section describes the error jump function in SOFTUNE WORKBENCH.

Error Jump Function

When an error, such as a compile error occurs, double-clicking the error message in the Output

window opens the source file where the error occurred and automatically moves the cursor to

the error line.  This function permits efficient removal of compile errors, etc.

The SOFTUNE WORKBENCH Error Jump function analyzes the source file names and line number

information embedded in the error message displayed in the Output window, opens the

matching file, and jumps automatically to the line.

The location where a source file name and line number information are embedded in an error

message, varies with the tool outputting the error.

An error message format can be added to an existing one or modified into an new one.

However, the modify error message formats for pre-installed Fujitsu language tools are defined

as part of the system, these can not be modified.

A new error message format should be added when working the Error Jump function with user

registed.  To set Error Jump, execute the [Setup] - [Error]  command.

Syntax

An error message format can be described in Syntax.  SOFTUNE WORKBENCH uses macro

descriptions as shown in the Table 1-5-1  to define such formats.

To analyze up to where %f, %h, and %* continue, SOFTUNE WORKBENCH uses the character

immediately after the above characters as a delimiter.  Therefore, the description until a

character that is used as a delimiter re-appears, is interpreted as a file name or a keyword for

help, or is skipped over.   To use % as a delimiter, describe as %%.  The %[char] macro skips

over as long as the specified character continues in parentheses.  To specify "]" as a skipped

character to be skipped, describe it as "\]".  Blank characters in succession can be specified

with a single blank character.



7

Table 1-5-1  Special Characters for Analyzing Error Messages

Characters Semantics

%f Interpret as source file name and inform editor.

%1 Interpret as line number and inform editor.

%h Become keyword when searching help file.

%* Skip any desired character.

%[char] Skip as long as characters in [ ] continues.

[Example]

*** %f(%l) %h: or, %[*] %f(%l) %h:

The first four characters are "*** ", followed by the file name and parenthesized page

number, and then the keyword for help continues after one blank character.

This represents the following message:

*** C:\Sample\sample.c(100) E4062C:  Syntax Error:  near /int.

Reference Section

Setup Error Jump



8

  

1.6  Editor Functions

This section describes the functions of the SOFTUNE WORKBENCH built-in standard editor.

Standard Editor

SOFTUNE WORKBENCH has a built-in editor called the standard editor.  The standard editor is

activated as the Edit window in SOFTUNE WORKBENCH.  As many Edit windows as are required

can be opened at one time.

The standard editor has the following functions in addition to regular editing functions.

- Keyword marking function in C/C++/assembler source file

Displays reserved words, such as if and for, in different color

- Error line marking function

The error line can be viewed in a different color, when executing Error Jump.

- Tag setup function

A tag can be set on any line, and instantaneously jumps to the line.  Once a tag is set,

the line is displayed in a different color.

- Ruler, line number display function

The Ruler is a measure to find the position on a line; it is displayed at the top of

the Edit window.  A line number is displayed at the left side of the Edit window.

- Automatic indent function

When a line is inserted using the Enter key, the same indent as the preceding line is

set automatically at the inserted line.  If the space or tab key is used on the preceding

line, the same use is set at the inserted line as well.

- Function to display, Line Feed code, and Tab code

When a file includes a Line Feed code, and Tab code, these codes are displayed with

special symbols.

- Undo function

This function cancels the preceding editing action to restore the previous state.  When

more than one character or line is edited, the whole portion is restored.

- Tab size setup function

Tab stops can be specified by defining how many digits to skip when Tab codes are

inserted.  The default is 8.

- Font changing function

The font size for characters displayed in the Edit window can be selected.

Reference section

Edit Window (The Standard Editor)



9

  

1.7  Setting External Editor

This section describes the function to set an external editor in SOFTUNE WORKBENCH.

External Editor

SOFTUNE WORKBENCH has a built-in standard editor, and use of this standard editor is

recommended.  However, another accustomed editor can be used, with setting it, instead of an

edit.  There is no particular limit on which editor can be set, but some precautions (below) may

be necessary.  Use the [Setup] - [Editor] command to set an external editor.

Precautions

- Error jump function

The Error Jump cannot move the cursor to an error line if the external editor does not

have a function to specify the cursor location when activated.

- File save at compiling/assembling

SOFTUNE WORKBENCH cannot control an external editor.  Always save the file you are

editing before compiling/assembling.

Setting Options

When activating an external editor from SOFTUNE WORKBENCH, options must be added

immediately after the editor name.  The names of file to be opened by the editor and the initial

location of the cursor (the line number). can be specified.  SOFTUNE WORKBENCH has a set of

special parameters for specifying any file name and line number, as shown in the Table 1-7-1.

If any other character are described by these parameters, such character are passed as is to the

editor.

%f (File name) is determined as follows:

(1) If the focus is on the Project window, and if a valid file name is selected, the selected

file name becomes the file name.

(2) When a valid file name cannot be acquired by the above procedure, the file name with

a focus in the built-in editor becomes the file name.

Also filenames cannot be given double-quotes in the expansion of %f macros.

Therefore, it is necessary for you to provide double-quotes for %f.  Depending on the editor,

there are line numbers to which there will be no correct jump if the entire option is not given

double-quotes.



10

Table 1-7-1  Parameters Used in Option Setups (For External Editors)

Parameter Semantics

%% Means specifying % itself

%f Means specifying file name

%l Means specifying line number

%x Means specifying project path

Reference Section

Editor Setup

Example of Optional Settings

Examples. Editor name            :  Argument

       (A) WZ Editor V4.0       :  %f --j%l

       (B) MIFES V1.0          :  %f /j%l

       (C) UltraEdit32           :  %f/%l/1

       (D) TextPad32            :  %f(%l)

       (E) PowerEDITOR        :  %f -g%l

       (F) Codewright32         :  %f -g%l

       (G) Hidemaru for Win3.1/95 :  /j%l:1 %f

Note:  Regarding execution of error jump in Hidemaru:

 To execute error jump in Hidemaru used as an external editor, use the [Others] - [Operating Environment] -

[Exclusive Control] command, and then set "When opening the same file in Hidemaru" and "Opening two

identical files is inhibited".



11

  

1.8  Setting External Tool

This section describes the SOFTUNE WORKBENCH function to set an external tool.

External Tools

A non-standard tool not attached to SOFTUNE WORKBENCH can be used by setting it as an external

tool and by calling it from SOFTUNE WORKBENCH.  Use this function to coordinate with Microsoft's

Visual SourceSafe, a source file version control tool.  For further details on coordination with

Visual SourceSafe, see "Coordination with source file version control tools".

If a tool set as an external tool is designed to output the execution result to the standard output

and the standard error output through the console application, the result can be specified to the

SOFTUNE WORKBENCH Output window.  In addition, the allow description of additional

parameters each time the tool is activated.

To set an external tool, use the [Setup] - [Tool] command.

To select the title of a set tool, use the [Setup] - [Activating Tool] command.

Setting Options

When activating an external tool from SOFTUNE WORKBENCH, options must be added immediately

after the tool name.  Specify the file names, and unique options, etc.

SOFTUNE WORKBENCH has a set of special parameters for specifying any file name and unique tool

options (Table 1-8-1).

If any characters described other than these parameters, such characters are passed as is to the

external tool.

%f (File name) is determined as follows:

(1) If the focus is on the Project window, and if a valid file name is selected, the selected

file name becomes the file name.

(2) When a valid file name cannot be acquired by the above procedure, the file name

having a focus in the built-in editor becomes the file name.

Precautions

When checking [Use the Output window], note the following:

- Once a tool is activated, neither other tools nor the compiler/assembler can be

activated until the tool is terminated.

- The Output window must not be used with a tool using a wait state for user input

while the tool is executing.  The user can not perform input while the Output window

is in use, so the tool cannot be terminated.

To forcibly terminate the tool, select the tool on the Task bar and input Control - C,

or Control - Z.



12

Table 1-8-1  Parameters in Option Setups (External Tools)

Parameter Semantics

%f Means file name

%F Means main file name of file

%d Means file path

%e Means file extension

%a Means target file name of Project

%A Means main file name of target file name of Project

%D Means path of target file of Project

%E Means extension of Project target file

%x Means project path.

%X Means Project main file name

%% Means % itself

[Example]  Macro Expansion Example

If the target file name is c:  \Sample\target.abs, macro expanded as follows:

%a:  c:\Sample\target.abs

%A:  target.abs

%D:  c:\Sample\

%E:  .abs

Reference Section

Setting Tools

Start an External Tool



13

  

1.9  Setting Operating Environment

This section describes the functions for setting the SOFTUNE WORKBENCH operating
environment.

Operating Environment

Set the environment variables for SOFTUNE WORKBENCH and some basic items for the Project.

To set the operating environment, use the [Setup]-[Development]  command.

- Environment Variables

Environment variables are variables that are referred to mainly using the language

tools activated from SOFTUNE WORKBENCH.  The semantics of an environment variable are

displayed in the lower part of the Setup dialog.  However, the semantics are not

displayed for environment variables used by tools added later to SOFTUNE WORKBENCH.

When SOFTUNE WORKBENCH and the language tools are installed in a same directory, it is

not especially necessary to change the environment variable setups.

- Basic setups for Project

The following setups are possible.

- Open the previously worked-on Project at start up

When starting SOFTUNE WORKBENCH, it automatically opens the last worked-on

Project.

- Display options while compiling/assembling

Compile options or assemble options can be viewed in the Output window.

- Save dialog before closing Project

Before closing the Project, a dialog asking for confirmation of whether or not to

save the Project to the file is displayed.  If this setting is not made, SOFTUNE

WORKBENCH automatically saves the Project without any confirmation message.

- Save dialog before compiling/assembling

Before compiling/assembling, a dialog asking for confirmation of whether or not to

save a source file that has not been saved is displayed.  If this setting is not made,

the file is saved automatically before compile/assemble/make/build.



14

Reference Section

Development Environment

<Note>

Because the environment variables set here are language tools for the SOFTUNE WORKBENCH, the environment

variables set on previous versions of SOFTUNE cannot be used.  In particular, add the set values of [User Include

Directory] and [Library Search Directory] to [Tool Options Settings].



15

  

1.10  Debugger Types

This section describes the functions of SOFTUNE WORKBENCH debuggers.

Debug Function

SOFTUNE WORKBENCH integrates three types of debugger:  a simulator debugger, emulator

debugger, and monitor debugger.  Any one can be selected depending on the requirement.

Simulator Debugger

The simulator debugger simulates the MCU operations (executing instructions, memory space,

I/O ports, interrupts, reset, etc.) with software to evaluate a program.

It is used for evaluating an uncompleted system and operation of individual units, etc.

Emulator Debugger

The emulator debugger is software to evaluate a program by controlling an In-Circuit Emulator

(ICE) from a host through a communications line (RS-232C, LAN).

Before using this debugger, the ICE must be initialized.

Monitor Debugger

The monitor debugger evaluates a program by putting it into an evaluation system and by

communicating with a host.  An RS-232C interface and an area for the debug program are

required within the evaluation system.

For further information on the MCU-related items, see Chapter 2 and later in this manual.



16

  

1.11  Memory Operation Functions

This section describes the memory operation functions.

Functions for Memory Operations

- Display/Modify memory data

Memory data can be display in the Memory window and modified.

- Fill

The specified memory area can be filled with the specified data.

- Copy

The data in the specified memory area can be copied to another area.

- Compare

The data in the specified source area can be compared with data in the destination

area.

- Search

Data in the specified memory area can be searched.

For further details of the above functions, refer to the Operation Manual 3.11  Memory

Window .

- Display/Modify C/C++ variables

The names of variables in a C/C++ source file can be displayed in the Watch window

and modified.

- Setting Watch point

By setting a watch point at a specific address, its data can be displayed in the Watch

window.

For further details of the above functions, refer to the Operation Manual 3.13  Watch Window .



17

  

1.12  Register Operations

This section describes the register operations.

Register Operations

The Register window is opened when the [View] - [Register] command is executed.  The

register and flag values can be displayed in the Register window.

For further details about modifying the register value and the flag value, refer to the Operation

Manual  4.4.4 Register.

The name of the register and flag varies depending on each MCU in use.  For the list of

register names and flag names for the MCU in use, refer to the Operational Manual Appendix.

Reference Section

Register Window



18

  

1.13  Line Assembly and Disassembly

This section describes line assembly and disassembly.

Line Assembly

To perform line-by-line assembly (line assembly), right-click anywhere in the Disassembly

window to display the short-cut menu, and select [Line Assembly].  For further details about

assembly operation, refer to the Operation Manual  4.4.3  Assembly.

Disassembly

To display disassembly, use the [View]-[Disassembly] command.  By default, disassembly can

be viewed starting from the address pointed by the current program counter (PC).  However,

the address can be changed to any desired address at start-up.

Disassembly for an address outside the memory map range cannot be displayed.  If this is

attempted, "???" is displayed as the mnemonic.

Reference Section

Disassembly Window



19

  

1.14  Symbolic Debugging

The symbols defined in a source program can be used for command parameters
(address).  There are three types of symbols as follows:

- Global Symbol
- Static Symbol within Module (Local Symbol within Module)
- Local Symbol within Function

Types of Symbols

A symbol means the symbol defined while a program is created, and it usually has a type.

Symbols become usable by loading the debug information file.

There are three types of symbols as follows:

- Global symbol

A global symbol can be referred to from anywhere within a program.  In C/C++,

variables and functions defined outside a function without a static declaration are in

this category.  In assembler, symbols with a PUBLIC declaration are in this category.

- Static symbol within module (Local symbol within module)

A static symbol can be referred to only within the module where the symbol is defined.

In C/C++, variables and functions defined outside a function with a static

declaration are in this category.  In assembler, symbols without a PUBLIC declaration

are in this category.

- Local symbol within function

A local symbol within a function exists only in C/C++.  A static symbol within a

function and an automatic variable are in this category.

- Static symbol within function

Out of the variables defined in function, those with static declaration.

- Automatic variable

Out of the variables defined in function, those without static declaration and

parameters for the function.

Setting Symbol Information

Symbol information in the file is set with the symbol information table by loading a debug

information file.  This symbol information is created for each module.

The module is constructed for each source file to be compiled in C/C++, in assembler for each

source file to be assembled in assembler.

The debugger automatically selects the symbol information for the module to which the PC

belongs to at abortion of execution (Called "the current module").  A program in C/C++ also has

information about which function the PC belongs to.



20

Line Number Information

Line number information is set with the line number information table in SOFTUNE WORKBENCH

when a debug information file is loaded.  Once registered, such information can be used at

anytime thereafter.  Line number is defined as follows:

[Source File Name] $Line Number



21

  

1.14.1  Referring to Local Symbols

This section describes referring to local symbols and Scope.

Scope

When a local symbol is referred to, Scope is used to indicate the module and function to which

the local symbol to be referred belongs.

SOFTUNE WORKBENCH automatically scopes the current module and function to refer to local

symbols in the current module with preference.   This is called the Auto-scope function, and

the module and function currently being scoped are called the Current Scope.

When specifying a local variable outside the Current Scope, the variable name should be

preceded by the module and function to which the variable belongs.  This method of specifying

a variable is called a symbol path name or a Search Scope.

Moving Scope

As explained earlier, there are two ways to specify the reference to a variable:  by adding a

Search Scope when specifying the variable name, and by moving the Current Scope to the

function with the symbol to be referred to.  The Current Scope can be changed by displaying

the Call Stack dialog and selecting the parent function.  For further details of this operation,

refer to the Operation Manual 4.6.7 Stack .  Changing the Current Scope  as described above

does not affect the value of the PC.

By moving the current scope in this way, you can search a local symbol in parent function with

precedence.

Specifying Symbol and Search Procedure

A symbol is specified as follows:

[ [Module Name] [\Function Name] \] Symbol Name

When a symbol is specified using the module and function names, the symbol is searched.

However, when only the symbol name is specified, the search is made as follows:

- Local symbols in function in Current Scope

- The class member which can access with the this pointer

- Static symbols in module in Current Scope

- Global symbols

If a global symbol has the same name as a local symbol in the Current Scope, specify "\" at the

start of global symbol.  By doing so, you can explicitly show that is a global symbol.

An automatic variable can be referred to only when the variable is in memory.  Otherwise,

specifying an automatic variable causes an error.



22

  

1.14.2  Referring to C/C++ Variables

C/C++ variables can be specified using the same descriptions as in the source program
written in C/C++

Specifying C/C++ Variables

C/C++ variables can be specified using the same descriptions as in the source program.  The

address of C/C++ variables should be preceded by the ampersand symbol "&".  Some examples

are shown in the Table 1-14-1.

Table 1-14-1  Examples of Specifying Variables

Example of Variables Example of Semantics

Specifying

Variables

Regular Variable int  data; data Value of data

Pointer char  *p; *p Value pointed to by p

Array char  a[5]; a[l] Value of second element of a

Structure struct stag{ st.c Value of member c of st

  char  c; stp->c Value of member c of the

     int   i; structure to which stp points

};

struct stag st;

struct stag *stp;

Union union utag{ uni.i Value of member i of uni

  char  c;

  int  i;

}uni;

Address of variable int  data; &data Address of data

Reference type ini  i; ri Same as i

variables int  &ri = i; cls.i Value of member i of class X

class class X { X::i Same as cls.i

      static int i;

}cls;

int X::i;

Member pointer class class X{ clo.*ps Same as clo.cs

      short cs; clp->*ps Same as clp->cs

}clo;

short X::* ps = &X::cs;



23

Notes on C/C++ Symbols

The C/C++ compiler outputs symbol information with "_" prefixed to global symbols.  For

example, the symbol main outputs symbol information _main.  However, SOFTUNE WORKBENCH

permits access using the symbol name described in the source to make program debugging

easier.

Consequently, a symbol name described in C/C++ and a symbol name described in assembler,

which should both be unique, may be identical.

In such a case, the symbol name in the Current Scope normally is preferred.  To refer to a

symbol name outside the Current Scope, specify the symbol with the module name.

If there are duplicated symbols outside the Current Scope, the symbol name searched first

becomes valid. To refer to another one, specify the symbol with the module name.



24



25

  

Chapter 2  FR Family

This chapter describes functions dependent on the FR family MCUs

2.1 Simulator

2.1.1 Instruction Simulation

2.1.2 Memory Simulation

2.1.3 I/O Port Simulation

2.1.4 Interrupt Simulation

2.1.5 Reset Simulation

2.1.6 Power-Save Consumption Mode Simulation

2.2 Emulator

2.2.1 Setting Operating Environment

2.2.1.1 MCU Operation Mode

2.2.1.2 DRAM Refresh Control

2.2.1.3 Cache Flash Control

2.2.1.4 Auto-wait Control

2.2.2 Notes on Executing Program

2.2.3 Command Execution while Executing Program

2.3 Monitor Debugger

2.3.1 Resources Used by Monitor Program

2.4 Suspension of Program Execution (SIM, EML, MON)

2.4.1 Software Breaks (EML, MON)

2.4.2 Hardware Breaks (EML)

2.4.3 Code Event Breaks (EML)

2.4.4 Data Event Breaks (EML)

2.4.5 Trace Buffer Full Break (SIM, EML)

2.4.6 Alignment Error Break (EML)

2.4.7 External Trigger Break (EML)

2.4.8 Break Points (SIM)

2.4.9 Data Break Points (SIM)

2.4.10 Guarded Access Breaks (SIM)

2.4.11 Task Dispatch Break (SIM, EML, MON)

2.4.12 System Call Break (SIM, EML, MON)

2.4.13 Forced Break (SIM, EML)



26

2.5 Analyzing Program Execution (SIM, EML, MON)

2.5.1 Trace (SIM, EML)

2.5.2 Trace Data (SIM, EML)

2.5.3 Tracing Function (SIM, EML)

2.5.4 Setting Trace (SIM, EML)

2.5.5 Displaying Trace Data (SIM, EML)

2.5.6 Display Format of Trace Data (SIM, EML)

2.5.7 Searching Trace Data (SIM, EML)

2.5.8 Clearing Trace Data (SIM, EML)

2.5.9 Notes on Use of Tracing Function (SIM, EML)

2.5.10 Task Trace (SIM, EML, MON)

2.5.11 Task Trace Data (SIM, EML, MON)

2.5.12 Task Trace Function (SIM, EML, MON)

2.5.13 Setting Task Trace (SIM, EML, MON)

2.5.14 Clearing Task Trace Data (SIM, EML, MON)

2.5.15 Measuring Execution Time (EML)

2.5.16 Measuring Execution Time (SIM)

2.5.17 Measuring Execution Time (MON)



27

  

2.1  Simulator

This section describes the functions of the simulator for the FR Family

Simulator Debugger

The simulator debugger (later referred as simulator) simulates the MCU operations (executing

instructions, memory space, I/O ports, interrupts, reset, etc.) with software to evaluate a

program.

It is used to evaluate an uncompleted system, the operation of single units, etc.

Simulation Range

The simulator simulates the MCU operations (instruction operations, memory space, I/O ports,

interrupts, reset, low power-save mode, etc.) using software to execute operations.  It does not

support built-in resources and related registers not described in the manual.

- Instruction simulation

- Memory simulation

- I/O port simulation (Input port)

- I/O port simulation (Output port)

- Interrupt simulation

- Reset simulation

- Power-Save consumption mode simulation



28

  

2.1.1  Instruction Simulation

This section describes the instruction simulation executed by SOFTUNE WORKBENCH.

Instruction Simulation

This simulates the operations of all instructions supported by the FR Family.  It also simulates

the changes in memory and register values due to such instructions.



29

  

2.1.2  Memory Simulation

This section describes the memory simulation executed by SOFTUNE WORKBENCH.

Memory Simulation

The simulator must first secure memory space to simulate instructions because it simulates the

memory space secured in the host machine memory.

- To secure the memory area, either use the [Setup] - [Memory Map] command, or the

Set Map command in the Command window.

- Load the file output by the Linkage Editor (Load Module File) using either the [Debug]

- [Load target file] command, or the LOAD/OBJECT command in the Command window.

Simulation Memory Space

Memory space access attributes can be specified byte-by-byte using the [Setup] - [Memory Map]

command.  The access attribute of unspecified memory space is Undefined.

Memory Area Access Attributes

Access attributes for memory area can be specified as shown in Table 2.-1-1.  A guarded access

break occurs if access is attempted against such access attribute while executing a program.

When access is made by a program command, such access is allowed regardless of the attribute,

CODE, READ or WRITE.  However, access to memory in an undefined area causes an error.

Table 2-1-1 Types of Access Attributes

Attribute Semantics

CODE Instruction operation enabled

READ Data read enabled

WRITE Data write enabled

undefined Attribute undefined (access prohibited)



30

  

2.1.3  I/O Port Simulation

This section describes I/O port simulation executed by SOFTUNE WORKBENCH.

I/O Port Simulation (Input Port)

There are two types of simulations in I/O port simulation:  input port simulation, and output

port simulation.  Input port simulation has the following types:

- Whenever a program reads the specified port, data is input from the pre-defined data

input source.

- Whenever the instruction execution cycle count exceeds the specified cycle count, data

is input to the port.

To set an input port, use the [Setup] - [Debug Environment] - [I/O Port] command, or the Set

Inport command in the Command window.

Up to 16 port addresses can be specified for the input port.  The data input source can be a file

or a terminal.  After reading the last data from the file, the data is read again from the

beginning of the file.  If a terminal is specified, the input terminal is displayed at read access

to the set port.

A text file created by an ordinary text editor, or a binary file containing direct code can be used

as the data input file.  When using a text file, input the input data inside commas (,).  When

using a binary file, select the binary button in the input port dialog.

I/O Port Simulation (Output Port)

At output port simulation, whenever a program writes data to the specified port, writing is

executed to the data output destination.

To set an output port, either use the [Setup] - [Debug Environment] - [I/O Port] command,

or the Set Outport command in the Command window.

Up to 16 port addresses can be set as output ports.  Select either a file or terminal (Output

Terminal window) as the data output destination.

A destination file must be either a text file that can be referred to by regular editors, or a binary

file.  To output a binary file, select the Binary radio button in the Output Port dialog.



31

  

2.1.4  Interrupt Simulation

This section describes interrupt simulation executed by SOFTUNE WORKBENCH.

Interrupt Simulation

This simulates the MCU operation for an interrupt request.  The correspondence between the

cause of each interrupt and the interrupt control register is made by referring to the install file

read at simulator start-up.

The following types can be used to allow an interrupt to occur.

- When the instruction is executed as many cycles as the specified cycle count while

executing a program (executing execution commands), generate an interrupt

corresponding to the specified interrupt number to reset the interrupt generating

condition.

- Whenever the instruction executing cycle count exceeds the specified cycle, an

interrupt continues to be generated

The type of interrupt can be set using either the [Setup] - [Debug Environment] - [Interrupt]

command, or the Set Interrupt command in the Command window.  If an interrupt is

masked by an interrupt-enabled flag when the interrupt generating condition is met, the

interrupt is generated after resetting the mask.  When an interrupt is generated while

executing a program, an interrupt cause number is displayed on the Status Bar.

Furthermore, the simulator supports the MCU operation for interrupt requests for the

following exception processing.

- Executing undefined instruction



32

  

2.1.5  Reset Simulation

This section describes the reset simulation executed by SOFTUNE WORKBENCH.

Reset Simulation

The simulator simulates the MCU operation when a reset signal is input to the MCU by using

either the [Debug] - [Reset of MCU] command, or the Reset command in the Command window.

This initializes registers.



33

  

2.1.6  Power-Save Consumption Mode Simulation

This section describes the low power-save mode simulation executed by SOFTUNE

WORKBENCH.

Power-Save Consumption Mode Simulation

The MCU enters the power mode in accordance with the MCU instruction operation (Write to

SLEEP bit or STOP bit of standby control register).  Once in the sleep mode or stop mode, a

message ("sleep" for sleep mode, "stop" for stop mode) is displayed on the Status Bar.  The

loop keeps running until either an interrupt request is generated, or the [Run] - [Abort]

command is executed.  Each cycle of the loop increments the count by 1.  During this period,

I/O port processing can be operated.  Writing to the standby control register using a command

is not prohibited.



34

  

2.2  Emulator

This section describes the functions of the emulator for the FR family.

Emulator Debugger

The emulator debugger (lates referred as emulator) is software to evaluate a program by

controlling an ICE from a host via a communications line (RS-232C, LAN).

Before using this emulator, the ICE must be initialized.

For further details, refer to the Operation Manual Appendix B  Download Monitor Program ,

and Appendix C Setting LAN Interface.



35

  

2.2.1  Setting Operating Environment

This section describes how to set the emulator operating environment for the FR family.

Setting Operating Environment

Before using the emulator, the operating environment for the MCU operation mode, DRAM

refresh control and cache flush control must be set.  Each setting has a start default, so the

operating environment does not require setting when using the defaults.  In addition, specified

values can be used as defaults.

- MCU operation mode

- DRAM refresh control

- Cache flash control



36

  

2.2.1.1  MCU Operation Mode

The following four modes are in the MCU Operation Mode.  The Internal Trace Mode
and External Trace Mode are enabled only with products using the DSU3 chips.

- Full Trace Mode
- Full Real Time Mode
- Internal Trace Mode
- External Trace Mode

Setting MCU Operation Mode

Set the MCU operation mode.  There are two modes:  full trace, and full real-time.  To set the

operation mode, use either the [Setup] - [Debug Environment] - [Debug Environment]

command, or the Set RunMode command in the Command window.

Full Trace Mode

In the full trace mode, all instruction executions can be traced without omission.  However, if

branching occurs more than three times within 11 cycles, operations may not be real-time due

to the wait entered to MCU as acquiring the trace data is preceded.

Full Real-time Mode

In the full real-time mode, a program runs in real-time.  However, if branching occurs more

than three times within 11 cycles, some trace data may be omitted.

DSU3 chips may cause an error at cycle count measurement.  When measuring the cycle count,

use the internal or external trace mode.

Internal Trace Mode

Trace data is stored in the specialized trace memory built-in to the chip.  The program is

executed at real time, but this is possible only with DSU3 chips which include that function.

External Trace Mode

Trace data is stored in the specialized trace memory mounted on the adapter board.  The

program is executed at real time, but this is possible only with DSU3 chips which include that

function.



37

  

2.2.1.2  DRAM Refresh Control

This section describes setting the DRAM refresh in the emulator for the FR family.

DRAM Refresh Control

The operating frequency of some DSU chips is automatically divided at a break (in emulation

mode).  When this happens, the register (RFCR) must be reset if the built-in DRAM refresh

function is used on the user target.

The RFCR register values for On Execution (in user mode) and On Break (in emulation mode)

can be set by using the [Setup] - [Debug Environment]  - [Debug Environment] - [RFCR]

command.  When the mode is switched, the values set here are used to set to the RFCR register.

<Note>

When using chips with an operating frequency that is not divided automatically at a break (in emulation mode),

or when the built-in DRAM refresh function at the user target is not in use, this function causes a slowdown in

debugger operation due to writing to the RFCR register.



38

  

2.2.1.3  Cache Flash Control

This section describes setting the Cache Flash in the emulator for the FR family.

Cache Flash Control

When using a chip with cache memory, rewriting the memory and software break point setup

using commands is not reflected in the cache.   Therefore, cache flashing must be performed

when such commands are executed.  The debugger has a function to flush the cache

automatically, monitor memory rewriting, and set software break points, etc.

This function is controlled using the [Setup] - [Debug Environment] - [Debug Environment] -

[Emulation] command.

<Note>

When the automatic cache flashing option is enabled, it may negatively affect the program speed.



39

  

2.2.1.4  Auto-wait Control

This section explains the settings of the auto-wait function in the DSU3 chip for emulator
of the FR family.

Auto-wait Control

Wait has been added to the DSU3 chip for when the program is stopped.  This is an auto-wait

function for allowing access from the emulator even on chips that are operating at high speeds.

You can set the auto-wait count using this debugger.

This function is set using the [Environment] - [Debug Environment Setting] - [Debug

Environment] - [Auto-wait] commands.



40

  

2.2.2  Notes on Executing Program

There are several points to note about program execution commands in the emulator for
the FR family.

Real-Time Functionality in Running Program

When the MCU is in the full trace mode, there are some cases when a program cannot execute

in real-time.

The MCU operation mode can be set up by using either the [Setup] - [Debug Environment] -

[Emulation] command, or the Set Runmode command in the Command window.

Notes on Delayed Branch Instruction when executed using [Run] - [Step In] or  [Run] - [Step Over] command

If a delay branch instruction is executed by the [Run] - [Step In] command or [Run] - [Step

Over] command, the program runs past the instruction at the delay slot (instruction

immediately after delay branch instruction) and breaks immediately after executing the delay

branch instruction.

Restrictions when Suspended by Software Break  (EML, MON)

When there is a software break at the current PC location, if either the [Run] - [Go]  command

or the Go command is executed, the emulator performs one execution step internally, and then

executes the program in batch processing.  In addition, when a software break is set for the

instruction to clear the T-flag, and when either the [Run] - [Go] command or the Go command is

executed from that address, all software breaks are disregarded.  When this happens, any

interrupt is masked too.

Value of TBR Register

Note a program null-function may occur if you specify such value for the TBR register as the

vector table overlaps to the I/O area.

Notes on Instruction to Clear T-Flag when Executed using [Run] - [Step In] or [Run] - [Step Over] command

(EML, RDB)

If an instruction to clear the T-flag is executed using either the [Run] - [Step In] command, or

[Run] - [Step Over]  command, the program will be executed in batch processing.  When this

happens, all software breaks are ignored.



41

  

2.2.3  Command Execution while Executing Program

This section describes command execution while executing a program in the emulator
for the FR family.

Command Execution while Executing Program

When executing a program using the [Run] - [Go] command, the Status Bar displays "Execute"

to show that the program is running.

Certain commands can be executed in this circumstances (they vary with the type of debugger).

The execution procedures are the same, but some commands cannot be executed and some can

be executed but are subject to restrictions.

To forcibly terminate the program, use the [Run] - [Abort] command.

Note that in the emulator debugger, memory Read/Write is re-executed while executing a

program after permitting the MCU to break once for access.



42

  

2.3  Monitor Debugger

This section describes the functions of the monitor debugger for the FR family.

Monitor Debugger

The monitor debugger performs debugging by putting the target monitor program for

debugging into the target system and by communicating with the host.

Before using this debugger, the target monitor program must be ported to the target hardware.



43

  

2.3.1  Resources Used by Monitor Program

The monitor program of the monitor debugger uses the I/O resources listed below.  The
target hardware must have these resources available for the monitor program.

Required Resources

The following resources are required to build the monitor program into the target hardware.

1 UART Required For communication with host computer

4800/9600/19200/38400 baud

2 Monitor ROM Required About 6 KB required (For further details, see Link Map.)

3 Work RAM Required About 2 KB required (For further details, see Link Map.)

4 NMI Switch Optional Used for suspending program forcibly.  If not

implemented, forced termination only can be performed

by reset, etc.

5 Timer Optional Used by SET TIMER/SHOW TIMER.  Requires 32-bit

timer in 1 us.



44

  

2.4  Suspension of Program Execution (SIM, EML, MON)

When program execution is suspended, the address where the break occurred and the
break source are displayed.

Suspension of Program Execution

When program execution is suspended, the address where the break occurred and the break

factor are displayed.

In the emulator debugger, the following factor can suspend program execution.

- Software Breaks

- Hardware Breaks

- Code Event Breaks

- Data Event Breaks

- Trace Buffer Full Break

- Alignment Error Break

- External Trigger Break

- Task Dispatch Break

- System Call Break

- Forced Break

<Note>

- Set the DRAM refresh control when using chips in which the operating frequency is divided automatically in

the emulation mode (when execution suspended).  Use the [Setup] - [Debug Environment] - [Debug

Environment] - [RFCR] command for setting.

- Wait is automatically added in the emulation mode (when pausing execution) on the DSU3 chip to allow

setting of the auto-wait count.  Set this using the [Environment] - [Debug Environment Setting] - [Debug

Environment] - [Auto-wait] commands.

In the simulator debugger, the following factors can suspend program execution.

- Break Points

- Data Break Points

- Guarded Access Breaks

- Task Dispatch Break

- System Call Break

- Forced Break
In the monitor debugger, the following factors can suspend program execution.

- Software Breaks

- Task Dispatch Break

- System Call Break

- Forced Break



45

<Note>

If a user program rewrites the TBR register, the interrupt vectors used from instruction suspension, such as a

break point, step execution, forced break, etc., must be enabled.  To enable the interrupt vectors, use the Copy

Vector command.



46

  

2.4.1  Software Breaks (EML, MON)

A software break is a function to make a break by executing an instruction embedded in
memory.  The break occurs before executing the instruction at the specified address.

Software Breaks

A maximum of 8192 software break points (EML) can be set.

A maximum of 16 software break points (MON) can be set.

Software breaks can be controlled by one of the following:

- [Run] - [Breakpoints]  command

- Setting break points in Source window

- Setting break points in Disassemble window

- Set Break/Soft command

When a break occurs due to a software break, the following message is displayed in the Status

Bar.

Break at  Address  breakpoint

Notes on Software Breaks

There are two points to note when using software break point.

- Software breaks cannot be set in read only areas, such as ROM.  If an attempt is

made to do so, a verify error occurs at program startup (continuous execution in batch

processing, step execution, etc.).

- Always set a software break at the instruction start address.  Setting a software

break point in the middle of an instruction, may cause a software error.



47

  

2.4.2  Hardware Breaks (EML)

A hardware break is a break point achieved by monitoring the chip bus using hardware.
A hardware break suspends the instruction operation at the specified address
immediately before executing the instruction.

Hardware Breaks

A maximum of five hardware break points can be set.

Instruction breaks can be controlled by either of the following:

-  [Run] - [Breakpoints] command

- Set Break/Hard command

When a break occurs due to a hardware break, the following message is displayed on the Status

Bar.

Break at  Address  by hardware breakpoint

Notes on Hardware Breaks

There are several points to note when using hardware breaks point.

- Do not set a hardware break for an instruction in a delay slot.  If such a setting is made, no

branching is executed when re-running after the break.

- Always include the instruction starting address in the hardware break point within the

specified range.  Otherwise, the break may not occur.

- When starting executing from the address where a hardware break has been set, the break

occurs without executing the instruction if the preceding execution has been suspended by

any cause other than an instruction break.  When this happens, re-execute to execute the

instruction.



48

  

2.4.3  Code Event Breaks (EML)

A code event break is a break point that makes use of break points built into an
evaluation chip.  Address masking, pass count and sequential can be specified.

Code Event Breaks

A maximum of two code event break points can be set.

The address, address masking, and pass count can be set for each code event.  Furthermore,

two-point-OR (breaks if either one is hit) and sequential (breaks if 1-->2 sequential hits occur)

can be set.

To set a code event break, use either of the following:

- [Analyze] - [Event] - [Code] command

- Set CodeEvent command

When a code event break (OR) occurs, the following message is displayed on the Status Bar.

Break at  Address  by code event break (No. code event number)
(The number of hit event is displayed for an event number.)

When a code event break (Sequential) occurs, the following message is displayed on the Status

Bar.

Break at  Address  by code event break (sequential)

<Note>

With the FR family DSU3 chips, you can use code events as the causes of breaks or as the causes of trace

measurement starts.  This mode is called the Trace Sampling Mode and there are two types.

- Full Mode: This uses the code event as a cause of a break.

- Trigger Mode: This uses the code event as a cause of a trace measurement start.

For this reason, set to the Full Mode so that you can use the following commands as the cause of the break.

- [Analyze]-[Trace] commands, [Setup] in the Pop-up menu.

- Set Trace/Full command.



49

  

2.4.4  Data Event Breaks (EML)

A data event break is a break point that makes use of break points built into an
evaluation chip.  Address masking, data size, access type and sequential can be
specified.

Data Event Breaks

A maximum of two data event break points can be set.

The address, address masking, data size (byte, half word, word), and access type (Read/Write)

can be set for each data event.  Furthermore, two-point-OR (breaks if either one is hit) and

sequential (breaks if 1->2 sequential hits occur) can be set.

To set data a event break, use either one of the following.

- [Analyze] - [Event] - [Data] command

- Set DataEvent command

When a data event break (OR) occurs, the following message is displayed on the Status Bar.

Break at  Address  by data event break (No. data event number)
(The number of hit event is displayed for an event number.)

When a data event break (Sequential) occurs, the following message is displayed on the Status

Bar.

Break at  Address  by data event break (sequential)

<Note>

With the FR family DSU3 chips, you can use data events as the causes of breaks or as the causes of trace

measurement starts.  This mode is called the Trace Sampling Mode and there are two types.

- Full Mode: This uses the data event as a cause of a break.

- Trigger Mode: This uses the data event as a cause of a trace measurement start.

For this reason, set to the Full Mode so that you can use the following commands as the cause of the break.

- [Analyze]-[Trace] commands, [Setup] in the Pop-up menu.

- Set Trace/Full command.



50

  

2.4.5  Trace Buffer Full Break (SIM, EML)

A break occurs when the trace buffer becomes full.

Trace Buffer Full Break

A trace buffer full break can be set by using either [Setup] - [Trace] in the short-cut menu of

[Analyze] - [Trace] command, or the Set Trace/Break command in the Command window.

When a break occurs due to a trace buffer full break, the following message is displayed on the

Status Bar.

Break at  Address  by trace buffer full



51

  

2.4.6  Alignment Error Break (EML)

An alignment error break is a function to suspend program execution, when an
instruction accesses an odd-address or word/half word accesses beyond a boundary.

Alignment Error Break

Enable/disable can be set for an alignment error break by using either the [Setup] - [Debug

Environment] - [Emulation] command or the Enable Alignment Break command, or the

Disable AlignmentBreak command.  Enable/disable can be set for an alignment error break

for each instruction and data access.

When a break occurs due to an alignment error break from an instruction access, the following

message is displayed on the Status Bar.

Break at  Address  by alignment error break (code)

When a break occurs due to an alignment error break from a data access, the following message

is displayed on the Status Bar.

Break at  Address  by alignment error break (data)



52

  

2.4.7  External Trigger Break (EML)

An external trigger break is a function to suspend program execution when an external
signal is input to the emulator TRIG pin.

External Trigger Break

Enable/disable can be set for an external trigger break.  Use either the [Setup] - [Debug

Environment] - [Emulation] command, or the Set Trigger command in the Command

window.

When a break occurs due to an external trigger break, the following message is displayed on the

Status Bar.

Break at  Address  by external trigger break



53

  

2.4.8  Break Points (SIM)

A break point is a program memory location where the simulator suspends the program
each time the point is reached while the program is executing (while executing execution
commands).  Normally a break point is set in the program space (the space where the
CODE attribute is specified).

Break Points

Break points can be controlled using the [Run] - [Breakpoints] - [Code]  command.  When the

program reaches a break point (immediately before executing the instruction at the memory

location), the simulator executes the following processes:

1. Suspends program execution (before executing instruction).

2. Checks count of arrival time.  If the count of arrival time at the specified break point

has not yet been reached, the simulator resumes the program execution.  If the count of

arrival time has been reached, the simulator proceeds to step 3.

3. Displays memory location where execution suspended on Status Bar.

Break points set using the [Run] - [Breakpoints] - [Code] command, remain valid until

canceled or temporarily reset.

Up to 65535 break points can be set.  Break points cause the program to suspend instruction

operation just before executing the instruction at the specified address.  In addition to using

the [Run] - [Breakpoints] - [Code] command, break points can be set as follows:

- Setting break points in Source window

- Setting break points in Disassemble window

- Set Break command

The following message is displayed on the Status Bar when a break occurs due to a break point.

Break at  Address  by breakpoint



54

  

2.4.9  Data Break Points (SIM)

A data break point is the memory location where the simulator suspends a program
execution when data access (Read/Write) is performed while executing a program (while
executing execution commands).

Data Break Points

The simulator monitors whether the specified data access is made to a data break point while a

program is executing; if such data access is made, it suspends the program.  Data break points

can be controlled using either the [Run] - [Breakpoints] - [Data]  command, or the Set

DataBreak command in the Command window.  When specifying a data break point with a

symbol, the starting address of that symbol becomes the data break point.  Up to 65535 data

break points can be set.

When a break occurs due to a data break point, the following message is displayed.

Break at  Address  by DataBreak at  Access Address

Writing to Data Break Point

When data is written to a data break point, the simulator executes the following processes:

1. Suspends program execution after completing instruction execution

2. Checks access count.  If the access count has not yet reached the count for the specified

data break point, the simulator resumes the program execution.  If the count has been

reached, the simulator proceeds to step 3.

3. If program execution is suspended by reaching access count, on Status Bar, displays

memory location of data break point and of instruction writing to it.

4. Displays memory location executed next

Reading from Data Break Point

When reading from a data break point, the simulator executes the following processes:

1. Suspends program execution after completing execution of the instruction.

2. Checks access count.  If the access count has not yet reached the count for the specified

data break point, the simulator resumes the program execution.  If the count has been

reached, the simulator proceeds to step 3.

3. If program execution is suspend by reaching count, on Status Bar, displays memory

location of data break point and of instruction reading from it

4. Displays memory location executed next



55

Notes on Using Data Breaks

There are two points to note when using data break points as follows:

- If an automatic variable within a C/C++ function is specified, a data break is set at the

address where the automatic variable is held.  Therefore, the data break remains valid

even after the specified automatic variable becomes invalid (after exiting function), causing

a break due to unexpected access.

- To allow access to a variable in C/C++ to cause a break, specify the variable address by

putting an ampersand symbol "&" immediately  before the variable symbol.



56

  

2.4.10  Guarded Access Breaks (SIM)

A guarded access break suspends a executing program when accessing in violation of
the access attribute set by using the [Setup] - [Memory Map] command, and accessing
a guarded area (access-disabled area in undefined area).

Guarded Access Breaks

Guarded access breaks are as follows:

- Code Guarded

An instruction has been executed for an area having no code attribute.

- Read Guarded

A read has been attempted from the area having no read attribute.

- Write Guarded

A write has been attempted to an area having no write attribute.

If a guarded access occurs while executing a program, the following message is displayed on the

Status Bar and the program execution suspended.

Break at  Address  by guarded access  {code/read/write}  at Access Address



57

  

2.4.11  Task Dispatch Break (SIM, EML, MON)

A task dispatch break is a break that happens when dispatch from the specified dispatch
source task to the dispatch destination task.  In other words, the break occurs when the
dispatch destination task becomes the executing state.  If the dispatch destination task
is currently in the executing state, then the break occurs when the task reenters the
executing state via another state.

Task Dispatch Break

Only one break point can be set.

To use this function, the REALOS Debug Module must be embedded.  For further details, see

Operation Manual Appendix E Embedding the REALOS Debug Module.

To control the task dispatch break, use either of the following commands.

- [Run] - [Break Points] - [Task Dispatch]  command

- Set Xbreak command

When a break occurs due to a task dispatch break, the following message is displayed on the

Status Bar.

Break at  address  by dispatch task from task ID=<Dispatch Source Task ID> to

task ID=<Dispatch Destination Task ID>



58

  

2.4.12  System Call Break (SIM, EML, MON)

A system call break occurs at ending execution of a system call specified by the
specified task.

System Call Break

Only one break point can be set.

To use this function, the REALOS Debug Module must be embedded.  For further details, see

Operation Manual Appendix E Embedding the REALOS Debug Module.

To control the system call break, use either of the following commands.

- [Run] - [Break Points] - [System Call]  command

- Set Sbreak command

When a break occurs due to a system call break, the following message is displayed on the

Status Bar.

Break at  address  by system call<System Call> on task ID=<Task ID>



59

  

2.4.13  Forced Break (SIM, EML)

A program execution can be forcibly suspended by using the [Run] - [Abort] command.
In the monitor debugger, the same result can be achieved by letting the target generate
NMI.

Forced Break

When a break occurs due to a forced break, the following message is displayed on the Status

Bar.

Break at  Address  by command abort request

Forced Break in power-save mode and hold state

A forced break is not allowed in the emulator debugger while the MCU is in the power-save

mode or hold state.  When a forced break is requested by the [Run] - [Abort] command while

executing a program, the command is disregarded if the MCU is in the power-save mode or hold

state.  If a break must occur, then reset the factor at user system side, or reset the factor by

using the [Run] - [Reset of MCU] command, after inputting the [Run] - [Abort]  command.

When the MCU enters the power-save mode or hold state while executing, the status is

displayed on the Status Bar.



60

  

2.5  Analyzing Program Execution (SIM, EML, MON)

The execution history can be traced and the instruction execution cycle count can be
calculated to analyze a program.

Analyzing Program Execution

The following types are available for analyzing program execution.

- Trace

- Task Trace

- Measuring Execution Time



61

  

2.5.1  Trace (SIM, EML)

While executing a program, address and status information can be sampled and
recorded in the trace buffer.  This function is called trace.

Trace

The program execution history can be deep-analyzed using the data recorded by the trace

function.  This function is only available in the simulator debugger and the emulator

debugger.

The trace buffer has a ring structure, so when the trace buffer becomes full, it automatically

returns to the buffer start address to overwrite existing data.

- Trace data

- Tracing Function

- Setting trace

- Displaying trace data

- Displaying format of trace data

- Searching trace data

- Clearing trace data

- Notes on use of tracing function



62

  

2.5.2  Trace Data (SIM, EML)

Data sampled and recorded by tracing is called trace data.  The recording format of
trace data varies with each debugger.

Trace Data

You can sample the following sizes using the emulation debugger.

- Full Trace Mode, Real Time Trace Mode: 65536 Frames

- Internal Trace Mode: 128 Frames

- External Trace Mode: 65536 Frames

The following data is sampled.

- Address (32 Bits)

- Data (32 Bits)

- Status Information

- Access Data Size

Word/Half-word/Byte

- Data Types

Data Access/Instruction Execution

The simulator debugger can sample trace data by 1,000 frames.  The address of the executed

instruction is sampled as trace data.



63

  

2.5.3  Tracing Function (SIM, EML)

The status of the program execution is trace measured during the period from starting
execution of the plan to the end of the execution of the program.  With the DSU3 chip
emulator you can trace measure up to the end of the execution of the program as the
cause of starting trace measurement of code events (numbers 1 and 2) and data events
(number 1).

Tracing Function

If the trace function is enabled, data is always sampled while executing the command and that

is stored in the trace buffer.

In DSU3 chip emulator there is another function for trace measurement of the data access of a

specified field and for starting trace measurement while executing the following programs.

- When you switch from the trace sampling mode to the trigger mode, trace

measurements are started by the bit of either code events (numbers 1 and 2) or data

events (number 1).

- When the MCU operation mode is set to internal trace mode or external trace mode,

data is sampled only for data accessed in the specified data trace measurement area.

The program execution is terminated by the break of a break point, etc and tracing stops.

When the trace buffer is full, you can break the program.  This break is called a trace buffer

full break.

Frame Number

The sampled trace data is numbered in frame units.  This number is called the frame number.

To display data at a specific location in the trace buffer, specify the location with a frame

number.  The trace data sampled last is numbered 0, and the trace data sampled before the

trigger generating location are numbered in negative numbers.



64

  

2.5.4  Setting Trace (SIM, EML)

You must set the following three items to perform a trace.  After that, trace data will be
sampled with the execution of the program.  You can set this from the command
window.  When using the DSU3 chip, you can specify the trace measurement area of
the data access.

Setting Trace

1. Enable the trace function

This is done by [Setup] - [Trace] in the trace window shortcut menu.  This program will

startup and will be enabled.

2. Set the MCU operation mode  (Only Emulator Debugger)

Execute the [Environment] and [Debug Environment]  commands.

Full real time mode operates while executing, but there is a great possibility of losing trace data.

Full trace mode does not operate while executing, but there is a very low possibility of losing

trace data.  If there are many divisional instructions, we recommend that you use the full

trace mode.

With the DSU3 chip, you can specify internal trace mode or external trace mode.  Using these

two modes, you can measure while operating during execution without losing trace data.

3. Set the trace buffer full break

When the trace buffer is full, you can make a break.  This is done using the setting dialog

boxes of the trace window shortcut menu [Setup] - [Trace].

When starting up this program, it is setup for no breaks.

Also, on emulator debuggers using FR DSU3 chips, you can specify the data access area for

performing the trace measurements.



65

  

2.5.5  Displaying Trace Data (SIM, EML)

Data recorded in the trace buffer can be Displayed.

Displaying Trace Data

The trace window displays how much trace data is stored in the trace buffer.  Also, you can use

the Show Trace command from the command window.

If the DSU3 chip is being used by the FR emulator debugger, this displays the data access

information and divisional information as trace data.  When you want to display instructions

that were executed between divisional instructions, you need to open the trace details dialog

box.  Also, you can use the Show Detail Trace command from the command window.



66

  

2.5.6  Display Format of Trace Data (SIM, EML)

There are display formats for displaying trace buffer data:

Display Format of Trace Data

- Display Only Instruction Operation (Specify Instruction)

- Display Bus Cycles (Specify Cycle)

- Display by Unit of Source Lines (Specify Source)

If the DSU3 chip is being used by the FR emulator debugger, this displays only instruction

executions.  Source line unit displays are performed using the trace details dialog box.

Display Only Instruction Operation

In this mode, the instruction operation is displayed in disassembly units.

Display Bus Cycles

In this mode, detailed information on all sampled instruction fetch cycles and data access cycles

is displayed.  This mode is available only in the emulator debugger.

Display by Unit of Source Lines

This mode only displays source lines.



67

  

2.5.7  Searching Trace Data (SIM, EML)

Trace data can be searched to find where data to be displayed is stored.

Searching Trace Data

Specify the search by address, data or access information.  In addition, the masking function

can be used with address and data.

Click the Search button in the Trace window to use this function.  Only search by address is

available in the simulator debugger.



68

  

2.5.8  Clearing Trace Data (SIM, EML)

To clear trace data, use the following command.

Clearing Trace Data

Execution the [Clear] command from the short-cut menu in the Trace window to clear trace

data.



69

  

2.5.9  Notes on Use of Tracing Function (SIM, EML)

There are several points to note when displaying or searching trace data.

Notes on Trace Function

When the emulator debugger is in use, tracing is enabled by the following:

- Output address information at fetching branch instruction

For these reasons, note the following points when displaying and searching trace data

- Since address information is not output immediately after executing a program until the

branch instruction being executed, trace data may not be established on the program

executing side.

- When displaying disassembly, data is read from memory and processed.  Therefore, the

displayed data may not be correct if the instruction is rewritten after code fetching.

- When specifying a starting frame number for searching data, an instruction longer than 2

bytes (LDI:  32, LDI:  20 instructions) may not be displayed correctly when the instruction

starting address is not specified.

- In the full real-time mode, partial omission of trace data may occur under the following

conditions (Output trace omission information instead) because of the real-time operation.

When branching occurs more than three times within 11 cycles.

When data tracing occurs more than three times in succession.

- The address is not displayed until the first branching information is found, because the trace

data immediately before starting execution has been overwritten.

- If a break occurs under conditions such as the following combination of break points has been

set up in sequence at continuous addresses (code addresses of factors in case of data event),

the trace data immediately before the break is not displayed correctly.

When break points set in sequence from software break to either one of I-group breaks

at continuous addresses.

When break points set in sequence from either one of I-group breaks to either one of I-

group breaks at continuous addresses.

The I-group breaks here means the following breaks:

- Hardware break

- Code event break

- Data event break

- This occurs because the address next to the actual break factor address is detected as a break

cause simply by such next address being pre-fetched.

When displaying valid pass cycles or instruction, the omitted trace data frame is displayed as

follows:



70

Frame where address at code fetching could not be sampled

*** Address Lost Error ***

- At step execution by a single instruction, trace data may not be sampled correctly for each

single instruction execution.  If this happens, *** Address Lost Error *** is displayed.



71

  

2.5.10  Task Trace (SIM, EML, MON)

Information on system call names, dispatched task IDs, and system call names that have
timed out, can be traced.

Task Trace

Information, which is stored in trace buffer, on system call names issued by the task handler,

dispatched task IDs and system call names that have been timed out, can be referred after

executing a program.  The task execution history can be analyzed with data recorded by

tracing.

To use this function, the REALOS Debug Module must be embedded.  For further details, see

Operation Manual Appendix E Embedding the REALOS Debug Module.

- Task Trace Data

- Task Trace Function

- Setting Task Trace

- Clearing Task Trace Data



72

  

2.5.11  Task Trace Data (SIM, EML, MON)

Data sampled and recorded by task trace is called task trace data.

Task Trace Data

Data sampled by the task trace function is called task trace data.  The following data is

sampled.

- Task ID

- System call

Task trace data can be sample as much as being set up by user definition.

The task trace buffer has a ring structure, so when the task trace buffer becomes full, it returns

automatically to the start of the buffer to overwrite existing data.

User Definition

The r_d_trc.asm sample program contains R_D_bufsiz.  This program defines the size of

the task trace buffer.

Trace data uses 6 bytes per sample, so the specified size must be a multiple of 6.



73

  

2.5.12  Task Trace Function (SIM, EML, MON)

Task trace is a function to trace a program from start to stop.

Task Trace Function

If the task trace function is enabled, data is sampled continuously and recorded in the trace

buffer while executing execution commands.

Frame Number

The sampled trace data is numbered in frame units.  This number is called the frame number.

To display data at a specific location in the trace buffer, specify the location using the frame

number.  The trace data at the program stop is numbered 0, and the trace data sampled before

the program stops are numbered in negative number.



74

  

2.5.13  Setting Task Trace (SIM, EML, MON)

Perform the following steps 1 to 2 tracing.  After these settings, trace data sampling
start when the program execution starts.

Setting Task Trace

1. Enable trace function

Use the [Setup] - [Task Trace] command in the short-cut menu in the Trace window to enable

the trace function.  The start-up default is disable.

2. Set TASK ID

Set TASK ID using the [Setup] - [Task Trace] command in the short-cut menu in the Trace

window.  When All Tasks is selected, Specifying Individual Task is disabled.



75

  

2.5.14  Clearing Task Trace Data (SIM, EML, MON)

Clear task trace data as follows:

Clearing Task Trace Data

Clear task trace data by executing the Clear command in the Short Cut Menu, when the Trace

window displays task trace data.



76

  

2.5.15  Measuring Execution Time (EML)

The program instruction execution time can be displayed by using either the [Analyze] -
[Time Measurement] command, or the Show Timer command in the Command
window.

Measuring Execution Time

Measures program execution time.

The measurement result can be displayed as two time values:  the execution time of the

preceding program, and the total execution time of the programs (total execution time before

preceding program plus execution time of preceding program).  Measurement is performed

each time a program is executed.

Clear the measured values using the Clear Timer command.



77

  

2.5.16  Measuring Execution Time (SIM)

The instruction cycle count and step count of a program can be displayed by using either
the [Analyze] - [Time Measurement] command, or the Show Timer command in the
Command window,.

Measuring Execution Time

Measures program execution cycle count and step count.

The measurement result can be displayed as two time values:  the execution time of the

preceding program, and the total execution time of the programs (total execution time before

preceding program plus execution time of preceding program).  Measurement is performed

each time a program is executed.

To display the execution cycle count, use the [Analyze] - [Time Measurement]  command or the

Show Timer command in the Command widow.  Clear the measurement values using the

Clear Timer command.

The counters for the instruction execution cycle count and program step count are both H'1 to

H'FFFFFFFF.

The count of the instruction execution cycle is calculated based on the basic cycle count of each

instruction described in the Programming Manual .

Since the chip internal pipeline processing and cache operation are not simulated, such counts

may be erroneous and different from those of the actual chip.

A compensation value (a, b), described in the list of instructions in the Programming Manual , is

calculated as one for each.



78

  

2.5.17  Measuring Execution Time (MON)

The program instruction execution time can be displayed by using either the [Analyze] -
[Time Measurement] command, or the Show Timer command in the Command
window.

Measuring Execution Time

Measures program execution time.

The measurement result can be displayed as two time values:   the execution time of the

preceding program, and the total execution time of the programs (total execution time before

preceding program plus execution time of preceding program).   Measurement is performed

each time a program is executed.

To display the execution cycle count, use either the [Analyze] - [Time Measurement]  command,

or the Show Timer command in the Command window.  Clear the measured values using the

Clear Timer command.

Measurement is in 1 us units.  The maximum measurement time is about 70 minutes.  The

measurement result may have a ±10 us error.



79

  

Chapter 3  FFMC-16 Family

This chapter describes the FFMC-16 family functions depending on MCUs.

3.1 Simulator

3.1.1 Instruction Simulation

3.1.2 Memory Simulation

3.1.3 I/O Port Simulation

3.1.4 Interrupt Simulation

3.1.5 Reset Simulation

3.1.6 Power-Save Consumption Mode Simulation

3.2 Emulator

3.2.1 Setting Operating Environment

3.2.1.1 MCU Operation Mode

3.2.1.2 Debug Area

3.2.1.3 Memory Area Types

3.2.1.4 Memory Mapping

3.2.1.5 Timer Minimum Measurement Unit

3.2.2 Notes on Commands for Executing Program

3.2.3 On-the-fly Executable Commands

3.2.4 On-the-fly Memory Access

3.2.5 Events

3.2.5.1 Operation in Normal Mode

3.2.5.2 Operation in Multitrace Mode

3.2.5.3 Operation in Performance Mode

3.2.6 Control by Sequencer

3.2.6.1 Setting Sequencer

3.2.6.2 Break by Sequencer

3.2.6.3 Trace Sampling Control by Sequencer

3.2.6.4 Time Measurement by Sequencer

3.2.6.5 Sample Flow of Time Measurement by Sequencer

3.2.7 Real-time Trace

3.2.7.1 Function of Single Trace

3.2.7.2 Setting Single Trace

3.2.7.3 Multitrace Function

3.2.7.4 Setting Multitrace

3.2.7.5 Displaying Trace Data Storage Status

3.2.7.6 Specifying Displaying Trace Data Start

3.2.7.7 Display Format of Trace Data

3.2.7.8 Reading Trace Data On-the-fly



80

3.2.8 Measuring Performance

3.2.8.1 Performance Measurement Procedures

3.2.8.2 Displaying Performance Measurement Data

3.2.9 Measuring Coverage

3.2.9.1 Coverage Measurement Procedures

3.2.10 Measuring Execution Time Using Emulation Timer

3.2.11 Sampling by External Probe

3.3 Monitor Debugger

3.3.1 Resources Used by Monitor Program

3.4 Abortion of Program Execution (SIM, EML, MON)

3.4.1 Instruction Execution Breaks (SIM, EML)

3.4.2 Data Access Breaks (SIM, EML)

3.4.3 Software Break (MON)

3.4.4 Sequential Break (EML)

3.4.5 Guarded Access Breaks (SIM, EML)

3.4.6 Trace-Buffer-Full Break (EML)

3.4.7 Performance-Buffer-Full Break (EML)

3.4.8 Task Dispatch Break (SIM, EML, MON)

3.4.9 System Call Break (SIM, EML, MON)

3.4.10 Forced Break (SIM, EML, MON)



81

  

3.1  Simulator

This section describes the functions of the simulator for the FFMC-16 Family

Simulator Debugger

The simulator debugger simulates the MCU operations (executing instructions, memory space,

I/O ports, interrupts, reset, etc.) with software to evaluate a program.

Simulation Range

The simulator simulates the MCU operations (instruction operations, memory space, I/O ports,

interrupts, reset, power-save mode, etc.) using software to execute operations.  It does not

support built-in resources and related registers not described in the manual.

- Instruction simulation

- Memory simulation

- I/O port simulation (Input port)

- I/O port simulation (Output port)

- Interrupt simulation

- Reset simulation

- Power-save mode simulation



82

  

3.1.1  Instruction Simulation

This section describes the instruction simulation executed by SOFTUNE WORKBENCH.

Instruction Simulation

This simulates the operations of all instructions supported by the FMC-16L/16LX/16/16H/16F.

It also simulates the changes in memory and register values due to such instructions.



83

  

3.1.2  Memory Simulation

This section describes the memory simulation executed by SOFTUNE WORKBENCH.

Memory Simulation

The simulator must first secure memory space to simulate instructions because it simulates the

memory space secured in the host machine memory.

- To secure the memory area, either use the [Setup] - [Memory Map] command, or the
Set Map command in the Command window.

- Load the file output by the Linkage Editor (Load Module File) using either the [Debug]
- [Load target file] command, or the LOAD/OBJECT command in the Command window.

Simulation Memory Space

Memory space access attributes can be specified byte-by-byte using the [Setup] - [Memory Map]

command.  The access attribute of unspecified memory space is Undefined.

Memory Area Access Attributes

Access attributes for memory area can be specified as shown in Table 3.-1-1.  A guarded access

break occurs if access is attempted against such access attribute while executing a program.

When access is made by a program command, such access is allowed regardless of the attribute,

CODE, READ or WRITE.  However, access to memory in an undefined area causes an error.

Table 3-1-1 Types of Access Attributes

Attribute Semantics

CODE Instruction operation enabled

READ Data read enabled

WRITE Data write enabled

undefined Attribute undefined (access prohibited)



84

  

3.1.3  I/O Port Simulation

The output to I/O ports can be recorded in the specified buffer or file.This section
describes I/O port simulation executed by SOFTUNE WORKBENCH.

I/O Port Simulation (Input Port)

There are two types of simulations in I/O port simulation:  input port simulation, and output

port simulation.  Input port simulation has the following types:

- Whenever a program reads the specified port, data is input from the pre-defined data
input source.

- Whenever the instruction execution cycle count exceeds the specified cycle count, data
is input to the port.

To set an input port, use the [Setup] - [Debug Environment] - [I/O Port] command, or the Set

Inport command in the Command window.

Up to 16 port addresses can be specified for the input port.  The data input source can be a file

or a terminal.  After reading the last data from the file, the data is read again from the

beginning of the file.  If a terminal is specified, the input terminal is displayed at read access

to the set port.

A text file created by an ordinary text editor, or a binary file containing direct code can be used

as the data input file.  When using a text file, input the input data inside commas (,).  When

using a binary file, select the binary button in the input port dialog.

I/O Port Simulation (Output Port)

At output port simulation, whenever a program writes data to the specified port, writing is

executed to the data output destination.

To set an output port, either use the [Setup] - [Debug Environment] - [I/O Port] command,

or the Set Outport command in the Command window.

Up to 16 port addresses can be set as output ports.  Select either a file or terminal (Output

Terminal window) as the data output destination.

A destination file must be either a text file that can be referred to by regular editors, or a binary

file.  To output a binary file, select the Binary radio button in the Output Port dialog.



85

  

3.1.4  Interrupt Simulation

This section describes interrupt simulation executed by SOFTUNE WORKBENCH.

Interrupt Simulation

Simulate the operation of the MCU (including intelligent I/O service) in response to an

interrupt request.  Note that intelligent I/O service does not support any end request from the

resource.

Provisions for the causes of interrupts and interrupt control registers are made by referencing

data in the install file read at simulator start up.

*Intelligent I/O service provides automatic data transfer between I/O and memory.  This

function allows exchange of data between memory and I/O, which was done previously by the

interrupt handling program, using DMA (Direct Memory Access).  (For details, refer to the

user manual for each model.)

The methods of generating interrupts are as follows:

- Execute instructions for the specified number of cycles while the program is running
(during execution of executable commands) to generate interrupts corresponding to the
specified interrupt numbers and cancel the interrupt generating conditions.

- Continue to generate interrupts each time the number of instruction execution cycles
exceeds the specified number of cycles.

The method of generating interrupts is set by the [Setup]-[Debug environment]-[Interrupt]

command.  If interrupts are masked by the interrupt enable flag when the interrupt

generating conditions are established, the interrupts are generated after they are unmasked.

MCU operation in response to an interrupt request is also supported for the following exception

handling:

- Execution of undefined instructions

- Address error in program access
(Program access to internal RAM area and internal I/O area)

- Stack area error (only for 16F)



86

  

3.1.5  Reset Simulation

This section describes the reset simulation executed by SOFTUNE WORKBENCH.

Reset Simulation

The simulator simulates the operation when a reset signal is input to the MCU using the

[Debug]-[Run]-[Reset MCU] command and initializes the registers.  The function for

performing reset processing by operation of MCU instructions (writing to RST bit in standby

control register) is also supported.  In this case, the reset message (Reset) is displayed on the

status bar..



87

  

3.1.6  Power-Save Consumption Mode Simulation

This section describes the low power-save mode simulation executed by SOFTUNE

WORKBENCH.

Power-Save Consumption Mode Simulation

The MCU enters the power mode in accordance with the MCU instruction operation (Write to

SLEEP bit or STOP bit of standby control register).  Once in the sleep mode or stop mode, a

message ("sleep" for sleep mode, "stop" for stop mode) is displayed on the Status Bar.  The

loop keeps running until either an interrupt request is generated, or the [Run] - [Abort]

command is executed.  Each cycle of the loop increments the count by 1.  During this period,

I/O port processing can be operated.  Writing to the standby control register using a command

is not prohibited.



88

  

3.2  Emulator

This section describes the functions of the emulator for the FFMC-16 family.

Emulator

The emulator debugger (emulator) is software to evaluate a program by controlling an ICE from

a host via a communications line (RS-232C, LAN).

Before using this emulator, the ICE must be initialized.

For further details, refer to the Operation Manual Appendix B  Download Monitor Program ,

and Appendix C Setting up LAN Interface.



89

  

3.2.1  Setting Operating Environment

Before operating the emulator, set the operating environment such as the MCU
operation mode, memory mapping, the timer minimum measurement unit, etc.
However, each setting has a default.  No setup is required if the defaults are used.

MCU Operation Mode

There are two MCU operation modes as follows:  Selecting the operation mode changes the

emulator debug environment.

- Debugging mode

- Native mode

Debug Area

Sets intensive debugging area in memory space that actual chip can handle.

The extension of break points/data break point count in this area, and the coverage

measurement function is enhanced.

Memory Mapping

A memory space can be allocated to the user memory or the emulation memory.  In addition,

referencing on-the-fly is enabled by converting part of the emulation memory into a mirror of

user memory.

Timer Minimum Measurement Unit

Select either 1 us or 100 ns as the emulator timer minimum measurement unit for measuring

time.



90

  

3.2.1.1  MCU Operation Mode

There are two MCU operation modes as follows:
- Debugging Mode
- Native Mode

Setting MCU Operation Mode

Set the MCU operation mode.

There are two operation modes:  the debugging mode, and the native mode.  Choose either

one using the SET RUNMODE command.

At emulator start-up, the MCU is in the debugging mode.

When the MCU operation mode is changed, all the following are initialized:

- Data break points

- Event condition settings

- Sequencer settings

- Trace measurement settings and trace buffer

- Performance measurement settings and measured result

Debugging Mode

All the operations of evaluation chips can be analyzed, but their operating speed is slower than

that of mass-produced chips.

Native Mode

Evaluation chips have the same timing as mass-produced chips to control the operating speed.

Note that the restrictions the shown in Table 3-2-1 are imposed on the debug functions.

Applicable series Restrictions on debug functions
F2MC-16/16H -Memory mapping is disabled and each

 area is accessed to the MCU
 specifications.
-Traces cannot be disassembled.

Common to all series -If bus access occurs inside and outside
 the MCU, external bus access
 information is not sampled at tracing.

Table3-2-1  Restrictions on debug functions



91

MCU Operation Speed

To support a broader range of MCU operation speeds, the emulator adjusts control of the MCU

according to the MCU operation speed.

Normally, set the low-speed operation mode.  If the FFMC-16H/16F series is operated at high

speed and malfunctions occur, change the setting to the high-speed operation mode.

Also, to start at low speed and then change to high speed because of the gear setting, etc., use

the SET RUNMODE command to change the setting.



92

  

3.2.1.2  Debug Area

Set the intensive debugging area out of the whole memory space.  The area functions
are enhanced.

Setting Debug Area

There are two debug areas:  DEBUG1, and DEBUG2.  A continuous 512-KB area (8 banks) is

set for each area.

Set the debug area using the SET DEBUG command.

Setting the debug area enhances the break points/data break points and the coverage

measurement function.

- Enhancement of Break Points

Up to six break points (not including temporary break points set using GO command) can be

set when the debug area has not yet been set.

When setting the debug area as the CODE attribute, up to 65535 break points can be set if

they are within the area.  At this time, up to six break points can be set for an area other

than the debug area, but the total count of break points must not exceed 65535.

- Enhancement of Data Break Points

Up to six data break points can be set when the debug area has not yet been set.

When setting the debug area of the data attribute (READ, WRITE), up to 65535 data break

points can be set if they are within the area and have the same attribute.  At this time, up

to six data break points can be set for an area other than the debug area or for a different

attribute, but the total number of data break points must not exceed 65535.

- Enhancement of Coverage Measurement Function

Setting the debug area enables the coverage measurement function.  In coverage

measurement, the measurement range can be specified only within the area specified as

the debug area.

The attributes for the debug area are "Don't care" as long as it is being used for coverage

measurement.  The coverage measurement attribute can be set, regardless of the debug

area attributes.



93

  

3.2.1.3  Memory Area Types

A unit in which memory is allocated is called an area.  There are seven different area
types.

Memory Area Types

A unit to allocate memory is allocated is called an area.  There are seven different area types

as follows:

- User Memory Area

Memory space in the user system is called the user memory area and this memory is called

the user memory.  Up to eight user memory areas can be set with no limit on the size of

each area.

Access attributes can be set for each area; for example, CODE, READ, etc., can be set for

ROM area, and READ, WRITE, etc. can be set for RAM area.  If the MCU attempts access in

violation of these attributes, the MCU operation is suspended and an error is displayed

(guarded access break).

To set the user memory area, use the SET MAP command.  The FFMC-16/16H only allows

this setup in the debugging mode.

- Emulation Memory Area

Memory space substituted for emulator memory is called the emulation memory area, and

this memory is called emulation memory.

Up to five areas (including mirror area described below) each with a max. size of 64 KB can

be set.  An area larger than 64 KB can be set, but the areas are managed internally in 64-

KB units.

To set the emulation memory area, use the SET MAP command.  Attributes are set as for

user memory area.

<Note>

Even if the MCU internal resources are set as emulation memory area, access is made to the internal resources.

Re-executing this setup may damage data.  The FFMC-16/16H only allows this setup in the debugging mode.

- Mirror Area

The mirror area is an area for storing a copy of user memory access data to the emulator

memory.  This memory is called mirror memory.

The mirror area is overlapped either by the user memory area or by the undefined area.

This mirror area is enabled by using part of the emulation memory.  Up to seven areas,

including the emulation memory areas, can be set.

The mirror area is used to refer to user memory on-the-fly (For further details, see On-the-

fly Memory Access).



94

To set the mirror area, use the SET MAP command.  If Copy Memory Data is specified at

same time as area setting, this mirror area always contains the same data as the user

memory data.

<Note>

The FFMC-16/16H only allows this setup in the debugging mode.

- Internal ROM Area

The area where the emulator internal memory is substituted for internal ROM is called the

internal ROM area, and this memory is called the internal ROM memory.

Only one internal ROM area with a size up to 128 KB can be specified.  To set the internal

ROM area, use "Setup CPU Information""Setup CPU Information""Setup CPU Information""Setup CPU Information" from "Setup Project Basics""Setup Project Basics""Setup Project Basics""Setup Project Basics".  The area attribute is

set automatically to READ/CODE.

- Internal ROM Image Area (FFMC-16L, FFMC-16LX, FFMC-16F only)

Some types of MCUs have data in a specific area of internal ROM oppearing to 00 bank.

This specific area is called the internal ROM image area.

By using "Setup CPU Information""Setup CPU Information""Setup CPU Information""Setup CPU Information" from "Setup Project Basics""Setup Project Basics""Setup Project Basics""Setup Project Basics", specify whether or not to

set the internal ROM image area.  This area attribute is automatically set to READ/CODE.

The same data as in the internal ROM area appears in the internal ROM image area.

Note that the debug information is only enabled for either one (one specified when linked).

To debug only the internal ROM image area, change the creation type of the load module

file.

- Internal Instruction RAM Area (FFMC-16H only)

Some types of MCUs have the internal instruction RAM, and this area is called the internal

instruction RAM area.

To set the internal instruction RAM area, use "Set up CPU Information""Set up CPU Information""Set up CPU Information""Set up CPU Information" from "Setup"Setup"Setup"Setup

Project Basics"Project Basics"Project Basics"Project Basics".  The size must be specified to either H'100, H'200, H'400, H'800, H'1000,

H'2000 or H'4000 bytes.

- Undefined Area

A memory area that does not belong to any of the areas described above is part of the user

memory area.  This area is specifically called the undefined area.

The undefined area can be set to either NOGUARD area, which can be accessed freely, or

GUARD area, which cannot be accessed.  Select either setup for the whole undefined area.

If the area attribute is set to GUARD, a guarded access error occurs if access to this area is

attempted.

<Note>

The FFMC-16/16H only allows this setup in the debugging mode.



95

  

3.2.1.4  Memory Mapping

Memory space can be allocated to the user memory and the emulation memory, etc.,
and the attributes of these areas can be specified.
However, the MCU internal resources are not dependent on this mapping setup and
access is always made to the internal resources.

Access Attributes for Memory Areas

The access attributes shown in Table 3-2-2 can be specified for memory areas.

A guarded memory access break occurs if access is attempted in violation of these attributes

while executing a program.

When access to the user memory area and the emulation memory area is made using program

commands, such access is allowed regardless of the CODE, READ, WRITE attributes.  However,

access to memory with the GUARD attribute in the undefined area, causes an error.

Area Attribute Description

CODE Instruction Execution Enabled

READ Data Read Enabled

User Memory
Emulation Memory

WRITE Data Write Enabled

GUARD Access DisabledUndefined

NOGUARD No check of access attribute

Table 3-2-2  Types of Access Attributes

When access is made to an area without the WRITE attribute by executing a program, a guarded

access break occurs after the data has been rewritten if the access target is the user memory.

However, if the access target is the emulation memory, the break occurs before rewriting.  In

other words, write-protection (memory data cannot be overwritten by writing) can be set for the

emulation memory area by not specifying the WRITE attribute for the area.

This write-protection is only enabled for access made by executing a program, and is not

applicable to access by commands.



96

Creating and Viewing Memory Map

Use the following commands for memory mapping.

SET MAP: Set memory map.

SHOW MAP: Display memory map.

CANCEL MAP: Change memory map setting to undefined.

[Example]

>SHOW MAP

address attribute type

000000 .. FFFFFF noguard

The rest of setting area numbers

user = 8 emulation = 5

>SET MAP/USER H'0..H'1FF

>SET MAP/READ/CODE/EMULATION H'FF0000..H'FFFFFF

>SET MAP/USER H'8000..H'8FFF

>SET MAP/MIRROR/COPY H'8000..H'8FFF

>SET MAP/GUARD

>SHOW MAP

address attribute type

000000 .. 0001FF read write user

000200 .. 007FFF guard

008000 .. 008FFF read write user

009000 .. FEFFFF guard

FF0000 .. FFFFFF read write code emulation

mirror address area

008000 .. 008FFF copy

The rest of setting area numbers

user = 6 emulation = 3

>



97

  

3.2.1.5  Timer Minimum Measurement Unit

The timer minimum measurement unit affects the sequencer, the emulation timer and
the performance measurement timer.

Setting Timer Minimum Measurement Unit

Choose either 1 us or 100 ns as the timer minimum measurement unit for the emulator for

measuring time.

The minimum measurement unit for the following timers is changed depending on this setup.

- Timer values of sequencer (timer conditions at each level)

- Emulation timer

- Performance measurement timer

Table 3-2-3 shows the maximum measurement time length of each timer when 1 us or 100 ns is

selected as the minimum measurement unit.

When the minimum measurement unit is changed, the measurement values of each timer are

cleared as well.  The default setting is 1 us.

1 us selected 100 ns selected

Sequencer timer About 16 s About 1.6 s

Emulation timer About 70 minutes About 7 minutes

Performance measurement timer About 70 minutes About 7 minutes

Table 3-2-3  Maximum Measurement Time Length of Each Timer

Use the following commands to control timers.

SET TIMERSCALE command: Sets minimum measurement unit for timers

SHOW TIMERSCALE command: Displays status of minimum measurement unit setting for

timers

[Example]

>SET TIMERSCALE/100N

>SHOW TIMERSCALE

Timer scale : 100ns

>



98

  

3.2.2  Notes on Commands for Executing Program

When using commands to execute a program, there are several points to note.

Notes on GO Command

For the GO command, two break points that are valid only while executing commands can be set.

However, care is required in setting these break points.

- Invalid Breakpoints

- No break occurs when a break point is set at the instruction immediately after the

following instructions.

FFMC-16L/16LX/16/16H: - PCB - DTB - NCC - ADB - SPB - CNR

- MOV  ILM,#imm8 - AND  CCR,#imm8

- OR   CCR,#imm8 - POPW PS

FFMC-16F: - PCB - DTB - NCC - ADB - SPB - CNR

- No break occurs when break point set at address other than starting address of

instruction.

- No break occurs when both following conditions met at one time.

- Instruction for which break point set starts from odd-address,

- Preceding instruction longer than 2 bytes, and break point already set at last 1-byte

address of preceding instruction (This "already-set" break point is an invalid break

point that won't break, because it has been set at an address other than the starting

address of an instruction).

- Abnormal Break Point

Setting a break point at the instruction immediately after string instructions listed below,

may cause a break in the middle of the string instruction without executing the instruction

to the end.

FFMC-16L/16LX/16/16H: - MOVS - MOVSW - SECQ - SECQW- WBTS

- MOVSI - MOVSWI - SECQI - SECQWI - WBTC

- MOVSD - MOVSWD - SECQD - SECQWD

- FILS - FILSI - FILSW - FILSWI

FFMC-16F: Above plus - MOVM - MOVMW



99

Notes on STEP Command

- Exceptional Step Execution

When executing the instructions listed in the notes on the GO command as invalid break

points and abnormal break points, such instructions and the next instruction are executed

as a single instruction.  Furthermore, if such instructions are continuous, then all these

continuous instructions and the next instruction are executed as a single instruction.

- Step Execution that won't Break

Note that no break occurs after step operation when both the following conditions are met

at one time.

- When step instruction longer than 2 bytes and last code ends at even address

- When break point already set at last address (This "already-set" break point is an

invalid break point that won't break, because it has been set at an address other

than the starting address of an instruction.)

Controlling Watchdog Timer

It is possible to select "No reset generated by watchdog timer counter overflow" while executing

a program using the GO, STEP, CALL commands.

Use the ENABLE WATCHDOG, DISABLE WATCHDOG commands to control the watchdog timer.

- ENABLE WATCHDOG : Reset generated by watchdog timer counter overflow

- DISABLE WATCHDOG : No reset generated by watchdog timer counter overflow

The start-up default in this program is "Reset generated by watchdog timer counter overflow".

[Example]

>DISABLE WATCHDOG

>GO



100

  

3.2.3  On-the-fly Executable Commands

Certain commands can be executed even while executing a program.  This is called
"on-the-fly" execution.

On-the-fly Executable Commands

Certain commands can be executed on-the-fly.  If an attempt is made to execute a command

that cannot be executed on-the-fly, an error "MCU is busy" occurs.  Table 3-2-4 lists major

on-the-fly executable functions.  For further details, refer to the Command Reference Manual.

Meanwhile, on-the-fly execution is enabled only when executing the MCU from the menu or the

tool button.  On-the-fly commands cannot be executed when executing the GO command, etc.,

from the Command window.



101

Function Limitations and Restrictions Major Commands

MCU reset  RESET

Displaying MCU execution
status

 SHOW STATUS

Displaying trace data Enabled only when trace
function disabled

SHOW TRACE

SHOW MULTITRACE

Enable/Disable trace  ENABLE TRACE

DISABLE TRACE

Displaying execution time
measurement value (Timer)

 SHOW TIMER

Memory operation
(Read/Write)

Emulation memory only operable

Read only enabled in mirror area

ENTER

EXAMINE

COMPARE

FILL

MOVE

DUMP

SEARCH MEMORY

SHOW MEMORY

SET MEMORY

Line assembly, Disassembly Emulation memory only enabled

Mirror area, Disassembly only
enabled

ASSEMBLE

DISASSEMBLE

Load, Save program Emulation memory only enabled

Mirror area, save only enabled

LOAD

SAVE

Displaying coverage
measurement data

 SHOW COVERAGE

Setting event Disabled in performance mode SET EVENT

SHOW EVENT

ENABLE EVENT

DISABLE EVENT

CANCEL EVENT

Table 3-2-4  Major Functions Executable in On-the-fly Mode



102

  

3.2.4  On-the-fly Memory Access

While on-the-fly, the area mapped to the emulation memory is Read/Write enabled, but
the area mapped to the user memory area is Read-only enabled.

Read/Write memory while On-the-fly

The user memory cannot be accessed while on-the-fly.  However, the emulation memory can be

accessed.  (The cycle-steal algorithm eliminates any negative effect on the MCU speed.)

This emulator allows the user to use part of the emulation memory as a mirror area.  The

mirror area holds a copy of the user memory.  Using this mirror area makes the Read-only

enabled function available while on-the fly.

Each memory area operates as follows:

- User Memory Area

Access to the user memory is permitted only when the operation is suspended by a break.

- Emulation Memory Area

Access to the emulation memory is permitted regardless of whether the MCU is suspended,

or while on-the-fly.

- Mirror Area

The emulation memory with the MIRROR setting can be set up for the user memory area to be

referred to while on-the-fly.  This area is specifically called the mirror area.

As shown in Figure 3.2-1, the mirror area performs access to the user memory while the

MCU is stopped, and such access is reflected simultaneously in the emulation memory

specified as the mirror area.  (Read access is also reflected in the emulation memory

specified as the mirror area).

In addition, as shown in Figure 3.2-2, access to the user memory by the MCU is reflected "as

is" in the emulation memory of the mirror area.

While on-the -fly, the user memory cannot be accessed.  However, the emulation memory

specified as the mirror area can be read instead.   In other words, identical data to that of

the user memory can be read by accessing the mirror area

However, at least one time access must be allowed before the emulation memory of the mirror

area has the same data as the user memory.  The following copy types allow the emulation

memory of the mirror area to have the same data as the user memory.

(1) Copying all data when setting mirror area

When, /COPY is specified, with the mirror area set using the SET MAP command, the

whole area specified, as the mirror area is copied.

(2) Copying only required portion using memory access commands

Data in the specified portion can be copied by executing a command that accesses

memory.  The following commands access memory.



103

- Memory operation commands

SET MEMORY,  SHOW MEMORY,  EXAMINE,  ENTER,

COMPARE,  FILL,  MOVE,  SEARCH MEMORY,  DUMP,

COPY, VERIFY

- Data load/save commands

LOAD,  SAVE

Executing
command

Emulation memory
(Mirror setting)

User memory
MCU

operation
(Suspended)

Memory access

Reflected

Figure 3.2-1  Access to Mirror Area while MCU Suspended

Executing
command

Emulation memory
(Mirror setting)

User memory
MCU

operation
(Operating)

Memory access

Reflected

Figure 3.2-2  On-the-fly Access to Mirror Area

Memory read

<Note>

Memory access by a bus master other than the MCU is not reflected in the mirror area.



104

  

3.2.5  Events

The emulator can monitor the MCU bus operation, and generate a trigger at a specified
condition called an event.
In this emulator, event triggers are used for the following functions; to determine which
function event triggers are used for depends on event modes.

-  Sequencer
-  Sampling condition for multi-trace
-  Measuring point in performance measurement

Setting Events

Up to 8 events can be set.

Table 3-2-5 shows the conditions that can be set for events.

Condition Description

Address Memory location (Address bit masking enabled)

Data 8-bit data (Data bit masking enabled)

NOT can be specified.

Status Choose from Data Read, Data Write, Instruction
Execution*1, Data Modify*2

External Probe 8-bit data (Bit masking enabled)

Table 3-2-5  Conditions for Events

*1: Instruction execution allows an event trigger generated only when the instruction has been

executed.   This cannot be specified together with another status at one time.

*2: Data Modify generates an event trigger when the data at the specified address is rewritten.

When Data Modify is selected as the status, the data setting is disregarded.  This cannot be

specified together with another status at one time.



105

Use the following commands to set an event.

SET EVENT:  Sets event

SHOW EVENT:  Display event setup status

CANCEL EVENT:  Deletes event

ENABLE EVENT:  Enables event

DISABLE EVENT:  Disables event

[Example]

>SET EVENT  1,func1

>SET EVENT/WRITE 2,data[2],!d=h'10

>SET EVENT/MODIFY 3,102

An event can be set in the Event window as well.

Event Modes

There are three event modes as listed below.  To determine which function event triggers are

used for, select one using the SET MODE command.  The default is normal mode.

The event value setting are made for each mode, so switching the event mode changes the event

settings as well.

- Normal Mode

Event triggers used for sequencer.

Since the sequencer can perform control at 8 levels, it can control sequential breaks, time

measurement and trace sampling.  Real-time tracing in the normal mode is performed by

single trace (tracing function that samples program execution continuously).

- Multitrace Mode

Event triggers used for multitracing (trace function that samples data before and after event

trigger occurrence).

- Performance Mode

Event triggers are used for performance measurement to measure time duration between two

event trigger occurrences and count of event trigger occurrences.



106

  

3.2.5.1  Operation in Normal Mode

As shown in the figure below, the event trigger set in the normal mode performs input to
the sequencer.  In the sequencer, either branching to any level, or terminating the
sequencer, can be specified as an operation at event trigger occurrence.  This enables
debugging (breaks, limiting trace, measuring time) while monitoring program flow.

Operation in Normal Mode

Terminating the sequencer triggers the delay counter.  When the delay counter reaches the

specified count, sampling for the single trace terminates.  A break normally occurs at this

point, but if necessary, the program can be allowed to run on without a break.

Figure 3.2-3  Operation in Normal Mode



107

Event-related Commands in Normal Mode

Since the real-time trace function in the normal mode is actually the single trace function, the

commands can be used to control the single trace.

Table 3-2-6 shows the event-related commands that can be used in the normal mode.

Mode Usable Command Function

Set Event

Show Event

Cancel Event

Enable Event

Disable Event

Set event

Displays event setup status

Delete event

Enables event

Disables event

Set Sequence

Show Sequence

Cancel Sequence

Enable Sequence

Disable Sequence

Sets sequencer

Displays sequencer setup status

Cancels sequencer

Enables sequencer

Disables sequencer

Set Delay

Show Delay

Sets delay count

Displays delay count setup status

Normal Mode

Set Trace

Show Trace

Search Trace

Enable Trace

Disable Trace

Clear Trace

Sets trace buffer-full break

Displays trace data

Searches trace data

Enables trace function

Disables trace function

Clears trace data

Table 3-2-6  Event-related Commands in Normal Mode



108

  

3.2.5.2  Operation in Multitrace Mode

When the multitrace mode is selected as the event mode, the real-time trace function
becomes the multitrace function, and events are used as triggers for multitracing.

Operation in Multitrace Mode

When the multitrace mode is selected as the event mode, the real-time trace function becomes

the multitrace function, and events are used as triggers for multitracing.  Multitracing is a

trace function that samples data before and after an event trigger occurrence.

Events
Enable

Disable

All enabled events
generate trigger

Enable/Disable control Buffer full break control

Multitrace measurement

Instructing
MCU to
suspend
operation

SET EVENT

CANCEL EVENT DISABLE MULTITRACE

ENABLE MULTITRACE

SHOW MULTITRACE/STATUS

SET MULTITRACE

SEARCH MULTITRACE

SHOW MULTITRACE

CLEAR MULTITRACEDISABLE ENENT

ENABLE EVENT

SHOW EVENT

Figure 3.2-4 Operation in Multitrace Mode



109

Event-related Commands in Multitrace Mode

Table 3-2-7 shows the event-related commands that can be used in the multi-race mode.

Mode Usable Command Function

Set Event

Show Event

Cancel Event

Enable Event

Disable Event

Sets event

Displays event setup status

Deletes event

Enables event

Disables event
Multitrace

Mode Set MultiTrace

Show MultiTrace

Search MultiTrace

Enable MultiTrace

Disable MultiTrace

Clear MultiTrace

Sets trace buffer-full break

Displays trace data

Searches trace data

Enables trace function

Disables trace function

Clears trace data

Table 3-2-7  Event-related Commands in Multitrace Mode



110

  

3.2.5.3  Operation in Performance Mode

Event triggers set in the performance mode are used to measure performance.  The
time duration between two event occurrences can be measured and the event
occurrences can be counted.

Operation in Performance Mode

The event triggers that are set in the performance mode are used to measure performance.

The time duration between two event occurrences can be measured and the event occurrences

can be counted.

Events
Enable

Disable

Limited to following
combinations:

1,2  3,4  5,6  7,8

Buffer full break control

Performance measurement

Instructing
MCU to
suspend
operation

SET EVENT

CANCEL EVENT

SHOW PERFORMANCE/STATUS

SET PEFFORMANCE

SHOW PERFORMANCE

CLEAR PERFORMANCEDISABLE ENENT

ENABLE EVENT

SHOW EVENT

Figure 3.2-5  Operation in Performance Mode



111

Event-related Commands in Performance Mode

Table 3-2-8 shows the event-related commands that can be used in the performance mode.

Mode Usable Command Function

Set Event

Show Event

Cancel Event

Enable Event

Disable Event

Sets event

Displays event setup status

Deletes event

Enables event

Disables event
Performance

Mode

Set Performance

Show Performance

Clear Performance

Sets performance

Displays performance setup status

Clears performance measurement data

Table 3-2-8  Event-related Commands in Performance Mode



112

  

3.2.6  Control by Sequencer

This emulator has a sequencer to control events.  By using this sequencer, sampling of
breaks, time measurement and tracing can be controlled while monitoring program flow
(sequence).  A break caused by this function is called a sequential break.
To use this function, set the event mode to normal mode using the SET MODE command.
Use the SET EVENT command to set events.

Control by Sequencer

As shown in Table 3-2-9, controls can be made at 8 different levels.

At each level, 8 events and 1 timer condition (9 conditions in total) can be set.

A timer condition is met when the timer count starts at entering a given level and the specified

time is reached.

For each condition, the next operation can be specified when the condition is met.  Select any

one of the following.

- Move to required level.

- Terminate sequencer.

The conditions set for each level are determined by ORing.  Therefore, if any one condition is

met, the sequencer either moves to the required level, or terminates.  In addition, trace

sampling suspend/resume can be controlled when a condition is met.

Table 3-2-9  Sequencer Specifications

Function Specifications

Level count 8 levels

Conditions settable for each level 8 event conditions (1 to 16777216 times pass count

can be specified for each condition.)

1 timer condition (Up to 16 s. in us units or up to 1.6

s. in 100 ns units can be specified.*)

Operation when condition met Branches to required level or terminates sequence.

Controls trace sampling.

Other function Timer latch enable at level branching

Operation when sequencer terminates Starts delay counter

*: The minimum measurement unit for Timer value can be set to either 1 us or 100 ns using the SET

TIMERSCALE command.



113

  

3.2.6.1  Setting Sequencer

The sequencer operates in the following order:
(1) The sequencer starts from level 1 simultaneously with the start of program executing.
(2) Depending on the setting at each level, branching to the required level is performed

when the condition is met.
(3) When sequencer termination is specified, the sequencer terminates when the

condition is met.
(4) When the sequencer terminates, the delay counter starts counting.

Setting Sequencer

Start executing program.  (Start sequencer.)

Set Conditions Operation when Condition Met

[Use event number 1?]  →  [Pass counter]

[Use event number 2?]  →  [Pass counter]

[Use event number 3?]  →  [Pass counter]

[Use event number 4?]  →  [Pass counter]

[Use event number 5?]  →  [Pass counter]

[Use event number 6?]  →  [Pass counter]

[Use event number 7?]  →  [Pass counter]

[Use event number 8?]  →  [Pass counter]

Timer condition  [Waiting time]

[Trace control] / [Branch level number]

[Trace control] / [Branch level number]

[Trace control] / [Branch level number]

[Trace control] / [Branch level number]

[Trace control] / [Branch level number]

[Trace control] / [Branch level number]

[Trace control] / [Branch level number]

[Trace control] / [Branch level number]

[Trace control] / [Branch level number]

Terminate
sequencer.

Start delay count.

Branch to specified level.

Figure 3.2-6  Operation of Sequencer

[Setup Examples]

-  Terminate sequencer when event 1 occurs.

>SET SEQUENCE/EVENT 1,1,J=0

-  Terminate sequencer when event 2 occurs 16 times.

>SET SEQUENCE/EVENT 1,2,16,J=0



114

-  Terminate sequencer when event 2 occurs after event 1 occurred.  However, do not

terminate sequencer if event 3 occurs between event 1 and event 2.

>SET SEQUENCE/EVENT 1,1,J=2

>SET SEQUENCE/EVENT 2,2,J=0

>SET SEQUENCE/EVENT 2,3,J=1

-  Terminate sequencer if and when event 2 occurs less than 300 us after event 1 occurred.

>SET SEQUENCE/EVENT 1,1,J=2

>SET SEQUENCE/EVENT 2,2,J=0

>SET SEQUENCE/TIMER 2,300,J=1

>SHOW SEQUENCE

Sequencer Enable

 level1   level2   level3   level4   level5   level6   level7   level8

1 |1|->2  | |       | |       | |       | |       | |       | |       | |

2 | |  |2|->end | |       | |       | |       | |       | |       | |

3 | |  | |       | |       | |       | |       | |       | |       | |

4 | |  | |       | |       | |       | |       | |       | |       | |

5 | |  | |       | |       | |       | |       | |       | |       | |

6 | |  | |       | |       | |       | |       | |       | |       | |

7 | |  | |       | |       | |       | |       | |       | |       | |

8 | |  | |       | |       | |       | |       | |       | |       | |

T | |  |T|->1  | |       | |       | |       | |       | |       | |

 Latch 1 ( -> ) = Latch 2 ( -> ) =

>SHOW SEQUENCE 2

level no. = 2

event  pass-count    trace-cnt1   jmp-level1

2  1    enable   end

timer  00:00:000:300:000   enable   1

Indicates
move to level
2 when event
1 occurs at
level 1

Indicates terminating
sequencer when event 2
occurs at level 2.

Indicates move to level 1 if and
when 300 us passed before
event 2 occurs at level 2



115

  

3.2.6.2  Break by Sequencer

A program can suspend execution when the sequencer terminates.  This break is called
a sequential break.

Break by Sequencer

A program can suspend execution when the sequencer terminates.  This break is called a

sequential break.

As shown in Figure 3.2-7, the delay count starts when the sequencer terminates, and after

delay count ends, either "break" or "not break but tracing only terminates" is selected as the

next operation.

To make a break immediately after the sequencer terminates, set delay count to 0 and specify

"Break after delay count terminates".  Use the SET DELAY command to set the delay count and

the operation after the delay count.

The default is delay count 0, and Break after delay count.

Delay
counter

Sequencer
terminates

Count ends

Tracing terminates

Break (Sequential break)

Tracing terminates

Not break

Figure 3.2-7  Operation when sequencer terminates

[Examples of Delay Count Setups]

-  Break when sequencer terminates.

>SET DELAY/BREAK 0

-  Break when 100-bus-cycle tracing done after sequencer terminates.

>SET DELAY/BREAK 100

-  Terminate tracing, but do not break when sequencer terminates.

>SET DELAY/NOBREAK 0

-  Terminate tracing, but do not break when 100-bus-cycle tracing done after sequencer

terminates.

>SET DELAY/NOBREAK 100



116

  

3.2.6.3  Trace Sampling Control by Sequencer

When the event mode is in the normal mode, real-time trace executing tracing called
single trace.
If the trace function is enabled, single trace samples all the data from the start of
executing a program until the program is suspended.

Trace Sampling Control by Sequencer

Sets up suspend/resume trace sampling for each condition at each level of the sequencer.

Figure 3.2-8 shows the trace sampling flow.

Trace data sampling can be restricted.  For example, it is possible to suspend trace sampling

when event 1 occurs, and then resume trace sampling when event 2 occurs.

Start

↓

Suspend

↓

Program flow

Trace buffer

Resume

↓ ↓

Resume

↓

Suspend

↓

Figure 3.2-8  Controlling Trace Sampling Control (1)

As shown in Figure 3.2-9, trace sampling can be disabled during the period from the start of a

program execution until the first condition occurs.  For this setup, use the GO command or the

SET GO command.

[Example]

>GO/DISABLETRACE

>SET GO/DISABLETRACE

>GO

Start Suspend

Program flow

Resume Suspend
Resume

Suspend
Resume

Figure 3.2-9  Controlling Trace Sampling Control(2)



117

[Setup Example]

Suspend trace sampling when event 1 occurs, and then resume at event 2 and keep sampling

data until event 3 occurs.

Start

Event 1
NO

Suspend trace sampling.

Level 1

YES

Event 2
NO

Resume trace sampling.

Level 2

YES

Event 3
NO

Suspend trace sampling.

Level 3

YES

>SET SEQUENCE/EVENT/DISABLETRACE 1,1,J=2

>SET SEQUENCE/EVENT/ENABLETRACE 2,2,J=3

>SET SEQUENCE/EVENT/DISABLETRACE 3,3,J=2



118

  

3.2.6.4  Time Measurement by Sequencer

Time can be measured using the sequencer.  A time measurement timer called the
emulation timer is used for this purpose.  When branching is made from a specified
level to another specified level, a timer value is specified.  Up to two emulation timer
values can be fetched.  This function is called the timer latch function.

Time Measurement by Sequencer

The time duration between two given points in a complex program flow can be measured using

the timer latch function.

The timing for the timer latch can be set using the SET SEQUENCE command; the latched timer

values can be diplayed using the SHOW SEQUENCE command.

When a program starts execution, the emulation timer is initialized and then starts counting.

Select either 1 us or 100 ns as the minimum measurement unit for the emulation timer.  Set

the measurement unit using the SET TIMESCALE command.

When 1 us is selected, the maximum measured time is about 70 minutes; when 100 ns is

selected, the maximum measured time is about 7 minutes.  If the timer overflows during

measurement, a warning message is displayed when the timer value is displayed using the

SHOW SEQUENCE command.



119

  

3.2.6.5 Sample Flow of Time Measurement by Sequencer

In the following sample, when events are executed in the order of Event 1, Event 2 and
Event 3, the execution time from the Event 1 to the Event 3 is measured.  However, no
measurement is made if Event 4 occurs anywhere between Event 1 and Event 3.

Sample Flow of Time Measurement by Sequencer

Start

Event 1
NO

Branch from level 1 to level 2 (Timer latch 1)

Level 1

YES

Event 4

Level 2

YES

Event 2
NO

YES

Sequencer terminates at level 3 (Timer latch 2)

Event 4

Level 3

YES

Event 3
NO

YES

End



120

>SET SEQUENCE/EVENT  1,1,J=2

>SET SEQUENCE/EVENT  2,4,J=1

>SET SEQUENCE/EVENT  2,2,J=3

>SET SEQUENCE/EVENT  3,4,J=1

>SET SEQUENCE/EVENT  3,2,J=0

>SET SEQUENCE/LATCH  1,1,2

>SET SEQUENCE/LATCH  2,3,0

>SHOW SEQUENCE

Sequencer Enable

 level1 level2 level3 level4 level5 level6 level7 level8

1 |1|#>2  | |  | |  | |  | |  | |  | |  | |

2 | |  |2|->3  | |  | |  | |  | |  | |  | |

3 | |  | |  |3|#end  | |  | |  | |  | |  | |

4 | |  |4|->1  |4|->1  | |  | |  | |  | |  | |

5 | |  | |  | |  | |  | |  | |  | |  | |

6 | |  | |  | |  | |  | |  | |  | |  | |

7 | |  | |  | |  | |  | |  | |  | |  | |

8 | |  | |  | |  | |  | |  | |  | |  | |

T | |  |T|->1  | |  | |  | |  | |  | |  | |

 Latch 1 (1->2) = 00m02s060ms379.0us  Latch 2 (3->E) = 00m16s040ms650.0us

Indicates
that, if event
1 occurs at
level 1, move
to level 2 and
let the timer
latched.

Indicates that, if event 3
occurs at level 3, the
sequencer terminates and
let the timer latched.

Indicate time values of timer latch 1 and timer latch 2.  The time
value, deducting the value of the timer latch 1 from the value of the
timer latch 2, represents the execution time.
Time is displayed in the following format.

00 m  00 s  000 ms  000.0 us
↑

minutes
↑

seconds
↑

milliseconds
↑

microseconds



121

  

3.2.7  Real-time Trace

While execution a program, the address, data and status information, and the data
sampled by an external probe can be sampled in machine cycle units and stored in the
trace buffer.  This function is called real-time trace.
In-depth analysis of a program execution history can be performed using the data
recorded by real-time trace.
There are two types of trace sampling:  single trace, which traces from the start of
executing the program until the program is suspended, and multitrace, which starts
tracing when an event occurs.

Trace Buffer

The data recorded by sampling in machine cycle units, is called a frame.

The trace buffer can store 32 Kframes (32768).  Since the trace buffer has a ring structure, when

it becomes full, it automatically returns to the start to overwrite existing data.

Trace Data

Data sampled by the trace function is called trace data.

The following data is sampled:

-  Address

-  Data

-  Status Information

- Access status:  Read/Write/Internal access, etc.

- Device status:  Instruction execution, Reset, Hold, etc.

- Queue status:  Count of remaining bytes of instruction queue, etc.

- Data valid cycle information:  Data valid/invalid

(Since the data signal is shared with other

signals, it does not always output data.

Therefore, the trace samples information

indicating whether or not the data is valid.)

-  External probe data

-  Sequencer execution level

Data Not Traced

The following data does not leave access data in the trace buffer.

-  Data after tool hold

The FFMC-16L/16LX/16/16H/16F family execute the following operation

immediately after a break, etc., lets MCU suspend (a tool hold).  This data is not

displayed because it is deleted from the trace buffer.

- Access to address 100

- Access to FFFFDC to FFFFFF



122

-  Portion of access data while in native mode.

When operating in the native mode, the FFMC-16L/16LX/16/16H/16F family of

chips sometime performs simultaneous multiple bus operations internally.  However,

in this emulator, monitoring of the internal ROM bus takes precedence.  Therefore,

other bus data being accessed simultaneously may not be sampled (in the debugging

mode, all operations are sampled).



123

  

3.2.7.1  Function of Single Trace

The single trace function traces all data from the start of executing a program until the
program is aborted.

Function of Single Trace

The single trace is enabled by setting the event mode to normal mode using the SET MODE

command.

The single trace function traces all data from the start of executing a program until the

program is suspended.

If the real-time trace function is enabled, data sampling continues execution to record the data

in the trace buffer while the GO, STEP, CALL commands are being executed.

As shown in Figure 3.2-10, suspend/resume trace sampling can be controlled by the event

sequencer.  Since the delay can be set between the sequencer terminating the trigger and the

end of tracing, the program flow after an given event occurrence can be traced.  The delay

count is counted in pass cycle units, so it matches the sampled trace data count.  However,

nothing can be sampled during the delay count if trace sampling is suspended when the

sequencer is terminated.

After the delay count ends, a break occurs normally due to the sequential break, but tracing can

be terminated without a break.

Furthermore, a program can be allowed to break when the trace buffer becomes full.  This

break is called a trace-buffer-full break.

Suspend
sampling.

Start program.

Program flow

Trace buffer

Delay

Sequencer Delay counter

Resume
sampling.

Sequencer terminates.
Trigger

Tracing
terminates.

Figure 3.2-10  Sampling in Single Trace



124

Frame Number and Step Number in Single Trace

The sampled trace data is numbered in frame units.  This number is called the frame number.

When displaying trace data, the starting location in the trace buffer can be specified using the

frame number.  The trace data at the point where the sequencer termination trigger occurs is

numbered 0; trace data sampled before reaching the trigger point is numbered negatively, and

the data sampled after the trigger point is numbered positively (Figure 3.2-11).

If there is no sequencer termination trigger point available, the trace data sampled last is

numbered 0.

.

.

.

-3

-2

-1

0

+1

+2

+3

.

.

.

(Trigger point)

Delayed frames

Figure 3.2-11  Frame Number in Single Trace

This program can analyze the single trace result and sort the buffer data in execution

instruction units (only when the MCU execution mode is the debugging mode).

In this mode, the following information is grouped as one unit, and each information unit is

numbered.  This number is called the step number.

-  Execution instruction mnemonic information

-  Data access information

-  Device status information

The step number at the sequencer termination trigger is numbered 0; information sampled

before reaching the trigger point is numbered negatively, and information sampled after the

trigger point is numbered positively.

If there is no sequencer termination trigger point, the information sampled last is numbered 0.



125

  

3.2.7.2  Setting Single Trace

The following settings (1) to (4) are required before executing single trace.  Once these
settings have been made, trace data is sampled when a program is executed.

(1) Set event mode to normal mode.
(2) Enable trace function.
(3) Set events, sequencer, and delay count.
(4) Set trace-buffer-full break.

Setting Single Trace

The following settings are required before executing single trace.  Once these settings have

been made, trace data is sampled when a program is executed.

(1) Set event mode to normal mode.

Use SET MODE command to make this setting.

(2) Enable trace function.

Use the ENABLE TRACE command.  To disable the function, use the DISABLE TRACE

command.  The default is Enable.

(3) Set events, sequencer, and delay count.

Trace sampling can be controlled by setting the sequencer for events.  If this function is

not needed, there is no need of this setting.

To set events, use the SET EVENT command.  To set the sequencer, use the SET SEQUENCE

command.

Furthermore, set the delay count between sequencer termination and trace ending, and the

break operation (Break or Not Break) when the delay count ends.  If the data after event

occurrence is not required, there is no need of this setting.

If Not Break is set, the trace terminates but no break occurs.  To check trace data on-the-

fly, use this setup by executing the SET DELAY command.

<Note>

When the sequencer termination causes a break (sequential break), the last executed machine cycle is not

sampled.

(4) Set trace-buffer-full break.

The program can be allowed to break when the trace buffer becomes full.  Use the SET

TRACE command for this setting.  The default is Not Break.  Display the setup status

using the SHOW TRACE/STATUS command.

Table 3-2-10 lists trace-related commands that can be used in the single trace function.



126

Table 3-2-10  Single Trace Function Commands

Usable Command Function

Set Event Sets events

Show Event Displays event setup status

Cancel Event Deletes event

Enable Event Enables event

Disable Event Disables event

Set Sequence Sets sequencer.

Show Sequence Displays sequencer setting status

Cancel Sequence Cancels sequencer

Enable Sequence Enables sequencer

Disable Sequence Disables sequencer

Set Delay Sets delay count value, and operation after delay

Show Delay Displays delay count setting status

Set Trace Set traces-buffer-full break

Show Trace Displays trace data

Search Trace Searchs trace data

Enable Trace Enables trace function

Disable Trace Disables trace function

Clear Trace Clears trace data



127

  

3.2.7.3  Multitrace Function

The multitrace function samples data where an event trigger occurs for 8 frames before
and after the event trigger.

Multitrace Function

Execute multitrace by setting the event mode to the multitrace mode using the SET MODE

command.

The multitrace function samples data where an event trigger occurs for 8 frames before and

after the event trigger.

It can be used for tracing required only when a certain variable access occurs, instead of

continuous tracing.

The trace data sampled at one event trigger (16 frames) is called a block.  Since the trace

buffer can hold 32 Kframes, up to 2048 blocks can be sampled.  Multitrace sampling

terminates when the trace buffer becomes full.  At this point, a executing program can be

allowed to break if necessary.

Start
execution

↓

Program flow

Trace buffer

Block

Event 1

↓

Event 2

↓

Event 3

↓

Figure 3.2-12  Multitrace Sampling

Multitrace Frame Number

Sixteen frames of data are sampled each time an event trigger occurs.  This data unit is called

a block, and each sampled block is numbered starting from 0.  This is called the block number.

A block is a collection of 8 frames of sampled data before and after the event trigger.  At the

event trigger is 0, trace data sampled before reaching the event trigger point is numbered

negatively, and trace data sampled after the event trigger point is numbered positively.  These

frame numbers are called local numbers (See Figure 3.2-13).

In addition to this local number, there is another set of frame numbers starting with the oldest

data in the trace buffer.  This is called the global number.  Since the trace buffer can hold 32

Kframes, frames are numbered 1 to 32758 (See Figure 3.2-13).



128

To specify which frame data is displayed, use the global number or block and local numbers.

Block number Trace buffer Frame number

Global number Local number

← Event trigger

1 -7

2 –6

: :

: :
8 0

: :
: :

15 +7

16 +8
17 –7

18 –6

: :

: :
24 0

: :
: :

31 +7

32 +8

32752 -7
32753 -6

: :

: :
32759 0

: :
: :

32767 +7

32768 +8

1

← Event trigger

← Event trigger

2

2048

Figure 3.2-13  Frame Number in Multitrace Function



129

  

3.2.7.4  Setting Multitrace

Before executing the multitrace function, the following settings must be made.  After
these settings, trace data is sampled when a program is executed.

-  Set event mode to multitrace mode.
-  Enable trace function.
-  Set event.
-  Set trace-buffer-full break.

Setting Multitrace

Before executing the multitrace function, the following settings must be made.  After these

settings, trace data is sampled when a program is executed.

(1) Set event mode to multitrace mode.

Use the SET MODE command for this setting.

(2) Enable trace function.

Use the ENABLE MULTITRACE command.  To disable the function, use the DISABLE

MULTITRACE command.

(3) Set event.

Set an event that sampiling.  Use the SET EVENT command for this setting.

(4) Set trace-buffer-full break.

To break when the trace buffer becomes full, set the trace-buffer-full break.  Use the SET

MULTITRACE command for this setting.



130

Table 3-2-j shows the list of trace-related commands that can be used in multitrace mode.

Table 3-2-11  Multitrace Mode Commands

Usable Command Function

Set Event Sets events

Show Event Displays event setup status

Cancel Event Deletes event

Enable Event Enables event

Disable Event Disables event

Set Multitrace Sets trace-buffer-full break

Show Multitrace Displays trace data

Search Multitrace Searches trace data

Enable Multitrace Enables trace function

Disable Multitrace Disables trace function

Clear Multitrace Clears trace data



131

  

3.2.7.5  Displaying Trace Data Storage Status

It is possible to Displays how much trace data is stored in the trace buffer.  This status
data can be read by adding /STATUS to the SHOW TRACE command in the single trace
mode, and to the SHOW MULTITRACE command in the multitrace mode.

Displaying Trace Data Storage Status

It is possible to Displays how much trace data is stored in the trace buffer.  This status data

can be read by adding /STATUS to the SHOW TRACE command in the single trace mode, and to

the SHOW MULTITRACE command in the multitrace.

Frame numbers displayed in the multitrace mode.

[Example]

- In Single Trace

>SHOW TRACE/STATUS

en/dis      = enable Trace function enabled

buffer full = nobreak Buffer full break function disabled

sampling    = end Trace sampling terminates

flame no. = -00120 to  00050 Frame -120 to 50 store data

step no.  = -00091 to  00022 Step -91 to 22 store data

>

- In Multitrace

>SHOW MULTITRACE/STATUS

en/dis      = enable Multitrace function enabled

buffer full = nobreak Buffer full break function disabled

sampling    = end Trace sampling terminates

block no. = 1 to 5 Block 1 to 5 store data

frame no. = 00001 to 00159 Frame 1 to 159 store data

(Global number)



132

  

3.2.7.6  Specifying Displaying Trace Data Start

It is possible to specify from which data in the trace buffer to display.  To do so, specify
a frame number or step number with the SHOW TRACE command in the single trace mode,
or specify either a global number, or a block number and local number with the SHOW
MULTITRACE command in the multitrace mode.  A range can also be specified.

Specifying Displaying Trace Data Start

It is possible to specify from which data in the trace buffer to displays.  To do this, specify a

frame number or step number with the SHOW TRACE command in the single trace, and specify

either a global number, or a block number and local number with the SHOW MULTITRACE

command in the multitrace.  A range can also be specified.

[Example]

- In Single Trace Mode

>SHOW TRACE/CYCLE -6 Start displaying from frame -6

>SHOW TRACE/CYCLE -6..10 Display from frame -6 to frame 10

>SHOW TRACE -6 Start displaying from step -6

>SHOW TRACE -6..10 Displays from step -6 to step 10

<Note>

A step number can only be specified when the MCU execution mode is set to the debugging mode.

- In Multitrace

>SHOW MULTITRACE/GLOBAL 500 Start displaying from frame 500 (Global

number)

>SHOW MULTITRACE/LOCAL 2 Displaying block number 2

>SHOW MULTITRACE/LOCAL 2,-5..5 Display from frame -5 to frame 5 of block

number 2



133

  

3.2.7.7  Display Format of Trace Data

A display format can be chosen by specifying a command identifier with the SHOW TRACE
command in the single trace, and with the SHOW MULTITRACE command in the
multitrace.  The source line is also displayed if "Add source line" is selected using the
SET SOURCE command.
There are three formats to display trace data:

-  Display in instruction execution order (Specify /INSTRUCTION.)
-  Display all machine cycles (Specify /CYCLE.)
-  Display in source line units (Specify /SOURCE.)

Display in instruction Execution Order (Specify /INSTRUCTION.)

Trace sampling is performed at each machine cycle, but the sampling results are difficult to

Display because they are influenced by pre-fetch, etc.  This is why the emulator has a function

to allow it to analyze trace data as much as possible.  The resultant data is displayed after

processes such as eliminating pre-fetch effects, analyzing execution instructions, and sorting in

instruction execution order are performed automatically.  However, this function can be

specified only in the single trace while in the debugging mode.

In this mode, data can be displayed in the following format.



134

Data Access

internal read access :  Read access to
internal memory

internal write access :  Write access to
internal memory

external read access :  Read access to
external memory

external write access :  Write access to
external memory

>SHOW TRACE/INSTRUCTION  -194

step no.    address   mnemonic                          level

         \sub4:

-00194    : FF0106   LINK     #00 4

-00193    : 000186   internal read access.    10F2 5

-00192    : 1010E6   external write access.   10F2 5

-00191    : 000186   internal write access.   10E6 5

-00190    : FF0108   ADDSP     #F8 5

-00189    : FF010A   MOVL      A,001A 5

-00188    : 10001A   external read access.    0000 5

-00187    : 10001C   external read access.    4000 5

-00186    : FF010E   MOVL      @SP+04,A 5

-00185    : 1010E2   external write access.   0000 5

-00184    : FF0111   MOVL      A,0016 5

-00183    :     ** RESET **

>

Step Number

Address Disassemble Description

Data

Disassemble Description

Device Status

Decimal, signed

Hexadecimal Indicates instruction
executed

Hexadecimal

Indicates sequencer level
executed when trace sampled.

Indicates 0 if sequencer not in
use.

** STANDBY ** :  Hardware standby
** RESET ** :  Reset
** THOLD ** :  Tool hold
** UHOLD ** :  User hold
** WAIT ** :  Ready pin input
** SLEEP ** :  Sleep
** STOP ** :  Stop



135

Displaying All Machine Cycles (Specify /CYCLE.)

Detailed information at all sampled machine cycles can be displayed.  In this mode, both single

trace and multitrace data can be displayed in almost identical formats.  (In the multitrace

mode, the local frame number and block number are added.)

In this mode, data can be displayed in the following format.  For further details, see the

descriptions of the SHOW TRACE, and SHOW MULTITRACE commands.  In this mode, source is

not displayed regardless of the setup made using the SET SOURCE command.

[Example]

>SHOW TRACE/CYCLE -587

frame no.  address data a-status d-status Qst dfg level ext-probe

-00587    : FF0106 0106 --- ------- FLH       4   11111111

-00586    : FF0106 0008 ECF EXECUTE --- @    4   11111111

-00585    : FF0106 0106 --- EXECUTE ---       5   11111111

-00584    : 1010E8 10E8 --- ------- ---       5   11111111

-00583    : 1010E8 0102 EWA EXECUTE -- @    5   11111111

-00582    : 1010E8 0102 --- EXECUTE ---       5   11111111

-00581    : 000186 0186 --- ------- 2by       5   11111111

-00580    : 000186 10F2 IRA EXECUTE --- @    5   11111111

-00579    : 1010E6 10E6 --- ------- ---       5   11111111

-00578    : 1010E6 10F2 EWA EXECUTE --- @    5   11111111

-00577    : 1010E6 10F2 --- EXECUTE ---       5   11111111

-00576    : 000186 0186 --- ------- ---       5   11111111

Display in Source Line Units (Specify /SOURCE.)

Only the source line can be displayed.  This mode is enabled only in the single trace mode

while in the debugging mode.

[Example]
>SHOW TRACE/SOURCE -194

step no.    source

-00194 : gtg1.c$251 {

-00190 : gtg1.c$255 sub5(nf, nd);

-00168 : gtg1.c$259 {

-00164 : gtg1.c$264 p = (char *) &df;

-00161 : gtg1.c$264 p = (char *) &df;

-00157 : gtg1.c$265 *(p++) = 0x00;

-00145 : gtg1.c$266 *(p++) = 0x00;

-00133 : gtg1.c$267 *(p++) = 0x80;

-00121 : gtg1.c$268 *p     = 0x7f;

-00116 : gtg1.c$270 p = (char *) &dd;

-00111 : gtg1.c$271 *(p++) = 0xff;

-00099 : gtg1.c$272 *(p++) = 0xff;



136

  

3.2.7.8  Reading Trace Data On-the-fly

Trace data can be read while executing a program.  However, this is not possible during
sampling.  Disable the trace function or terminate tracing before attempting to read
trace data.

Reading Trace Data On-the-fly in Single Trace

To disable the trace function, use the DISABLE TRACE command.  Check whether or not the

trace function is currently enabled by executing the SHOW TRACE command with /STATUS

specified, or by using the built-in variable, %TRCSTAT.

Tracing terminates when the delay count ends after the sequencer has terminated.  If Not

Break is specified here, tracing terminates without a break operation.  It is possible to check

whether or not tracing has terminated by executing the SHOW TRACE command with /STATUS

specified, or by using the built-in variable, %TRCS.

To read trace data, use the SHOW TRACE command; to search trace data, use the SEARCH TRACE

command.  Use the SET DELAY command to set the delay count and break operation after the

delay count.

[Example]
>GO

>>SHOW TRACE/STATUS

en/dis      = enable

buffer full = nobreak

sampling    = on <- Trace sampling continues.

>>SHOW TRACE/STATUS

en/dis      = enable

buffer full = nobreak

sampling    = end <- Trace sampling ends.

frame no.   = -00805 to  00000

step no.    = -00262 to  00000

>>SHOW TRACE -52

step no.    address mnemonic                       level

       \sub5:

-00052    : FF0125  LINK    #02 1

-00051    : 000186  internal read access. 10E6 1

-00050    : 1010D6  external write access. 10E6 1

-00049    : 000186  internal write access. 10D6 1

                  .                   .                   .

If the CLEAR TRACE command is executed with the trace ending state, trace data sampling can

be re-executed by re-executing the sequencer from the beginning.



137

Reading Trace Data On-the-fly in the Multitrace

Use the DISABLE MULTITRACE command to disable the trace function before reading trace data.

Check whether or not the trace function is currently enabled by executing the SHOW

MULTITRACE command with /STATUS specified, or by using the built-in variable %TRCSTAT.

To read trace data, use the SHOW MULTITRACE command; to search trace data, use the SEARCH

MULTITRACE command.

[Example]

>GO

>>SHOW MULTITRACE/STATUS

en/dis      = enable

buffer full = nobreak

sampling    = on

>>DISABLE MULTITRACE

>>SHOW MULTITRACE/STATUS

en/dis      = disable

buffer full = nobreak

sampling    = end

block no. = 1 to 20

frame no. = 00001 to 00639

>>SHOW MULTITRACE  1

frame no.   address data a-status d-status Qst dfg level ext-probe

block no. = 1

00001  -7 : 10109C  109C  ---     -------  ---       1   11111111

00002  -6 : 10109C  0000  EWA     EXECUTE  2by  @    1   11111111

00003  -5 : 10109C  0000  ---     EXECUTE  ---       1   11111111

00004  -4 : FF0120  0120  ---     -------  ---       1   11111111

                 .                  .                 .

                 .                  .                 .



138

  

3.2.8  Measuring Performance

It is possible to measure the time and pass count between two events.  Repetitive

performance, set the event mode to the performance mode using the SET MODE
command.

Performance Measurement Function

The performance measurement function allows the time between two event occurrences to be

measured and the number of event occurrences to be counted.  Up to 32767 event occurrences

can be measured.

- Measuring Time

Measures time interval between two events.

Events can be set at 8 points (1 to 8).  However, in the performance measurement mode,

the intervals, starting event number and ending event number are combined as follows.

Four intervals have the following fixed event number combination:

Interval Starting Event Number Ending Event Number

1 1 2

2 3 4

3 5 6

4 7 8

- Measuring Count

The specified events become performance measurement points automatically, and

occurrences of that particular event are counted.



139

  

3.2.8.1  Performance Measurement Procedures

Performance can be measured by the following procedure:
-  Set event mode.
-  Set minimum measurement unit for timer.
-  Specify performance-buffer-full break.
-  Set events.
-  Execute program.
-  Display measurement result.
-  Clear measurement result.

Setting Event Mode

Set the event mode to the performance mode using the SET MODE command.  This enables the

performance measurement function.

[Example]

>SET MODE/PERFORMANCE

>

Setting Minimum Measurement Unit for Timer

Using the SET TIMESCALE command, choose either 1 us or 100 ns as the minimum

measurement unit for the timer used to measure performance.  The default is 1 us.

When the minimum measurement unit is changed, the performance measurement values are

cleared.

[Example]

>SET TIMERSCALE/1U <- Set 1 us as minimum unit.

>

Setting Performance-Buffer-Full Break

When the buffer for storing performance measurement data becomes full, a executing program

can be broken.  This function is called the performance-buffer-full break.  The performance

buffer becomes full when an event occurs 32767 times.

If the performance-buffer-full break is not specified, the performance measurement ends, but

the program does not break.

[Example]

>SET PERFORMANCE/NOBREAK <- Specifying Not Break

>



140

Setting Events

Set events using the SET EVENT command.

The starting/ending point of time measurement and points to measure pass count are specified

by events.

Events at 8 points (1 to 8) can be set.  However, in the performance measurement, the

intervals, starting event number and ending event number are fixed in the following

combination.

- Measuring Time

Four intervals have the following fixed event number combination.

Interval Starting Event Number Ending Event Number

1 1 2

2 3 4

3 5 6

4 7 8

- Measuring Count

The specified events become performance measurement points automatically.

Executing Program

Start measuring when executing a program by using the GO or CALL command.  If a break

occurs during interval time measurement, the data for this specific interval is discarded.

Displaying Performance Measurement Data

Display performance measurement data by using the SHOW PERFORMANCE command.

Clearing Performance Measurement Data

Clear performance measurement data by using the CLEAR PERFORMANCE command.

[Example]

>CLEAR PERFORMANCE

>



141

  

3.2.8.2  Displaying Performance Measurement Data

Display the measured time and measuring count by using the SHOW PERFORMANCE
command.

Displaying Measured Time

To display the time measured, specify the starting event number or the ending event number.

>SHOW PERFORMANCE/TIME

event = 1 -> 2      time (us) |   count

min time = 11637.0 -----------------------------+---------

max time = 17745.0 0.0 - 8999.0 | 0

avr time = 14538.0  9000.0 - 9999.0 | 0

10000.0 - 10999.0 | 0

11000.0 - 11999.0 | 2

12000.0 - 12999.0 | 19

13000.0 - 13999.0 | 52

14000.0 - 14999.0 | 283

15000.0 - 15999.0 | 92

16000.0 - 16999.0 | 3

17000.0 - 17999.0 | 1

18000.0 - 18999.0 | 0

19000.0 - | 0

-----------------------------+---------

       total | 452

Minimum
execution time

Event number

Maximum
execution time

Average
execution time

Count of measuring within given time interval

Total measuring count

The lower time limit, upper time limit and display interval can be specified.  The specified time value is in 1us,
when the minimum measurement unit is set to 1 us by the SET TIMESCALE command, and in 100 ns when the
minimum is set to 100 ns.

>SHOW PERFORMANCE/TIME  1,13000,16999,500

event    = 1 -> 2          time (us) |   count

min time = 11637.0 -----------------------------+---------

max time = 17745.0 0.0 - 12999.0 | 21

avr time = 14538.0 13000.0 - 13499.0 | 13

13500.0 - 13999.0 | 39

14000.0 - 14499.0 | 121

14500.0 - 14999.0 | 162

15000.0 - 15499.0 | 76

15500.0 - 15999.0 | 16

16000.0 - 16499.0 | 2

16500.0 - 16999.0 | 1

17000.0 - 17499.0 | 1

-----------------------------+---------

       total | 452

Upper time limit for display

Lower time limit for display



142

  

3.2.9  Measuring Coverage

This emulator has the Co coverage measurement function.  Use this function to find
what percentage of an entire program has been executed.

Coverage Measurement Function

When testing a program, the program is executed with various test data input and the results

are checked for correctness.  When the test is finished, every part of the entire program should

have been executed.  If any part has not been executed, there is a possibility that the test is

insufficient.

This emulator coverage function is used to find what percentage of the whole program has been

executed.  In addition, details such as which addresses were not accessed can be checked.

This enables the measurement coverage range to be set and the access attributes to be

measured.

To execute the Co coverage, set a range within the code area and set the attribute to Code

attribute.  In addition, specifying the Read/Write attribute and setting a range in the data

area, permits checking the access status of variables such as finding unused variables, etc.

Execution of coverage measurement is limited to the address space specified as the debug area.

Therefore, set the debug area in advance.  However, the measurement attribute for coverage

measurement can be specified regardless of attributes of the debug area.

Coverage Measurement Procedures

The procedure for coverage measurement is as follows:

- Set range for coverage measurement: SET COVERAGE

- Measuring coverage: GO, STEP, CALL

- Displaying measurement result: SHOW COVERAGE

Coverage Measurement Operation

The following operation can be made in coverage measurement:

- Load/Save of coverage data:  LOAD/COVERAGE, SAVE/COVERAGE

- Abortion and resume of coverage measurement: ENABLE COVERAGE, DISABLE

COVERAGE

- Clearing coverage data:  CLEAR COVERAGE

- Canceling coverage measurement range:  CANCEL COVERAGE



143

  

3.2.9.1  Coverage Measurement Procedures

The procedure for coverage measurement is as follows:
-  Set range for coverage measurement :  SET COVERAGE
-  Measure coverage :  GO, STEP, CALL
-  Display measurement result :  SHOW COVERAGE

Setting Range for Coverage Measurement

Use the SET COVERAGE command to set the measurement range.  The measurement range can

be set only within the area defined as the debug area.  Up to 32 ranges can be specified.

In addition, the access attribute for measurement can be specified.  This attribute can be

specified regardless of the attributes of the debug area.

By specifying /AUTOMATIC for the command qualifier, the code area for the loaded module is set

automatically.  However, the library code area is not set when the C compiler library is linked.

[Example]

>SET COVERAGE 0FF00..0FFFF

Measuring Coverage

When preparing for coverage measurement, execute the program.

Measurement starts when the program is executed by using the GO, STEP, or CALL command.

Displaying Measurement Result

To display the measurement result, use the SHOW COVERAGE command. The following can be

displayed:

-  Coverage ratio of total measurement area

-  Summary of 16 addresses as one block

-  Details indicating access status of each address

- Coverage Ratio of Total Measurement Area (Specify /TOTAL for command qualifier.)

>SHOW COVERAGE/TOTAL

total coverage : 82.3%



144

- Summary (Specify /GENERAL for command qualifier.)

>SHOW COVERAGE/ GENERAL

  ( HEX) 0 X0         +1 X0          +2 X0

        +- - - - - - - - - - - - - - - +- - - - - - - - - - - - - - - +- - - - - - - - - - - -

a ddr e s s  0 1 2 3 4 5 6 7 8 9 ABCDE F 0 1 2 3 4 5 6 7 8 9 ABCDE F 0 1 2 3 4 5 6     . . . ABCDEF C0 ( %)

F F 0 0 0 0   * * 3 * F * . . . . . . . 3 2 . 0

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - TOTAL 3 2 . 0

Indicates access status of 16 addresses in one block

. :  No access

1  to F :  Displays hexadecimal count of access to 16 addresses

* :  All 16 addresses accessed

- Details (Specify /DETAIL for command qualifier.)

>SHOW COVERAGE/DETAIL 0FF00

address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F C0(%)

FF0000 - - - - - - - - - - - - - - - - 100.0

FF0010 - - - - - - - - - - - - - - - - 100.0

FF0020 . . . . - - - . . . . . . . . . 18.6

FF0030 - - - - - - - - - - - - - - - - 100.0

FF0040 - . - - - - - - - - - - - - - - 93.7

FF0050 - - - - - - - - - - - - - - - - 100.0

FF0060 . . . . . . . . . . . . . . . . 0.0

FF0070 . . . . . . . . . . . . . . . . 0.0

FF0080 . . . . . . . . . . . . . . . . 0.0

--------------------------------------------------TOTAL 56.9

Indicates coverage ratio
for one line

Indicates access status of each address
. :  Not accessed

- :  Accessed

Indicates coverage ratio
whole displayed lines



145

  

3.2.10 Measuring Execution Time Using Emulation Timer

The timer for measuring time is called the emulation timer.  This timer can measure the
time from the start of MCU operation until suspension.

Measuring Executing Time Using Emulation Timer

Choose either 1 us or 100 ns as the minimum measurement unit for the emulation timer and

set the measurement unit using the SET TIMESCALE command.

When 1 us is selected, the maximum is about 70 minutes; when 100 ns is selected, the

maximum is about 7 minutes.

The default is 1 us.

By using this timer, the time from the start of MCU operation until the suspension can be

measured.

The measurement result is displayed as two time values:  the execution time of the preceding

program, and the total execution time of programs executed so far plus the execution time of

the preceding program.

If the timer overflows during measurement, a warning message is displayed.  Measurement is

performed every time a program is executed.

The emulation timer cannot be disabled but the timer value can be cleared instead.

Use the following commands to control the emulation timer.

SHOW TIMER:  Displays measured time

CLEAR TIMER:  Clear timer

[Example]

>GO  main,$25

Break at FF008D by breakpoint

>SHOW TIMER

min sec ms  us  ns

from init = 00: 42:108:264:000

from last executed = 00: 03:623:874:000

>CLEAR TIMER

>SHOW TIMER

min sec ms  us  ns

from init = 00: 00:000:000:000

from last executed = 00: 00:000:000:000

>



146

  

3.2.11  Sampling by External Probe

An external probe can be used to sample (input) data.  There are two sampling types:
sampling the trace buffer as trace data, and sampling using the SHOW SAMPLING
command.

Sampling by External Probe

There are two sampling types to sample data using an external probe:  sampling the trace

buffer as trace data, and sampling using the SHOW SAMPLING command.

When data is sampled as trace data, such data can be displayed by using the SHOW TRACE

command or SHOW MULTITRACE command, just as with other trace data.  Sampling using the

SHOW SAMPLING command, samples data and displays its state.

In addition, by specifying external probe data as events, such events can be used for aborting a

program, and as multitrace and performance trigger points.

Events can be set by using the SET EVENT command.

External Probe Sampling Timing

Choose one of the following for the sampling timing while executing a program.

-  At rising edge of internal clock (clock supplied by emulator)

-  At rising edge of external clock (clock input from target)

-  At falling edge of external clock (clock input from target)

Use the SET SAMPLING command to set up; to display the setup status use the SHOW SAMPLING

command.

When sampling data using the SHOW SAMPLING command, sampling is performed when the

command is executed and has nothing to do with the above settings.

[Example]

>SET SAMPLING/INTERNAL

>SHOW SAMPLING

sampling timing : internal

channel 7 6 5 4 3 2 1 0

1 1 1 1 0 1 1 1

Displaying and Setting External Probe Data

When a command that can use external probe data is executed, external probe data is displayed

in 8-digit binary or 2-digit hexadecimal format.  The displayed bit order is in the order of the

IC clip cable color code order (Table 3-2-12).  The MSB is at bit 7 (Violet), and the LSB is at bit

0 (Black).  The bit represented by 1 means HIGH, while the bit represented by 0 means LOW.

When data is input as command parameters, these values are also used for input.



147

Table 3-2-12  Bit Order of External Probe Data

IC Clip Cable Color Violet Blue Green Yellow Orange Red Brown Black

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0Bit Order

External probe data

Commands for External Probe Data

Table 3-2-13 shows the commands that can be used to set or display external probe data.

Table 3-2-13  Commands for External Probe Data

Usable Command Function

Set Sampling Sets sampling timing for external probe

Show Sampling Samples external probe data

Set Event Enables to specify external probe data as

condition for event 1

Show Event Displays event setup status

Show Trace Displays external probe trace-sampled (single

trace)

Show Multitrace Displays external probe trace-sampled (multi-

trace)



148

  

3.3  Monitor Debugger

This section describes the functions of the monitor debugger for the FFMC-16 family.

Monitor Debugger

The monitor debugger performs debugging by putting the target monitor program for

debugging into the target system and by communicating with the host.

Before using this debugger, the target monitor program must be ported to the target hardware.



149

  

3.3.1  Resources Used by Monitor Program

The monitor program of the monitor debugger uses the I/O resources listed below.  The
target hardware must have these resources available for the monitor program.

Required Resources

The following resources are required to build the monitor program into the target hardware.

1 UART Necessary For communication with host computer

4800/9600/19200/38400 band

2 Monitor ROM Necessary Need about 10 KB (For details, refer to link map.)

3 Work RAM Necessary Need about 2 KB (For details, refer to link map.)

4 External-interrupt

switch

Option Uses for forced abortion of program.  When the resource is

not built, the program can suspend by only reset etc.

5 Timer Option Uses for SET TIMER/SHOW TIMER .  Needs 32 bits in 1

us units.



150

  

3.4 Abortion of Program Execution (SIM, EML, MON)

When program execution is aborted, the address where the break occurred and the
break source are displayed.

Abortion of Program Execution

When program execution is aborted, the address where the break occurred and the break

source are displayed.

In the emulator debugger, the following sources can abort program execution.

-  Instruction Execution Breaks

-  Data Access Breaks

-  Sequential Break

-  Guarded Access Breaks

-  Trace-Buffer-Full Break

-  Performance-Buffer-Full Break

-  Task Dispatch Break

-  System Call Break

-  Forced Break

In the emulator debugger, the following sources can abort program execution.

-  Instruction Execution Breaks

-  Data Access Breaks

-  Guarded Access Breaks

-  Task Dispatch Break

-  System Call Break

-  Forced Break

In the monitor debugger, the following sources can abort program execution.

-  Software Break

-  Task Dispatch Break

-  System Call Break

-  Forced Break



151

  

3.4.1  Instruction Execution Breaks (SIM, EML)

An instruction execution break is a function to let an instruction break through monitoring
bus, the chip built-in break points, etc.

Instruction Execution Breaks

An instruction execution break is a function to let an instruction break through monitoring bus,

the chip built-in break points, etc.

Use the following commands to control instruction execution breaks.

SET BREAK:  Sets break points

SHOW BREAK:  Displays current break point setup status

CANCEL BREAK:  Cancels break point

ENABLE BREAK:  Enables break point

DISABLE BREAK:  Temporarily cancels break point

When a break occurs due to an instruction execution break, the following message is displayed.

Break at  Address  by breakpoint

The maximum count of break points are as follows:

[SIM] Max. 65535 points

[EML] Within debugging area of Code attribute:  65535 points

Areas other than above:  6 points

<Note>

In the emulator, if the debug area is set again, the break points within the area are all cleared.

Notes on Instruction Execution Breaks

There are several points to note in using execution breaks.  First, some points affecting

execution breaks are explained.

- Invalid Breakpoints

- No break occurs when a break point is set at the instruction immediately after the following

instructions.

FFMC-16L/16LX/16/16H: - PCB - DTB - NCC - ADB - SPB - CNR

- MOV  ILM,#imm8 - AND  CCR,#imm8

- OR   CCR,#imm8 - POPW PS

FFMC-16F: - PCB - DTB - NCC - ADB - SPB - CNR



152

- No break occurs when break point set at address other than starting address of instruction.

- No break occurs when both following conditions met at one time.

- Instruction for which break point set starts from odd-address,

- Preceding instruction longer than 2 bytes, and break point already set at last 1-byte

address of preceding instruction (This "already-set" break point is an invalid break

point that won't break, because it has been set at an address other than the starting

address of an instruction).

- Abnormal Break Point

Setting a break point at the instruction immediately after string instructions listed below, may

cause a break in the middle of the string instruction without executing the instruction to the

end.

FFMC-16L/16LX/16/16H: - MOVS - MOVSW - SECQ - SECQW- WBTS

- MOVSI - MOVSWI - SECQI - SECQWI - WBTC

- MOVSD - MOVSWD - SECQD - SECQWD

- FILS - FILSI - FILSW - FILSWI

FFMC-16F: Above plus - MOVM - MOVMW

Here are some additional points about the effects on other commands.

- Dangerous Break Points

Never set a break point at an address other than the instruction starting address.  If a break

point is the last 1 byte of an instruction longer than 2 bytes, and if such an address is even, the

following abnormal operation will result:

- If instruction executed by STEP command, instruction execution not aborted.

- If break point specified with GO command, set at instruction immediately after such

instruction, the break point does not break.



153

  

3.4.2  Data Access Breaks (SIM, EML)

A data access break is a function to abort a running program when data access (Read or
Write) is made to the specified address while the program is executing.

Data Access Breaks

A data access break is a function to abort a executing program when the MCU accesses data at

the specified address.

Data access breaks can be controlled using the following commands:

SET DATABREAK:  Sets break points

SHOW DATABREAK:  Displays current break point setup status

CANCEL DATABREAK:  Cancels break point

ENABLE DATABREAK:  Enables break points

DISABLE DATABREAK:  Temporarily cancels break points

When a break occurs due to a data access break, the following message is displayed:

Break at   Address  by databreak at   Access address

The maximum count of break points are as follows.

[SIM] Max. 65535 points

[EML] Within debug area of Data attribute:  65535 points

Areas other than above:  6 points

<Note>

In the emulator, if the debug area is set up again, the break points in the area are all cleared.



154

  

3.4.3  Software Break (MON)

A software break is a function to embed a break instruction within memory to enable a
break to occur by executing the instruction.  The break occurs before executing the
instruction at the specified address.

Software Break

Up to 16 software break points can be set.

Software breaks can be controlled using the following settings and commands.

-  [Run]-[Breakpoints] command

-  Setting break points in Source window

-  Setting break points in Disassemble window

-  Set Break/Soft command

When a break occurs due to a software break, the following message is displayed on the status

bar:

Break at  Address  breakpoint

Notes on Software Breaks

There are a couple of points to note when using software breaks.

- Software breaks cannot be set in an area that cannot be written, such as ROM.  If

attempted, a verify error occurs at starting the program (when continuous execution, step

execution, etc., started).

- Always set a software break at the instruction starting address.  If a software break is set

in the middle of an instruction, it may cause a program null-function.



155

  

3.4.4  Sequential Break (EML)

A sequential break is a function to abort a executing program, when the sequential
condition is met by event sequential control.

Sequential Break

Use a sequential break when the event mode is set to normal mode using the SET MODE

command.  Set a sequential break as follows:

-  Set event mode (SET MODE).

-  Set events (SET EVENT).

-  Set sequencer (SET SEQUENCE).

When a break occurs due to a sequential break, the following message is displayed:

Break at  Address  by sequential break (level = Level No.)



156

  

3.4.5  Guarded Access Breaks (SIM, EML)

A guarded access break aborts a executing program when access is made in violation of
the access attribute set by using the [Setup]-[Memory Map]  command, and access is
attempted to a guarded area (access-disabled area in undefined area).

Guarded Access Breaks

Guarded access breaks are as follows:

- Code Guarded

An instruction has been executed for an area having no code attribute.

- Read Guarded

A read has been attempted from the area having no read attribute.

- Write Guarded

A write has been attempted to an area having no write attribute.

If a guarded access occurs while executing a program, the following message is displayed on the

Status Bar and the program is aborted.

Break at  Address  by guarded access {code/read/write} at  Access address

Notes on Using Emulator

Code Guarded is affected by pre-fetching.

The FFMC-16L/16LX/16/16H family pre-fetch up to 4 bytes.  So, when setting the program area

mapping, set a little larger area (5 bytes max.) than the program area actually used.

Similarly, the FFMC-16F family pre-fetch up to 8 bytes.  So, when setting the program area

mapping, set a little larger area (9 bytes max.) than the program area actually used.



157

  

3.4.6  Trace-Buffer-Full Break (SIM, EML)

A trace-buffer-full break occurs when the trace buffer becomes full.

Trace-Buffer-Full Break

To set a trace-buffer-full break, use the [Setup]-[Trace] command in the short-cut menu of the

[Analyze]-[Trace] command, or use the Set Trace/Break command.

When a break occurs due to a trace-buffer-full break, the following message is displayed:

Break at  Address  by trace buffer full



158

  

3.4.7  Performance-Buffer-Full Break (EML)

A performance-buffer-full break is a function to abort an executing program when the
buffer for storing performance measurement data becomes full.

Performance-Buffer-Full Break

To set a performance-buffer-full break, use the SET PERFORMANCE command.  If a

performance-buffer-full break is not specified, no break occurs even when the performance

buffer becomes full.

When a break occurs due to a performance-buffer-full break, the following message is

displayed:

Break at  Address  by performance buffer full



159

  

3.4.8  Task Dispatch Break (SIM, EML, MON)

A task dispatch break is a break that occurs when a dispatch is made from the specified
dispatch source task to the dispatch destination task.  In other words, the break occurs
when the dispatch destination task becomes the execution state.  If the dispatch
destination task is currently in the execution state, then the break occurs when the task
enters the execution state again via another state.

Task Dispatch Break

Only one break point can be set.

To use this function, the REALOS Debug Module must be embedded.  For further details, see

Operation Manual Appendix E Embedding the REALOS Debug Module.

To control the task dispatch break, use either of the following commands.

-  [Run]-[Break Points]-[Task Dispatch] command

-  Set Xbreak command

When a break occurs due to a task dispatch break, the following message is displayed on the

Status Bar.

Break at  Address  by dispatch task from task ID=<Dispatch source task ID>

to task ID=<Dispatch destination task ID>



160

  

3.4.9  System Call Break (SIM, EML, MON)

A system call break occurs at ending execution of a system call specified by the task
specified.

System Call Break

Only one break point can be set.

To use this function, the REALOS Debug Module must be embedded.  For further details, see

Operation Manual Appendix E Embedding the REALOS Debug Module.

To control the system call break, use either of the following commands.

-  [Run]-[Break Points]-[System Call]  command

-  Set Sbreak command

When a break occurs due to a system call break, the following message is displayed on the

Status Bar.

Break at  Address  by system call<System call> on task ID=<Task ID>



161

  

3.4.10  Forced Break (SIM, EML)

A executing program can be forcibly aborted by using the [Run]-[Abort] command.  In
the monitor debugger, the same result can be achieved by letting the target generate
NMI.

Forced Break

When a break occurs due to a forced break, the following message is displayed on the Status

Bar.

Break at  Address  by command abort request

Forced Break in Power-Save Mode and Hold State

A forced break is not allowed in the emulator while the MCU is in the power-save mode or hold

state.  When a forced break is requested by the [Run]-[Abort] command while executing a

program, the command is disregarded if the MCU is in the power-save mode or hold state.  If a

break must occur, then reset the cause at user system side, or reset the cause by using the

[Run]-[Reset of MCU] command, after inputting the [Run]-[Abort] command.

When the MCU enters the power-save mode or hold state while executing, the status is

displayed on the Status Bar.



162



163

  

Chapter 4  FFMC-8L Family

This chapter describes the FFMC-8L family functions depending on MCUs.

4.1 Simulator

4.1.1 Instruction Simulation

4.1.2 Memory Simulation

4.1.3 I/O Port Simulation

4.1.4 Interrupt Simulation

4.1.5 Reset Simulation

4.1.6 Power-Save Consumption Mode Simulation

4.2 Emulator

4.2.1 Setting Operating Environment

4.2.1.1 MCU Operation Mode

4.2.1.2 Operation Mode with Piggy back/Evaluation Chip

4.2.1.3 Memory Area Types

4.2.1.4 Memory Mapping

4.2.1.5 Timer Minimum Measurement Unit

4.2.2 On-the-fly Executable Commands

4.2.3 On-the-fly Memory Access

4.2.4 Events

4.2.5 Control by Sequencer

4.2.6 Real-time Trace

4.2.7 Measuring Performance

4.2.8 Measuring Coverage

4.2.9 Measuring Execution Time Using Emulation Timer

4.2.10 Sampling by External Probe

4.3 Monitor Debugger

4.4 Abortion of Program Execution (SIM, EML)

4.4.1 Instruction Execution Breaks (SIM, EML)

4.4.2 Data Access Breaks (SIM, EML)

4.4.3 Sequential Break (EML)

4.4.4 Guarded Access Breaks (SIM,EML)

4.4.5 Trace-Buffer-Full Break (EML)

4.4.6 Performance-Buffer-Full Break (EML)

4.4.7 Task Dispatch Break (SIM, EML)

4.4.8 System Call Break (SIM, EML)

4.4.9 Forced Break (SIM, EML)



164

  

4.1  Simulator

This section describes the functions of the simulator for the FFMC-8LFamily

Simulator

The simulator simulates the MCU operations (executing instructions, memory space, I/O ports,

interrupts, reset, etc.) with software to evaluate a program.

Simulation Range

The simulator simulates the MCU operations (instruction operations, memory space, I/O ports,

interrupts, reset, power-save mode, etc.) using software to execute operations.  It does not

support built-in resources and related registers not described in the manual.

- Instruction simulation

- Memory simulation

- I/O port simulation (Input port)

- I/O port simulation (Output port)

- Interrupt simulation

- Reset simulation

- Power-save mode simulation



165

  

4.1.1  Instruction Simulation

This section describes the instruction simulation executed by SOFTUNE WORKBENCH.

Instruction Simulation

This simulates the operations of all instructions supported by the FMC-8L.  It also simulates

the changes in memory and register values due to such instructions.



166

  

4.1.2  Memory Simulation

This section describes the memory simulation executed by SOFTUNE WORKBENCH.

Memory Simulation

The simulator must first secure memory space to simulate instructions because it simulates the

memory space secured in the host machine memory.

- To secure the memory area, either use the [Setup] - [Memory Map] command, or the

Set Map command in the Command window.

- Load the file output by the Linkage Editor (Load Module File) using either the [Debug]

- [Load target file] command, or the LOAD/OBJECT command in the Command window.

Simulation Memory Space

Memory space access attributes can be specified byte-by-byte using the [Setup] - [Memory Map]

command.  The access attribute of unspecified memory space is Undefined.

Memory Area Access Attributes

Access attributes for memory area can be specified as shown in Table 3.-1-1.  A guarded access

break occurs if access is attempted against such access attribute while executing a program.

When access is made by a program command, such access is allowed regardless of the attribute,

CODE, READ or WRITE.  However, access to memory in an undefined area causes an error.

Table 4-1-1 Types of Access Attributes

Attribute Semantics

CODE Instruction operation enabled

READ Data read enabled

WRITE Data write enabled

undefined Attribute undefined (access prohibited)



167

  

4.1.3  I/O Port Simulation

The output to I/O ports can be recorded in the specified buffer or file. This section
describes I/O port simulation executed by SOFTUNE WORKBENCH.

I/O Port Simulation (Input Port)

There are two types of simulations in I/O port simulation:  input port simulation, and output

port simulation.  Input port simulation has the following types:

- Whenever a program reads the specified port, data is input from the pre-defined data

input source.

- Whenever the instruction execution cycle count exceeds the specified cycle count, data

is input to the port.

To set an input port, use the [Setup] - [Debug Environment] - [I/O Port] command, or the Set

Inport command in the Command window.

Up to 16 port addresses can be specified for the input port.  The data input source can be a file

or a terminal.  After reading the last data from the file, the data is read again from the

beginning of the file.  If a terminal is specified, the input terminal is displayed at read access

to the set port.

A text file created by an ordinary text editor, or a binary file containing direct code can be used

as the data input file.  When using a text file, input the input data inside commas (,).  When

using a binary file, select the binary button in the input port dialog.

I/O Port Simulation (Output Port)

At output port simulation, whenever a program writes data to the specified port, writing is

executed to the data output destination.

To set an output port, either use the [Setup] - [Debug Environment] - [I/O Port] command,

or the Set Outport command in the Command window.

Up to 16 port addresses can be set as output ports.  Select either a file or terminal (Output

Terminal window) as the data output destination.

A destination file must be either a text file that can be referred to by regular editors, or a binary

file.  To output a binary file, select the Binary radio button in the Output Port dialog.



168

  

4.1.4  Interrupt Simulation

This section describes interrupt simulation executed by SOFTUNE WORKBENCH.

Interrupt Simulation

Simulate the operation of the MCU  in response to an interrupt request.

The methods of generating interrupts are as follows:

- Execute instructions for the specified number of cycles while the program is running

(during execution of executable commands) to generate interrupts corresponding to the

specified interrupt numbers and cancel the interrupt generating conditions.

- Continue to generate interrupts each time the number of instruction execution cycles

exceeds the specified number of cycles.

The method of generating interrupts is set by the [Setup]-[Debug environment]-[Interrupt]

command.  If interrupts are masked by the interrupt enable flag when the interrupt

generating conditions are established, the interrupts are generated after they are unmasked.

MCU operation in response to an interrupt request is also supported for the following exception

handling:

- Execution of undefined instructions

- Address error in program access
(Program access to internal RAM area and internal I/O area)



169

  

4.1.5  Reset Simulation

This section describes the reset simulation executed by SOFTUNE WORKBENCH.

Reset Simulation

The simulator simulates the operation when a reset signal is input to the MCU using the

[Debug]-[Run]-[Reset MCU] command and initializes the registers.  The function for

performing reset processing by operation of MCU instructions (writing to RST bit in standby

control register) is also supported.  In this case, the reset message (Reset) is displayed on the

status bar..



170

  

4.1.6  Power-Save Consumption Mode Simulation

This section describes the low power-save mode simulation executed by SOFTUNE

WORKBENCH.

Power-Save Consumption Mode Simulation

The MCU enters the power mode in accordance with the MCU instruction operation (Write to

SLEEP bit or STOP bit of standby control register).  Once in the sleep mode or stop mode, a

message ("sleep" for sleep mode, "stop" for stop mode) is displayed on the Status Bar.  The

loop keeps running until either an interrupt request is generated, or the [Run] - [Abort]

command is executed.  Each cycle of the loop increments the count by 1.  During this period,

I/O port processing can be operated.  Writing to the standby control register using a command

is not prohibited.



171

  

4.2  Emulator

This section describes the functions of the emulator for the FFMC-8L family.

Emulator

The emulator is a software to evaluate a program by controlling an ICE from a host via a

communications line (RS-232C, LAN).

Before using this emulator, the ICE must be initialized.

For further details, refer to the Operation Manual Appendix B  Download Monitor Program ,

and Appendix C Setting LAN Interface.



172

  

4.2.1  Setting Operating Environment

Before operating the emulator, set the operating environment such as the MCU
operation mode, memory mapping, the timer minimum measurement unit, etc.
However, each setting has a default.  No setup is required if the defaults are used.

MCU Operation Modes

The operation mode setting varies when a regular MCU is used and when a FFMC-8L piggy

back/evaluation chip is used.

- MCU mode

- Single chip mode (MCU Mode 0)

- External ROM mode (MCU Mode 1)

- Internal ROM mode with external access function (MCU Mode 2)

- When FFMC-8L piggy back/evaluation chip used

There are two modes as follows:

- Debugging mode

- Native mode

Memory Mapping

A memory space can be allocated to the user memory or the emulation memory. However,

certain restrictions apply to the space that can be set, depending on the selected MCU mode.

Timer Minimum Measurement Unit

Select either 1 us or 100 ns as the emulator timer minimum measurement unit for measuring

time.



173

  

4.2.1.1  MCU Operation Mode

There are three MCU operation modes as follows:
- Single chip mode (MCU Mode 0)
- External ROM mode (MCU Mode 1)
- Internal ROM mode with external access function (MCU Mode 2)

Setting MCU Operation Mode

The MCU operation mode varies depending on the product type; refer to the User Manual for

each MCU for further details.

0000H

FFFFH

Mode 0 Mode 1 Mode 2

Internal ROM Area:  The emulation memory is substituted

for this area.  Always map to the emulation memory.

 External Access Area:  Can be mapped freely to the emulation

memory and user memory.

Non-Access Area:  Can be mapped to the emulation memory.

Internal Access Area:  Access is performed to MCU internal

memory regardless of the mapping setup.

Internal I/O Area

Internal RAM

Internal ROM

Internal RAM Internal RAM

Internal ROM

Internal
ROM

Internal I/O Area Internal I/O Area

Figure 4.2-1  MCU Modes and Memory Mapping

As shown in Figure 4.2-1, memory mapping operation varies depending on MCU mode.

Internal RAM area (internal RAM, internal register and internal I/O) cannot map to the

emulation memory because it accesses internal MCU regardless of mapping setup.



174

  

4.2.1.2 Operation Mode with Piggy back/Evaluation Chip

The operation mode must be set when a piggy back/evaluation chip is used.
There are two operation modes:  debugging mode, and native mode as well as
differences in memory mapping.  To set the operation mode, use the SET RUNMODE
command.

Operation Mode with Piggy back/Evaluation Chip

The emulator default is native mode.  To change the operation mode, use the SET RUNMODE

command.

- Debugging Mode

In the debugging mode, the emulation memory is substituted for all spaces, except the internal

RAM area.

[Example]

>SET RUNMODE /DEBUG

- Native Mode

Becomes the same state with MCU mode.  The emulation memory is substituted for the

internal ROM area, and the external access area accesses the user memory.

[Example]

>SET RUNMODE /NATIVE



175

  

4.2.1.3  Memory Area Types

A unit to allocate memory is called an area.  There are three different area types.

Memory Area Types

A unit to allocate memory is called an area.

Up to 20 areas can be set in 1-byte units.  There is no limit on the size of an area.

An access attribute can be set for each area.

There are three different area types as follows:

- User Memory Area

Memory space in the user system is called the user memory area and this memory is called

the user memory.

To set the user memory area, use the SET MAP command.

- Emulation Memory Area

Memory space substituted for emulator memory is called the emulation memory area, and

this memory is called emulation memory.

The user system bus master (DMAC, etc.) cannot access emulation memory.

To set the emulation memory area, use the SET MAP command.

- Undefined Area

A memory area that does not belong to any of the areas described above is part of the user

memory area.  This area is specifically called the undefined area.

The undefined area can be set to either NOGUARD area, which can be accessed freely, or

GUARD area, which cannot be accessed.  Select either setup for the whole undefined area.

If the area attribute is set to GUARD, a guarded access error occurs if access to this area is

attempted.



176

  

4.2.1.4  Memory Mapping

Memory space can be allocated to the user memory and the emulation memory, etc.,
and the attributes of these areas can be specified.
However, the MCU internal resources are not dependent on this mapping setup and
access is always made to the internal resources.

Access Attributes for Memory Areas

The access attributes shown in Table 4-2-1 can be specified for memory areas.

A guarded memory access break occurs if access is attempted in violation of these attributes

while executing a program.

When access to the user memory area and the emulation memory area is made using program

commands, such access is allowed regardless of the CODE, READ, WRITE attributes.

However, access to memory with the GUARD attribute in the undefined area, causes an error.

Area Attribute Description

User Memory READ Data Read Enabled

Emulation Memory WRITE Data Write Enabled

Undefined GUARD Access Disabled

NOGUARD No check of  access attribute

Table 4-2-1  Types of Access Attributes

When access is made to an area without the WRITE attribute by executing a program, a guarded

access break occurs after the data has been rewritten if the access target is the user memory

are.  However, if the access target is the emulation memory are, the break occurs before

rewriting.  In other words, write-protection (memory data cannot be overwritten by writing)

can be set for the emulation memory area by not specifying the WRITE attribute for the area.

This write-protection is only enabled for access made by executing a program, and is not

applicable to access by commands.

Creating and Displaying Memory Map

Use the following commands for memory mapping.

SET MAP:  Sets memory map

SHOW MAP:  Displays memory map

CANCEL MAP:  Changes memory map setting to undefined

[Example]

>SET MAP /USER H'0..H'1FFF

>SET MAP /READ/EMULATION H'FF00..H'FFFF



177

>SET MAP/GUARD

>SHOW MAP

address attribute type

0000 .. 1FFF read write user

2000 .. FEFF guard

FF00 .. FFFF read emulation



178

  

4.2.1.5  Timer Minimum Measurement Unit

The timer minimum measurement unit affects the sequencer, the emulation timer and
the performance measurement timer.

Setting Timer Minimum Measurement Unit

Choose either 1 us or 100 ns as the timer minimum measurement unit for the emulator for

measuring time.

The minimum measurement unit for the following timers is changed depending on this setup.

-  Timer values of sequencer (timer conditions at each level)

-  Emulation timer

-  Performance measurement timer

Table 4-2-2 shows the maximum measurement time length of each timer when 1 us or 100 ns is

selected as the minimum measurement unit.

When the minimum measurement unit is changed, the measurement values of each timer are

cleared as well.  The default setting is 1 us.

1 us selected 100 ns selected

Sequencer timer

Emulation timer

Performance measurement timer

About 16 s.

About 70 minutes

About 70 minutes

About 1.6 s.

About 7 minutes

About 7 minutes

Table 4-2-2  Maximum Measurement Time Length of Each Timer

Use the following commands to control timers.

SET TIMERSCALE command: Sets minimum measurement unit for timers

SHOW TIMERSCALE command: Displays status of minimum measurement unit setting

for timers

[Example]

>SET TIMERSCALE/100N

>SHOW TIMERSCALE

Timer scale : 100ns

>



179

  

4.2.2  On-the-fly Executable Commands

Certain commands can be executed even while executing a program.  This is called
"on-the-fly" execution.

On-the-fly Executable Commands

Certain commands can be executed on-the-fly.  If an attempt is made to execute a command

that cannot be executed on-the-fly, an "MCU busy error" occurs.  Table 4-2-3 lists major on-

the-fly executable functions.  For further details, refer to the Command Reference Manual.

Meanwhile, on-the-fly execution is enabled only when executing the MCU from the menu or the

tool button.  On-the-fly commands cannot be executed when executing the GO command, etc.,



180

Function Limitations and Restrictions Major Commands

MCU reset  RESET

Displaying MCU execution

status

 SHOW STATUS

Displaying trace data Enabled only when trace function

disabled

SHOW TRACE

SHOW MULTITRACE

Enable/Disable trace  ENABLE TRACE

DISABLE TRACE

Displaying execution time

measurement value (Timer)

 SHOW TIMER

Memory operation

(Read/Write)

Emulation memory only operable

Read only enabled in mirror area

ENTER

EXAMINE

COMPARE

FILL

MOVE

DUMP

SEARCH MEMORY

SHOW MEMORY

SET MEMORY

Line assembly, Disassembly Emulation memory only enabled

Mirror area, Disassembly only

enabled

ASSEMBLE

DISASSEMBLE

Load, Save program Emulation memory only enabled

Mirror area, save only enabled

LOAD

SAVE

Displaying coverage

measurement data

 SHOW COVERAGE

Setting event Disabled in performance mode SET EVENT

SHOW EVENT

ENABLE EVENT

DISABLE EVENT

CANCEL EVENT

Table 4-2-3  Major Functions Executable in On-the-fly Mode



181

  

4.2.3  On-the-fly Memory Access

While on-the-fly, the area mapped to the emulation memory is Read/Write enabled, but
the area mapped to the user memory area is Read-only enabled.

Read/Write memory while On-the-fly

The user memory cannot be accessed while on-the-fly.  However, the emulation memory can be

accessed.  (The cycle-steal algorithm eliminates any negative effect on the MCU speed.)

This emulator allows the user to use part of the emulation memory as a mirror area.  The

mirror area holds a copy of the user memory.  Using this mirror area makes the Read-only

enabled function available while on-the fly.

However, at least one time access must be allowed before the emulation memory with the

mirror setting has the same data as the user memory.  The following copy types allow the

emulation memory with the mirror setting to have the same data as the user memory.

- Copying only required portion using memory access commands

Data in the specified portion can be copied by executing a command that accesses memory.

The following commands access memory.

- Memory operation commands

SET MEMORY,  SHOW MEMORY,  EXAMINE,  ENTER,

COMPARE,  FILL,  MOVE,  SEARCH MEMORY,  DUMP,

COPY, VERIFY

- Data load/save commands

LOAD,  SAVE

Executing
command

Emulation memory
(Mirror setting)

User memory
MCU

operation
(Suspended)

Memory access

Reflected

Figure 4.2-b  Access to Mirror Area while MCU Suspended



182

Executing
command

Emulation memory
(Mirror setting)

User memory
MCU

operation
(Operating)

Memory read

Reflected

Figure 4.2-3  On-the-fly Access to Mirror Area

Memory access

<Note>

Memory access by a bus master other than the MCU is not reflected in the mirror area.



183

  

4.2.4  Events

The emulator can monitor the MCU bus operation, and generate a trigger at a specified
condition called an event.
In this emulator, event triggers are used for the following functions; use of function for
event trigger depends on event modes.

- Sequencer
- Sampling condition for multi-trace
- Measuring point in performance measurement

Events

The FFMC-8L family has the same event function as the FFMC-16 family.  See the FFMC-16

family description.

Reference Section

Chapter 3  FFMC-16 family 3.2.5  EVENT



184

  

4.2.5  Control by Sequencer

This emulator has a sequencer to control events.  By using this sequencer, sampling of
breaks, time measurement and tracing can be controlled while monitoring program flow
(sequence).  A break caused by this function is called a sequential break.
To use this function, set the event mode to normal mode using the SET MODE command.
Use the SET EVENT command to set events.

Sequencer

The FFMC-8L family has the same Sequencer function as the FFMC-16 family.  See the

FFMC-16 family description.

Reference Section

Chapter 3  FFMC-16 family 3.2.6  Control by Sequencer



185

  

4.2.6  Real-time Trace

While executing a program, the address, data and status information, and the data
sampled by an external probe can be sampled in machine cycle units and recorded in
the trace buffer.  This function is called real-time trace.
In-depth analysis of a program execution history can be performed using the data
recorded by real-time trace.
There are two types of trace sampling:  single trace, which traces from the start of
executing the program until the program is suspended, and multitrace, which starts
tracing when an event occurs.

Real-time Trace

The FFMC-8L family has the same Real-time Trace function as the FFMC-16 family. See the

FFMC-16 family description.

Reference Section

Chapter 3  FFMC-16 family 3.2.7  Real-time Trace



186

  

4.2.7  Measuring Performance

It is possible to measure the time and pass count between two events.  Repetitive
measurement can be performed while executing a program in real-time, and when done,
the data can be totaled and displayed.
Using this function enables the performance of a program to be measured.  To measure
performance, set the event mode to the performance mode using the SET MODE
command.

Measuring Performance

The FFMC-8L family has the same Measuring Performance function as the FFMC-16 family.

See the FFMC-16 family description.

Reference Section

Chapter 3  FFMC-16 family 3.2.8  Measuring Performance



187

  

4.2.8  Measuring Coverage

This emulator has the Co coverage measurement function.  Use this function to find
what percentage of an entire program has been executed.

Measuring Coverage

The FFMC-8L family has the same Measuring Coverage function as the FFMC-16 family.  See

the FFMC-16 family description.

Reference Section

Chapter 3 FFMC-16 family 3.2.9  Measuring Coverage



188

  

4.2.9 Measuring Execution Time Using Emulation Timer

The timer for measuring time is called the emulation timer.  This timer can measure the
time from the start of MCU operation until suspension.

Emulation Timer

The FFMC-8L family has the same Emulation Timer function as the FFMC-16 family.  See the

FFMC-16 family description.

Reference Section

Chapter 3  FFMC-16 family 3.2.10  Measuring Execution Time using Emulation Timer



189

  

4.2.10  Sampling by External Probe

An external probe can be used to sample (input) data.  There are two sampling types:
sampling the trace buffer as trace data, and sampling using the SHOW SAMPLING
command.

External Probe

The FFMC-8L family has the same External Probe function as the FFMC-16 family. See the

FFMC-16 family description.

Reference Section

Chapter 3  FFMC-16 family 3.2.11  Sampling by External Probe



190

  4.3  Monitor Debugger

The monitor debugger is not supported by the FFMC-8L family.



191

  

4.4  Abortion of Program Execution (SIM, EML)

When program execution is aborted, the address where the break occurred and the
break source are displayed.

Abortion of Program Execution

When program execution is aborted, the address where the break occurred and the break

source are displayed.

In the emulator aborted, the following sources can abort program execution.

-  Instruction Execution Breaks

-  Data Access Breaks

-  Sequential Break

-  Guarded Access Breaks

-  Trace-Buffer-Full Break

-  Performance-Buffer-Full Break

-  Task Dispatch Break

-  System Call Break

-  Forced Break

In the simulator, the following sources can abort program execution.

-  Instruction Execution Breaks

-  Data Access Breaks

-  Guarded Access Breaks

-  Task Dispatch Break

-  System Call Break

-  Forced Break



192

  

4.4.1  Instruction Execution Breaks (SIM, EML)

An instruction execution break is a function to let an instruction break through monitoring
bus, the chip built-in break points, etc.

Instruction Execution Breaks

Use the following commands to control instruction execution breaks.

SET BREAK: Sets break points

SHOW BREAK: Displays current break point setup status

CANCEL BREAK: Cancels break point

ENABLE BREAK: Enables break point

DISABLE BREAK: Temporarily cancel break point

When a break occurs due to an instruction execution break, the following message is displayed.

Break at  Address  by breakpoint

The maximum count of break points that can be set is 65535 both in the simulator and

emulator.



193

Notes on Instruction Execution Breaks

A break occurs before executing the instruction if the break point is set immediately after the

instructions listed in Table 4-4-1.  The debugger is designed to perform step execution

internally, and then to break after such execution.  Therefore, the last instruction is not

executed in real-time.

If an instruction execution break is set following the 1-byte branch instruction shown below, it

occurs immediately after the instruction is executed, because the 1-byte branch instruction is

affected by prefetch of the next instruction when executed.  Instructions when the instruction

execution break is set are just prefetched but not executed.

RET RET1 JMP @A CALLV #vct

To avoid this, set the instruction execution break shifted one byte or set a breakpoint using the

SET EVENT/CODE command, which is unaffected by prefetch.

Table 4-4-1  Instructions affecting instruction execution breaks

ADDC A,@EP ADDC A, Ri ADDC A ADDCW A
AND A,@EP AND A, Ri AND A ANDW A
CALLV #n CMP A,@EP CMP A, Ri CMP A
CMPW A DAA DAS DEC Ri
DECW A DECW EP DECW IX DECW SP
DIVU A INC Ri INCW A INCW EP
INCW IX INCW SP MOV @A,T MOV @EP,A
MOV A, A@ MOV A,@EP MOV A, Ri MOV Ri, A
MOVW @A, T MOVW A, @A MOVW A,@EP MOVW A, EP
MOVW A, IX MOVW A,PC MOVW A, PS MOVW SP,A
MOVW EP,A MOVW IX,A MOVW PS,A MOVW SP,A
MULU A OR A, @EP OR A,Ri OR A
ORW A POPW A POPW IX PUSHW A
PUSHW IX ROLC A RORC A SUBC A,@EP
SUBC A,RI SUBC A SUBCW A SWAP
XCH A, T XCHW A,EP XCHW A,IX XCHW A,SP
XCHW A, T XOR A,@EP XOR A,RI XOR A
XORW A



194

  

4.4.2  Data Access Breaks (SIM, EML)

A data access break is a function to abort a executing program when data access (Read
or Write) is made to the specified address while the program is executing.

Data Access Breaks

A data access break is a function to suspend a running program when the MCU accesses data at

the specified address.

Data access breaks can be controlled using the following commands:

SET DATABREAK: Sets break points

SHOW DATABREAK: Displays current break point setup status

CANCEL DATABREAK: Cancels break point

ENABLE DATABREAK: Enables break points

DISABLE DATABREAK: Temporarily cancels break points

When a break occurs due to a data access break, the following message is displayed:

Break at  Address  by databreak at  Access address

The maximum count of break points is 65535.



195

  

4.4.3  Sequential Break (EML)

A sequential break is a function to suspend a executing program, when the sequential
condition is met by event sequential control.

Sequential Break

Use a sequential break when the event mode is set to normal mode using the SET MODE

command.  Set a sequential break as follows:

-  Set event mode (SET MODE).

-  Set events (SET EVENT).

-  Set sequencer (SET SEQUENCE).

When a break occurs due to a sequential break, the following message is displayed:

Break at  Address  by sequential break (level = Level No.)



196

  

4.4.4  Guarded Access Breaks (SIM, EML)

A guarded access break aborts a executing program when access is made in violation of
the access attribute set by using the [Setup]-[Memory Map] command, and access is
attempted to a guarded area (access-disabled area in undefined area).

Guarded Access Breaks

Guarded access breaks are as follows:

- Code Guarded

An instruction has been executed for an area having no code attribute.

- Read Guarded

A read has been attempted from the area having no read attribute.

- Write Guarded

A write has been attempted to an area having no write attribute.

If a guarded access occurs while executing a program, the following message is displayed on the

Status Bar and the program is aborted.

Break at  Address  by guarded access {code/read/write} at  Access address



197

  

4.4.5  Trace-Buffer-Full Break (SIM, EML)

A trace-buffer-full break occurs when the trace buffer becomes full.

Trace-Buffer-Full Break

To set a trace-buffer-full break, use the [Setup]-[Trace] command in the short-cut menu of the

[Analyze]-[Trace] command, or use the Set Trace/Break command.

When a break occurs due to a trace-buffer-full break, the following message is displayed:

Break at  Address  by  trace buffer full



198

  

4.4.6  Performance-Buffer-Full Break (EML)

A performance-buffer-full break is a function to abort a executing program when the
buffer for storing performance measurement data becomes full.

Performance-Buffer-Full Break

To set a performance-buffer-full break, use the SET PERFORMANCE command.  If a

performance-buffer-full break is not specified, no break occurs even when the performance

buffer becomes full.

When a break occurs due to a performance-buffer-full break, the following message is

displayed:

Break at  Address  by performance buffer full



199

  

4.4.7  Task Dispatch Break (SIM, EML)

A task dispatch break is a break that happens when a dispatch is made from the
specified dispatch source task to the dispatch destination task.  In other words, the
break occurs when the dispatch destination task becomes the running state.  If the
dispatch destination task is currently in the execution state, then the break occurs when
the task enters the executing state again via another state.

Task Dispatch Break

Only one break point can be set.

To use this function, the REALOS Debug Module must be embedded.  For further details refer

to, Operation Manual Appendix E Embedding the REALOS Debug Module.

To control the task dispatch break, use either of the following commands.

-  [Run]-[Break Points]-[Task Dispatch] command

-  Set Xbreak command

When a break occurs due to a task dispatch break, the following message is displayed on the

Status Bar.

Break at  Address  by dispatch task from task ID=<Dispatch source task ID> to task

ID=<Dispatch destination task ID>



200

  

4.4.8  System Call Break (SIM, EML)

A system call break occurs at ending execution of a system call specified by the task
specified.

System Call Break

Only one break point can be set.

To use this function, the REALOS Debug Module must be embedded.  For further details, refer

to Operation Manual Appendix E Embedding the REALOS Debug Module.

To control the system call break, use either of the following commands.

-  [Run]-[Break Points]-[System Call]  command

-  Set Sbreak command

When a break occurs due to a system call break, the following message is displayed on the

Status Bar.

Break at  Address  by system call<System call> on task ID=<Task ID>



201

  

4.4.9  Forced Break (SIM, EML)

A executing program can be forcibly aborted by using the [Run]-[Abort] command.  In
the monitor debugger, the same result can be achieved by letting the target generate
NMI.

Forced Break

When a break occurs due to a forced break, the following message is displayed on the Status

Bar.

Break at  Address  by command abort request

Forced Break in Power-Save Mode and Hold State

A forced break is not allowed in the emulator while the MCU is in the power-save mode or hold

state.  When a forced break is requested by the [Run]-[Abort] command while executing a

program, the command is disregarded if the MCU is in the power-save mode or hold state.  If a

break must occur, then reset the cause at user system side, or reset the cause by using the

[Run]-[Reset of MCU] command, after inputting the [Run]-[Abort] command.
When the MCU enters the power-save mode or hold state while executing, the status is

displayed on the Status Bar.





CM81-00306-2E

FUJITSU SEMICONDUCTOR • CONTROLLER MANUAL

FR FAMILY  F2MC FAMILY

32/16/8-BIT MICROCONTROLLER

SOFTUNE Workbench USER’S MANUAL

November 1999 the second edition

Published FUJITSU LIMITED Electronic Devices

Edited Technical Communication Dept.







           FUJITSU SEMICONDUCTOR FR FAMILY   F2MC FAMILY 32/16/8-BIT MICROCONTROLLER SOFTUNE  Workbench  USER'S MANUAL


	Preface
	Table of Contents
	Chapter 1 MCU Common Functions
	1.1 Project Management Function
	1.2 Make/Build Function
	1.3 Include Dependencies Analysis Function
	1.4 Functions for Setting Tool Options
	1.5 Error Jump Function
	1.6 Editor Functions
	1.7 Setting External Editor
	1.8 Setting External Tool
	1.9 Setting Operating Environment
	1.10 Debugger Types
	1.11 Memory Operation Functions
	1.12 Register Operations
	1.13 Line Assembly and Disassembly
	1.14 Symbolic Debugging
	1.14.1 Referring to Local Symbols
	1.14.2 Referring to C/C++ Variables


	Chapter 2 FR Family
	2.1 Simulator
	2.1.1 Instruction Simulation
	2.1.2 Memory Simulation
	2.1.3 I/O Port Simulation
	2.1.4 Interrupt Simulation
	2.1.5 Reset Simulation
	2.1.6 Power-Save Consumption Mode Simulation

	2.2 Emulator
	2.2.1 Setting Operating Environment
	2.2.1.1 MCU Operation Mode
	2.2.1.2 DRAM Refresh Control
	2.2.1.3 Cache Flash Control
	2.2.1.4 Auto-wait Control

	2.2.2 Notes on Executing Program
	2.2.3 Command Execution while Executing Program

	2.3 Monitor Debugger
	2.3.1 Resources Used by Monitor Program

	2.4 Suspension of Program Execution (SIM, EML, MON)
	2.4.1 Software Breaks (EML, MON)
	2.4.2 Hardware Breaks (EML)
	2.4.3 Code Event Breaks (EML)
	2.4.4 Data Event Breaks (EML)
	2.4.5 Trace Buffer Full Break (SIM, EML)
	2.4.6 Alignment Error Break (EML)
	2.4.7 External Trigger Break (EML)
	2.4.8 Break Points (SIM)
	2.4.9 Data Break Points (SIM)
	2.4.10 Guarded Access Breaks (SIM)
	2.4.11 Task Dispatch Break (SIM, EML, MON)
	2.4.12 System Call Break (SIM, EML, MON)
	2.4.13 Forced Break (SIM, EML)

	2.5 Analyzing Program Execution (SIM, EML, MON)
	2.5.1 Trace (SIM, EML)
	2.5.2 Trace Data (SIM, EML)
	2.5.3 Tracing Function (SIM, EML)
	2.5.4 Setting Trace (SIM, EML)
	2.5.5 Displaying Trace Data (SIM, EML)
	2.5.6 Display Format of Trace Data (SIM, EML)
	2.5.7 Searching Trace Data (SIM, EML)
	2.5.8 Clearing Trace Data (SIM, EML)
	2.5.9 Notes on Use of Tracing Function (SIM, EML)
	2.5.10 Task Trace (SIM, EML, MON)
	2.5.11 Task Trace Data (SIM, EML, MON)
	2.5.12 Task Trace Function (SIM, EML, MON)
	2.5.13 Setting Task Trace (SIM, EML, MON)
	2.5.14 Clearing Task Trace Data (SIM, EML, MON)
	2.5.15 Measuring Execution Time (EML)
	2.5.16 Measuring Execution Time (SIM)
	2.5.17 Measuring Execution Time (MON)


	Chapter 3 FFMC-16 Family
	3.1 Simulator
	3.1.1 Instruction Simulation
	3.1.2 Memory Simulation
	3.1.3 I/O Port Simulation
	3.1.4 Interrupt Simulation
	3.1.5 Reset Simulation
	3.1.6 Power-Save Consumption Mode Simulation

	3.2 Emulator
	3.2.1 Setting Operating Environment
	3.2.1.1 MCU Operation Mode
	3.2.1.2 Debug Area
	3.2.1.3 Memory Area Types
	3.2.1.4 Memory Mapping
	3.2.1.5 Timer Minimum Measurement Unit

	3.2.2 Notes on Commands for Executing Program
	3.2.3 On-the-fly Executable Commands
	3.2.4 On-the-fly Memory Access
	3.2.5 Events
	3.2.5.1 Operation in Normal Mode
	3.2.5.2 Operation in Multitrace Mode
	3.2.5.3 Operation in Performance Mode

	3.2.6 Control by Sequencer
	3.2.6.1 Setting Sequencer
	3.2.6.2 Break by Sequencer
	3.2.6.3 Trace Sampling Control by Sequencer
	3.2.6.4 Time Measurement by Sequencer
	3.2.6.5 Sample Flow of Time Measurement by Sequencer

	3.2.7 Real-time Trace
	3.2.7.1 Function of Single Trace
	3.2.7.2 Setting Single Trace
	3.2.7.3 Multitrace Function
	3.2.7.4 Setting Multitrace
	3.2.7.5 Displaying Trace Data Storage Status
	3.2.7.6 Specifying Displaying Trace Data Start
	3.2.7.7 Display Format of Trace Data
	3.2.7.8 Reading Trace Data On-the-fly

	3.2.8 Measuring Performance
	3.2.8.1 Performance Measurement Procedures
	3.2.8.2 Displaying Performance Measurement Data

	3.2.9 Measuring Coverage
	3.2.9.1 Coverage Measurement Procedures

	3.2.10 Measuring Execution Time Using Emulation Timer
	3.2.11 Sampling by External Probe

	3.3 Monitor Debugger
	3.3.1 Resources Used by Monitor Program

	3.4 Abortion of Program Execution (SIM, EML, MON)
	3.4.1 Instruction Execution Breaks (SIM, EML)
	3.4.2 Data Access Breaks (SIM, EML)
	3.4.3 Software Break (MON)
	3.4.4 Sequential Break (EML)
	3.4.5 Guarded Access Breaks (SIM, EML)
	3.4.6 Trace-Buffer-Full Break (SIM, EML)
	3.4.7 Performance-Buffer-Full Break (EML)
	3.4.8 Task Dispatch Break (SIM, EML, MON)
	3.4.9 System Call Break (SIM, EML, MON)
	3.4.10 Forced Break (SIM, EML)


	Chapter 4 FFMC-8L Family
	4.1 Simulator
	4.1.1 Instruction Simulation
	4.1.2 Memory Simulation
	4.1.3 I/O Port Simulation
	4.1.4 Interrupt Simulation
	4.1.5 Reset Simulation
	4.1.6 Power-Save Consumption Mode Simulation

	4.2 Emulator
	4.2.1 Setting Operating Environment
	4.2.1.1 MCU Operation Mode
	4.2.1.2 Operation Mode with Piggy back/Evaluation Chip
	4.2.1.3 Memory Area Types
	4.2.1.4 Memory Mapping
	4.2.1.5 Timer Minimum Measurement Unit

	4.2.2 On-the-fly Executable Commands
	4.2.3 On-the-fly Memory Access
	4.2.4 Events
	4.2.5 Control by Sequencer
	4.2.6 Real-time Trace
	4.2.7 Measuring Performance
	4.2.8 Measuring Coverage
	4.2.9 Measuring Execution Time Using Emulation Timer
	4.2.10 Sampling by External Probe

	4.3 Monitor Debugger
	4.4 Abortion of Program Execution (SIM, EML)
	4.4.1 Instruction Execution Breaks (SIM, EML)
	4.4.2 Data Access Breaks (SIM, EML)
	4.4.3 Sequential Break (EML)
	4.4.4 Guarded Access Breaks (SIM, EML)
	4.4.5 Trace-Buffer-Full Break (SIM, EML)
	4.4.6 Performance-Buffer-Full Break (EML)
	4.4.7 Task Dispatch Break (SIM, EML)
	4.4.8 System Call Break (SIM, EML)
	4.4.9 Forced Break (SIM, EML)



