
page -1-

F2MC-8L
MB89620/630/850 Series Evaluation Board

USER MANUAL

page -2-

Read this first

This book describes the Fujitsu F2MC-8L Starterkit_8 and how to
use it with the provided tools.

How to use this manual

The goal of this book is to help you learn how to develop your own
software in ANSI-C or Assembler with the Windows-based
environment SOFTUNE. This book is divided into 6 parts. Parts 1-3
contains hands-on information so that you can start using the
evaluation board the same day you receive it. Part 1 is a general
description of the board. Part 2 contains installation instructions and
part 3 will guide you through example sessions. Parts 4-6 contain
detailed information about the monitor operation, the bios interface
and the hardware details.

Important notice

This Starterkit contains an evaluation board, documentation and
software on a CD-ROM. For last minute changes, please refer to the
“Readme.1st”- Document in the Starterkit_8 section on the CD.

Fujitsu reserves the right to make changes to its products or to
discontinue any semiconductor product or service without notice.

Trademarks

DOS, Windows, Windows95 are registered trademarks of Microsoft Corp. PC is a registered
trademark of IBM.

page -3-

Contents
1. Introduction…….…………… ..3

2. General Description ...3
2.1. Installation ...3
2.2. Technical Characteristics ...3
2.3. Evaluation Board Resources..3

3. How to get started, Example Sessions ...3
3.1. Examples using Softune: ...3
3.1.1. The "LED8L" Example ...3
3.1.2. Debugging examples ...3
3.1.3. The "BIOSDEMO" Example...3
3.1.4. Program Creation ..3
3.1.5. 1 Using the NEWPROJ-example ..3
3.1.6. 2 Configuring Softune ...3

4. Monitor Operation…………..3
4.1. General Operation ...3
4.1.1. Command Input ...3
4.1.2. Number Formats..3
4.2. Monitor Commands..3
4.2.1. Setting / Information Commands..3
4.2.2. HELP, H, ? [Command] ...3
4.2.3. HEX, DEC..3
4.2.4. TS..3
4.2.5. AS ...3
4.2.6. ES ...3
4.2.7. V VALUE ..3
4.2.8. TERM FLAG ...3
4.2.9. CLS ...3
4.2.10. STAT ...3
4.2.11. Memory Commands...3
4.2.12. D [STARTADDR] [ENDADDR]] ..3
4.2.13. DW [STARTADDR] [ENDADDR]]...3
4.2.14. DB [STARTADDR] [ENDADDR]]..3
4.2.15. SD [NWORD] [L]..3
4.2.16. DBR, DRB [FIRSTBANK],[LASTBANK]..3
4.2.17. S [STARTADDR] [D1 [[D2] ...[D8]]]..3
4.2.18. F STARTADDR ENDADDR DATA...3
4.2.19. M STARTADDR ENDADDR TARGADDR3
4.2.20. C STARTADDR ENDADDR TARGADDR..3
4.2.21. E [EDITADDR]..3
4.2.22. EW [EDITADDR] ..3
4.2.23. EB [EDITADDR] ...3
4.2.24. A [STARTADDR] ...3
4.2.25. R [REGNAME [VALUE]] ...3
4.2.26. Program Execution Commands..3
4.2.27. G [STARTADDR] [,STOPADDR] ..3
4.2.28. CALL TARGADDR [PARAM1 [P2...]] ..3
4.2.29. UC...3
4.2.30. UR...3
4.2.31. EXIT ..3
4.2.32. MR, RES, RESET..3
4.2.33. Debug Commands ..3
4.2.34. B..3
4.2.35. BC [BNumber] ...3
4.2.36. BD [BNUMBER] ...3
4.2.37. BE [BNUMBER]..3
4.2.38. T [NINSTR] ..3

5. Monitor BIOS Interface ..3
5.1. I/O Function Calls (ASM/C)..3

page -4-

5.1.1. I/O Function Calls Parameter Passing......................................3
5.1.2. I/O Function Calls Detailed Description....................................3
5.1.2.1. [00] Poll Character Received ...3
5.1.2.2. [01] Send Character on RS232 ..3
5.1.2.3. [02] Receive Character on RS232..3
5.1.2.4. [03] Print a String...3
5.1.2.5. [04] Input a String ..3
5.1.2.6. [05] Print HexByte..3
5.1.2.7. [06] Print HexWord ..3
5.1.2.8. [09] Enable/Disable Breakpoints ..3
5.2. Other BIOS Function Calls (ASM)..3
5.2.1. Print Register Values ...3
5.2.2. Monitor Control ..3
5.2.3. Monitor Reset ..3
5.2.4. User Program Start ..3
5.2.5. SymTab Vector..3

6. Evaluation Board Hardware... 3
6.1. Pin Assignment..3
6.1.1. MB89630 Configuration..3
6.1.2. MB89620 Configuration..3
6.1.3. MB89850 Configuration..3

7. Appendix……………………. ...3
7.1. Appendix A: Board Schematics..3
7.2. Appendix B: Example Program Listings3
7.3. Appendix C: Software Tools...3
7.3.1. Windows-tools ...3
7.3.2. DOS-tools ..3
7.3.3. Download Protocol...3
7.4. Appendix D: Monitor Software Notes, Restrictions3
7.5. Appendix E : List of development tools...3

8. Index………………………….. ...3

page -5-

1. Introduction

The Starterkit_8 is a low-cost, stand-alone application board that makes it easy to
evaluate and demonstrate almost all features of FUJITSU's MB89620, MB89630 and
MB89850 micro controller series.

Along with the supplied Windows-based development tools, it can be used as a
system for user program developments. The board can be configured to use a
MB89T625, MB89T637 or MB89T855 controller by simply exchanging the chip. By
default, the board is equipped with an MB89T637.

Monitor software and some on-board peripherals (used to realise an RS232 interface
to a PC terminal program), support program downloads and provide sophisticated
debug functions such as breakpoint settings, memory dumps, symbol handling and
single step execution.

A unique feature of this board is a “bank switching mechanism”, which allows the
Monitor- EPROM to be disabled and to map a User RAM into the same address
range. Thus, the user can develop and test program code within the same address
range as the final user program which would reside in a PROM or mask ROM.

Each memory bank can be activated by a separate Reset button, allowing restart of
either the Monitor or the User Program, beginning from a real hardware reset.
(Note: The Monitor is able to switch the banks automatically by software in order to
perform special debug functions.)

Key Features

• Can be configured with MB89T625, MB89T637 or MB89T855
• 64 kB RAM
• On-board monitor featuring breakpoints, single-stepping, trace etc.
• All unused ports available
• Integrated Windows-based development environment

page -6-

2. General Description

2.1. Installation

What you’ll need :

ü Host : IBM(-comp) PC with Windows 3.11 or Windows 95 and CD-ROM drive
ü Power requirements : A power supply, capable of supporting 7-8V DC at about

150 mA, is required. Note that the power connector must be + at the shield and -
in the centre

ü RS232 : A ‘Nullmodem’ RS232 cable with a DB9 connector

To install the development environment, insert the provided CD-ROM and click on
TOP.PDF from Windows. From the main menu, select “Software Installation”, “8-
Bit” and then “Starterkit_8 Installation”. The following procedure will create a
directory named “C:\FETOOL\” and automatically start the individual setup programs
of :

§ Softune (8-Bit MCU Version) : Fujitu’s integrated development manager for
Windows

§ Language Tools : C-Compiler C96, Assembler ASM96, Linker LINK96, Librarian
LIB96

§ Utilities and examples

To setup the hardware, connect the power supply to the board and check that the
User LEDs light up briefly and that the small red ‘monitor program’ LED (MP)
remains on. When pressing the User Reset button, the small green ‘user program’-
LED (UP) should be on whilst the reset button is pressed (see figure1).

If these installation checks were successful, the power supply should then be
unplugged and the serial connection to a PC via the 9-pin RS232 cable established
before re-connection of the power supply.

Now, the LEDs should still behave in the same manner. If not, it is most likely that
the DTR signal of the serial connection, which is used as an external monitor reset
control line is activated for some reason.

To access the board monitor for testing, any terminal program can be used (e.g. the
provided terminal in the FMG_UTIL directory). The communication parameters are
9600 Baud, 8 Databits, no Parity, 2 Stopbits. If a different terminal program is
used and the DTR-line can not be set individualy, this effect can be disabled by
removing the “Ext. Reset” jumper, located as in figure 1.

page -7-

 Fig. 1 : Evaluation Board Layout

On the terminal, the following message from the evaluation board monitor should
appear:

**
** Monitor for the FFMC8L Series **
** MB89xxxx Evaluation Board Vers. x.x **
** (C) Fujitsu Mikroelektronik GmbH 199x **
**

(C)
>

The ´(C)´ status message indicates that the monitor executed a ´cold´ reset after
power up. Press the monitor reset button to generate a ´warm´ reset, and a ´(W)´
message will appear.

The evaluation board is now ready to use.

Power
Supply

User Mon.
Reset Reset

RS232
Interface

User RAM

Mon.EPROM

L1
L2

User LEDs

JP3

JP4

JP7
AVxx

JP5
(Decode)

A0..15
Control

AD0..7Data RAM

Ext. Reset
jumper

JP6

JP12
MB

89T625
or

MB
89P637

+

-

UP

MP

M
B

89T
625

M
B

89T
637

M
B

89T
855

page -8-

2.2. Technical Characteristics

Supply Voltage 7V ... 9V
RAM Area aro. 62KB
ROM Area 32KB Monitor ROM
Microcontrollers MB89T625, MB89T637, MB89T855
Serial Interface (RS232) Half-Duplex, 9600 Baud, No Parity, 8 Data-bits, 2 Stop-bits
Debug Functions All functions are realised in software including Breakpoints,

Single-Step, Watch-Points
Board Restrictions Software:

CALLV#7 can not be used because it is needed for the
breakpoint system implementation.

Hardware:
Port 0, 1, 2 are used for the external bus system and are
therefore not available as I/O-Ports.

Controller Specific Features MB89T625
- 8-bit PWM Timer - 8-bit PWC Timer/Counter
- 20-bit TimeBaseTimer - 16-bit Timer/Counter
- 2x 8-bit SIO - 8x8 bit A/D
- 5 ext. Interrupts - STOP, SLEEP mode
- 512 Bytes of internal RAM

MB89T637
- 2x 8-bit PWM Timer - 8-bit PWC Timer/Counter
- 20-bit TimeBaseTimer - 16-bit Timer/Counter
- 8-bit SIO - 8x10 bit A/D
- UART - STOP, SLEEP, WATCH mode
- 4 Ext. Interrupts - Gear-function
- Buzzer output - 32KHz Sub-Clock
- 1 kByte of internal RAM

MB89T855
- 2x 8-bit PWM Timer - 20-bit TimeBaseTimer
- Timer unit (dead timer/ ud counter/ 3ph. motor control)
- 8-bit SIO - 8x10 bit A/D
- UART - STOP, SLEEP mode
- 512 Bytes of internal RAM

page -9-

2.3. Evaluation Board Resources

The evaluation board was designed in order to leave as many micro controller
resources available for user evaluation and applications as possible. All of the IO
ports (port 3,4,5 and 6) are available to the external world via the on-board
connectors.
The monitor software resides in a bank-switchable EPROM, thus not demanding any
of the 64K external program or data RAM address space.
Only a small RAM area is reserved for monitor variables and memory mapped
control registers (see memory map). Two of the control registers are linked to the
LEDs L1 and L2 and can be used for simple user program indicators. Fig. 2 gives an
overview of the memory structure of the evaluation board.

On Chip IO-Area0000-007F

On Chip RAM
0080-027F

External RAM

for User Program

0280

Monitor

8000

User LEDs IO-Addresses

L1 - Addr. 0AE2 Bit 0

L2 - Addr. 0AE3 Bit 0

and User Data

FFFF
FFFF

NOTE:

RAM section 0800-0FFF
is reserved for the Monitor
and memory mapped IO.

Fig. 2 : Memory Structure of the evaluation board

page -10-

3. How to get started, Example Sessions

This chapter will provide some hands-on examples on utilising the available software
tools for developing software and shows how to download code and data to the
board.

3.1. Examples using Softune:

In the following example sessions, instructions are given on how to use Softune to
demonstrate the examples, which will give just a brief impression of the Softune
features. To learn more about Softune and its features please refer to the
documentation on the CD-ROM or to the provided manual.

Please be sure to have the evaluation board powered up and connected to COM1 of
your PC as described in chapter 2.1. After the software installation, double-click the
Softune-icon (MAN896) to start the program.

3.1.1. The "LED8L" Example

Select “Project/Open Project” and open “LED8L.PRJ” in the “SAMPLE”-directory. A
member list will appear as shown in Fig. 3 which contains all registered files :

Fig.3. : Softune with member-list of the LED8L-project

page -11-

 The listed files in the member-list are :

- LED8L.HEX the linker output file this module can be downloaded to the evaluation
board
- BEGIN.ASM is a library file containing initialisation functions for C programs
- LED8L.C is the source file
- MODE_EXT.ASM is a library file containing reset vector and the processor mode byte

NOTE: The "MODE_EXT.ASM" file is used when port 0..2 of the controller are used
as an external bus interface, as on the evaluation board.
If projects migrate from the evaluation board onto user-developments, eventually
using the "single chip mode" in conjunction with an In-Circuit Emulator or as an OTP,
the "MODE_SNG.ASM" must be specified for proper mode byte setting.

To edit one of the files, double-click on the name and the editor will come up with the
source file. As a first example, double-click on “LED8L.C” to see the sourcecode of
the program.

Using the cursor keys the window can be scrolled and the program can be studied.
The main program produces different patterns on the user LEDs, calling a time delay
subroutine after each setting. Close the edit window again, before proceeding.

To compile, assemble and link the project files to an executable program file that can
operate properly on the evaluation board, use the Build-button. (Note that there are
two other functions available : Make creates the load module by compiling,
assembling and linking only updated files and Compile affects individual C-files in
the developing process). With these mouse-driven functions, the software designer
can concentrate on coding and debugging programs with improved quality and
efficiency, but with no knowledge of how to start and configure a compiler or linker !

When the compilation process is completed, a result window appears showing any
errors and warnings. This example should compile without problems and complete
assembling and linking without any errors. In case of errors, a double-click onto the
error message activates the error-jump-facility and locates the appropriate line in the
source file (try it by generating a simple syntax-error …!).

After linking, an executable program file (LED8L.HEX) is available. This program can
be downloaded to the starterkit. To do so, open the Utility-menu and select
“LoadProgram”. You should see a progress-counter while the program is loading
and a “RUN”-button will appear once the program is ready to execute. After
executing the program this way, you finally should see the two LEDs flashing on the
board…

page -12-

3.1.2. Debugging examples

For simplified debugging, an additional symbol file can be generated. The Utiliy-item
“LoadSymbols” will generate and download symbol information to the board, which
can be utilised by the board monitor. After loading symbol information, the monitor
can access the table via a pointer which is included in the information.

After successfully downloading program and symbol information, select the
“Terminal” from the Utility-menu. A simple terminal will be called to access the
monitor. (Any other terminal-program can be used instead)

When pressing RETURN, the monitor prompt ´>´should appear, or when pressing
the monitor reset button, the initial message from the monitor should appear.

To see if the example program still works, use the G command. (Type G and
RETURN)
Now the example program is executed on the evaluation board, thus ending the
control via the Terminal. The LEDs should start flashing now.

A Monitor Reset must be issued, for example by pressing the monitor reset button, to
enable communication with the evaluation board monitor again.

In the following description, some of the monitor-debug functions are
demonstrated:

Use the TS (type symbol) command to list the available symbol information. This
will give an overview of most interesting program labels, like _main, _wait etc.

Enter the T command to activate the trace mode. A program label ´===start===´ and
some register information is displayed and the instruction at the program counter
address is disassembled. This ´start´ location is the reset entry point of the example
program. The code is that of the BEGIN.ASM source code module which contains
the C-program initialisation procedures.

Some instructions may be traced by pressing RETURN.

The monitor will disassemble the actual instruction and wait for a key entry ('SPACE'
or 'RETURN') to execute the instruction and to continue with the following one. Once
you step into the “call _wait” instruction , it will take a long time to finish it.

To avoid to single step time consuming subroutines, you can enter the 'C' key at
locations where such subroutines are called to execute them in real time.

So if the Delay Subroutine was already entered, it might be necessary to reset the
PC register as in the beginning and start again.

Press the ESC key to quit the trace mode. Then enter the go,break command

G, _main

page -13-

to complete execution of the initialisation procedures.
Program execution will stop at the beginning of the main program.
Now, trace again the next 9 instructions to see how the user LEDs are switched.

Finally, set a break point at the wait() subroutine by entering the

B 0 _wait

command.

Now, the example program can be reset by entering the user reset command UR.
The program execution will always stop at the wait() subroutine entry.
Enter the G command several times to continue program execution and to observe
the different user LED states.

Apart from the “GO” (g) command, there are many ways to start a program:

a) Press the UserReset Button → User Program activated (until Monitor Reset)

b) Use the monitor UR command to start the UserProgram at its Reset Entry
 e.g. UR → User Program activated (until Monitor Reset)

c) Use the monitor GO command to start UserProgram at a specific location
 (in this example the Reset Entry point (main program loop)).
 e.g. G 8000 → User Program activated (until Monitor Reset)
 or G start
 or G (starts at actual PC location which is also 8000 after a reset)

To demonstrate the Breakpoint with the OccurCounter function, try

B 0 _wait 4

This will execute the main loop 4 times. The example program will stop at the 5th
time the breakpoint is hit.

To demonstrate the Breakpoint/Snapshot function, use

B 0 _wait S

This will effectively just set a snapshot point and the example program will run until
the monitor reset is pressed. Each time the Snapshot location is executed, the
monitor will dump the CPU registers.

These were some basic steps in evaluation board operation and program debug. To
learn about all possible features please refer to the detailed command description in
chapter 5.

page -14-

3.1.3. The "BIOSDEMO" Example

The BIOSDEMO.C example program shows how to utilise I/O functions provided by
the monitor software for user program purposes.
To get access to these functions, the EVABIOS.H header file is included and the
EVABIOS.ASM library file is linked to the program.

The example program is self explanatory and can be compiled and tested as
described in the previous example. Use a terminal to execute the program then you
will see this simple dialog :

>g

** Demonstration of BIOS Functions **

'puts'-function :
 This is an output string

'gets'-function :
 Please enter your name : Master of the universe

 Thank you, Master of the universe

'getch'-function :
 Press any key !

 You pressed x

'putch'-function : M a s t e r o f t h e u n i v e r s e

 The byte-check sum is : 53
 The word-check sum is : 0853

 That all folks ! Press any key for Monitor Reset

page -15-

3.1.4. Program Creation

3.1.5.1 Using the NEWPROJ-example

The easiest way to develop software for the evaluation board is to modify the
provided “newproj”-project. This is an already configured example for a MB89T637-
equipped evaluation board which can be used to start developing without any
modifications in Softune. It has the following registered files :

• INIT.ASM : An initialization file dedicated for developing software in C for the
evaluation board

• NEWPROJ.C : A C-file with all nessesary definitions, but with an empty “main”-
routine

• MB89630.ASM : The library file for all IO-definitions (includefile is “MB89630.H”)
• INT89630.ASM : The library file for all Interrupt-vectors (includefile is

“INT89630.H”)
• MODE_EXT.ASM : The reset-vector / mode-byte library file suitable for the

evaluation board

This means, all IO-registers (e.g. PDR3=0xFF) can be accessed in C and the
interrupt service routines are already defined, but left empty in the C-source. The
installed memory-map can also be used for the two other controllers.

3.1.6.2 Configuring Softune

To create completely new software, select “New Project” from the Project menu.
Simply specify a name and select the microcontroller family you want to develop the
program for. After that a new project-directory and –file (.PRJ) will be generated and
a new member-list appears.

NOTE: At startup, Softune reads the initial file “man898.ini”. This file contains
information about directories, projects, utilities etc. Softune reverts to the previous
usage conditions by reading this file. Edit this file only offline ! Most of the stored
information can be changed menu-driven from Softune. Refer to the manuals or
press F1 for help whenever you need it.

page -16-

Fig. 5 : Configurating a Softune-project

To add source and library files to the member-list, type a new file name or select an
existing file – then press ADD and OK to close the dialog. Source file types (.C
.ASM) will be recognized automatically. NOTE : The INIT.ASM-file should be the
first registered file in the member list

Always specify the memory map for a new project. This information is needed for the
linker to generate absolute code that is executable on your target system. To specify
the memory setup, select “Edit Memory Map” from the Project menu. Insert RAM
and ROM size, the number of register banks used and all segment locations as
shown below.

Fig. 6 : Configurating the memory map in Softune

page -17-

The table below gives an overview of a typical memory-map used for the board :

Address space Memory area Segment name
8000 – FFFF External RAM for Code,

Constant Data etc.
CSEG,CCONST,DCONST
,DIRCONST

0280 - 7FFF External RAM for Monitor (not used by default)
0108 – 027F Internal RAM: Variables (Data)

and Stack
SSEG (Stacktop=27F),
DINIT, DVAR

0100 – 0107 Registerbank #0 (always at 100)
0080 – 00FF Internal RAM: fast access DIRINIT, DIRVAR
0000 – 007F IO-Area (always at 0)

When writing programs which access these registers, dedicated header and library
files which specify the processor specific control registers should be used.

For example for an MB89620 evaluation board, the linker file for all IO-definitions

C:\FETOOL\8L\LIBRARY\MB89620.ASM

should be used and has to registered in the member list. In the source-code the line

#include <MB89620.h>

should be inserted to declare the functions. Default path names can be changed in
“Set Environment Variables” from the Option menu.

Further information regarding the C-compiler, Assembler and Linker can be found in
the online-manuals or the full documentation which can be ordered separately.

NOTE : All language tools (C-Compiler, Assembler, Linker etc.) are DOS-programs.
Therefore implementation of Fujitsu language tools in any individual development
environment or the use of batch-files is possible.

page -18-

4. Monitor Operation

4.1. General Operation

This chapter describes the monitor of the board in detail. The monitor can be
operated via any PC terminal, like the included terminal in the FMG_UTIL-directory.
The communication parameters are 9600 baud, 8 bit, no parity, 2 stop bits. If
possible, ANSI terminal emulation should be activated. After pressing the Monitor
Reset Button, the Monitor LED on the evaluation board should be active and a
message from the Monitor should appear on the terminal. The monitor is then ready
for command input.

4.1.1. Command Input

Commands must only be entered if the monitor has posted the command prompt

> .

This is important since the RS232 interface is realised by a software polling
procedure and characters will get lost if the monitor is busy while characters are
typed in.

A command is input by typing the command word plus appropriate parameters and
then pressing RETURN to terminate input and execute the command.

The monitor provides the following edit functions:

• Mis-typed characters can be erased by using the BACKSPACE key.
• Pressing the TAB key, will automatically re-type the previous command.
• A complete command line can be skipped by pressing the ESC key.

page -19-

4.1.2. Number Formats

Most commands need parameters, usually numbers. The monitor uses the following
convention regarding the representation or base:

By default, all numeric inputs are regarded as HEX numbers

• Characters '0..9' and 'A..F' or 'a..f'.

• Decimal numbers can be input by prefixing the number
with the two characters "D ' " or with the character "!".

Example

 e.g. D ' 100 or !100 equate to 100 dec.

• The default input format can be changed to DEC by a monitor command.

• Characters '0..9'.
In this case, hex numbers can be input by the two prefix characters "H ' " or with
the single character "$" or with an appended "H".

Example

e.g. H ' F00 or $F00 or F00H equate to 0F00 hex.

NOTE: Numbers output by the monitor are always in HEX format !

The monitor features the capability of accepting symbol names for parameter inputs.
To use this option, Symbol Information must be available (see TS command).

page -20-

4.2. Monitor Commands

The Monitor Commands are grouped into different classes.
The figure below gives an overview:

Setting / InformationMonitor Commands HELP

STAT

HEX, DEC

TERM

CLS

Memory

TS

AS

ES

V

D

DW

DB

SD

DBR, DRB

S

F

M

C

E

EW

EB

A

GProgram Execution

CALL

UC

UR

EXIT

MR,RES,RESET

BDebug

BC

BD

BE

T

page -21-

4.2.1. Setting / Information Commands

4.2.2. HELP, H, ? [Command]

Print Help Text

The HELP command prints a short overview of the most important monitor
commands.
Shortcuts for this are H and ?. If a command is named, specific help is displayed.

4.2.3. HEX, DEC

Specify Default Input Mode

The HEX or DEC command specifies the default format of numbers required for
command parameters.

4.2.4. TS

Type Symbol Information

This command will type all symbol names and values, if available.
The monitor can accept symbol names as command parameters and will display
symbol names within in the 'L' and 'T' commands if symbol information is available.
Symbol information can be included within the User Program (see example
programs) or can be separately downloaded into any free RAM area.

4.2.5. AS

Activate Symbols

In the case where the symbol table has not been activated during program
download, the AS command can be used to scan the memory for a symbol table and
initialise the symbol management.

page -22-

4.2.6. ES

Erase Symbol Table

The Erase Symbols command will delete the symbol and thus disable the symbolic
debug features.

4.2.7. V VALUE

Print Value in various number formats

The Value command can be used to print a different representation of a value.
For example if a hex number is specified as the Value operand, the decimal and
binary equivalents are printed.

4.2.8. TERM FLAG

Specify ANSI emulation features

Some terminal programs are able to decode special escape sequences which
change the actual colour or result in other screen manipulations. The monitor can be
configured to generate such sequences to print its output messages using different
colours and to clear the terminal window on certain points. To activate these
features, the TERM command is used to set related flags:

Flag values: 0 use no escape codes
1 utilise Clear Screen code
2 utilise ANSI colour codes
3 utilise Clear Screen & ANSI codes

Note that these terminal emulation functions are not supported by ProMan !

4.2.9. CLS

Clear Screen

The CLS command will print the ´Clear Screen´ escape sequence if enabled (see
TERM).

page -23-

4.2.10. STAT

Print Information

The STAT command can be used to print information on the monitor status.
For example if the monitor is in HEX or DEC input mode and additional information
about the monitor BIOS version.

4.2.11. Memory Commands

4.2.12. D [STARTADDR] [ENDADDR]]

Dump Memory Area

The Dump command displays the memory contents of the specified address range.
If no EndAddress is specified, a memory area of 64 bytes is displayed.
If no StartAddress is specified the dump is continued at the following location of a
previous dump.

4.2.13. DW [STARTADDR] [ENDADDR]]

Dump Memory Area in Word format

The Dump Words command dumps memory contents in 16 bit word format.
(See also 'D' command).

4.2.14. DB [STARTADDR] [ENDADDR]]

Dump Memory Area in Bit format

The Dump Words command dumps memory contents in single bit format.
(See also 'D' command).

4.2.15. SD [NWORD] [L]

Stack Dump

The Stack Dump command dumps the actual stack area contents. A number of
Words can be specified. Using the 'L' flag, the monitor evaluates each stack value
and checks if it might be a return address. In that case the available symbol nearest
to that address is printed.

page -24-

4.2.16. DBR, DRB [FIRSTBANK],[LASTBANK]

Dump Register Bank

The DBR or DRB command can be used to dump the register bank memory area.
Without parameters, the current active register bank is printed.
A specific bank (0..31) or range can be specified by operands.

4.2.17. S [STARTADDR] [D1 [[D2] ...[D8]]]

Search for a specific byte pattern

The Search command will search for a specific data pattern in memory beginning at
the StartAddress. The data pattern is specified by up to 8 byte values.
Note: The StartAddress must by specified using 4 characters (e.g. '00F0'), otherwise
the first parameter is interpreted as a data pattern and a default address is used.
If a matching data pattern is found, the address is displayed. In this case, if the
Search command is used again without parameters, the search will be continued
after the previous matching location.

4.2.18. F STARTADDR ENDADDR DATA

Fill Memory Area

The Fill command fills a specified memory area with the specified Data value.

4.2.19. M STARTADDR ENDADDR TARGADDR

Move Memory Area

The Move command moves the contents of a specified memory area to a different
location beginning at the TargetAddress.
The original memory area remains unchanged unless source and target area
overlap.

page -25-

4.2.20. C STARTADDR ENDADDR TARGADDR

Compare Memory Areas

The Compare command compares one memory area specified by StartAddress and
EndAddress with a second memory area beginning at the TargetAddress. Memory
locations with different contents are displayed.

4.2.21. E [EDITADDR]

Edit Byte Data in Memory

The Edit command allows the modification of single memory locations, beginning at
the specified EditAddress. (If not specified, a previously specified address is used.)
The monitor will display the actual address and the contents. The user can enter
new data values or simply press RETURN to move to the next address location. To
quit the edit procedure press the ESC key or enter /↵.

4.2.22. EW [EDITADDR]

Edit Word Data in Memory

The Edit Word command allows modification of 16 bit word memory locations.
Otherwise, it operates in the same manner as the E command.

4.2.23. EB [EDITADDR]

Edit Data in Memory Bit by Bit

The Edit Bit command allows modification of single memory bits. This command
works in a similar manner to the E command.

4.2.24. A [STARTADDR]

On-line Assembler

The A command enters the on-line assembler mode. Instructions can be entered
using the F2MC8L/8LC assembly language.
To escape the on-line assembler simple press return on an empty line or press the
ESC key.

page -26-

4.2.25. R [REGNAME [VALUE]]

Show Registers, Change Register Contents

The register command, without parameters displays the CPU register contents (A, T,
IX, EP, PS, SP, PC) and the current register bank registers R0..R7)
If a RegisterName and Value is specified, the register will be updated.

If the Value is not specified, the monitor will enter an 'edit register mode'. It will print
the current value and prompt for a new value. The user can either specify a new
value or simply press RETURN to keep the actual value. Then the next CPU register
and its content is displayed and can be changed. To exit this edit mode, press the
ESC key or type /↵.

• The register named 'CY' -which is not an actual processor register- can be
changed in this mode. The 'CY' register is the monitor cycle counter used within
the trace command.

4.2.26. Program Execution Commands

4.2.27. G [STARTADDR] [,STOPADDR]

Go to start User Program

The Go command is used to switch control from the Monitor to the UserProgram.
The UserProgram execution is started with the current CPU register contents (see
'R' command) at the location specified by the PC register. If a StartAddress is
specified, the PC register is set to this value.

A StopAddress can be specified which sets a temporary breakpoint. If the
UserProgram stops at any breakpoint before the StopAddress is reached this
temporary breakpoint is automatically removed.

Examples:

e.g. G ,main
or
G reset,main

4.2.28. CALL TARGADDR [PARAM1 [P2...]]

CALL Subroutine

The CALL subroutine command allows the calling of a User Program or Procedure
starting at the Specified TargetAddress.

page -27-

Parameters passed to the subroutine can be specified optionally and will be passed
to the procedure on the stack (as done by the C-compiler function calls).
When returning from the procedure a message and the return value in register EP is
automatically displayed.

4.2.29. UC

User Program Call

The User Program Call works in a similar way to the 'CALL' command with the
difference that no target address is specified in the command line.
To use this function, an appropriate JMP instruction must be entered into a specific
BIOS table location (see BIOS Interface) when downloading the program.

4.2.30. UR

User Program Reset

The monitor will activate the user program RAM bank and initiate a hardware reset,
so the user program will start, beginning its reset vector.

Note: This command is equivalent to pressing the User Reset button.

4.2.31. EXIT

Exit Monitor Shell

If the monitor is called by a User Program via the BIOS interface as a shell program,
program control can be returned to the user program using the EXIT command.

4.2.32. MR, RES, RESET

Monitor Reset

This command is equivalent to pressing the Monitor Reset button.

page -28-

4.2.33. Debug Commands

4.2.34. B

B [BNUMBER BREAKADDR [OCCCOUNT] ['S'] ['W' WADDR WCNT]

Set Breakpoint/Snapshot/Watch-area

If no parameters are specified, the Breakpoint command will display the current
breakpoints list. If a BreakpointNumber and a BreakpointAddress are specified, a
breakpoint is set at the specified program location. The BreakpointNumber (0..9) is
maintained as a reference. It will be displayed when using the 'L' command and must
also be specified to clear a specific breakpoint.

When the user program is executed, it will stop when a breakpoint is reached and
Breakpoint Information (CPU registers, Breakpoint location) will be displayed.

Specifying an OccurCount value allows the processor to 'run over the breakpoint'
OccurCount-times before the breakpoint is activated.

Additionally, by setting the watch memory area flag ´W´, the breakpoint information
can be extended to add a dump of a specified memory space.
´W´ must be followed by a start address ´wAddr´ and byte count ´wCnt´.

Specifying a Snapshot flag 'S' converts the breakpoint into a 'Snapshot-point'. That
is, the Breakpoint Information is displayed whenever the snapshot-point is reached
but program execution continues.
Using the OccurCounter in this case, program execution will stop when it reaches
zero.

NOTES:
- If a previously used BreakpointNumber is specified again, the previous breakpoint

is overwritten.

- Do not specify the same BreakpointAddress more than once !

- The monitor stores its breakpoint information in a Monitor RAM section which is not
initialised (cleared) after a Monitor Reset. A check sum mechanism makes sure the
information is valid. Thus, if an 'out of control' user program has to be stopped by
Reset, the specified breakpoints remain valid unless the user program has
destroyed its own code or the Monitor RAM.

page -29-

4.2.35. BC [BNumber]

Clear Breakpoint

If no BreakpointNumber is specified, this command will clear all breakpoints.

4.2.36. BD [BNUMBER]

Disable Breakpoint

If no BreakpointNumber is specified, this command will disable all breakpoints.

4.2.37. BE [BNUMBER]

Enable Breakpoints

If no BreakpointNumber is specified, this command will enable all breakpoints.

4.2.38. T [NINSTR]

Trace Instruction

The Trace command can be used to single step a user program, beginning at the PC
register address. 'nInstr' specifies the number of instructions which shall be
executed automatically. If not specified, the trace will start in interactive mode.

Note: The Program Address Counter can be set to a specific address using the "R
PC val" command prior to using the trace command.

The interactive operation works according to the following loop.

LOOP
• the monitor displays the actual register values and prints the disassembled

instruction
• then the User is prompted to press the 'SPACE', 'RETURN', 'C' or 'R' key to

execute the instruction or press any other key to abort the trace operation
• continue loop if not aborted

page -30-

This way, the register values before and after executing an instruction are always
displayed.

Special key functions:
•• 'SPACE' or 'RETURN' will execute one instructions at a time.
• If 'C' is used at a CALL subroutine instruction, the subroutine is executed without

tracing.
• If 'R' is used at a Branch instruction, a taken branch will not be traced.

This means, if a branch is taken, the program will continue to execute until
reaching the instruction following the branch (branch not taken).
This has applications in skipping long polling or timing loops.

Important:
The monitor uses the CALLV #7 instruction and the corresponding vector in the
UserRAM to realise the Breakpoint and Trace operation. Thus, this instruction must
not be invoked by the user program.

page -31-

5. Monitor BIOS Interface

The monitor incorporates a software interface for user programs providing functions
for basic terminal input / output operations.

When developing application or user programs, it is common practice to include
some additional code which prints out debug or other status information during the
first trial runs, to verify the proper operation of certain procedures.
To relieve the user from coding appropriate input/output procedures (which will be
needed just for debug purpose and not in the final program), the BIOS interface can
be used.

The following is a detailed description on the available BIOS functions.
Examples can be found within the example programs discussed in chapter 5.

The BIOS interface is realised as a call entry table located in a reserved area of
RAM (below the bankswitch-able ROM / RAM) and has the following structure:

In the following table, entries are termed `function vectors`.

Monitor Reset

Table Header at 0800h

"BIOS Vxx"

Monitor Control

00

10

The first 8 Bytes contain a signature

Call a Monitor Shell

Monitor (Software) Reset

Table Offset

I/O Function Calls (ASM) 08

I/O Function Calls (C) 0C

1C

Call the following location for :

BIOS Functions (Parameters in Registers)

BIOS Functions (Parameters on Stack)

Reserved

14

18

Print Register Values

(Monitor internal use for Trace & Break)

Print CPU Registers

This entry can be set by the user program

This entry can be set by the user program

20

24

User Program Start

Pointer to Symbol Table

The start address of the table is at location 0800h. The table header should be
checked before calling a table entry.

page -32-

5.1. I/O Function Calls (ASM/C)

5.1.1. I/O Function Calls Parameter Passing

The most commonly used function vectors are those for ´I/O Function Calls´.
Specifying a function code byte and additional parameters will execute a specific I/O
function.

Two different table entries are available.
The (ASM) entry is optimised for assembly language calls, which pass required
parameters in CPU registers.
The (C) entry is optimised for C-program calls, which pass parameters via the stack.

The following convention is used to specify function code and parameter:

 a) Function Call (ASM) Register AH : Function code number
 AL : Byte Parameter

EP : 2nd Parameter (address pointer)
e.g. :

MOVW A,#(H'0100 | '*') ; Function Code 01 => AH, '*' => AL
CALL H'0808 ; Call BIOS function

 b) Function Call (C) 1st word on stack : HiByte Funct.Code, LoByte Param.
2nd word on stack : 2nd Parameter (address pointer)

e.g. :

char (*BiosCall)(int,int) = 0x080C;
BiosCall((0x0100 | '*'), NULL);

On return, a 16 bit value is passed back to the calling routine via the EP register.
Generally, a negative return value is regarded as an error exit code.
Note that as with C-Subroutines, only the registers IX, R2..R7 will be saved, all other
registers can have different values.

NOTE: An include file with macro definitions for assembly programs (EBIOS.INC), or
a header and library file for C programs (EVABIOS.H, EVABIOS.C) contain the
declarations which simplify the usage of I/O functions. These files are also used in
the examples described in chapter 5.

page -33-

The following table lists the functions provided via I/O Function Calls:

Function FCode
.

Byte Param. 2nd
Parameter

Return
Value

Poll Char Received* 00 1:Rec, 0:No
Send Char on RS232 01 Output Char - -
Receive Char 02 - - Input Char
Print a String 03 - Adr Pointer -
Input a String 04 b6..0=SLen

 b7=CrLf
Adr Pointer Inp.Termn.

Char
Print a HexByte 05 HexByte - -
Print a HexWord 06 - HexWord -
(reserved) 07
(reserved) 08
Enable/Dis. BreakPnt. 09 1:En., 0:Dis. - -

* Restricted Functionality

5.1.2. I/O Function Calls Detailed Description

5.1.2.1. [00] Poll Character Received

This function works in a similar way to computer BIOS functions, in checking whether
a key was pressed and whether the character is available in a keyboard buffer or
not. Since the evaluation board uses a polling type of software UART, the
functionality is restricted:
The function will just scan the Rx-receive line for some time and see if a character is
detected. A function call to actually read the character will then wait for the next
received character.

5.1.2.2. [01] Send Character on RS232

This function will transmit a single character (byte) on the RS232 transmit line, to be
displayed on the attached computer terminal.

5.1.2.3. [02] Receive Character on RS232

This function will poll the RS232 receive line until a character is detected and finally
return the received character.

page -34-

5.1.2.4. [03] Print a String

This function will transmit a complete string of character via RS232, to allow
message outputs on the computer terminal. The string termination character is “00h”.

5.1.2.5. [04] Input a String

This function reads a complete string from the computer terminal.
The input is terminated when the RETURN or ESC key is pressed, or the max. string
length is exceeded.

If specified, a CR-LF sequence will be sent to the terminal to position the cursor onto
the next line. The max. string length (bit 0..6) and the CrLf flag (bit 7) are specified
by the parameter byte.

5.1.2.6. [05] Print HexByte

This function will convert the byte parameter into a 2-digit hex-ascii number and
transmit it to the terminal.

5.1.2.7. [06] Print HexWord

This function will convert the word parameter into a 4-digit hex-ascii number and
transmit it to the terminal.

5.1.2.8. [09] Enable/Disable Breakpoints

Depending on the byte parameter, this function can temporarily disable or re-enable
all breakpoints set by the operator.

page -35-

5.2. Other BIOS Function Calls (ASM)

The following BIOS function vectors can be used to simplify debugging. Calls to
these vectors can be placed at critical program locations as an alternative manually
setting a breakpoint.

5.2.1. Print Register Values

The Print Register Value entry can be used to display the current CPU register
values without modifying any registers or flags.
e.g. CALL H'0810 ; Print CPU Registers

5.2.2. Monitor Control

The Monitor Control entry can be used to call the monitor as a subroutine or shell. A
debug version of a user program can use such calls at critical places. The monitor
can then be used to display or modify memory and register contents. From this point
onwards, it is also possible to single step the following user program. The monitor
command EXIT will finally return control to the user program.
e.g. CALL H'0814 ; Call Monitor Shell

NOTE: Make sure the monitor was initialised (Power On Reset, Mon.Reset) before
this entry is called the first time !
NOTE: Using the monitor control function is an alternative to breakpoint setting.

5.2.3. Monitor Reset

This entry can be called by the user program if it wants to terminate. In this case the
ROM bank containing the monitor is activated and a Monitor Reset is executed.

5.2.4. User Program Start

The user program must write a 'JMP UserEntry ' into this table entry. (This can be
part of the object code which is downloaded .) The monitor command 'UC' can then
simply be used to activate and CALL the user program at the UserEntry location.

5.2.5. SymTab Vector

If symbol information is available, a pointer to the symbol table can be loaded into
the first word of this table entry during program download.

page -36-

6. Evaluation Board Hardware

The evaluation board provides various IO-signals which can be connected to
external devices. The controller resource functions are available on the connectors
JP3, JP4, JP7 and JP5.
External peripheral devices can be connected via the address/data bus on JP6 and
JP12 and the select signal /EIO on JP5. For more information please refer to the
following pin assignments and the schematics in appendix A.

6.1. Pin Assignment

The F2MC-8L evaluation board PCB was designed such that it can be used for the
MB89620, MB89630 and MB89850 series of Fujitsu’s 8-bit micro-controllers.
Thus, the MB89T637 can be simply replaced by a T625 or T855 to derive an
evaluation board for the device family. The main differences between the board
versions are different I/O signals on ports 3,4 and 5 and the associated connectors.

6.1.1. MB89630 Configuration

A10 11
A12 13
A14 15

12 A11
14 A13
16 A15

BUFC 17
HRQ 19

/RD 23

18 /HAC
20 RDY

24 ALE
CLK 21 22 /WR

VCC 25 26 GND

A0 1
A2 3
A4 5
A6 7
A8 9

2 A1
4 A3
6 A5
8 A7
10 A9

9
7
5
3
1

5
3
1

8

2
4
6

10

2
4
6
8

12

7

11
13

9

14

10

P42/UI2
VCC

P50/ADST
P52
P40/UCK2

P51/BZ

P43/PTO1
P41/UO2
P53/PTO2

1

7

2

10

P61/AN1
VCC

P63/AN3

P67/AN7
P65/AN5

GND

P74/EC
GND

P72/INT2

/RES
P70/INT0/X1A

/SRA

GND
P66/AN6

P60/AN0
P62/AN2
P64/AN4

AVR

MAP
/EAA

-
P73/INT3
P71/INT1/X0A

/RAM

3
5

13

9
11

15

4
6
8

12
14
16

/EIO

-

/ROM

GND
P31/UO1
P33/SCK1
P35/SI1
P37/WTO

1
3
5
7
9

P30/UCK1
P32/UI1
P34/SO1
P36/PWC
VCC

2
4
6
8
10

GND
AD1
AD3
AD5
AD7

1
3
5
7
9

AD0
AD2
AD4
AD6
VCC

2
4
6
8
10

MOD1
MOD0

VCC

VCC GND

/EAD
GND

/EAA

GND

AVR

VCC

VCC

GND

GND
AVSS

AVSS

AVCC

AVCC

/MRES

/RES

JP13 JP15

JP16
off for

ext. UART
Probe

connector

ext. Reset
via Terminal

JP3

JP4

JP7

JP5

JP12

JP6

JP10

JP1
JP2

 Fig. 7 : MB89630 Evaluation board connector and jumper assignment

page -37-

6.1.2. MB89620 Configuration

A10 11
A12 13
A14 15

12 A11
14 A13
16 A15

BUFC 17
HRQ 19

/RD 23

18 /HAC
20 RDY

24 ALE
CLK 21 22 /WR

VCC 25 26 GND

A0 1
A2 3
A4 5
A6 7
A8 9

2 A1
4 A3
6 A5
8 A7
10 A9

9
7
5
3
1

5
3
1

8

2
4
6

10

2
4
6
8

12

7

11
13

9

14

10

P41
VCC

P47/SI2
P45/SCK2
P43

P46/SO2

P40
P42
P44/BZ

1

7

2

10

P51/AN1
VCC

P53/AN3

P57/AN7
P55/AN5

GND

P60
GND

P62

/RES
P64

/SRA

GND
P56/AN6

P50/AN0
P52/AN2
P54/AN4

AVR

MAP
/EAA

-
P61
P63

/RAM

3
5

13

9
11

15

4
6
8

12
14
16

/EIO

-

/ROM

GND
P36/WTO
P34/EC
P32/SO1
P30/ADST

1
3
5
7
9

P37/PTO
P35/PWC
P33/SI1
P31/SCK1
VCC

2
4
6
8
10

GND
AD1
AD3
AD5
AD7

1
3
5
7
9

AD0
AD2
AD4
AD6
VCC

2
4
6
8
10

MOD1
MOD0

VCC

VCC GND

/EAD
GND

/EAA

GND

AVR

VCC

VCC

GND

GND
AVSS

AVSS

AVCC

AVCC

/MRES

/RES

JP13 JP15

JP16
off for

ext. UART
Probe

connector

ext. Reset
via Terminal

JP3

JP4

JP7

JP5

JP12

JP6

JP10

JP1
JP2

 Fig. 8 : MB89620 Evaluation board connector and jumper assignment

page -38-

6.1.3. MB89855 Configuration

 Fig. 9 : MB89850 Evaluation board connector and jumper assignment

NOTE: The MB89620 and MB89850 series doesn’t have any sub-clock inputs, so
the 32KHz sub-clock crystal which is mounted on the board for the MB89630
configuration could be disconnected from P63 and P64 (see schematics) by cutting
the solder-bridges SB1 and SB2 on the solder side of the PCB (closely located to
the 32 KHz crystal).

Since the crystal connection to the port inputs should not have much influence on
the port functions, we recommend to keep the solder-bridges in for an easy upgrade
back to the MB89630 version.

A10 11
A12 13
A14 15

12 A11
14 A13
16 A15

BUFC 17
HRQ 19

/RD 23

18 /HAC
20 RDY

24 ALE
CLK 21 22 /WR

VCC 25 26 GND

A0 1
A2 3
A4 5
A6 7
A8 9

2 A1
4 A3
6 A5
8 A7
10 A9

9
7
5
3
1

5
3
1

8

2
4
6

10

2
4
6
8

12

7

11
13

9

14

10

P46/Z
VCC

P40/RTO0
P42/RTO2
P44/X

P41/RTO1

P47/TRG
P45/Y
P43/RTO3

1

7

2

10

P51/AN1
VCC

P53/AN3

P57/AN7
P55/AN5

GND

P64/DTT
I

GND

P62/INT
2
/RES

 P60/INT0

/SRA

GND
P56/AN6

P50/AN0
P52/AN2
P54/AN4

AVR

MAP
/EAA

-
P63/INT
3P61/INT
1

/RAM

3
5

13

9
11

15

4
6
8

12
14
16

/EIO

-

/ROM

GND
P31/SO1
P33/SCK2
P35/SI2
P37/PTO2

1
3
5
7
9

P30/SCK1
P32/SI1
P34/SO2
P36/PTO1
VCC

2
4
6
8
10

GND
AD1
AD3
AD5
AD7

1
3
5
7
9

AD0
AD2
AD4
AD6
VCC

2
4
6
8
10

MOD1
MOD0

VCC

VCC GND

/EAD
GND

/EAA

GND

AVR

VCC

VCC

GND

GND
AVSS

AVSS

AVCC

AVCC

/MRES

/RES

JP13 JP15

JP16
off for

ext. UART
Probe

connector

ext. Resetvia Terminal

JP3

JP4

JP7

JP5

JP12

JP6

JP10

JP1JP2

page -39-

The schematics and PCB layout can be found in appendix A.

Ports P0, P1 and P2 of all micro controllers (MB89T625, MB89T637 and MB89T855)
are used as an external microprocessor bus, connecting the Monitor EPROM U1, the
User RAM U3 and the Data RAM U4 . Address latch U2 is used to de-multiplex the
combined address/data bus.

The PAL or GAL U5 is used as a memory decoder and provides chip select signals
for the EPROM, User RAM, Data RAM, Memory mapped control registers in GAL U6
(/SIO) and a select signal (/EIO) which can be used for extensions.
U5 also makes sure that either the EPROM or the User RAM is selected when read
from, depending upon a MAP input signal. For write accesses, the User RAM will
always be selected.

 Memory map:

0000-027F On Chip Area (/RD/WR won’t be activated when accessing this area)
0280-0ABF Data RAM
0AC0-0ADF External memory mapped IO (/EIO)
0AE0-0AFF Control Registers (/SIO)
0B00-7FFF Data RAM
8000-FFFF User RAM (MAP=1) or Monitor EPROM (MAP=0)

GAL U6 implements four control registers selected by (/SIO,A0,A1) each one bit
wide and read/written using /WR, /RD, and AD0.

 Control Register Map:

 0AE0 : (WR Only) MAP register selecting EPROM or User RAM
 0AE1 : (R/W) Tx, Rx register used to implement RS232 interface
 0AE2 : (R/W) Control User LED 1 (0x00=On, 0x01=Off)
 0AE3 : (R/W) Control User LED 2 (0x00=On, 0x01=Off)

GAL U6 is also used to generate a reset signal on /RES if either the Master Reset
Button (/MRES) or the User Reset Button (/URES) is pressed. If one of these reset
buttons is activated, the MAP register is either cleared or set.

page -40-

7. Appendix

7.1. Appendix A: Board Schematics

REPLACED
BY

PICTURE

page -41-

Chip Pin JP Pin MB89T625 MB89T637 MB89T855
1 JP3.3 P36/WT0 P31/UO1 P31/SO1
2 JP3.2 P37/PT0 P30/UCK1 P30/SCK1
3 JP4.9 P40 P43/PTO1 P47/TRG
4 JP4.8 P41 P42/UI2 P46/Z
5 JP4.7 P42 P41/UO2 P45/Y
6 JP4.6 P43 P40/UCK2 P44/X
7 JP4.5 P44/BZ P53/PTO P43/RTO3
8 JP4.4 P45/SCK2 P52 P42/RTO2
9 JP4.3 P46/SO2 P51/BZ P41/RTO1
10 JP4.2 P47/SI2 P50/ADST P40/RTO0
11 JP7.13 P50/AN0 P60/AN0 P50/AN0
12 JP7.12 P51/AN1 P61/AN1 P51/AN1
13 JP7.11 P52/AN2 P62/AN2 P52/AN2
14 JP7.10 P53/AN3 P63/AN3 P53/AN3
15 JP7.9 P54/AN4 P64/AN4 P54/AN4
16 JP7.8 P55/AN5 P65/AN5 P55/AN5
17 JP7.7 P56/AN6 P66/AN6 P56/AN6
18 JP7.6 P57/AN7 P67/AN7 P57/AN7
19 JP7.4 Avcc Avcc Avcc
20 JP7.3 Avr Avr Avr
21 JP7.1 Avss Avss Avss
22 JP5.3 P60/INT0 P74/EC P64/DTTI
23 JP5.4 P61/INT1 P73/INT3 P63/INT3
24 JP5.5 P62/INT2 P72/INT2 P62/INT2
25 JP5.6 P63/INT3 P71/INT1 P61/INT1
26 JP5.7 P64 P70/INT0 P60/INT0
27 JP5.9 RST RST RST
28 JP2 MOD0 MOD0 MOD0
29 JP1 MOD1 MOD1 MOD1
30 X0 X0 X0
31 X1 X1 X1
32 Vss Vss Vss
33 JP12.24 P27/ALE P27/ALE P27/ALE
34 JP12.23 P26/RD P26/RD P26/RD
35 JP12.22 P25/WR P25/WR P25/WR
36 JP12.21 P24/CLK P24/CLK P24/CLK
37 JP12.20 P23/RDY P23/RDY P23/RDY
38 JP12.19 P22/HRQ P22/HRQ P22/HRQ
39 JP12.18 P21/HAK P21/HAK P21/HAK
40 JP12.17 P20/BUFC P20/BUFC P20/BUFC
41 JP12.16 A15 A15 A15
42 JP12.15 A14 A14 A14
43 JP12.14 A13 A13 A13
44 JP12.13 A12 A12 A12
45 JP12.12 A11 A11 A11
46 JP12.11 A10 A10 A10
47 JP12.10 A9 A9 A9
48 JP12.9 A8 A8 A8
49 JP12.8 A7 A7 A7
50 JP12.7 A6 A6 A6
51 JP12.6 A5 A5 A5
52 JP12.5 A4 A4 A4
53 JP12.4 A3 A3 A3
54 JP12.3 A2 A2 A2
55 JP12.2 A1 A1 A1
56 JP12.1 A0 A0 A0
57 Vss Vss Vss
58 JP3.9 P30/ADST P37/WTO P37/PTO2
59 JP3.8 P31/SCK1 P36/PWC P36/PTO1
60 JP3.7 P32/SO1 P35/SI1 P35/SI2
61 JP3.6 P33/SI1 P34/SO1 P34/SO2
62 JP3.5 P34/EC P33/SCK1 P33/SCK2
63 JP3.4 P35/PWC P32/UI1 P32/SI1
64 Vcc Vcc Vcc

Pin Assigments depending on type of controller

page -42-

7.2. Appendix B: Example Program Listings

Example Listing "LED8L.C"

/*===*/
/* F U J I T S U */
/* */
/* M i k r o e l e k t r o n i k G m b H */
/* */
/* */
/* Filename: LED8L.C */
/* Description: LEDs flashing on eva-board */
/* Series: MB89630 */
/* Version: V02.00 */
/* Design: Markus Mierse '97 */
/*===*/

/* from FETOOL\8L\INCLUDE-directory : */
#include <TYPEDEFS.H> /* some usefull type definitions */

/* some example definitions : */
/* "direct"-variables stored directly in */

direct BYTE DirVarByte; /* lower RAM (DIRVAR) for faster access */
direct BYTE DirInitByte = 0; /* initialized direct variable (DIRINIT) */

BYTE VarByte; /* standard variables stored in DVAR */
BYTE InitByte = 0; /* initialized (DINIT) */
const int constdummy = 0; /* Constant definition */
BYTE *LED1 = 0x0AE2; /* Pointers to the LEDs (memory mapped) */
BYTE *LED2 = 0x0AE3;

/*===*/
/* Prototypes */
void wait(int counter);

/*===*/
/* Main Module */

void main (void)
{
 while(1)
 {
 *LED1=1;
 *LED2=0;
 wait(1000);
 *LED1=0;
 *LED2=1;
 wait(1000);
 *LED1=1;
 *LED2=1;
 wait(1000);
 *LED1=0;
 *LED2=0;
 wait(1000);
 }
}
/*==*/
void wait(int counter)
{
 for (; counter > 0; counter--); /* very simple delay loop */
}

page -43-

Example Listing "BIOSDEMO.C"

/*===*/
/* F U J I T S U */
/* */
/* M i k r o e l e k t r o n i k G m b H */
/* */
/* */
/* Filename: BIOSDEMO.C */
/* Description: Demostration for evaluation board BIOS-functions */
/* After downloading, start a terminal and execute */
/* program by typing 'g' or push user reset button */
/* Version: V02.00 */
/* Design: Markus Mierse '97 */
/*===*/

/* from FETOOL\8L\INCLUDE-directory : */
#include <evabios.h> /* BIOS-fctns; includes also TYPEDEFS.h */

/* some dummy definitions : */
direct BYTE DirVarByte; /* to avoid linker warnings (DIRVAR) */
direct BYTE DirInitByte = 0; /* initialized direct variable (DIRINIT) */
BYTE VarByte; /* standard variables stored in DVAR */
BYTE InitByte = 0; /* initialized (DINIT) */
const int constdummy = 0; /* Constant definition */
BYTE InpStr[82];
BYTE SumB;
WORD SumW;

/* ROM-constant strings */
CSTR IniMsg[] = "\n"

"***************************************\n"
"** Demonstration of BIOS Functions **\n"
"***************************************\n";

CSTR StrMsg[] = "'puts'-function :\n"
" This is an output string\n\n"
"'gets'-function :\n"
" Please enter your name : ";

CSTR TyMsg[]= "\n Thank you, ";
CSTR ChGMsg[]= "\n\n'getch'-function :\n"

" Press any key !\n ";
CSTR OcMsg[]= "\n You pressed ";
CSTR ChPMsg[]= "\n\n'putch'-function : ";
CSTR HexBMsg[]= "\n\n The byte-check sum is : ";
CSTR HexWMsg[]= "\n The word-check sum is : ";
CSTR EndMsg[]= "\n\n That all folks ! Press any key for Monitor Reset";

/*===*/
void wait(int counter);

/*===*/
/* Main Module */
void main()
{
 int ix;
 BYTE Ch1, Ch2;

puts(IniMsg); /* Print header */
puts(StrMsg); /* Put String */
gets(&InpStr); /* Input String */
puts(TyMsg);
puts(InpStr); /* print received string */
puts(ChGMsg);
Ch1 = getch(); /* Input Charakter */
puts(OcMsg);

page -44-

putch(Ch1); /* Output received Char */
puts(ChPMsg);

 ix = 0;
while (InpStr[ix]) /* go through string */
{
 Ch2 = InpStr[ix]; /* type every single char */
 putch(Ch2);
 putch(32);
 wait(3000); /* slowly...*/
 SumB += Ch2; /* calculate the checksum */
 SumW += Ch2;
 ix++; /* next char */
}
puts(HexBMsg); /* print the checksum */
printHexByte(SumB); /* in byte-format */
puts(HexWMsg);
printHexWord(SumW); /* and in word-format */

puts(EndMsg); /* final message */
getch();
MonitorReset (); /* monitor-reset the board */

}

/*===*/
/* Procedures */

void wait(int counter)
{
 for (; counter > 0; counter--); /* very simple delay loop */
}

Header File "EvaBIOS.h"

/*+---+*/
/*¦ F U J I T S U ¦*/
/*¦ ¦*/
/*¦ M i k r o e l e k t r o n i k G m b H ¦*/
/*¦ ¦*/
/*¦ Filename: EvaBIOS.H ¦*/
/*¦ Description: Header file for EVA Board I/O Functions ¦*/
/*¦ Series: Independent ¦*/
/*¦ Version: V01.00 ¦*/
/*¦ Design: Edmund Bendels 09.08.94 ¦*/
/*+---+*/

#include <TYPEDEFS.H>

void MonitorReset ();
BYTE getch ();
void putch (BYTE c);
BYTE *gets (BYTE *s);
void puts (const BYTE *s);
void printHexByte (BYTE b);
void printHexWord (WORD w);

page -45-

Library File "EvaBIOS.C"

/*+---+*/
/*¦ F U J I T S U ¦*/
/*¦ ¦*/
/*¦ M i k r o e l e k t r o n i k G m b H ¦*/
/*¦ ¦*/
/*¦ Filename: EvaBIOS.C ¦*/
/*¦ Description: Some functions to access the MB89637 EVA Board ¦*/
/*¦ Series: Independent ¦*/
/*¦ Version: V01.00 ¦*/
/*¦ Design: Jürgen Suppelt 09.03.94 ¦*/
/*¦ Edmund Bendels 09.08.94 ¦*/
/*+---+*/

#include "evabios.h"

char (*BiosCall) (int, int) = 0x080C;
void (*MonReset) (void) = 0x0818;

BYTE *LED1 = 0x0AE2;
BYTE *LED2 = 0x0AE3;

BYTE getch ()
{
 return (BiosCall (0x0200, 0));
}

BYTE *gets (BYTE *s)
{
 BiosCall (0x0400 | 0xD2, s); /* CrLf after Input, Max 82 Char */
 return (s);
}

void putch (BYTE c)
{
 BiosCall(0x0100 | c, 0);
}

void puts (const BYTE *s)
{
 BiosCall (0x0300, s);
}

void printHexByte (BYTE b)
{
 BiosCall (0x0500 | b, 0);
}

void printHexWord (WORD w)
{
 BiosCall (0x0600, w);
}

void MonitorReset ()
{
 MonReset ();
}

page -46-

Example Listing "NEWPROJ.C"

/*===*/
/* F U J I T S U */
/* */
/* M i k r o e l e k t r o n i k G m b H */
/* */
/* */
/* Filename: NEWPROJ.C */
/* Description: Example-project for 8L-evaluation board */
/* Series: MB89630 */
/* Version: V01.00 */
/* Design: Markus Mierse '97 */
/*===*/

/* from FETOOL\8L\INCLUDE-directory : */
#include <TYPEDEFS.H> /* some usefull type definitions */
#include <MB89630.H> /* register definitions for 630-family */
#include <INT89630.H> /* interrupt definitions for 630-family */

/* some example definitions : */
/* "direct"-variables stored directly in*/

direct BYTE DirVarByte; /* lower RAM (DIRVAR) for faster access */
direct BYTE DirInitByte = 0; /* initialized direct variable (DIRINIT)*/

BYTE VarByte; /* standard variables stored in DVAR */
BYTE InitByte = 0; /* initialized (DINIT) */
const int constdummy = 0; /* Constant definition */

BYTE *LED1 = 0x0AE2; /* Pointers to the LEDs (memory mapped) */
BYTE *LED2 = 0x0AE3;

/*===*/

/* Prototypes */

/*===*/

/* Main Module */

void main (void)
{

}

/*===*/
/* Procedures */

/*===*/
/* Interrupt service routines */

#pragma interrupt
#pragma save_reg
 void WATCHINT11(){}
 void TBCINT10(){}
 void ADCINT9(){}
 void UART_T_INT8(){}
 void UART_R_INT7(){}
 void TC16INT6() {}
 void PWCINT5(){}
 void PWM2INT4(){}
 void PWM1INT3(){}
 void SIOINT2(){}
 void EXINT1(){}
 void EXINT0(){}
#pragma nointerrupt
#pragma nosave_reg

page -47-

 7.3. Appendix C: Software Tools

After the installation, there are software tools in the “FMG_UTIL”-directory, which
allow communication and debugging from a DOS or Windows based envronment to
the evaluation board.

NOTE : When using Softune, these tools should be already customized in the
“UTILIY”-menu. If they cause any problems or should be changed (e.g. due to other
locations), use the “OPTION – SET UTILIY”-menu to change settings.

7.3.1. Windows-tools

The HEXLOADW.EXE -program can be used for downloading program or symbol
information to the board and for executing the program immediately after loading. To
invoke the loader, specify at least the COM-port number and a file (INTEL-HEX-
record format “.HEX”). Other options are :

HEXLOADW [1..8] -SK8 [-RD] [-R|-C] [-S [-SA:XXXX][-SO]] file.hex

 1..8 COM port number (default is COM1)
 -SK8 Download-mode for evaluation board 8L
 -RD do not support Starterkit (R)eset line function over DTR
 -R after successfully loading, execute the program
 -C close window after loading
 -S create and load symbol file from .mp1 in same directory as file.hex
 -SA: symbol-table address as a four digit hex-number (default:1000h)
 -SO load symbols only (no program code)

Detailed knowledge of the download protocol normally is not needed to operate the
board. In the case where a special download program needs to be developed, refer
to appendix 7.3.

7.3.2. DOS-tools

For the described tasks (downloading, symbol convertion) there are two different
programs for DOS, because using batch-files is a common way of handling
development tools when not using Windows.

7.3.2.1. SYMBOL-converter

Before symbol information can be used by the monitor (e.g. “G, _MAIN”), the
information has to be converted and downloaded to the evaluation board. The
program SYMBOL.EXE (DOS) generates a symbol table suitable for downloading.

page -48-

To execute the program, specify the mapping information, generated by the linker
(.MP1), an output file (.SYM) which needs to be downloaded after the conversion
and an address in memory where the table should be located e.g. 1000hex (normally
free RAM). The offset for suppressing a certain range is optional.

SYMBOL <InFile> <OutFile> <StartOfHex> [<StartOfSymbols>]

example1: SYMBOL test.mp1 test_s.hex 1000
 locates the HEX-file at 0x1000h with all symbols

example2: SYMBOL test.mp1 test_s.hex 1000 80
 locates the HEX-file at 0x1000h with symbols starting
 from 0x80h (suppress symbols in the range of [0..0x7Fh]

7.3.2.2. HEXLOAD for DOS

The download-utility for the DOS-environment is call HEXLOAD.EXE. Usage is
similar to the described HEXLOADW.EXE, but with different options :

HEXLOAD [1..8] [-N|-NN] [-D] [-R] file.hex

 1..8 COM port number (default is COM1)
 -N do (N)ot display the record lines, show percentage counter
 -NN do (N)ot display process indicator at all (recomm. for Softune)
 -R do Not support Starterkit (R)eset line function over DTR
 -D (D)ebug mode display all received characters

7.3.2.3. Terminal for DOS

A very simple terminal program “MT.COM” with default communication and
emulation settings for the evaluation board is provided. This DOS-program uses the
assigned COM-port (use the mode-command to assign a COM-port - e.g. “mode
com1: 9600,n,8,2”).

page -49-

7.3.3. Download Protocol

Three different formats can be used to download data to the evaluation board :

1.) Object code hex-lines (as produced by the linker *.hex file extension)

 e.g. :10200000FFEEDDCCBBAA99887766554433221100F8↵

can be entered as a command. The ':' is interpreted as a download command and
the specified data will be transferred into memory. The correct format and checksum
are not checked ! Note that a download program using this mechanism must read
each character's echo and that the completing CR is echoed as CR LF.

2.) HexFile Download function - works similar as the previous command, however :
a) download function is activated by sending the command 'HEXDWL↵
b) Note that the characters of the command are echoed, the CR is not !
c) a hex-line is transferred (but no character is echoed !)
d) when the monitor has processed the hex-line, it will send the acknowledge

character (06H).
e) then the next hex-line can be transferred.
f) The hex download function terminates automatically if a hex-line containing an

'end' mark (hex-line with zero byte count) was downloaded.
g) A checksum is built over each line and the monitor will respond with a not-

acknowledge character (05H) if an error occurs.

3.) The High Speed Download function is also activated by a special command
('HSDWL').
(Note that the characters of the command are echoed, the CR is not !)
In the following sequence, addresses, total byte counts and the data bytes are
transferred as binary characters and are not echoed. The protocol can be illustrated
as :

PC Download Program Monitor Operation

a) send 'HSDWL↵' echo each character (not the CR)
b) send the Request Character 0xEB
c) send the Record Header 0xBE
 or a Termination 0DH char to
 exit the download function
d) send Address Bytes (Hi,Lo)
 send Byte Count (Hi,Lo)
e) send Data Bytes (the monitor will store the data)
f) continue at b. (at the specified locations)

page -50-

7.4. Appendix D: Monitor Software Notes, Restrictions

As mentioned in chapter 2, the Monitor software resides in an EPROM memory bank
in the upper address area 8000h-FFFFh . It is transparent to the upper User RAM
bank. In addition, some User RAM locations are reserved for monitor variables.

Monitor reserved RAM sections are:
a) A small section in the lower User RAM area (0800h-0FFFh).
This section is used for some special RAM code procedures which are copied from
the EPROM during the monitor initialisation.
It also contains the BIOS interface table, monitor variables, and the off-chip memory
mapped IO registers.
b) The vector table entry for the CALLV #7 instruction, (UserRAM
Address: FFCE-FFCF) which is initialised with a vector to a special RAM code
section, supporting breakpoints and single step.

Apart from these reserved RAM areas, the user can utilise the on-chip/off-chip RAM
and on-chip peripherals for his programming and evaluation requirements.

Other restrictions:

1.) Monitor BIOS Interface
When using BIOS interface functions (Chap.4,P. 23 and following), the processor
stack area must be in the address range 0000h..1FFFh excluding the reserved area
0800h..0FFFh (Chap.7.4, P 56). Thus, the stack must be within 0000h..07FF or
1000..1FFFh.

2.) Single Stepping certain code sequences:
Due to the implementation of the single step mechanism, the following assembler-
code constructions can not be single stepped:

 Conditional Branch to the same or following address Use constructs like:

e.g. LABEL1: BBC 10:3,LABEL1 LABEL: NOP
BBC 10:3,LABEL

BNC FOLLA
e.g. FOLLA: xxx yyy,zzz BNC FOLLA

FOLLA: xxx yyy,zzz

 Return from Interrupt : do not single step the RETI instruction !

3.) Processor Speed, Power Management Functions
When developing programs which utilise or activate special on-chip registers, be
aware that the monitor generally disables interrupts when it is active.
Note also that switching the micro controller into the STOP or SLEEP modes will
disable monitor control via the terminal.
When the monitor is active, it always configures the clock control for max. speed.
The user program speed is saved and restored when control is given to the user
program.

page -51-

7.5. Appendix E: List of development tools

MB89620 family

§ Emulator for the F2MC-8L Family Emulation Unit MSE1001C
§ Emulator for the F2MC-8L Family Power Supply PS5V1_2A0
§ Evaluation Chip MB89PV620C-SH
§ Piggyback-EPROM MBM27C256A-20CZ (or compatible)
§ Probe cable MSE2144-201 (optional)
§ OTP MB89P625/7/9P-SH
§ Programmable MCU MB89W625/7C-SH
§ OTP Programming Adapter ROM-64SD-28DP-8L

MB89630 family

§ Emulator for the F2MC-8L Family Emulation Unit MSE1001C
§ Emulator for the F2MC-8L Family Power Supply PS5V1_2A0
§ Evaluation Chip MB89PV630C-SH
§ Piggyback-EPROM MBM27C256A-20CZ (or compatible)
§ Probe cable MSE2144-201 (optional)
§ OTP MB89P637P-SH
§ Programmable MCU MB89W637C-SH
§ OTP Programming Adapter ROM-64SD-28DP-8L

MB89850 family

§ Emulator for the F2MC-8L Family Emulation Unit MSE1001C
§ Emulator for the F2MC-8L Family Power Supply PS5V1_2A0
§ Probe header MB2144-212-01A
§ OTP Adapter MSE1036
§ OTP MB89P857P-SH
§ Programmable MCU MB90W857C-SH
§ OTP Programming Adapter ROM-64SD-28DP-8L

page -52-

8. Index

Activate Symbols, 23
ANSI terminal, 20
AS, 23

BIOS I/O examples, 16
BIOSDEMO, 16
break point, 15
BreakpointAddress, 30
BreakpointNumber, 30
Build-button, 13

CALL Subroutine, 28
CALLV #7, 32, 54
C-compiler, 29
C-compiler, Assembler and Linker, 19
Clear Breakpoint, 31
Command Input, 20
Commands, 20
communication parameters, 6
communication parameters, 20
Compare Memory, 27
Control Register Map, 43
control registers, 10
CPU registers, 35

Data RAM, 43
DEC, 23
Default Input Mode, 23
develop software, 17
Disable Breakpoints, 31
download, 51
download data, 53
DTR signal, 6
Dump Memory, 25

Edit Byte, 27
Edit Data, 27
edit functions, 20
Edit Word, 27
Erase Symbol Table, 24
ES, 24
Evaluation Board, 5, 10
Evaluation Board Hardware, 40
Evaluation Board Recourses, 10
Examples using Softune, 11
External memory mapped IO, 43
external microprocessor bus, 43

Fill, 26
Function Call, 35
Function Calls Parameter Passing, 35

GAL, 43
Go, 28
GO, 15

Help, 23
HEX, 23

page -53-

HEX numbers, 21
HexFile Download, 52
HEXLOAD.EXE, 52
HEXLOADW.EXE, 51

I/O Function Calls, 35
initial file, 17
install, 6
Installation, 6
Introduction, 5
IO ports, 10
IO-definitions, 19
IO-registers, 17

jumpers, 45

Listing "BIOSDEMO.C", 47
Listing "LED8L.C", 46
Listing "NEWPROJ.C", 50
loader, 51

mapping information, 52
MB89P637, 43
MB89T625, 43
member list, 11
memory map, 10, 18
Memory map, 43
memory-map, 19
Monitor, 5
Monitor BIOS Interface, 33
Monitor Commands, 22
Monitor Control, 39
Monitor LED, 20
Monitor Operation, 20
Monitor Reset, 29, 39
monitor software, 10
Monitor Software Notes, Restrictions, 54
monitor variables, 10
monitor-debug functions, 14
Move Memory, 26
MRES, 43

Number Formats, 21

OccurCount, 30
OccurCounter function, 15

PAL, 43
parameters, 21
PC terminal, 20
Pin Assignment, 40
Print Register Values, 39
Processor specific, 19
PROM, 5
prompt, 14

RD, 43
RESET VECTOR, 29

Search, 26
Set Break Point, 30
setup, 6

page -54-

Show Registers, 28
Snapshot, 30
Snapshot, 30
Stack Dump, 25, 26
sub-clock, 42
symbol, 21
symbol file, 14
Symbol Information, 23, 24
symbol names, 23
SYMBOL.EXE, 51
SymTab Vector, 39

TargetAddress, 26
Technical Characteristics, 9
TERM, 24
tools, 51
trace, 14
Trace Instruction, 31
TS, 23

URES, 43
User Program Call, 28, 29
User Program Reset, 29
User Program Start, 39
User Reset button, 6
Utility-menu, 13

V, 24

WR, 43

