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INTRODUCTION

This application note demonstrates the use of a microcontroller unit (MCU) with integrated DSP capabilities.
The MC68HC16Z1 is a high performance 16-bit MCU that includes on-chip peripheral modules and a CPU
module (CPU16). The CPU16 instruction set simplifies the use of digital signal processing algorithms, and
makes it easy to implement low-bandwidth filter and control-oriented applications. 

OBJECTIVES

The goal of this application note is for an engineer to learn the MC68HC16Z1 well enough to design and
build an audio frequency analyzer (AFA). The following intermediate objectives have been defined to help
reach this goal.

• Learning the CPU16 instruction set

• Becoming familiar with MC68HC16Z1 modules

• Learning basic MCU I/O hardware and software

• Understanding DSP system concepts with the frequency analyzer

• Understanding and implementing common DSP algorithms with an MCU

This is a tutorial design project that follows a hands-on approach to using DSP. It provides concrete hard-
ware/software applications that are used to understand and design an MCU-based system utilizing DSP al-
gorithms. A basic knowledge of MC68HC16Z1 hardware and the CPU16 instruction set is necessary to
complete the design project. A complete discussion of digital signal processing is beyond the scope of this
note. However, there are a number of standard textbooks and references available. Please refer to the Mo-
torola publications listed under REFERENCES for more information concerning topics and devices dis-
cussed in this note.
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EQUIPMENT REQUIRED

The following items are needed to build and test the audio frequency analyzer (AFA).  

1. An IBM PC compatible computer with a parallel printer port

2. The M68HC16Z1EVB

3. A prototyping or wire-wrap board

4. One straight DB25 cable, male on one end, female on the other

5. A 5 volt power supply

6. An audio sound source, preferably a CD player

7. Two Y-connectors to split the stereo sound source with audio cables

8. A sinusoidal waveform generator, optional

9. Oscilloscope for debugging, optional

All of the components needed to build the AFA are shown in Figure 4 and Figure 5, the AFA schematics.

THE AUDIO FREQUENCY ANALYZER

Spectral analysis is a method of determining the specific frequency content of a signal and the energy levels
of these frequencies. This information is processed by either Fourier Transform methods or by specific fil-
tering of the signal. The information is tabulated for more analysis or displayed in a visual format. 

One example of spectral analysis is found in oil exploration. An engineer sends a known signal into the earth
and then calculates the frequency content of the reflected signal. This is a classic input/output black box.
The transfer function of the black box (the earth in this case) yields clues to the structure beneath the sur-
face. Different frequency responses correspond to different types of rock. With spectral analysis, the engi-
neer can decide whether it is feasible to drill. 

This project focuses on the frequency analysis of an audio signal. A frequency analyzer is often used in au-
dio systems and recording studios. It filters out energy levels of specific audio frequencies and displays
them to indicate the frequency content of the audio signal. Audio frequency analyzers are also used in con-
junction with equalizers to help the user define and shape the spectral characteristics of a sound source.

Figure 1 is a generic system diagram of a frequency analyzer based on bandpass filters. The input signal
is split and sent to all the filters. The filters pass only specific frequency components of the input signal. After
filtration, the strength of each passed signal is analyzed, and the amount of energy in each band is repre-
sented on an LED display. This process is executed in a continuous real-time algorithm. Figure 2 shows a
typical audio frequency analyzer transfer function. 

Figure 3 is a system diagram of the AFA project, which is implemented using digital filters. Two stereo audio
signal inputs are combined by a summing circuit. An anti-aliasing filter removes unwanted high frequency
components. A biasing circuit centers the signal around 2.5 vdc for proper analog-to-digital conversion. The
ADC module in the MC68HC16Z1 samples the analog signal and digitizes it, then the data is processed by
the CPU16. Processing consists of five DSP bandpass filter algorithms. Each determines the amplitude of
a specific frequency band and encodes display data. The queued serial peripheral interface (QSPI) is used
to send display data to the LED array in real time. Each of these functional blocks is discussed in detail later
in this note. Hardware is discussed first, then software. 
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Figure 1  Frequency Analyzer System Diagram

Figure 2  Bandpass Frequency Analyzer Transfer Function
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Figure 3  Audio Frequency Analyzer System Diagram

AFA Hardware

Familiarity with the AFA hardware helps to understand the code used to implement the analyzer. Figure 4
is a schematic of the analog front end of the AFA, and Figure 5 is a schematic of the display logic. 
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Figure 4  AFA Analog Front End
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EM P2
Figure 5  AFA Digital Back End
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The Analog Front End

The analog front end contains all of the circuitry to condition the signal for analog-to-digital conversion and
subsequent digital signal processing. It consists of the summing circuitry for the stereo signal, the anti-alias-
ing filter, and the biasing circuitry for the ADC. A MAX274 low-pass filter chip, manufactured by the Maxim
Corporation of Sunnyvale, California, is used to implement all of these functions. 

The MAX274 is an eighth order, programmable, continuous-time active filter. The chip consists of four in-
dependent cascadable second-order filter sections. Each filter section can implement any all-pole bandpass
or lowpass filter, characterized as a Butterworth, Bessel, or Chebyshev response. Each second-order sec-
tion is programmable with four external resistors. A second-order section is illustrated in Figure 6. Maxim
provides an evaluation board and a software package that calculates resistor values from response speci-
fications input by the user. This makes the MAX274 very flexible and easy to use when implementing high-
order anti-aliasing filters.

Figure 6  Second-Order Filter Section

The Summing Amplifier

The summing amplifier combines the two analog stereo signals coming into the system from the audio
source. The basic summing circuit shown in Figure 3 is implemented in the AFA by using an op amp in the
first second-order filter section of the MAX274. As shown in Figure 4, two summing resistors (R14 and R16)
are used to feed the input signals to the inverting input of the op amp, which combines them into one signal.
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Anti-Aliasing Filter

When a signal of a given frequency is sampled at too low a rate, it appears as a totally different lower fre-
quency at the output of the sampler. This phenomenon is referred to as aliasing. Aliasing occurs at a point
called the folding frequency, which is one-half the sampling frequency. In order for the frequency analyzer
to be accurate, sampling frequency must therefore be at least two times the highest frequency component
to be sampled. The ideal solution to this problem is to raise the sampling rate as high as possible, but real-
world designs generally have a fixed upper limit on sampling frequency. The most practical solution is to
attenuate high frequency components of the input signal so that aliasing does not occur. The anti-aliasing
filter correctly attenuates the high frequency components of the signal, so that they are not present within
the sample bandwidth. 

The AFA has a 25-kHz sampling frequency (Fs), and a processing bandwidth of 10 kHz. If no filter is used,
signal components with a frequency higher than 12.5 kHz alias at lower frequencies, and the digitized sam-
ples represent invalid information. Figure 7 shows these relationships. Fs/2 is the folding frequency, 12.5
kHz. Frequencies that will not alias with a 25 kHz sampling frequency are to the left of Fs/2, while frequen-
cies that will alias are to the right of Fs/2. 

Figure 7  AFA Aliasing Without Filter

Anti-aliasing filter design must be a compromise. An efficient and economical solution is to find an interme-
diate filtration range, between high-order filter roll-off and DSP bandwidth. If the filter has a slow roll-off, a
higher sampling frequency is needed, the sampling period is shortened, and there is less time for the DSP
algorithm to execute. In other words, a steeper roll-off requires a lower sampling frequency, which in turn
provides a longer sampling period for DSP operation.

The AFA anti-aliasing filter passes frequencies up to 10 kHz. The filter stop band begins at 15 kHz. Stop
band attenuation is dependent upon the application and the dynamic range of the sampled data. In this
case, filter output is fed to the ADC module in the MC68HC16Z1, which does not have sufficient resolution
or dynamic range to “see” energy in the stop band. An 8-bit conversion that allows a dynamic range of 48
dB is used. The following equation shows these relationships. 
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Voltage Attenuation (dB) = 20 ∗ log [1/(2ADCres)]

Where: 
ADCres = A/D converter resolution

System bandwidth is 10 kHz, and at a 25 kHz sampling frequency, components above 12.5 kHz will alias.
Therefore, the signal must be attenuated 48 dB to eliminate all aliasing components. Accordingly, the filter
must have a minimum drop-off slope of 96 dB per octave. To insure that this requirement is met, a roll-off
of 100 dB per octave is used. Using these values with the MAX274 design software, resistor values for an
eighth order 0.5 dB passband ripple Chebyshev filter were obtained. Lower passband ripple was sacrificed
to gain steeper roll-off. The anti-aliasing filter response programmed into the MAX274 is shown in Figure 8.

Figure 8  AFA Anti-Aliasing Filter Roll-Off

ADC Input Biasing

The MC68HC16Z1 ADC module can convert analog data into six different digital representations. Digital
data can have 8-bit or 10-bit resolution, can be signed or unsigned, and can be left or right justified. These
formats are shown in Figure 9. 

Figure 9  ADC Conversion Formats
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Figure 10 shows hexadecimal representations of signed and unsigned ADC data. For 8-bit conversions,
there are 256 possible values. Unsigned formats assume the zero voltage point is at the low ADC reference
voltage, with 256 steps from low to high reference. Signed formats assume that the zero voltage point is
halfway between the low and high ADC reference voltages. The most significant bit indicates a positive or
negative value — 128 values represent positive voltages, and 128 two’s-complement values represent neg-
ative voltages ($00 represents the midpoint, and $FF represents midpoint minus one count). 

Figure 10  Hexadecimal Representation of 8-Bit ADC Data

The AFA uses signed, 8-bit, left justified ADC data. The analog signal must be biased at 2.5 vdc, centered
between the 0 vdc and 5 vdc ADC reference voltages, in order to use this representation. The MAX274 is
used to bias the signal. 

The MAX274 requires two power connections. Biasing circuitry consists of a voltage divider (R12, R13) and
decoupling capacitors (C10 – C13) connected to one of the MAX274 supplies. The V– pin is connected to
analog ground. The V+ pin is connected to the 5 volt supply. The GND pin is connected to 2.5 volts. This
splits the supply and causes the analog signal to have a 2.5 volt DC offset. The signal is buffered by an op
amp driver and is sent directly to the ADC module pins from the MAX274. The ADC can now properly sam-
ple the signal.

The Digital Back End

The digital back end shown in Figure 5 contains all of the circuitry required to output digitally processed
information to the LED array. When digital signal processing is complete, encoded energy levels for each
band are loaded into QSPI transmit RAM, then the QSPI is activated, and the data is transmitted serially to
the MC14489 LED drivers.

QSPI software is one of the more difficult aspects of the AFA, but the hardware is quite simple. Three QSPI
pins, MOSI, SCK, and PCS0, are used. The master out slave in (MOSI) connection is used to transfer data,
the serial clock (SCK) connection is used to clock the transfer, and the peripheral chip select (PCS0) con-
nection is used to enable the LED drivers. The QSPI must be configured correctly to transfer data to the
drivers. Refer to the QSM Reference Manual (QSMRM/AD) for more information about the QSPI. 

The MC14489 LED Driver

The MC14489 can drive individual lamps, seven-segment displays, or combinations of both, in a multi-
plexed fashion. The chip receives data via a serial input port, and features data retention plus decode and
scan circuitry. This reduces software overhead required to perform these tasks. A single current-limiting re-
sistor (Rx) is the only external component needed to operate the MC14489. 
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Three MC14489 drivers are used in the AFA. There are five 8-bit LED arrays. Two of the MC14489 chips
control four banks of four diodes each, and one controls two banks of four diodes each. Drive current for
diodes in each bank is supplied by pins A, B, C, and D of the MC14489. The cathodes of each bank of di-
odes are tied together and a bank-select pin sinks the current for that bank. Please refer to the MC14489
Data Sheet for more information.

The M68HC16Z1 EVB and Development Environment

The M68HC16Z1 Evaluation Board provides the capability to test and debug the audio frequency analyzer.
Table 1 shows development software supplied with the EVB.

MASM16 software is used to edit and assemble code, and EVB16 software is used to download code to the
EVB and run it. EVB16 software also has debug capabilities such as trace and breakpoint. Please refer to
the M68HC16Z1EVB User's Manual for a list of debug features.

Assembling the Development Environment

Assembling the development system with the AFA is simple. Hook up the system as shown in Figure 11.
The AFA project board connects to the M68HC16Z1EVB via P7 and P6. Use the DB25 cable to connect the
parallel port of the PC to the parallel port connector of the EVB. After connecting the 5 volt power supply to
the M68HC16Z1EVB, connect the audio signal source. A CD player is the recommended source for a high
quality output. Split the audio source outputs so that both the AFA board and the speakers receive the sig-
nals (audio splitters can be found at most stereo and electronics stores). 

Table 1  Development Software

MASM16.EXE

MASM.EXE

HEX.EXE

MASM16.HLP

EVB16.EXE
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Figure 11  AFA Development System Setup
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AFA Software

Even though hardware is required to build the AFA, software running on the CPU16 performs most of the
actual work. Five tutorial programs must be integrated to complete the project. Each program demonstrates
specific functions of the AFA, and each is discussed in a separate section. Since this is a DSP project/tuto-
rial, discussion focuses on signal-processing tasks. Each of the tutorial programs must be modified in order
to complete the AFA. The software steps to the AFA design are listed below.  

1. Acquisition of data

2. QSPI to MC14489 interface

3. Periodic interrupt timer routine

4. Peak detector

5. 1-kHz bandpass filter routine

6. 5-band audio frequency analyzer

AFA software is listed in Table 2. Each of the first six programs in the table corresponds to one of the soft-
ware steps listed above. In order to organize and streamline the project, each program has been designed
according to a standard template for the M68HC16Z1EVB. Figure 12 shows the template. 

OUTVAL1.ASM and OUTVAL2.ASM are lookup tables for the LED display routines. They contain values
that correspond to the number of LEDs needed to reflect a given peak value. 

In addition, utility files that simplify startup and usage of the MC68HC16Z1 have been included in the AFA
software package. A brief description of each include file follows.

EQUATES.ASM provides an equates table of MC68HC16Z1 registers and equivalent address values. 

ORG00000.ASM defines the reset vector. 

INITSYS.ASM initializes the CPU16, takes care of the extension registers, disables the COP watchdog,
and sets system clock speed to 16.78 MHz. 

INITRAM.ASM turns on the 1-Kbyte SRAM module, maps the RAM array to address $10000, and
moves the stack pointer to $103FE to increase interrupt-processing speed. 

Source code for all of these files is available on the Motorola Freeware Bulletin Board. The BBS number is
(512) 891-3733. The files are archived under the name AFA.ARC, in the AMCU section. 

Table 2 AFA Project Software

ADC.ASM

QSPI_LED.ASM

INT_TEST.ASM

PEAK.ASM

1K_FLTR.ASM

5BAND_SA.ASM

EQUATES.ASM

ORG00000.ASM

INITSYS.ASM

INITRAM.ASM

OUTVAL1.ASM

OUTVAL2.ASM
AN1233/D MOTOROLA
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Figure 12  AFA Software Template

Software Design Constraints

It is important to understand the specifications and system constraints on the software. A software flow
diagram of the AFA is shown in Figure 13. Each of the process boxes in the flowchart corresponds to one
of the steps toward the complete design. The main tasks are to convert analog input to digital data, run five
infinite impulse response ( IIR) bandpass filter routines, detect the peak amplitude of each filtered signal,
encode the peak value to an LED display value, update the QSPI transmit RAM, and transmit the informa-
tion to the LED drivers. The flowchart also shows that the AFA is a real-time digital signal processing algo-
rithm that runs in a continuous loop. 

*
*       MOTOROLA, INC.
*       Advanced MCU Division
*       Austin, Texas
*
*       Title: HC16 SOFTWARE TEMPLATE
*
*       File Name: TEMPLATE.ASM
*
*       Description: This program provides a template for all
*                       designers to use with the HC16Z1
*                     An equate table is given.
*                     The reset vector is initialized.
*                     The CPU and RAM are also initialized.
*                     The user can put his code in the ‘user area’
*                       block of this template
*
*       History: 06/05/91 Created.
*                10/02/91 Modified comments.
*
*       Note: This program is written for the M68HC16Z1EVB.
***************************************************************************
        INCLUDE ‘EQUATES.ASM’  ;table of EQUates for common register addr
        INCLUDE ‘ORG00000.ASM’ ;initialize reset vector

        ORG     $0200          ;start program after interrupt vectors

*****   Initialization Routines *****
        INCLUDE ‘INITSYS.ASM’  ;initially set EK=F, XK=0, YK=0, ZK=0
                               ;set sys clock at 16.78 MHz, disable COP
        INCLUDE ‘INITRAM.ASM’  ;initialize and turn on SRAM
                               ;set stack (SK=1, SP=03FE)

*****   Start of user program area  *****
MOTOROLA AN1233/D 
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Figure 13  AFA System Software Flowchart

All processing must be completed within one period of the 24.95-kHz sampling frequency. As shown below,
a 24.95-kHz sampling frequency is equivalent to a 40.08-µs sampling period. The MC68HC16Z1 is running
at 16.78 MHz, so the system clock period is 60 ns. Thus, all necessary processing must be completed in
668 clock cycles, before the next sampling period begins. 

Fs = 24.95 kHz

Ts = 1/Fs = 40.08  µs

 Fc = 16.78 MHz

 Tc = 1/Fc = 60 ns

System clock cycles per sampling period = Ts/Tc = 668 system clock cycles

Where:
Fs = Sampling frequency
Ts = Sampling period
Fc = MC68HC16Z1 CPU clock frequency
Tc = MC68HC16Z1 CPU clock period
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Figure 14 shows the relationship between sampling periods and real-time digital signal processing. All cal-
culations and internal/external housekeeping must be taken care of within the given sample period.

Figure 14  AFA Sampling Period

Software Design Implementation

The following sections examine AFA software in detail. For each of the programs, there is a discussion of
design and implementation, a code listing, and appropriate flow charts. In the interest of brevity, the stan-
dard template headers have been omitted from the listings, and redundant portions of flowcharts are repro-
duced only once.

Analog-to-Digital Data Acquisition (ADC.ASM)

In order to perform digital signal processing, a digital representation of the analog signal must be available.
The MC68HC16Z1 contains a programmable ADC module. The ADC has a number of automatic conver-
sion modes. Only four registers are needed to control the ADC. Refer to the ADC Reference Manual
(ADCRM/AD) for more detailed information.

ADC.ASM initializes the ADC module, then goes into a continuous loop, repeating the programmed con-
version sequence. Figure 15 is a flowchart of ADC.ASM.

To test the routine, first load and assemble the ADC.ASM file, then switch to the EVB16 debugger. Down-
load the assembled file to the M68HC16Z1EVB, trace execution until the infinite loop begins to execute,
then examine the ADC result registers. 

Display the memory locations starting at $FF710. Check the memory location $FF711. If the AFA is hooked
up properly, a value somewhere between $74 and $8B will be displayed. This value is an unsigned repre-
sentation of 2.5 volts, plus or minus the offset voltage of the MAX274. This same value should also be found
at location $FF730. The signed representation of the same data is found at location $FF720. The design of
ADC.ASM is finished. Some of this code will be used to build other programs.
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 ADC.ASM Code listing

        INCLUDE 'EQUATES.ASM'   ;table of EQUates for common register addr
        INCLUDE 'ORG00000.ASM'  ;initialize reset vector

        ORG     $0200

*****  Initialization Routines  *****

        INCLUDE 'INITSYS.ASM'   ;initially set EK=F, XK=0, YK=0, ZK=0
                                ;set sys clock at 16.78 MHz, disable COP
        INCLUDE 'INITRAM.ASM'   ;initialize and turn on SRAM
                                ;set stack (SK=1, SP=03FE)

ORG     $0200
*****   ADC Initialization      *****
        LDD     #$0000
        STD     ADCMCR          ;turn on ADC
        LDD     #$0003
        STD     ADCTL0          ;8-bit, set sample period

*****   ADC Start               *****
LOOP    LDD     #$0000
        STD     ADCTL1          ;single 4 conversion, single channel, AD0
                                ;writing to the ADCTL1 reg starts conversion

        LDAA    #$80
SCFSET  BITA    ADSTAT          ;check for the Sequence Complete Flag
        BEQ     SCFSET          ;complete?, if not check again
        BRA     LOOP            ;go get another sample

Figure 15  ADC.ASM Flowchart
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INCLUDE 'EQUATES.ASM'
INCLUDE 'ORG00000.ASM'
INCLUDE 'INITSYS.ASM'
INCLUDE 'INITRAM.ASM'

THESE INCLUDE FILES CONTAIN THE FOLLOWING:
AN EQUATE FILE WITH ALL THE Z1 REGISTERS DEFINED
RESET VECTOR INITIALIZATION
SYSTEM INITIALIZATION FOR THE Z1
INTERNAL RAM INITIALIZATION FOR THE Z1
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QSPI TO MC14489 Interface (QSPI_LED.ASM)

This program illustrates QSPI serial timing and data format, which must be understood in order to program
the QSPI to talk to the MC14489. The QSM Reference Manual (QSMRM/AD) and the MC14489 data sheet
are needed to understand the code.

QSPI_LED.ASM initializes the QSPI module and the three MC14489 drivers to handle 40 LEDs. After this
it updates the LED array by writing to the MC14489 display registers, then gives control back to the EVB16
development software. Values being sent to the array may be changed either by modifying the memory
locations that hold the transmitted data or by reassembling the lines that load these memory locations. Fig-
ure 16 is a flowchart of QSPI_LED.ASM.

QSPI_LED.ASM Code Listing
        INCLUDE 'EQUATES.ASM'   ;table of EQUates for common register addr
        INCLUDE 'ORG00000.ASM'  ;initialize reset vector

        ORG     $0200

*****  Initialization Routines  *****

        INCLUDE 'INITSYS.ASM'   ;initially set EK=F, XK=0, YK=0, ZK=0
                                ;set sys clock at 16.78 MHz, disable COP
        INCLUDE 'INITRAM.ASM'   ;initialize and turn on SRAM
                                ;set stack (SK=1, SP=03FE)

*****   QSPI Initialization     *****
        LDAA    #$08
        STAA    QPDR            ;output pcs0/ss* to 0 when asserted
        LDAA    #$0F
        STAA    QPAR            ;assign QSM port pins to qspi module
        LDAA    #$FE
        STAA    QDDR            ;assign all QSM pins as outputs except miso

        LDD     #$8004          ;mstr, womq=cpol=cpha=0
        STD     SPCR0           ;16 bits, 2.10MHz serial baud rate
        LDD     #$0300          ;no interrupt generated, no wrap mode
        STD     SPCR2           ;newqp=0, endqp=3, queued for 4 trans

*****   Fill QSPI Command.ram to write the config registers of the 14489
        LDAA    #$C0
        STAA    CR0             ;cont=1, bitse=1, pcs0=0, no delays needed
        STAA    CR1
        STAA    CR2
        LDAA    #$40
        STAA    CR3             ;cont=0, bitse=1, pcs0=0, no delays needed

*****   Fill QSPI Transmit.ram to write the config registers of the 14489
        LDAA    #$3F
        STD     TR0+1           ;store $3F to tran.ram registers
        STD     TR2
        STD     TR3+1

*****   Turn on the QSPI, this will write to the config registers
*****   of the MC14489 drivers
GO      LDD     #$8404
        STAA    SPCR1           ;turn on spi
SPIWT   LDAA    SPSR            ;after sending data we wait until the
        ANDA    #$80            ;spif bit is set, before we can send more
        CMPA    #$80            ;check for spi done
        BNE     SPIWT

*****   Fill QSPI Command.ram to write the display registers of the 14489
        LDAA    #$C0
        STAA    CR0             ;cont=1, bitse=1, pcs0=0, no delays needed
        STAA    CR1
        LDAA    #$40            ;cont=0, bitse=1, pcs0=0, no delays needed
        STAA    CR2
        STAA    CR4
        LDAA    #$80            ;cont=1, bitse=0, pcs0=0, no delays needed
        STAA    CR3
MOTOROLA AN1233/D 
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*****   Fill QSPI Transmit.ram for display registers of the 14489
*****   The beginning LED values will be $00, all of the LEDs will be off
        LDD     #$8000          ;TR0 = $8000
        STD     TR0             ;TR1 = $0080
        STAA    TR3+1           ;TR2 = $0000
        LDD     #$0080          ;TR3 = $XX80
        STD     TR1             ;TR4 = $0000
        CLRD
        STD     TR2
        STD     TR4

        LDD     #$0400          ;display registers need 5 transmissions
        STD     SPCR2           ;newqp=0, endqp=4

*****   Load up the various LED bands for experimentation
T125    LDAA    #$0F
        STAA    TR4+1           ;125 Hz band
T500    LDAA    #$3F
        STAA    TR4             ;500 Hz band
T1K     LDAA    #$FF
        STAA    TR2+1           ;1k Hz band
T4K     LDAA    #$3F
        STAA    TR2             ;4k Hz band
T10K    LDAA    #$03
        STAA    TR1             ;10k Hz band

        LDD     #$8404          ;load up d
        STD     SPCR1           ;turn on QSPI

        BGND                    ;go back to EVB16 software
                                ;reassemble code for T125 to T10K
                                ;experiment with different values

        BRA     T125            ;branch back to TR125 line
AN1233/D MOTOROLA
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Figure 16  QSPI_LED.ASM Flowchart
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INCLUDE 'EQUATES.ASM'
INCLUDE 'ORG00000.ASM'

INCLUDE 'INITSYS.ASM'
INCLUDE 'INITRAM.ASM'

THESE INCLUDE FILES CONTAIN THE FOLLOWING:
AN EQUATE FILE WITH ALL THE Z1 REGISTERS DEFINED
RESET VECTOR INITIALIZATION
SYSTEM INITIALIZATION FOR THE Z1
INTERNAL RAM INITIALIZATION FOR THE Z1
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The Periodic Interrupt Timer (INT_TEST.ASM)

The periodic interrupt timer (PIT) is an internal timer that can be programmed to make an interrupt service
request at specific intervals. One application of the PIT is to configure it to interrupt the processor every sec-
ond so that an interrupt service routine can update a clock. 

INT_TEST.ASM produces a square wave on the port F pins of the MC68HC16Z1. The square wave has a
set frequency determined by the PIT timeout period. The program uses the level six autovector and the PIT
times out at 15.6 ms. Port F is initialized for discrete output, then the code enters a wait loop until the pro-
grammed interval elapses. The interrupt service routine creates the square wave. Figure 17 is a flowchart
of INT_TEST.ASM.

For detailed information concerning interrupts, the PIT, and port F, refer to the MC68HC16Z1 User ’s Man-
ual (MC68HC16Z1UM/D), the SIM Reference Manual (SIMRM/AD), and the CPU16 Reference Manual
(CPU16RM/AD). 

INT_TEST.ASM Code Listing

        INCLUDE 'EQUATES.ASM'   ;table of EQUates for common register addr
        INCLUDE 'ORG00000.ASM'  ;initialize reset vector

        ORG     $0200           ;start program after interrupt vectors

*****  Initialization Routines  *****

        INCLUDE 'INITSYS.ASM'   ;initially set EK=F, XK=0, YK=0, ZK=0
                                ;set sys clock at 16.78 MHz, disable COP
        INCLUDE 'INITRAM.ASM'   ;initialize and turn on SRAM
                                ;set stack (SK=1, SP=03FE)

*****   Initialize level 6 autovector address
        LDAB    #$00
        TBEK                    ;ek extension pointer = bank0
        LDD     #INT_RT         ;load Dacc with interrupt vector addr
        STD     $002C           ;store addr to level 6 autovector

*****   Initialize  PortF       *****
        LDAB    #$0F
        TBEK                    ;ek extension pointer = bankf
        LDAB    #$00
        STAB    PFPAR           ;define port f as discrete i/o
        LDAA    #$FF
        STAA    DDRF            ;define port f as all output
        STAA    PORTF0          ;store $ff to port f

*****   Initialize the PIT      *****
        LDD     #$0616
        STD     PICR            ;pirql=6, piv=$16
        LDD     #$0080
        STD     PITR            ;set the periodic timer at 15.6msec
        ANDP    #$FF1F          ;set interrupt priority to 000

*****   Infinite loop           *****
LOOP    NOP                     ;create an infinite loop
        BRA     LOOP            ; waiting for interrupts

*****   Exceptions/Interrupts   *****
INT_RT  PSHM    D,CCR           ;stack Dacc and CCR on stack
        COM     PORTF0          ;one's complement Port F, create square wave
        PULM    D,CCR           ;pull Dacc and CCR from stack
        RTI                     ;return from interrupt
AN1233/D MOTOROLA
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Figure 17  INT_TEST.ASM Flowchart
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INCLUDE 'EQUATES.ASM'
INCLUDE 'ORG00000.ASM'
INCLUDE 'INITSYS.ASM'
INCLUDE 'INITRAM.ASM'

THESE INCLUDE FILES CONTAIN THE FOLLOWING:
AN EQUATE FILE WITH ALL THE Z1 REGISTERS DEFINED
RESET VECTOR INITIALIZATION
SYSTEM INITIALIZATION FOR THE Z1
INTERNAL RAM INITIALIZATION FOR THE Z1
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Signal Peak Detector (PEAK.ASM)

The signal peak detector graphically measures and displays the peak amplitude of a signal in real time. An
audio signal is sampled at 24.95 kHz. The peak amplitude of the signal is detected, then a value that rep-
resents the peak on a bar of eight light-emitting diodes (LED) is generated. A reference value of 0.775 Vrms
equivalent to 0 dB is used to relate the digital peak value to the LED display. The LED bar can display a
signal in the range –15 dB to +6 dB, in 3 dB steps. Figure 18 shows relationships between the LED bar,
decibels, Vrms, and Vp. Figure 19 shows the relationship between an analog input signal and the peak val-
ues displayed. Figure 20 is a flowchart of PEAK.ASM.

Figure 18  Relationship Between Signal Amplitude and LED Bar 

PEAK.ASM code must be downloaded to the EVB in a slightly different manner than usual. The code must
be stored in the SRAM array, so it is important to enable and initialize SRAM module correctly before down-
loading. The steps listed below must be followed when downloading PEAK.ASM, 1K_FLTR.ASM, and
5BAND_SA.ASM.  

1. Download the code

2. Set the IP to $200

3. Trace the code until you have executed the section labeled ‘RAM and Stack Initialization’

4. Set the IP to $200

5. Download the program again. 
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The code originating in the internal RAM will now be correctly loaded into the MC68HC16Z1. 

PEAK.ASM reads values from a look-up table in memory. The file OUTVAL2.ASM contains the table. Be
sure this file is in the same directory as PEAK.ASM before assembly.

Figure 19  Analog Input vs Peak Display Level

After initializing the SRAM, the ADC, the QSPI, and the PIT, the code jumps to internal RAM at location
$F0000. Internal RAM access time is less than access time for the external RAM on the EVB. This extra
speed is important to subsequent programs that use DSP routines. 

The program then loops continuously, reading the ADC, encoding the ADC value to its equivalent LED
value, and checking to see if the current value is greater than the previous peak value. If so, then the current
peak value is updated and stored away in memory. The code can only increase the current peak value. 

Peak value encoding is accomplished by self-modifying code that reads values from a look-up table in
memory. Cycle counts for each instruction are given on the right-hand side comment line in
OUTVAL2.ASM. They are used to determine the delay that is needed to create the 24.95-kHz sampling
frequency.

The LED array is updated with the current peak value every 10.26 ms. This routine only detects and displays
increases of the peak value. In order to follow a changing signal, the peak value must also be decreased
periodically. A PIT interrupt performs this task every 62.5 ms. When the PIT times out, the interrupt service
routine decrements the peak value and sends a new value to the display. 
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Using a PIT interrupt to decrement the peak value causes the LED display to decrease slowly, like a capac-
itor discharging, when the input signal decreases rapidly. This gives the display a more fluid appearance
when rapidly-changing peak values are measured. If the display jumped from peak to peak, the discontinuity
would lower the aesthetic appeal. In fact, most commercial audio analyzers show the relative peak differ-
ences of the frequency spectrum rather than attempt to display the peak signal precisely.

To test the code, hook up the system as shown in Figure 11. Input a known signal and observe the display.
Apply an audio signal from the sound source and watch the peak detector execute in real time. If there is
only one sound source output, connect it to either the left or right AFA input. The display is calibrated to the
output of a CD player. The CD player puts out a line level signal, with .775 Vrms equal to 0 dB. If the sound
source is not a CD player, adjust the output of the sound source so that the dynamic range of the signal is
fully displayed. 

PEAK.ASM Code Listing

        INCLUDE 'EQUATES.ASM'   ;table of EQUates for common register addr
        INCLUDE 'ORG00000.ASM'  ;initialize reset vector

*****   Temporary variable storage
PK      EQU     $0200           ; bank F
CNT     EQU     $0201           ; bank F

        ORG     $0200

*****   Initialization Routines *****

        INCLUDE 'INITSYS.ASM'   ;initially set EK=F, XK=0, YK=0, ZK=0
                                ;set sys clock at 16.78 MHz, disable COP

*****   RAM and Stack Initialization
        LDD     #$00FF
        STD     RAMBAH          ;store high ram array, bank F
        LDD     #$0000
        STD     RAMBAL          ;store low ram array, 0000
        CLR     RAMMCR          ;enable ram
        LDAB    #$0F
        TBSK                    ;set SK to bank F for system stack
        LDS     #$02FE          ;put SP in 1k internal SRAM

*****   Initialize level 6 autovector address
        LDAB    #$00
        TBEK                    ;ek extension pointer = bank0
        LDD     #JMPINT         ;load Dacc with interrupt vector addr
        STD     $002C           ;store addr to level 6 autovector

*****   Initialize the PIT      *****
        LDAB    #$0F
        TBEK                    ;ek extension pointer = bankf
        LDD     #$0616
        STD     PICR            ;pirql=6, piv=$16
        LDD     #$0101
        STD     PITR            ;set the periodic timer at 62.5msec
        ANDP    #$FF1F          ;set interrupt priority to 000

*****   QSPI Initialization     *****
        LDAA    #$08
        STAA    QPDR            ;output pcs0/ss* to 0 when asserted
        LDAA    #$0F
        STAA    QPAR            ;assign QSM port pins to qspi module
        LDAA    #$FE
        STAA    QDDR            ;assign all QSM pins as outputs except miso

        LDD     #$8004          ;mstr, womq=cpol=cpha=0
        STD     SPCR0           ;16 bits, 2.10MHz serial baud rate
        LDD     #$0300          ;no interrupt generated, no wrap mode
        STD     SPCR2           ;newqp=0, endqp=3, queued for 4 trans

*****   Fill QSPI Command.ram to write the config registers of the 14489
        LDAA    #$C0
        STAA    CR0             ;cont=1, bitse=1, pcs0=0, no delays needed
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        STAA    CR1
        STAA    CR2
        LDAA    #$40
        STAA    CR3             ;cont=0, bitse=1, pcs0=0, no delays needed

*****   Fill QSPI Transmit.ram to write the config registers of the 14489
        LDAA    #$3F
        STD     TR0+1           ;store $3F to tran.ram registers
        STD     TR2
        STD     TR3+1
*****   Turn on the QSPI, this will write to the config registers
*****   of the MC14489 drivers
GO      LDD     #$8404
        STAA    SPCR1           ;turn on spi
SPIWT   LDAA    SPSR            ;after sending data we wait until the
        ANDA    #$80            ;spif bit is set, before we can send more
        CMPA    #$80            ;check for spi done
        BNE     SPIWT

*****   Fill QSPI Command.ram to write the display registers of the 14489
        LDAA    #$C0
        STAA    CR0             ;cont=1, bitse=1, pcs0=0, no delays needed
        STAA    CR1
        LDAA    #$40            ;cont=0, bitse=1, pcs0=0, no delays needed
        STAA    CR2
        STAA    CR4
        LDAA    #$80            ;cont=1, bitse=0, pcs0=0, no delays needed
        STAA    CR3

*****   Fill QSPI Transmit.ram for display registers of the 14489
*****   The beginning LED values will be $00, all of the LEDs will be off
        LDD     #$8000
        STD     TR0             ;TR0 = $8000
        STAA    TR3+1           ;TR1 = $0080
        LDD     #$0080          ;TR2 = $0000
        STD     TR1             ;TR3 = $XX80
        CLRD                    ;TR4 = $0000
        STD     TR2
        STD     TR4

        LDD     #$0400          ;display registers need 5 transmissions
        STD     SPCR2           ;newqp=0, endqp=4

*****   ADC Initialization      *****
        LDD     #$0000
        STD     ADCMCR          ;turn on ADC
        LDD     #$0003
        STD     ADCTL0          ;8-bit, set sample period

*****   Initialize the extension registers for the internal ram in bank F
*****   Set up the extension registers to point to bank F
        LDAB    #$0F            ;load b with $0F
        TBEK                    ;transfer Bacc to Ek
        TBXK                    ;transfer Bacc to Xk
        TBYK                    ;transfer Bacc to Yk
        TBZK                    ;transfer Bacc to Zk
        JMP     RAM             ;jump to internal ram for speed!

*****   Start of Internal 1K RAM
        ORG     $F0000
RAM     CLR     CNT             ;clear LED update counter
        CLR     PK              ;clear peak value

LP      CLRD                    ; 2 clear Dacc
        STD     ADCTL1          ; 6 single 4 conversion, single channel AD0
                                ;   writing to the ADCTL1 reg starts conv
        LDE     LJSRR0          ; 6 load e with x(n), left jus adc result0

*       Check if LEDs need updating
        LDAA    CNT             ; 6 load Aacc with count
        ADDA    #1              ; 2 add 1 to Aacc
        STAA    CNT             ; 6 store new count
        BNE     TRAN            ; 6,2 check to see if its time to update
                                ;     the LEDs, time = 256 * 668 cycles
                                ;     668 cycles = 40.08usec
                                ;     so LED update time is 10.26msec
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        LDD     #$8404          ; 6 load up d
        STD     SPCR1           ; 6 turn on QSPI, send LED data out

*       Get LED encode value from look-up table
TRAN    TED                     ; 2 transfer Eacc to Dacc
        STAA    LD+3            ; 6 Dacc high byte -> instruction ldaa $03??
        NOP                     ; 2 no operation, wait for CPU pipeline
        NOP                     ; 2 no operation, wait for CPU pipeline
LD      LDAA    LED_TBL         ; 6 load Aacc with the encoded LED value
                                ;   from scaled peak LED table

*       Update peak value if needed
        CMPA    PK              ; 6 compare value to previous peak value
        BLS     DN              ; 6,2 branch if not more than peak value
        STAA    PK              ; 6 store new peak value
        STAA    TR1             ; 6 store new value to all 5 qspi tran.rams
        STAA    TR2             ; 6
        STAA    TR2+1           ; 6
        STAA    TR4             ; 6
        STAA    TR4+1           ; 6

*****   Loop to generate calculated delay
*****   Clocks = 6 + 8*(N-1)  N >= 1
*****   N is the number put into the B accumulator

DN      LDAB    #$4B            ;  75dec this loop will create an extra delay
WAIT    DECB                    ;  to make a 24.95kHz sampling rate
        BNE     WAIT            ;  or a 668 cycle sampling period
                                ; 598 cycles

        JMP     LP              ; 6 jump back to start another conversion

*****   Exceptions/Interrupts   *****
*****   This interrupt is used to decrement each LED bar value
*****   representing the peak value of the audio signal
INT_RT  PSHM    D,CCR           ;stack Dacc and CCR on stack
        LDAA    PK              ;load Aacc with peak value
        BEQ     DONE            ;equal to 0?, then done

        ANDP    #$FEFF          ;clear C bit
        RORA                    ;rotate right once, decrease peak value
        STAA    TR1             ;store Aacc to all qspi tran.ram
        STAA    TR2
        STAA    TR2+1
        STAA    TR4
        STAA    TR4+1
        STAA    PK              ;store Aacc to peak value
        LDD     #$8404          ;load up Dacc
        STD     SPCR1           ;turn on QSPI, send LED data out

DONE    PULM    D,CCR           ;pull Dacc and CCR from stack
        RTI                     ;return from interrupt

*****   Location of start of level 6 interrupt, has to be in bank 0
        ORG     $A000
JMPINT  JMP     INT_RT

*****   OUTVAL2 is a 256 byte lookup table to convert an
*****   ADC reading to a LED value that can be transmitted to the 14489
*****   Encodes to a scale of +6, +3, 0, -3, -6, -9, -12, -15 dB
        INCLUDE 'OUTVAL2.ASM'    ;LED Look up table
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Figure 20  PEAK.ASM Flowchart (Sheet 1 of 2)
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Figure 20 PEAK.ASM Flowchart (Sheet 2 of 2)
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A 1-kHz Bandpass Filter (1K_FLTR.ASM)

This code is similar in function to the peak detector, except that it executes a 1-kHz IIR bandpass filter on
the input signal. The peak is detected and displayed on an LED bar in real time. The focus is on using the
MC68HC16Z1 to implement the digital filter. Figure 22 is a flowchart of 1K_FLTR.ASM. 

The objective is to take incoming sampled data x(n), and run the bandpass filter function on the sample to
produce output y(n). Again, this is the basic ‘black box’ concept of electrical engineering — excite the input
and watch the output change. The function in the ‘black box’ is defined below.

y(n) = 2 ∗ {α ∗  [x(n) − x(n−2)] + γ ∗  y(n-1) − β ∗  y(n−2)}

This function implements an IIR bandpass function with characteristics defined by the coefficients α, β, and
γ. In an RLC bandpass filter circuit, resistors, capacitors, and inductors would characterize filter response.
In the digital implementation of the filter, the α, β, and γ coefficients determine the response in much the
same way.

The basic parameters that define digital filter response are the Q, the sampling frequency (Fs), and the cen-
ter frequency (Fo). The Q value defines the sharpness of the filter and is equal to the center frequency di-
vided by the bandwidth between the 3 dB points. The specified sampling frequency is 24.95 kHz, the center
frequency is 1 kHz, and Q value is 1.5. Figure 21 illustrates these relationships. Table 3 shows the way in
which coefficients are stored in memory.

Figure 21  Filter Relationships

1. To speed processing, the calculated β coefficient is made negative, then added to the expression, rather than
subtracted as shown in the equation above.

Table 3  DSP Filter Algorithm Memory Use

XN1_1K x(n − 1) YN1_1K y(n − 1) GAM_1K γ

XN2_1K x(n − 2) YN2_1K y(n − 2) BET_1K – β1

X_2_1K x(n) − x(n − 2) ALP_1K α
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Equations that define the coefficients are shown below. Coefficient values are also given in the code listing.

θ = {(2 ∗  π ∗  Fo) / Fs}
X = θ / (2 ∗ Q)

If X > π / 4 then X = 0.75398
β = 0.5 ∗{ 1 − tan (X)} / { 1+ tan (X)}

γ = (0.5 + β) ∗ cos θ
α = (0.5 − β) / 2

Where:
Fo = 1 kHz
Fs = 24.95 kHz
Q = 1.5

For more information concerning these equations, refer to Motorola Application Note Digital Stereo 10-Band
Generator (APR2/D). 

Once coefficient values have been obtained, they must be encoded. The assembler does not understand
fractional decimal numbers, so fractional values are converted into signed 16-bit hexadecimal values. When
using two’s complement arithmetic, the most significant bit (bit 15) is the sign bit, and the fraction is con-
tained in bits 14 to 0. Fifteen bits can represent the decimal numbers from 0 to 32,767. Multiply the decimal
fraction by 32,768, then convert the value to the hexadecimal equivalent. Make certain that hexadecimal
equivalents of negative values are in two’s complement form. An example is given below.

Decimal fraction = 0.5

Multiply fractional decimal value by 32,768

0.5 ∗  32,768  = 16,384

Change decimal value to hexadecimal and binary values

16,384 dec = 4000 hex = 0100 0000 0000 0000 bin

4000 hex is the 16-bit fractional value.

CPU16 multiply and add instructions are used to implement the function. Processing is streamlined so that,
in the final AFA design, five filters can be implemented in the 40.08 µs sampling period. For a more thorough
discussion of the DSP instruction set and related CPU16 architecture, please consult Chapter 11 in the
CPU16 Reference Manual (CPU16RM/AD). The processing sequence is as follows.

The ADC value x(n) is divided by two to prevent overflow. 

The subtraction operation, x(n) – x(n – 2) is performed and the result is stored in location X_2_1K. 

Three MAC instructions are executed, starting at address YN1_1K. 

The value y(n –1) is multiplied by γ and added to the M accumulator. 

The value y(n – 2) is multiplied by – β and added to the M accumulator. 

The value [x(n) – x(n – 2)] is multiplied by α and added to the M accumulator.

The M accumulator is multiplied by two, using a left shift instruction, to obtain the y(n) value.

The x and y terms are updated before the next sample is processed: 

x(n – 1) becomes x(n – 2) and x(n) becomes x(n – 1)

y(n – 1) becomes y(n – 2) and y(n) becomes y(n – 1) 
AN1233/D MOTOROLA
31



As mentioned earlier, the 1-kHz bandpass filter is very similar to the peak detector design. Once the DSP
is finished on the input x(n) sample, the peak detect algorithm is executed. 

The include file OUTVAL1.ASM is used to encode the DSP output with an LED display value multiplied by
two. Be sure this file is in the same directory as 1K_FLTR.ASM during assembly.

The best way to test this program is to connect a signal generator with sine-wave sweep capability to the
AFA inputs, then set it to sweep from 0 to 15 kHz. The 1-kHz LED bar should display the amplitude of a pure
1-kHz tone and the routine should filter out higher and lower frequency signals. Since Q is equal to 1.5,
some side-lobe frequencies in the pass band should be evident. For instance, if a 2-kHz pure signal is sent
into the filter, the side-lobe response of the 1-kHz bandpass will pass an attenuated level of the 2-kHz tone. 

1K_FLTR.ASM Code Listing

        INCLUDE 'EQUATES.ASM'   ;table of EQUates for common register addr
        INCLUDE 'ORG00000.ASM'  ;initialize reset vector

*****   Addresses of coefficients for the IIR Filters and initialization
COEFBS  EQU     $0280           ;base addr of coefficients
GAM_1K  EQU     COEFBS+$0       ;addr of the gamma coef
BETA_1K EQU     COEFBS+$2       ;addr of the beta coef
ALPH_1K EQU     COEFBS+$4       ;addr of the alpha coef
        ORG     $F0280
        dc.w    $7257           ;1k Hz gamma coef, Q=1.5
        dc.w    $C9F0           ;1k Hz beta coef, Q=1.5
        dc.w    $04F7           ;1k Hz alpha coef, Q=1.5

*****   Addresses of filter terms for the x(n) terms and initialization
XTRMBS  EQU     $02A0           ;base addr of x(n) filter terms
XN1_1K  EQU     XTRMBS+$0       ;x(n-1)
XN2_1K  EQU     XTRMBS+$2       ;x(n-2)
        ORG     $F02A0
        dc.w    $0000           ;1k Hz x(n-1)
        dc.w    $0000           ;1k Hz x(n-2)

*****   Addresses of filter terms for the y(n) terms and initialization
YTRMBS  EQU     $02C0           ;base addr of y(n) filter terms
YN1_1K  EQU     YTRMBS+$0       ;y(n-1)
YN2_1K  EQU     YTRMBS+$2       ;y(n-2)
X_2_1K  EQU     YTRMBS+$4       ;x(n) - x(n-2), stored here for mac
        ORG     $F02C0
        dc.w    $0000           ;1k y(n-1)
        dc.w    $0000           ;1k y(n-2)
        dc.w    $0000           ;1k [ x(n) - x(n-2) ]

*****   Addresses of various temporary variables and initialization
PKRES   EQU     $02E0           ;base addr of filter result storage
PK_1K   EQU     PKRES+$0        ;peak value for 1k Hz
CNT     EQU     PKRES+$1        ;count value for LED qspi update routine
AD      EQU     PKRES+$2        ;divided by two adc reading
        ORG     $F02E0
        dc.w    $0000           ;1k peak value, update count value
        dc.w    $0000           ;divided by two adc location

        ORG     $0200

*****  Initialization Routines  *****

        INCLUDE 'INITSYS.ASM'   ;initially set EK=F, XK=0, YK=0, ZK=0
                                ;set sys clock at 16.78 MHz, disable COP
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*****   RAM and Stack Initialization
        LDD     #$00FF
        STD     RAMBAH          ;store high ram array, bank F
        LDD     #$0000
        STD     RAMBAL          ;store low ram array, 0000
        CLR     RAMMCR          ;enable ram
        LDAB    #$0F
        TBSK                    ;set SK to bank F for system stack
        LDS     #$02FE          ;put SP in 1k internal SRAM

*****   Initialize level 6 autovector address
        LDAB    #$00
        TBEK                    ;ek extension pointer = bank0
        LDD     #JMPINT         ;load Dacc with interrupt vector addr
        STD     $002C           ;store addr to level 6 autovector

*****   Initialize the PIT      *****
        LDAB    #$0F
        TBEK                    ;ek extension pointer = bankf
        LDD     #$0616
        STD     PICR            ;pirql=6, piv=$16
        LDD     #$0101
        STD     PITR            ;set the periodic timer at 62.5msec
        ANDP    #$FF1F          ;set interrupt priority to 000

*****   QSPI Initialization     *****
        LDAA    #$08
        STAA    QPDR            ;output pcs0/ss* to 0 when asserted
        LDAA    #$0F
        STAA    QPAR            ;assign QSM port pins to qspi module
        LDAA    #$FE
        STAA    QDDR            ;assign all QSM pins as outputs except miso

        LDD     #$8004          ;mstr, womq=cpol=cpha=0
        STD     SPCR0           ;16 bits, 2.10MHz serial baud rate
        LDD     #$0300          ;no interrupt generated, no wrap mode
        STD     SPCR2           ;newqp=0, endqp=3, queued for 4 trans

*****   Fill QSPI Command.ram to write the config registers of the 14489
        LDAA    #$C0
        STAA    CR0             ;cont=1, bitse=1, pcs0=0, no delays needed
        STAA    CR1
        STAA    CR2
        LDAA    #$40
        STAA    CR3             ;cont=0, bitse=1, pcs0=0, no delays needed

*****   Fill QSPI Transmit.ram to write the config registers of the 14489
        LDAA    #$3F
        STD     TR0+1           ;store $3F to tran.ram registers
        STD     TR2
        STD     TR3+1

*****   Turn on the QSPI, this will write to the config registers
*****   of the MC14489 drivers
GO      LDD     #$8404
        STAA    SPCR1           ;turn on spi
SPIWT   LDAA    SPSR            ;after sending data we wait until the
        ANDA    #$80            ;spif bit is set, before we can send more
        CMPA    #$80            ;check for spi done
        BNE     SPIWT

*****   Fill QSPI Command.ram to write the display registers of the 14489
        LDAA    #$C0
        STAA    CR0             ;cont=1, bitse=1, pcs0=0, no delays needed
        STAA    CR1
        LDAA    #$40            ;cont=0, bitse=1, pcs0=0, no delays needed
        STAA    CR2
        STAA    CR4
        LDAA    #$80            ;cont=1, bitse=0, pcs0=0, no delays needed
        STAA    CR3
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*****   Fill QSPI Transmit.ram for display registers of the 14489
*****   The beginning LED values will be $00, all of the LEDs will be off
        LDD     #$8000
        STD     TR0             ;TR0 = $8000
        STAA    TR3+1           ;TR1 = $0080
        LDD     #$0080          ;TR2 = $0000
        STD     TR1             ;TR3 = $XX80
        CLRD                    ;TR4 = $0000
        STD     TR2
        STD     TR4

        LDD     #$0400          ;display registers need 5 transmissions
        STD     SPCR2           ;newqp=0, endqp=4

*****   ADC Initialization      *****
        LDD     #$0000
        STD     ADCMCR          ;turn on ADC
        LDD     #$0003
        STD     ADCTL0          ;8-bit, set sample period

*****   Initialize the extension registers for the internal ram in bank F
*****   Set up the extension registers to point to bank F
        LDAB    #$0F            ;load b with $0F
        TBEK                    ;transfer Bacc to Ek
        TBXK                    ;transfer Bacc to Xk
        TBYK                    ;transfer Bacc to Yk
        TBZK                    ;transfer Bacc to Zk
        JMP     RAM             ;jump to internal ram for speed!

*****   Start of Internal 1K RAM
        ORG     $F0000
RAM     CLR     CNT             ;clear LED update counter
        CLR     PK_1K           ;clear 1K peak value

*       Initialization for DSP
        ORP     #$0010          ;set saturation mode for Macc
        CLRD                    ;clear Dacc
        TDMSK                   ;no modulo addressing
        LDY     #COEFBS         ;load y with the coef base addr
        LDX     #YTRMBS         ;load x with the yterm base addr

LP      CLRD                    ; 2 clear Dacc
        STD     ADCTL1          ; 6 single 4 conversion, single channel AD0
                                ;   writing to the ADCTL1 reg starts conv

*       Divide input x(n) by 2, no overflow problem
        LDAA    LJSRR0          ; 6 load Aacc with left jus signed ADC value
        ASRA                    ; 2 divide by 2
        STAA    AD              ; 6 store divide by 2 adc value away

*       Check if LEDs need updating
        LDAA    CNT             ; 6 load Aacc with count
        ADDA    #1              ; 2 add 1 to Aacc
        STAA    CNT             ; 6 store new count
        BNE     TRAN            ; 6,2 check to see if its time to update
                                ;     the LEDs, time = 256 * 668 cycles
                                ;     668 cycles = 40.08usec
                                ;     so LED update time is 10.26msec
        LDD     #$8404          ; 6 load up d
        STD     SPCR1           ; 6 turn on QSPI, send LED data out

TRAN    LDHI                    ; 8 load h and i multiplier and multiplicand
F1K     CLRM                    ; 2 clear Macc
        LDE     AD              ; 6 load Eacc with AD
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*       Digital processing algorithm
        TED                     ; 2 transfer Eacc to Dacc
        SUBD    XN2_1K          ; 6 Dacc = x(n) - x(n-2)
        STD     X_2_1K          ; 6 store Dacc to [x(n) - x(n-2)] addr
        LDD     XN1_1K          ; 6 load Dacc with x(n-1)
        STED    XN1_1K          ; 8 store x(n) to x(n-1) and
                                ;   store x(n-1) to x(n-2)

        MAC     2,2             ;12 gamma*(yn1)+Macc=Macc
        MAC     2,2             ;12 beta*(yn2)+Macc=Macc
        MAC     -4,-4           ;12 alpha*[x(n)-x(n-2)]+Macc=Macc
        TMET                    ; 2 transfer Macc to Eacc, truncate
        ASLE                    ; 2 multiply Eacc by 2

*       Get LED encode value from look-up table
        TED                     ; 2 transfer Eacc to Dacc
        STAA    LD1K+3          ; 6 Dacc high byte -> instruction ldaa $03??
        NOP                     ; 2 no operation, due to CPU pipeline
        NOP                     ; 2 no operation, due to CPU pipeline
LD1K    LDAA    LED_TBL         ; 6 load Aacc with the encoded LED value
                                ;   from scaled peak LED table

*       Update peak value if needed
        CMPA    PK_1K           ; 6 compare value to previous peak value
        BLS     DN1K            ; 6,2 branch if not more than peak value
        STAA    PK_1K           ; 6 store new peak value
        STAA    TR2+1           ; 6 store new value to 1k qspi tran.ram

*       Update y(n-1) and y(n-2)
DN1K    LDD     YN1_1K          ; 6 load Dacc with y(n-1)
        STED    YN1_1K          ; 8 store Eacc to y(n-1), Dacc to y(n-2)

*****   Loop to generate calculated delay
*****   Clocks = 6 + 8*(N-1)  N >= 1
*****   N is the number put into the B accumulator

        LDAB    #$3D            ;   61 this loop will create an extra delay
WAIT    DECB                    ;   to make a 24.95kHz sampling rate
        BNE     WAIT            ;   or a 668 cycle sampling period
                                ; 486 cycles
        NOP                     ; 2
        NOP                     ; 2
        NOP                     ; 2
        JMP     LP              ; 6 jump back to start another conversion

*****   Exceptions/Interrupts   *****
*****   This interrupt is used to decrement the LED bar value
*****   representing the peak value of the 1k filter band
INT_RT  PSHM    D,CCR           ;stack Dacc and CCR on stack
        LDAA    PK_1K           ;load Aacc with 1K peak value
        BEQ     DONE            ;equal to 0?, then done

        ANDP    #$FEFF          ;clear C bit
        RORA                    ;rotate right once, decrease peak value
        STAA    TR2+1           ;store Aacc to 1k Hz qspi tran.ram
        STAA    PK_1K           ;store Aacc to 1k Hz peak value
        LDD     #$8404          ;load up Dacc
        STD     SPCR1           ;turn on QSPI, send LED data out

DONE    PULM    D,CCR           ;pull Dacc and CCR from stack
        RTI                     ;return from interrupt

*****   Location of start of level 6 interrupt, has to be in bank 0
        ORG     $A000
JMPINT  JMP     INT_RT

*****   OUTVAL1 is a 256 byte lookup table to convert an
*****   ADC reading to a LED value that can be transmitted to the 14489
*****   Multiplies by two and
*****   Encodes to a scale of +6, +3, 0, -3, -6, -9, -12, -15 dB
        INCLUDE 'OUTVAL1.ASM'    ;LED look up table
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Figure 22  1K_FLTR.ASM Flowchart (Sheet 1 of 4)
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Figure 22 1K_FLTR.ASM Flowchart (Sheet 2 of 4)
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Figure 22 1K_FLTR.ASM Flowchart (Sheet 3 of 4)
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Figure 22 1K_FLTR.ASM Flowchart (Sheet 4 of 4)
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The 5 Band Audio Frequency Analyzer (5BAND_SA.ASM)

The final design of the AFA is simple because of the groundwork that has already been done. Figure 23 is
a flowchart of 5BAND_SA.ASM. Notice that five iterations of the IIR bandpass filter are executed before
control passes to the interrupt routine. 

The five bands and their Q values are: 125 Hz – 0.5, 500 Hz – 1.0, 1 kHz – 1.5, 4 kHz – 1.0, and 10 kHz –
0.5. Coefficient values are in the area labeled ‘Address of coefficients...’ at the beginning of the listing. 

The specified Q values were chosen because they produce an appealing frequency display. If sharp filters
with high Q values were used, the display would not show the relative differences between the bass,
midrange, and treble frequency ranges. Energy associated to one particular frequency is not the primary
concern of the AFA design, but rather the energy of an entire frequency band. 

Test the code as before with the 1-kHz filter. Sweep a sinusoidal tone across the frequency and watch the
appropriate LED array display signal energy. Apply a real time audio signal. Notice the differences between
the high and low ends of the audio spectrum, the visible contrast between a bass drum and a cymbal. 

5BAND_SA.ASM Code Listing
        
        INCLUDE 'EQUATES.ASM'   ;table of EQUates for common register addr
        INCLUDE 'ORG00000.ASM'  ;initialize reset vector

*****   Addresses of coefficients for the IIR Filters and initialization
COEFBS  EQU     $0280           ;base addr of coefficients
GAM_125 EQU     COEFBS+$0       ;addr of the gamma coef
BET_125 EQU     COEFBS+$2       ;addr of the beta coef
ALP_125 EQU     COEFBS+$4       ;addr of the alpha coef
GAM_500 EQU     COEFBS+$6       ;addr of the gamma coef
BET_500 EQU     COEFBS+$8       ;addr of the beta coef
ALP_500 EQU     COEFBS+$A       ;addr of the alpha coef
GAM_1K  EQU     COEFBS+$C       ;addr of the gamma coef
BET_1K  EQU     COEFBS+$E       ;addr of the beta coef
ALP_1K  EQU     COEFBS+$10      ;addr of the alpha coef
GAM_4K  EQU     COEFBS+$12      ;addr of the gamma coef
BET_4K  EQU     COEFBS+$14      ;addr of the beta coef
ALP_4K  EQU     COEFBS+$16      ;addr of the alpha coef
GAM_10K EQU     COEFBS+$18      ;addr of the gamma coef
BET_10K EQU     COEFBS+$1A      ;addr of the beta coef
ALP_10K EQU     COEFBS+$1C      ;addr of the alpha coef
        ORG     $F0280
        dc.w    $7C07           ;125 Hz gamma coef, Q=0.5
        dc.w    $C3E9           ;125 Hz beta coef, Q=0.5
        dc.w    $01F4           ;125 Hz alpha coef, Q=0.5
        dc.w    $7774           ;500 Hz gamma coef, Q=1.0
        dc.w    $C798           ;500 Hz beta coef, Q=1.0
        dc.w    $03CB           ;500 Hz alpha coef, Q=1.0
        dc.w    $7257           ;1k Hz gamma coef, Q=1.5
        dc.w    $C9F0           ;1k Hz beta coef, Q=1.5
        dc.w    $04F7           ;1k Hz alpha coef, Q=1.5
        dc.w    $2C13           ;4k Hz gamma coef, Q=1.0
        dc.w    $ED7A           ;4k Hz beta coef, Q=1.0
        dc.w    $16BC           ;4k Hz alpha coef,Q=1.0
        dc.w    $CA66           ;10k Hz gamma coef, Q=0.5
        dc.w    $FDFE           ;10k Hz beta coef, Q=0.5
        dc.w    $1EFE           ;10k Hz alpha coef, Q=0.5
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*****   Addresses of filter terms for the x(n) terms and initialization
XTRMBS  EQU     $02A0           ;base addr of x(n) filter terms
XN1_125 EQU     XTRMBS+$0       ;x(n-1)
XN2_125 EQU     XTRMBS+$2       ;x(n-2)
XN1_500 EQU     XTRMBS+$4       ;x(n-1)
XN2_500 EQU     XTRMBS+$6       ;x(n-2)
XN1_1K  EQU     XTRMBS+$8       ;x(n-1)
XN2_1K  EQU     XTRMBS+$A       ;x(n-2)
XN1_4K  EQU     XTRMBS+$C       ;x(n-1)
XN2_4K  EQU     XTRMBS+$E       ;x(n-2)
XN1_10K EQU     XTRMBS+$10      ;x(n-1)
XN2_10K EQU     XTRMBS+$12      ;x(n-2)
        ORG     $F02A0
        dc.w    $0000           ;125 Hz x(n-1)
        dc.w    $0000           ;125 Hz x(n-2)
        dc.w    $0000           ;500 Hz x(n-1)
        dc.w    $0000           ;500 Hz x(n-2)
        dc.w    $0000           ;1k Hz x(n-1)
        dc.w    $0000           ;1k Hz x(n-2)
        dc.w    $0000           ;1k Hz x(n-1)
        dc.w    $0000           ;1k Hz x(n-2)
        dc.w    $0000           ;1k Hz x(n-1)
        dc.w    $0000           ;1k Hz x(n-2)

*****   Addresses of filter terms for the y(n) terms and initialization
YTRMBS  EQU     $02C0           ;base addr of y(n) filter terms
YN1_125 EQU     YTRMBS+$0       ;y(n-1)
YN2_125 EQU     YTRMBS+$2       ;y(n-2)
X_2_125 EQU     YTRMBS+$4       ;x(n) - x(n-2), stored here for mac
YN1_500 EQU     YTRMBS+$6       ;y(n-1)
YN2_500 EQU     YTRMBS+$8       ;y(n-2)
X_2_500 EQU     YTRMBS+$A       ;x(n) - x(n-2), stored here for mac
YN1_1K  EQU     YTRMBS+$C       ;y(n-1)
YN2_1K  EQU     YTRMBS+$E       ;y(n-2)
X_2_1K  EQU     YTRMBS+$10      ;x(n) - x(n-2), stored here for mac
YN1_4K  EQU     YTRMBS+$12      ;y(n-1)
YN2_4K  EQU     YTRMBS+$14      ;y(n-2)
X_2_4K  EQU     YTRMBS+$16      ;x(n) - x(n-2), stored here for mac
YN1_10K EQU     YTRMBS+$18      ;y(n-1)
YN2_10K EQU     YTRMBS+$1A      ;y(n-2)
X_2_10K EQU     YTRMBS+$1C      ;x(n) - x(n-2), stored here for mac
        ORG     $F02C0
        dc.w    $0000           ;125 Hz y(n-1)
        dc.w    $0000           ;125 Hz y(n-2)
        dc.w    $0000           ;125 Hz [ x(n) - x(n-2) ]
        dc.w    $0000           ;500 Hz y(n-1)
        dc.w    $0000           ;500 Hz y(n-2)
        dc.w    $0000           ;500 Hz [ x(n) - x(n-2) ]
        dc.w    $0000           ;1k Hz y(n-1)
        dc.w    $0000           ;1k Hz y(n-2)
        dc.w    $0000           ;1k Hz [ x(n) - x(n-2) ]
        dc.w    $0000           ;4k Hz y(n-1)
        dc.w    $0000           ;4k Hz y(n-2)
        dc.w    $0000           ;4k Hz [ x(n) - x(n-2) ]
        dc.w    $0000           ;10k Hz y(n-1)
        dc.w    $0000           ;10k Hz y(n-2)
        dc.w    $0000           ;10k Hz [ x(n) - x(n-2) ]

*****   Addresses of various temporary variables and initialization
PKRES   EQU     $02E0           ;base addr of filter result storage
PK_125  EQU     PKRES+$0        ;peak value for 125 Hz
PK_500  EQU     PKRES+$1        ;peak value for 500 Hz
PK_1K   EQU     PKRES+$2        ;peak value for 1k Hz
PK_4K   EQU     PKRES+$3        ;peak value for 4k Hz
PK_10K  EQU     PKRES+$4        ;peak value for 10k Hz
CNT     EQU     PKRES+$6        ;count value for LED qspi update routine
AD      EQU     PKRES+$8        ;divided by two adc reading
        ORG     $F02E0
        dc.w    $0000           ;125 peak value, 500 peak value
        dc.w    $0000           ;1k peak value, 4k peak value
        dc.w    $0000           ;10k peak value
        dc.w    $0000           ;update count value
        dc.w    $0000           ;divided by two adc reading

        ORG     $0200
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*****   Initialization Routines *****

        INCLUDE 'INITSYS.ASM'   ;initially set EK=F, XK=0, YK=0, ZK=0
                                ;set sys clock at 16.78 MHz, disable COP

*****   RAM and Stack Initialization        *
        LDD     #$00FF
        STD     RAMBAH          ;store high ram array, bank F
        LDD     #$0000
        STD     RAMBAL          ;store low ram array, 0000
        CLR     RAMMCR          ;enable ram
        LDAB    #$0F
        TBSK                    ;set SK to bank F for system stack
        LDS     #$02FE          ;put SP in 1k internal SRAM

*****   Initialize level 6 autovector address
        LDAB    #$00
        TBEK                    ;ek extension pointer = bank0
        LDD     #JMPINT         ;load Dacc with interrupt vector addr
        STD     $002C           ;store addr to level 6 autovector

*****   Initialize the PIT      *****
        LDAB    #$0F
        TBEK                    ;ek extension pointer = bankf
        LDD     #$0616
        STD     PICR            ;pirql=6, piv=$16
        LDD     #$0101
        STD     PITR            ;set the periodic timer at 62.5msec
        ANDP    #$FF1F          ;set interrupt priority to 000

*****   QSPI Initialization     *****
        LDAA    #$08
        STAA    QPDR            ;output pcs0/ss* to 0 when asserted
        LDAA    #$0F
        STAA    QPAR            ;assign QSM port pins to qspi module
        LDAA    #$FE
        STAA    QDDR            ;assign all QSM pins as outputs except miso

        LDD     #$8004          ;mstr, womq=cpol=cpha=0
        STD     SPCR0           ;16 bits, 2.10MHz serial baud rate
        LDD     #$0300          ;no interrupt generated, no wrap mode
        STD     SPCR2           ;newqp=0, endqp=3, queued for 4 trans

*****   Fill QSPI Command.ram to write the config registers of the 14489
        LDAA    #$C0
        STAA    CR0             ;cont=1, bitse=1, pcs0=0, no delays needed
        STAA    CR1
        STAA    CR2
        LDAA    #$40
        STAA    CR3             ;cont=0, bitse=1, pcs0=0, no delays needed

*****   Fill QSPI Transmit.ram to write the config registers of the 14489
        LDAA    #$3F
        STD     TR0+1           ;store $3F to tran.ram registers
        STD     TR2
        STD     TR3+1

*****   Turn on the QSPI, this will write to the config registers
*****   of the MC14489 drivers
GO      LDD     #$8404
        STAA    SPCR1           ;turn on spi
SPIWT   LDAA    SPSR            ;after sending data we wait until the
        ANDA    #$80            ;spif bit is set, before we can send more
        CMPA    #$80            ;check for spi done
        BNE     SPIWT

*****   Fill QSPI Command.ram to write the display registers of the 14489
        LDAA    #$C0
        STAA    CR0             ;cont=1, bitse=1, pcs0=0, no delays needed
        STAA    CR1
        LDAA    #$40            ;cont=0, bitse=1, pcs0=0, no delays needed
        STAA    CR2
        STAA    CR4
        LDAA    #$80            ;cont=1, bitse=0, pcs0=0, no delays needed
        STAA    CR3
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*****   Fill QSPI Transmit.ram for display registers of the 14489
*****   The beginning LED values will be $00, all of the LEDs will be off
        LDD     #$8000
        STD     TR0             ;TR0 = $8000
        STAA    TR3+1           ;TR1 = $0080
        LDD     #$0080          ;TR2 = $0000
        STD     TR1             ;TR3 = $XX80
        CLRD                    ;TR4 = $0000
        STD     TR2
        STD     TR4

        LDD     #$0400          ;display registers need 5 transmissions
        STD     SPCR2           ;newqp=0, endqp=4

*****   ADC Initialization      *****
        LDD     #$0000
        STD     ADCMCR          ;turn on ADC
        LDD     #$0003
        STD     ADCTL0          ;8-bit, set sample period

*****   Initialize the extension registers for the internal ram in bank F
*****   Set up the extension registers to point to bank F
        LDAB    #$0F            ;load b with $0F
        TBEK                    ;transfer Bacc to Ek
        TBXK                    ;transfer Bacc to Xk
        TBYK                    ;transfer Bacc to Yk
        TBZK                    ;transfer Bacc to Zk
        JMP     RAM             ;jump to internal ram for speed!

*****   Start of Internal 1K RAM
        ORG     $F0000
RAM     CLR     CNT             ;clear LED update counter
        CLR     PK_125          ;clear 125 peak value
        CLR     PK_500          ;clear 500 peak value
        CLR     PK_1K           ;clear 1k peak value
        CLR     PK_4K           ;clear 4k peak value
        CLR     PK_10K          ;clear 10k peak value
        CLRW    AD              ;clear AD

*       Initialization for DSP
        ORP     #$0010          ;set saturation mode for Macc
        CLRD                    ;clear Dacc
        TDMSK                   ;no modulo addressing

LP      LDY     #COEFBS         ; 4 load y with the coef base addr
        LDX     #YTRMBS         ; 4 load x with the yterm base addr
        LDHI                    ; 8 load h and i multiplier and multiplicand
        CLRD                    ; 2 clear Dacc
        STD     ADCTL1          ; 6 single 4 conversion, single channel AD0
                                ;   writing to the ADCTL1 reg starts conv

*       Divide input x(n) by 2, no overflow problem
  LDAA    LJSRR0          ; 6 load Aacc with left jus signed ADC value
  ASRA                    ; 2 divide by 2

        STAA    AD              ; 6 store divide by 2 adc value away

*       Check if LEDs need updating
        LDAA    CNT             ; 6 load Aacc with count
        ADDA    #1              ; 2 add 1 to Aacc
        STAA    CNT             ; 6 store new count
        BNE     F125            ; 6,2 check to see if its time to update
                                ;     the LEDs, time = 256 * 668 cycles
                                ;     668 cycles = 40.08usec
                                ;     so LED update time is 10.26msec
        LDD     #$8404          ; 6 load up Dacc
        STD     SPCR1           ; 6 turn on QSPI, send LED data out

*****   Start of the 125 Hz routine
F125    CLRM                    ; 2 clear Macc
        LDE     AD              ; 6 load Eacc with AD
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*       Digital processing algorithm
        TED                     ; 2 transfer Eacc to Dacc
        SUBD    XN2_125         ; 6 Dacc =  x(n) - x(n-2)
        STD     X_2_125         ; 6 store Dacc to [x(n) - x(n-2)] addr
        LDD     XN1_125         ; 6 load Dacc with x(n-1)
        STED    XN1_125         ; 8 store x(n) to x(n-1) and
                                ;   store x(n-1) to x(n-2)

        MAC     2,2             ;12 gamma*(yn1)+Macc=Macc
        MAC     2,2             ;12 beta*(yn2)+Macc=Macc
        MAC     2,2             ;12 alpha*[x(n)-x(n-2)]+Macc=Macc
        TMER                    ; 6 transfer Macc to Eacc, round for converg
        ASLE                    ; 2 multiply Eacc by 2

*       Get LED encode value from look-up table
        TED                     ; 2 transfer Eacc to Dacc
        STAA    LD125+3         ; 6 Dacc high byte -> instruction ldaa $03??
        NOP                     ; 2 no operation, due to CPU pipeline
        NOP                     ; 2 no operation, due to CPU pipeline
LD125   LDAA    LED_TBL         ; 6 load Aacc with the encoded LED value
                                ;   from scaled peak LED table

*       Update peak value if needed
        CMPA    PK_125          ; 6 compare value to previous peak value
        BLS     DN125           ; 6,2 branch if not more than peak value
        STAA    PK_125          ; 6 store new peak value
        STAA    TR4+1           ; 6 store new value to 125 qspi tran.ram

*       Update y(n-1) and y(n-2)
DN125   LDD     YN1_125         ; 6 load Dacc with y(n-1)
        STED    YN1_125         ; 8 store Eacc to y(n-1), Dacc to y(n-2)

*****   Start of the 500 Hz DSP routine
F500    CLRM                    ; 2 clear Macc
        LDE     AD              ; 6 load Eacc with AD

*       Digital processing algorithm
        TED                     ; 2 transfer Eacc to Dacc
        SUBD    XN2_500         ; 6 Dacc = x(n) - x(n-2)
        STD     X_2_500         ; 6 store Dacc to [x(n) - x(n-2)] addr
        LDD     XN1_500         ; 6 load Dacc with x(n-1)
        STED    XN1_500         ; 8 store x(n) to x(n-1) and
                                ;   store x(n-1) to x(n-2)
        MAC     2,2             ;12 gamma*(yn1)+Macc=Macc
        MAC     2,2             ;12 beta*(yn2)+Macc=Macc
        MAC     2,2             ;12 alpha*[x(n)-x(n-2)]+Macc=Macc
        TMET                    ; 2 transfer Macc to Eacc, truncate
        ASLE                    ; 2 multiply Eacc by 2

*       Get LED encode value from look-up table
        TED                     ; 2 transfer Eacc to Dacc
        STAA    LD500+3         ; 6 Dacc high byte -> instruction ldaa $03??
        NOP                     ; 2 no operation, due to CPU pipeline
        NOP                     ; 2 no operation, due to CPU pipeline
LD500   LDAA    LED_TBL         ; 6 load Aacc with the encoded LED value
                                ;   from scaled peak LED table

*       Update peak value if needed
        CMPA    PK_500          ; 6 compare value to previous peak value
        BLS     DN500           ; 6,2 branch if not more than peak value
        STAA    PK_500          ; 6 store new peak value
        STAA    TR4             ; 6 store new value to 500 qspi tran.ram

*       Update y(n-1) and y(n-2)
DN500   LDD     YN1_500         ; 6 load Dacc with y(n-1)
        STED    YN1_500         ; 8 store Eacc to y(n-1), Dacc to y(n-2)

*****   Start of the 1k Hz routine
F1K     CLRM                    ; 2 clear Macc
        LDE     AD              ; 6 load Eacc with AD
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*       Digital processing algorithm
        TED                     ; 2 transfer Eacc to Dacc
        SUBD    XN2_1K          ; 6 Dacc = x(n) - x(n-2)
        STD     X_2_1K          ; 6 store Dacc to [x(n) - x(n-2)] addr
        LDD     XN1_1K          ; 6 load Dacc with x(n-1)
        STED    XN1_1K          ; 8 store x(n) to x(n-1) and
                                ;   store x(n-1) to x(n-2)

        MAC     2,2             ;12 gamma*(yn1)+Macc=Macc
        MAC     2,2             ;12 beta*(yn2)+Macc=Macc
        MAC     2,2             ;12 alpha*[x(n)-x(n-2)]+Macc=Macc
        TMET                    ; 2 transfer Macc to Eacc, truncate
        ASLE                    ; 2 multiply Eacc by 2

*       Get LED encode value from look-up table
        TED                     ; 2 transfer Eacc to Dacc
        STAA    LD1K+3          ; 6 Dacc high byte -> instruction ldaa $03??
        NOP                     ; 2 no operation, due to CPU pipeline
        NOP                     ; 2 no operation, due to CPU pipeline
LD1K    LDAA    LED_TBL         ; 6 load Aacc with the encoded LED value
                                ;   from scaled peak LED table

*       Update peak value if needed
        CMPA    PK_1K           ; 6 compare value to previous peak value
        BLS     DN1K            ; 6,2 branch if not more than peak value
        STAA    PK_1K           ; 6 store new peak value
        STAA    TR2+1           ; 6 store new value to 1k qspi tran.ram

*       Update y(n-1) and y(n-2)
DN1K    LDD     YN1_1K          ; 6 load Dacc with y(n-1)
        STED    YN1_1K          ; 8 store Eacc to y(n-1), Dacc to y(n-2)

*****   Start of the 4k Hz routine
F4K     CLRM                    ; 2 clear Macc
        LDE     AD              ; 6 load Eacc with AD

*       Digital processing algorithm
        TED                     ; 2 transfer Eacc to Dacc
        SUBD    XN2_4K          ; 6 Dacc = x(n) - x(n-2)
        STD     X_2_4K          ; 6 store Dacc to [x(n) - x(n-2)] addr
        LDD     XN1_4K          ; 6 load Dacc with x(n-1)
        STED    XN1_4K          ; 8 store x(n) to x(n-1) and
                                ;   store x(n-1) to x(n-2)

        MAC     2,2             ;12 gamma*(yn1)+Macc=Macc
        MAC     2,2             ;12 beta*(yn2)+Macc=Macc
        MAC     2,2             ;12 alpha*[x(n)-x(n-2)]+Macc=Macc
        TMET                    ; 2 transfer Macc to Eacc, truncate
        ASLE                    ; 2 multiply Eacc by 2

*       Get LED encode value from look-up table
        TED                     ; 2 transfer Eacc to Dacc
        STAA    LD4K+3          ; 6 Dacc high byte -> instruction ldaa $03??
        NOP                     ; 2 no operation, due to CPU pipeline
        NOP                     ; 2 no operation, due to CPU pipeline
LD4K    LDAA    LED_TBL         ; 6 load Aacc with the encoded LED value
                                ;   from scaled peak LED table

*       Update peak value if needed
        CMPA    PK_4K           ; 6 compare value to previous peak value
        BLS     DN4K            ; 6,2 branch if not more than peak value
        STAA    PK_4K           ; 6 store new peak value
        STAA    TR2             ; 6 store new value to 4k qspi tran.ram

*       Update y(n-1) and y(n-2)
DN4K    LDD     YN1_4K          ; 6 load Dacc with y(n-1)
        STED    YN1_4K          ; 8 store Eacc to y(n-1), Dacc to y(n-2)

*****   Start of the 10k Hz routine
F10K    CLRM                    ; 2 clear Macc
        LDE     AD              ; 6 load Eacc with AD
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*       Digital processing algorithm
        TED                     ; 2 transfer Eacc to Dacc
        SUBD    XN2_10K         ; 6 Dacc =  x(n) - x(n-2)
        STD     X_2_10K         ; 6 store Dacc to [x(n) - x(n-2)] addr
        LDD     XN1_10K         ; 6 load Dacc with x(n-1)
        STED    XN1_10K         ; 8 store x(n) to x(n-1) and
                                ;   store x(n-1) to x(n-2)

        MAC     2,2             ;12 gamma*(yn1)+Macc=Macc
        MAC     2,2             ;12 beta*(yn2)+Macc=Macc
        MAC     2,2             ;12 alpha*[x(n)-x(n-2)]+Macc=Macc
        TMET                    ; 2 transfer Macc to Eacc, truncate
        ASLE                    ; 2 multiply Eacc by 2

*       Get LED encode value from look-up table
        TED                     ; 2 transfer Eacc to Dacc
        STAA    LD10K+3         ; 6 Dacc high byte -> instruction ldaa $03??
        NOP                     ; 2 no operation, due to CPU pipeline
        NOP                     ; 2 no operation, due to CPU pipeline
LD10K   LDAA    LED_TBL         ; 6 load Aacc with the encoded LED value
                                ;   from scaled peak LED table

*       Update peak value
        CMPA    PK_10K          ; 6 compare value to previous peak value
        BLS     DN10K           ; 6,2 branch if not more than peak value
        STAA    PK_10K          ; 6 store new peak value
        STAA    TR1             ; 6 store new value to 10k qspi tran.ram

*       Update y(n-1) and y(n-2)
DN10K   LDD     YN1_10K         ; 6 load Dacc with y(n-1)
        STED    YN1_10K         ; 8 store Eacc to y(n-1), Dacc to y(n-2)
        NOP

END     JMP     LP              ; 6 jump back to start another conversion
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*****   Exceptions/Interrupts   *****
*****   This interrupt is used to decrement each LED bar value
*****   representing the peak value of each filter band
INT_RT  PSHM    D,CCR           ;stack Dacc and CCR on stack

CK125   LDAA    PK_125          ;load Aacc with 125 peak value
        BEQ     CK500           ;equal to 0?, then CK500
        ANDP    #$FEFF          ;clear C bit
        RORA                    ;rotate right once, decrease peak value
        STAA    TR4+1           ;store Aacc to 125 Hz qspi tran.ram
        STAA    PK_125          ;store Aacc to 125 Hz peak value

CK500   LDAA    PK_500          ;load Aacc with 500 peak value
        BEQ     CK1K            ;equal to 0?, then CK1K
        ANDP    #$FEFF          ;clear C bit
        RORA                    ;rotate right once, decrease peak value
        STAA    TR4             ;store Aacc to 500 Hz qspi tran.ram
        STAA    PK_500          ;store Aacc to 500 Hz peak value
CK1K    LDAA    PK_1K           ;load Aacc with 1k peak value
        BEQ     CK4K            ;equal to 0?, then CK4K
        ANDP    #$FEFF          ;clear C bit
        RORA                    ;rotate right once, decrease peak value
        STAA    TR2+1           ;store Aacc to 1k Hz qspi tran.ram
        STAA    PK_1K           ;store Aacc to 1k Hz peak value

CK4K    LDAA    PK_4K           ;load Aacc with 4k peak value
        BEQ     CK10K           ;equal to 0?, then CK10K
        ANDP    #$FEFF          ;clear C bit
        RORA                    ;rotate right once, decrease peak value
        STAA    TR2             ;store Aacc to 4k Hz qspi tran.ram
        STAA    PK_4K           ;store Aacc to 4k Hz peak value

CK10K   LDAA    PK_10K          ;load Aacc with 10k peak value
        BEQ     UPDATE          ;equal to 0?, then UPDATE
        ANDP    #$FEFF          ;clear C bit
        RORA                    ;rotate right once, decrease peak value
        STAA    TR1             ;store Aacc to 10k Hz qspi tran.ram
        STAA    PK_10K          ;store Aacc to 10k Hz peak value

UPDATE  LDD     #$8404          ;load up Dacc
        STD     SPCR1           ;turn on QSPI, send LED data out

DONE    PULM    D,CCR           ;pull Dacc and CCR from stack
        RTI                     ;return from interrupt

*****   Location of start of level 6 interrupt, has to be in bank 0
        ORG     $A000
JMPINT  JMP     INT_RT

*****   OUTVAL1 is a 256 byte lookup table to convert an
*****   ADC reading to a LED value that can be transmitted to the 14489
*****   Multiplies by two and
*****   Encodes to a scale of +6, +3, 0, -3, -6, -9, -12, -15 dB
        INCLUDE 'OUTVAL1.ASM'   ;LED Look up table
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Figure 23  5BAND_SA.ASM Flowchart (Sheet 1 of 4)
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 Figure 23 5BAND_SA.ASM Flowchart (Sheet 2 of 4)
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Figure 23 5BAND_SA.ASM Flowchart (Sheet 3 of 4)
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 Figure 23 5BAND_SA.ASM Flowchart (Sheet 4 of 4)
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CONCLUSION

This application note is intended to give designers some insight concerning the use of digital signal process-
ing algorithms with a microcontroller. The finished project is flexible enough to permit experimenting with
different filters and LED output displays. DSP allows the experimenter to make on-the-fly changes in filter
response by changing the coefficients. 
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