

Order this document by:

A N 1 2 3 3 / D

SEMICONDUCTOR

MOTOROLA

APPLICATION NOTE

Using M68HC16 Digital Signal Processing
To Build An Audio Frequency Analyzer
By Mark Glenewinkel

INTRODUCTION

This application note demonstrates the use of a microcontroller unit (MCU) with integrated DSP capabilities.
The MC68HC16Z1 is a high performance 16-bit MCU that includes on-chip peripheral modules and a CPU
module (CPU16). The CPU16 instruction set simplifies the use of digital signal processing algorithms, and
makes it easy to implement low-bandwidth filter and control-oriented applications.

OBJECTIVES

The goal of this application note is for an engineer to learn the MC68HC16Z1 well enough to design and
build an audio frequency analyzer (AFA). The following intermediate objectives have been defined to help
reach this goal.

• Learning the CPU16 instruction set

• Becoming familiar with MC68HC16Z1 modules

• Learning basic MCU I/O hardware and software

• Understanding DSP system concepts with the frequency analyzer

• Understanding and implementing common DSP algorithms with an MCU

This is a tutorial design project that follows a hands-on approach to using DSP. It provides concrete hard-
ware/software applications that are used to understand and design an MCU-based system utilizing DSP al-
gorithms. A basic knowledge of MC68HC16Z1 hardware and the CPU16 instruction set is necessary to
complete the design project. A complete discussion of digital signal processing is beyond the scope of this
note. However, there are a number of standard textbooks and references available. Please refer to the Mo-
torola publications listed under REFERENCES for more information concerning topics and devices dis-
cussed in this note.
© MOTOROLA INC, 1996

EQUIPMENT REQUIRED

The following items are needed to build and test the audio frequency analyzer (AFA).

1. An IBM PC compatible computer with a parallel printer port

2. The M68HC16Z1EVB

3. A prototyping or wire-wrap board

4. One straight DB25 cable, male on one end, female on the other

5. A 5 volt power supply

6. An audio sound source, preferably a CD player

7. Two Y-connectors to split the stereo sound source with audio cables

8. A sinusoidal waveform generator, optional

9. Oscilloscope for debugging, optional

All of the components needed to build the AFA are shown in Figure 4 and Figure 5, the AFA schematics.

THE AUDIO FREQUENCY ANALYZER

Spectral analysis is a method of determining the specific frequency content of a signal and the energy levels
of these frequencies. This information is processed by either Fourier Transform methods or by specific fil-
tering of the signal. The information is tabulated for more analysis or displayed in a visual format.

One example of spectral analysis is found in oil exploration. An engineer sends a known signal into the earth
and then calculates the frequency content of the reflected signal. This is a classic input/output black box.
The transfer function of the black box (the earth in this case) yields clues to the structure beneath the sur-
face. Different frequency responses correspond to different types of rock. With spectral analysis, the engi-
neer can decide whether it is feasible to drill.

This project focuses on the frequency analysis of an audio signal. A frequency analyzer is often used in au-
dio systems and recording studios. It filters out energy levels of specific audio frequencies and displays
them to indicate the frequency content of the audio signal. Audio frequency analyzers are also used in con-
junction with equalizers to help the user define and shape the spectral characteristics of a sound source.

Figure 1 is a generic system diagram of a frequency analyzer based on bandpass filters. The input signal
is split and sent to all the filters. The filters pass only specific frequency components of the input signal. After
filtration, the strength of each passed signal is analyzed, and the amount of energy in each band is repre-
sented on an LED display. This process is executed in a continuous real-time algorithm. Figure 2 shows a
typical audio frequency analyzer transfer function.

Figure 3 is a system diagram of the AFA project, which is implemented using digital filters. Two stereo audio
signal inputs are combined by a summing circuit. An anti-aliasing filter removes unwanted high frequency
components. A biasing circuit centers the signal around 2.5 vdc for proper analog-to-digital conversion. The
ADC module in the MC68HC16Z1 samples the analog signal and digitizes it, then the data is processed by
the CPU16. Processing consists of five DSP bandpass filter algorithms. Each determines the amplitude of
a specific frequency band and encodes display data. The queued serial peripheral interface (QSPI) is used
to send display data to the LED array in real time. Each of these functional blocks is discussed in detail later
in this note. Hardware is discussed first, then software.
MOTOROLA AN1233/D
2

Figure 1 Frequency Analyzer System Diagram

Figure 2 Bandpass Frequency Analyzer Transfer Function

BANDPASS FILTER

PEAK DETECT
&

COMPARISON

LED DRIVERS

LED DRIVERS

PEAK DETECT
&

COMPARISON

BANDPASS FILTER

BANDPASS FILTER PEAK DETECT
&

COMPARISON

LED DRIVERS

1ST BAND

2ND BAND

NTH BAND

AN1233 F1

ANALOG
SIGNAL

AN1233 F2

MAGNITUDE

FREQUENCY

0dB
AN1233/D MOTOROLA
3

Figure 3 Audio Frequency Analyzer System Diagram

AFA Hardware

Familiarity with the AFA hardware helps to understand the code used to implement the analyzer. Figure 4
is a schematic of the analog front end of the AFA, and Figure 5 is a schematic of the display logic.

AN1233 F3

LOW-PASS ANTI-ALIASING

FO

0dB AD0

HC16Z1

+5V

LEFT

RIGHT

STEREO SUMMING AMPLIFIER

M
O

SI

SC
K

PC
S0

ADC
BIASFILTER

LED DRIVER

DOUT

PCS0

SCK

MOSI DIN

CLK

EN

1K 4K 10K

LED DRIVER LED DRIVER

DOUT

PCS0

SCK

MOSI DIN

CLK

EN

100 200
DOUT

PCS0

SCK

MOSI DIN

CLK

EN
MOTOROLA AN1233/D
4

Figure 4 AFA Analog Front End

C5
0.1µF

5
V+

+5VA

17
V–

AGND

INA

LPIA

LPOA

INB

LPIB

LPOB

24

22

19
21
23

LPOD

BPID

LPID
BPOD

IND

13LPOC

U9
MAX274

BPIC

LPIC
BPOC

INC
BPIB

BPOB

BPIA

BPOA

15

18
15
14

2
4
6

3
1

11
9
7

10
12

8
FC

20
GNDR15

46.4KΩ

AD0

R7, 200KΩ

R8, 453KΩ

R5, 40.2KΩ

R3, 162KΩ

R2, 226KΩ

R1, 232KΩ

R4, 196KΩ

R17, 90.9KΩ

R18, 681KΩ

R21, 66.5KΩ

R23, 332KΩ

R22, 332KΩ

R19, 107KΩ

R20, 665KΩ

R12
10KΩ

C10
0.1µF

R13
10KΩ

C11
0.1µF

C12
4.7µF

C13
4.7µF

C6
10µF

R16
133KΩ

C7
10µF

R14
133KΩ

LEFT

RIGHT

GND

AGND

AUDIO INPUT

+5VA

AGND

C9
10µF

C1
0.1µF

C8
1.0µF

C2
0.1µF

C3
0.1µF

C4
47µF

L1
10µH

+5VA

AGND GND

VCC

P2
(MATES WITH P7 ON EVB)

1
3
5
7
9

11
13
15

2
4
6
8
10
12
14
16

17
19

18
20

AD0 AD0

R6
1.0KΩ

AGND

+5VA

VRHP

AGND

VRLP

P3
(MATES WITH P6 ON EVB)

1
3
5
7
9

11
13
15

2
4
6
8
10
12
14
16

17
19

18
20MOSI

VCC

GND

SCK

PCS0/SS

AN1233 SCHEM P1

+5V
AN1233/D MOTOROLA
5

EM P2
Figure 5 AFA Digital Back End

500 Hz

U3
HLMP6658

1
2
3
4
5
6
7
8

16
15
14
13
12
11
10
9

1 kHz

U4
HLMP6658

1
2
3
4
5
6
7
8

16
15
14
13
12
11
10
9

4 kHz

U6
HLMP6658

1
2
3
4
5
6
7
8

16
15
14
13
12
11
10
9

125 Hz

U1
HLMP6658

1
2
3
4
5
6
7
8

16
15
14
13
12
11
10
9

AN1233 SCH

12

11

10

8

7
6
5
4
2
1
20

A
B
C
D
E
F
G

DIN

CLK

EN

RX

19

9
13
15
16
17

18

H

BANK1
BANK2
BANK3
BANK4
BANK5

DOUT

3
VDD

VCC

U2

14
VSS

R9
680Ω

MC14489

12

11

10

8

7
6
5
4
2
1
20

A
B
C
D
E
F
G

DIN

CLK

EN

RX

19

9
13
15
16
17

18

H

BANK1
BANK2
BANK3
BANK4
BANK5

DOUT

3
VDD

VCC

U8

14
VSS

GND

R11
680Ω

MC14489

12

11

10

8

7
6
5
4
2
1
20

A
B
C
D
E
F
G

DIN

CLK

EN

RX

19

9
13
15
16
17

18

H

BANK1
BANK2
BANK3
BANK4
BANK5

DOUT

3
VDD

VCC

U5

14
VSS

R10
680Ω

MC14489

CLOCK
ENABLE

PCS0/SS

SCK

MOSI

10 kHz

U7
HLMP6658

1
2
3
4
5
6
7
8

16
15
14
13
12
11
10
9

MOTOROLA AN1233/D
6

The Analog Front End

The analog front end contains all of the circuitry to condition the signal for analog-to-digital conversion and
subsequent digital signal processing. It consists of the summing circuitry for the stereo signal, the anti-alias-
ing filter, and the biasing circuitry for the ADC. A MAX274 low-pass filter chip, manufactured by the Maxim
Corporation of Sunnyvale, California, is used to implement all of these functions.

The MAX274 is an eighth order, programmable, continuous-time active filter. The chip consists of four in-
dependent cascadable second-order filter sections. Each filter section can implement any all-pole bandpass
or lowpass filter, characterized as a Butterworth, Bessel, or Chebyshev response. Each second-order sec-
tion is programmable with four external resistors. A second-order section is illustrated in Figure 6. Maxim
provides an evaluation board and a software package that calculates resistor values from response speci-
fications input by the user. This makes the MAX274 very flexible and easy to use when implementing high-
order anti-aliasing filters.

Figure 6 Second-Order Filter Section

The Summing Amplifier

The summing amplifier combines the two analog stereo signals coming into the system from the audio
source. The basic summing circuit shown in Figure 3 is implemented in the AFA by using an op amp in the
first second-order filter section of the MAX274. As shown in Figure 4, two summing resistors (R14 and R16)
are used to feed the input signals to the inverting input of the op amp, which combines them into one signal.

AN1233 F6

R1

RX

RY

79,575 PF 79,575 PF

5KΩ

50KΩ

50KΩ

R4R3

R2

INPUT IN

BANDPASS
 OUTPUT

LOWPASS
 OUTPUT

BANDPASS
 INPUT
AN1233/D MOTOROLA
7

Anti-Aliasing Filter

When a signal of a given frequency is sampled at too low a rate, it appears as a totally different lower fre-
quency at the output of the sampler. This phenomenon is referred to as aliasing. Aliasing occurs at a point
called the folding frequency, which is one-half the sampling frequency. In order for the frequency analyzer
to be accurate, sampling frequency must therefore be at least two times the highest frequency component
to be sampled. The ideal solution to this problem is to raise the sampling rate as high as possible, but real-
world designs generally have a fixed upper limit on sampling frequency. The most practical solution is to
attenuate high frequency components of the input signal so that aliasing does not occur. The anti-aliasing
filter correctly attenuates the high frequency components of the signal, so that they are not present within
the sample bandwidth.

The AFA has a 25-kHz sampling frequency (Fs), and a processing bandwidth of 10 kHz. If no filter is used,
signal components with a frequency higher than 12.5 kHz alias at lower frequencies, and the digitized sam-
ples represent invalid information. Figure 7 shows these relationships. Fs/2 is the folding frequency, 12.5
kHz. Frequencies that will not alias with a 25 kHz sampling frequency are to the left of Fs/2, while frequen-
cies that will alias are to the right of Fs/2.

Figure 7 AFA Aliasing Without Filter

Anti-aliasing filter design must be a compromise. An efficient and economical solution is to find an interme-
diate filtration range, between high-order filter roll-off and DSP bandwidth. If the filter has a slow roll-off, a
higher sampling frequency is needed, the sampling period is shortened, and there is less time for the DSP
algorithm to execute. In other words, a steeper roll-off requires a lower sampling frequency, which in turn
provides a longer sampling period for DSP operation.

The AFA anti-aliasing filter passes frequencies up to 10 kHz. The filter stop band begins at 15 kHz. Stop
band attenuation is dependent upon the application and the dynamic range of the sampled data. In this
case, filter output is fed to the ADC module in the MC68HC16Z1, which does not have sufficient resolution
or dynamic range to “see” energy in the stop band. An 8-bit conversion that allows a dynamic range of 48
dB is used. The following equation shows these relationships.

AN1233 F7

MAGNITUDE
(dB)

FREQ
(kHz)

0

12.5
FS/2

25
FS

10
MOTOROLA AN1233/D
8

Voltage Attenuation (dB) = 20 ∗ log [1/(2ADCres)]

Where:
ADCres = A/D converter resolution

System bandwidth is 10 kHz, and at a 25 kHz sampling frequency, components above 12.5 kHz will alias.
Therefore, the signal must be attenuated 48 dB to eliminate all aliasing components. Accordingly, the filter
must have a minimum drop-off slope of 96 dB per octave. To insure that this requirement is met, a roll-off
of 100 dB per octave is used. Using these values with the MAX274 design software, resistor values for an
eighth order 0.5 dB passband ripple Chebyshev filter were obtained. Lower passband ripple was sacrificed
to gain steeper roll-off. The anti-aliasing filter response programmed into the MAX274 is shown in Figure 8.

Figure 8 AFA Anti-Aliasing Filter Roll-Off

ADC Input Biasing

The MC68HC16Z1 ADC module can convert analog data into six different digital representations. Digital
data can have 8-bit or 10-bit resolution, can be signed or unsigned, and can be left or right justified. These
formats are shown in Figure 9.

Figure 9 ADC Conversion Formats

AN1233 F8

MAGNITUDE
(dB)

FREQ
(kHz)

0

12.5
FS/2

25
FS

10 15

-50

AN1233 F9

RIGHT JUSTIFIED UNSIGNED

LEFT JUSTIFIED SIGNED

LEFT JUSTIFIED UNSIGNED

RIGHT JUSTIFIED UNSIGNED

LEFT JUSTIFIED SIGNED

LEFT JUSTIFIED UNSIGNED

15 08 7
RESULT

RESULT

RESULT

RESULT

RESULT

RESULT

8 BIT

10 BIT

S

S

AN1233/D MOTOROLA
9

Figure 10 shows hexadecimal representations of signed and unsigned ADC data. For 8-bit conversions,
there are 256 possible values. Unsigned formats assume the zero voltage point is at the low ADC reference
voltage, with 256 steps from low to high reference. Signed formats assume that the zero voltage point is
halfway between the low and high ADC reference voltages. The most significant bit indicates a positive or
negative value — 128 values represent positive voltages, and 128 two’s-complement values represent neg-
ative voltages ($00 represents the midpoint, and $FF represents midpoint minus one count).

Figure 10 Hexadecimal Representation of 8-Bit ADC Data

The AFA uses signed, 8-bit, left justified ADC data. The analog signal must be biased at 2.5 vdc, centered
between the 0 vdc and 5 vdc ADC reference voltages, in order to use this representation. The MAX274 is
used to bias the signal.

The MAX274 requires two power connections. Biasing circuitry consists of a voltage divider (R12, R13) and
decoupling capacitors (C10 – C13) connected to one of the MAX274 supplies. The V– pin is connected to
analog ground. The V+ pin is connected to the 5 volt supply. The GND pin is connected to 2.5 volts. This
splits the supply and causes the analog signal to have a 2.5 volt DC offset. The signal is buffered by an op
amp driver and is sent directly to the ADC module pins from the MAX274. The ADC can now properly sam-
ple the signal.

The Digital Back End

The digital back end shown in Figure 5 contains all of the circuitry required to output digitally processed
information to the LED array. When digital signal processing is complete, encoded energy levels for each
band are loaded into QSPI transmit RAM, then the QSPI is activated, and the data is transmitted serially to
the MC14489 LED drivers.

QSPI software is one of the more difficult aspects of the AFA, but the hardware is quite simple. Three QSPI
pins, MOSI, SCK, and PCS0, are used. The master out slave in (MOSI) connection is used to transfer data,
the serial clock (SCK) connection is used to clock the transfer, and the peripheral chip select (PCS0) con-
nection is used to enable the LED drivers. The QSPI must be configured correctly to transfer data to the
drivers. Refer to the QSM Reference Manual (QSMRM/AD) for more information about the QSPI.

The MC14489 LED Driver

The MC14489 can drive individual lamps, seven-segment displays, or combinations of both, in a multi-
plexed fashion. The chip receives data via a serial input port, and features data retention plus decode and
scan circuitry. This reduces software overhead required to perform these tasks. A single current-limiting re-
sistor (Rx) is the only external component needed to operate the MC14489.

AN1233 F10

UNSIGNED

$FF
5.0V

$7F
2.5V

$00 0V

$80

$40 1.25V
$3F

$C0 3.75V
$BF

$7F
5.0V

$FF
2.5V

$80 0V

$00

$C0 1.25V
$BF

$40 3.75V
$3F

HEXADECIMAL
REPRESENTATION

SIGNED
HEXADECIMAL

REPRESENTATION
MOTOROLA AN1233/D
10

Three MC14489 drivers are used in the AFA. There are five 8-bit LED arrays. Two of the MC14489 chips
control four banks of four diodes each, and one controls two banks of four diodes each. Drive current for
diodes in each bank is supplied by pins A, B, C, and D of the MC14489. The cathodes of each bank of di-
odes are tied together and a bank-select pin sinks the current for that bank. Please refer to the MC14489
Data Sheet for more information.

The M68HC16Z1 EVB and Development Environment

The M68HC16Z1 Evaluation Board provides the capability to test and debug the audio frequency analyzer.
Table 1 shows development software supplied with the EVB.

MASM16 software is used to edit and assemble code, and EVB16 software is used to download code to the
EVB and run it. EVB16 software also has debug capabilities such as trace and breakpoint. Please refer to
the M68HC16Z1EVB User's Manual for a list of debug features.

Assembling the Development Environment

Assembling the development system with the AFA is simple. Hook up the system as shown in Figure 11.
The AFA project board connects to the M68HC16Z1EVB via P7 and P6. Use the DB25 cable to connect the
parallel port of the PC to the parallel port connector of the EVB. After connecting the 5 volt power supply to
the M68HC16Z1EVB, connect the audio signal source. A CD player is the recommended source for a high
quality output. Split the audio source outputs so that both the AFA board and the speakers receive the sig-
nals (audio splitters can be found at most stereo and electronics stores).

Table 1 Development Software

MASM16.EXE

MASM.EXE

HEX.EXE

MASM16.HLP

EVB16.EXE
AN1233/D MOTOROLA
11

Figure 11 AFA Development System Setup

SERIAL COMM
PORT

CD PLAYER

AN1233 F9

M68HC16Z1EVB

❮ ■ ❯
❙ ❙

ASSEMBLED
AFA PROTOTYPE

EVALUATION
BOARD

BOARD

TO
LEFT AND RIGHT

SPEAKERS

SERIAL
CABLE

5-VOLT POWER
SUPPLY
MOTOROLA AN1233/D
12

AFA Software

Even though hardware is required to build the AFA, software running on the CPU16 performs most of the
actual work. Five tutorial programs must be integrated to complete the project. Each program demonstrates
specific functions of the AFA, and each is discussed in a separate section. Since this is a DSP project/tuto-
rial, discussion focuses on signal-processing tasks. Each of the tutorial programs must be modified in order
to complete the AFA. The software steps to the AFA design are listed below.

1. Acquisition of data

2. QSPI to MC14489 interface

3. Periodic interrupt timer routine

4. Peak detector

5. 1-kHz bandpass filter routine

6. 5-band audio frequency analyzer

AFA software is listed in Table 2. Each of the first six programs in the table corresponds to one of the soft-
ware steps listed above. In order to organize and streamline the project, each program has been designed
according to a standard template for the M68HC16Z1EVB. Figure 12 shows the template.

OUTVAL1.ASM and OUTVAL2.ASM are lookup tables for the LED display routines. They contain values
that correspond to the number of LEDs needed to reflect a given peak value.

In addition, utility files that simplify startup and usage of the MC68HC16Z1 have been included in the AFA
software package. A brief description of each include file follows.

EQUATES.ASM provides an equates table of MC68HC16Z1 registers and equivalent address values.

ORG00000.ASM defines the reset vector.

INITSYS.ASM initializes the CPU16, takes care of the extension registers, disables the COP watchdog,
and sets system clock speed to 16.78 MHz.

INITRAM.ASM turns on the 1-Kbyte SRAM module, maps the RAM array to address $10000, and
moves the stack pointer to $103FE to increase interrupt-processing speed.

Source code for all of these files is available on the Motorola Freeware Bulletin Board. The BBS number is
(512) 891-3733. The files are archived under the name AFA.ARC, in the AMCU section.

Table 2 AFA Project Software

ADC.ASM

QSPI_LED.ASM

INT_TEST.ASM

PEAK.ASM

1K_FLTR.ASM

5BAND_SA.ASM

EQUATES.ASM

ORG00000.ASM

INITSYS.ASM

INITRAM.ASM

OUTVAL1.ASM

OUTVAL2.ASM
AN1233/D MOTOROLA
13

Figure 12 AFA Software Template

Software Design Constraints

It is important to understand the specifications and system constraints on the software. A software flow
diagram of the AFA is shown in Figure 13. Each of the process boxes in the flowchart corresponds to one
of the steps toward the complete design. The main tasks are to convert analog input to digital data, run five
infinite impulse response (IIR) bandpass filter routines, detect the peak amplitude of each filtered signal,
encode the peak value to an LED display value, update the QSPI transmit RAM, and transmit the informa-
tion to the LED drivers. The flowchart also shows that the AFA is a real-time digital signal processing algo-
rithm that runs in a continuous loop.

*
* MOTOROLA, INC.
* Advanced MCU Division
* Austin, Texas
*
* Title: HC16 SOFTWARE TEMPLATE
*
* File Name: TEMPLATE.ASM
*
* Description: This program provides a template for all
* designers to use with the HC16Z1
* An equate table is given.
* The reset vector is initialized.
* The CPU and RAM are also initialized.
* The user can put his code in the ‘user area’
* block of this template
*
* History: 06/05/91 Created.
* 10/02/91 Modified comments.
*
* Note: This program is written for the M68HC16Z1EVB.

 INCLUDE ‘EQUATES.ASM’ ;table of EQUates for common register addr
 INCLUDE ‘ORG00000.ASM’ ;initialize reset vector

 ORG $0200 ;start program after interrupt vectors

***** Initialization Routines *****
 INCLUDE ‘INITSYS.ASM’ ;initially set EK=F, XK=0, YK=0, ZK=0
 ;set sys clock at 16.78 MHz, disable COP
 INCLUDE ‘INITRAM.ASM’ ;initialize and turn on SRAM
 ;set stack (SK=1, SP=03FE)

***** Start of user program area *****
MOTOROLA AN1233/D
14

Figure 13 AFA System Software Flowchart

All processing must be completed within one period of the 24.95-kHz sampling frequency. As shown below,
a 24.95-kHz sampling frequency is equivalent to a 40.08-µs sampling period. The MC68HC16Z1 is running
at 16.78 MHz, so the system clock period is 60 ns. Thus, all necessary processing must be completed in
668 clock cycles, before the next sampling period begins.

Fs = 24.95 kHz

Ts = 1/Fs = 40.08 µs

 Fc = 16.78 MHz

 Tc = 1/Fc = 60 ns

System clock cycles per sampling period = Ts/Tc = 668 system clock cycles

Where:
Fs = Sampling frequency
Ts = Sampling period
Fc = MC68HC16Z1 CPU clock frequency
Tc = MC68HC16Z1 CPU clock period

AN1233 F13

A/D DATA AQUISITION
INCOMING ANALOG SIGNAL WILL
 BE CONTINUOUSLY SAMPLED AT

 A RATE OF 24.95 kHz

DIGITAL SIGNAL PROCESSING
FIVE INFINITE IMPULSE RESPONSE

FILTERS WILL BE
EXECUTED ON EACH SAMPLE
WITHIN THE SAMPLING PERIOD

BAND ANALYSIS
EACH BAND MAGNITUDE WILL BE

UPDATED WITH THE LATEST
PROCESSED MAGNITUDE

QSPI → LED DISPLAY
THE DATA REPRESENTING EACH
BAND WILL BE SENT OUT TO THE

LED ARRAY VIA QSPI

START
AN1233/D MOTOROLA
15

Figure 14 shows the relationship between sampling periods and real-time digital signal processing. All cal-
culations and internal/external housekeeping must be taken care of within the given sample period.

Figure 14 AFA Sampling Period

Software Design Implementation

The following sections examine AFA software in detail. For each of the programs, there is a discussion of
design and implementation, a code listing, and appropriate flow charts. In the interest of brevity, the stan-
dard template headers have been omitted from the listings, and redundant portions of flowcharts are repro-
duced only once.

Analog-to-Digital Data Acquisition (ADC.ASM)

In order to perform digital signal processing, a digital representation of the analog signal must be available.
The MC68HC16Z1 contains a programmable ADC module. The ADC has a number of automatic conver-
sion modes. Only four registers are needed to control the ADC. Refer to the ADC Reference Manual
(ADCRM/AD) for more detailed information.

ADC.ASM initializes the ADC module, then goes into a continuous loop, repeating the programmed con-
version sequence. Figure 15 is a flowchart of ADC.ASM.

To test the routine, first load and assemble the ADC.ASM file, then switch to the EVB16 debugger. Down-
load the assembled file to the M68HC16Z1EVB, trace execution until the infinite loop begins to execute,
then examine the ADC result registers.

Display the memory locations starting at $FF710. Check the memory location $FF711. If the AFA is hooked
up properly, a value somewhere between $74 and $8B will be displayed. This value is an unsigned repre-
sentation of 2.5 volts, plus or minus the offset voltage of the MAX274. This same value should also be found
at location $FF730. The signed representation of the same data is found at location $FF720. The design of
ADC.ASM is finished. Some of this code will be used to build other programs.

AN1233 F14

GET ADC
VALUE

RUN 5 IIR
DSP ROUTINES

DETECT PEAK OF
EACH FILTER

WRITE PEAK VALUES
TO QSPI

TRANSMIT RAM

TURN ON QSPI
OUTPUT PEAK VALUES

TO LED ARRAY

668 SYSTEM CLOCK CYCLES

STREAM OF SAMPLING PERIODS
MOTOROLA AN1233/D
16

 ADC.ASM Code listing

 INCLUDE 'EQUATES.ASM' ;table of EQUates for common register addr
 INCLUDE 'ORG00000.ASM' ;initialize reset vector

 ORG $0200

***** Initialization Routines *****

 INCLUDE 'INITSYS.ASM' ;initially set EK=F, XK=0, YK=0, ZK=0
 ;set sys clock at 16.78 MHz, disable COP
 INCLUDE 'INITRAM.ASM' ;initialize and turn on SRAM
 ;set stack (SK=1, SP=03FE)

ORG $0200
***** ADC Initialization *****
 LDD #$0000
 STD ADCMCR ;turn on ADC
 LDD #$0003
 STD ADCTL0 ;8-bit, set sample period

***** ADC Start *****
LOOP LDD #$0000
 STD ADCTL1 ;single 4 conversion, single channel, AD0
 ;writing to the ADCTL1 reg starts conversion

 LDAA #$80
SCFSET BITA ADSTAT ;check for the Sequence Complete Flag
 BEQ SCFSET ;complete?, if not check again
 BRA LOOP ;go get another sample

Figure 15 ADC.ASM Flowchart

AN1233 F15

START

ADC
INITIALIZATION

START UP
 ADC

IS
SCFSET = 1

NOYES
LOOP WAITS FOR ADC
CONVERSION TO FINISH

INCLUDE 'EQUATES.ASM'
INCLUDE 'ORG00000.ASM'
INCLUDE 'INITSYS.ASM'
INCLUDE 'INITRAM.ASM'

THESE INCLUDE FILES CONTAIN THE FOLLOWING:
AN EQUATE FILE WITH ALL THE Z1 REGISTERS DEFINED
RESET VECTOR INITIALIZATION
SYSTEM INITIALIZATION FOR THE Z1
INTERNAL RAM INITIALIZATION FOR THE Z1
AN1233/D MOTOROLA
17

QSPI TO MC14489 Interface (QSPI_LED.ASM)

This program illustrates QSPI serial timing and data format, which must be understood in order to program
the QSPI to talk to the MC14489. The QSM Reference Manual (QSMRM/AD) and the MC14489 data sheet
are needed to understand the code.

QSPI_LED.ASM initializes the QSPI module and the three MC14489 drivers to handle 40 LEDs. After this
it updates the LED array by writing to the MC14489 display registers, then gives control back to the EVB16
development software. Values being sent to the array may be changed either by modifying the memory
locations that hold the transmitted data or by reassembling the lines that load these memory locations. Fig-
ure 16 is a flowchart of QSPI_LED.ASM.

QSPI_LED.ASM Code Listing
 INCLUDE 'EQUATES.ASM' ;table of EQUates for common register addr
 INCLUDE 'ORG00000.ASM' ;initialize reset vector

 ORG $0200

***** Initialization Routines *****

 INCLUDE 'INITSYS.ASM' ;initially set EK=F, XK=0, YK=0, ZK=0
 ;set sys clock at 16.78 MHz, disable COP
 INCLUDE 'INITRAM.ASM' ;initialize and turn on SRAM
 ;set stack (SK=1, SP=03FE)

***** QSPI Initialization *****
 LDAA #$08
 STAA QPDR ;output pcs0/ss* to 0 when asserted
 LDAA #$0F
 STAA QPAR ;assign QSM port pins to qspi module
 LDAA #$FE
 STAA QDDR ;assign all QSM pins as outputs except miso

 LDD #$8004 ;mstr, womq=cpol=cpha=0
 STD SPCR0 ;16 bits, 2.10MHz serial baud rate
 LDD #$0300 ;no interrupt generated, no wrap mode
 STD SPCR2 ;newqp=0, endqp=3, queued for 4 trans

***** Fill QSPI Command.ram to write the config registers of the 14489
 LDAA #$C0
 STAA CR0 ;cont=1, bitse=1, pcs0=0, no delays needed
 STAA CR1
 STAA CR2
 LDAA #$40
 STAA CR3 ;cont=0, bitse=1, pcs0=0, no delays needed

***** Fill QSPI Transmit.ram to write the config registers of the 14489
 LDAA #$3F
 STD TR0+1 ;store $3F to tran.ram registers
 STD TR2
 STD TR3+1

***** Turn on the QSPI, this will write to the config registers
***** of the MC14489 drivers
GO LDD #$8404
 STAA SPCR1 ;turn on spi
SPIWT LDAA SPSR ;after sending data we wait until the
 ANDA #$80 ;spif bit is set, before we can send more
 CMPA #$80 ;check for spi done
 BNE SPIWT

***** Fill QSPI Command.ram to write the display registers of the 14489
 LDAA #$C0
 STAA CR0 ;cont=1, bitse=1, pcs0=0, no delays needed
 STAA CR1
 LDAA #$40 ;cont=0, bitse=1, pcs0=0, no delays needed
 STAA CR2
 STAA CR4
 LDAA #$80 ;cont=1, bitse=0, pcs0=0, no delays needed
 STAA CR3
MOTOROLA AN1233/D
18

***** Fill QSPI Transmit.ram for display registers of the 14489
***** The beginning LED values will be $00, all of the LEDs will be off
 LDD #$8000 ;TR0 = $8000
 STD TR0 ;TR1 = $0080
 STAA TR3+1 ;TR2 = $0000
 LDD #$0080 ;TR3 = $XX80
 STD TR1 ;TR4 = $0000
 CLRD
 STD TR2
 STD TR4

 LDD #$0400 ;display registers need 5 transmissions
 STD SPCR2 ;newqp=0, endqp=4

***** Load up the various LED bands for experimentation
T125 LDAA #$0F
 STAA TR4+1 ;125 Hz band
T500 LDAA #$3F
 STAA TR4 ;500 Hz band
T1K LDAA #$FF
 STAA TR2+1 ;1k Hz band
T4K LDAA #$3F
 STAA TR2 ;4k Hz band
T10K LDAA #$03
 STAA TR1 ;10k Hz band

 LDD #$8404 ;load up d
 STD SPCR1 ;turn on QSPI

 BGND ;go back to EVB16 software
 ;reassemble code for T125 to T10K
 ;experiment with different values

 BRA T125 ;branch back to TR125 line
AN1233/D MOTOROLA
19

Figure 16 QSPI_LED.ASM Flowchart

AN1233 F16

START

QSPI PORT INITIALIZATION
ASSIGN PORT PINS

TO OUTPUT QSPI SIGNALS

QSPI INITIALIZATION
MASTER MODE, 16 BIT

2.10 MHz SERIAL BAUD RATE
4 QUEUED TRANSMISSIONS

FILL QSPI COMMAND.RAM
FOR MC14489 CONFIG REGS

FILL QSPI TRANSMIT.RAM
FOR MC14489 CONFIG REGS

TURN ON QSPI

SPIF BIT SET?

YES

NO

FILL QSPI COMMAND.RAM
FOR MC14489 DISPLAY REGS

FILL QSPI TRANSMIT.RAM
FOR MC14489 DISPLAY REGS

CHANGE QSPI TO 5
QUEUED TRANSMISSIONS

A

THIS FIRST TRANSFER INITIALIZES THE
INTERNAL CONFIGURATION REGISTERS
OF THE MC14489 TO HANDLE 40 LEDS

 LOAD AND STORE VALUES TO
 THE QSPI'S TRANSMIT.RAM TO
EXPERIMENT WITH THE LED ARRAY

TURN ON QSPI

A

ENTER BACKGROUND MODE

WHEN BACKGROUND MODE IS ENTERED,
CONTROL IS GIVEN BACK TO THE EVB16 SOFTWARE.
CHANGE THE VALUES THAT ARE LOADED AND
STORED INTO THE QSPI TRANSMIT.RAM TO EXPERIMENT
WITH THE LED ARRAY AND THE QSPI.
TO RUN THE ROUTINE AGAIN, TYPE GO IN THE
DEBUG WINDOW OF EVB16.

INCLUDE 'EQUATES.ASM'
INCLUDE 'ORG00000.ASM'

INCLUDE 'INITSYS.ASM'
INCLUDE 'INITRAM.ASM'

THESE INCLUDE FILES CONTAIN THE FOLLOWING:
AN EQUATE FILE WITH ALL THE Z1 REGISTERS DEFINED
RESET VECTOR INITIALIZATION
SYSTEM INITIALIZATION FOR THE Z1
INTERNAL RAM INITIALIZATION FOR THE Z1
MOTOROLA AN1233/D
20

The Periodic Interrupt Timer (INT_TEST.ASM)

The periodic interrupt timer (PIT) is an internal timer that can be programmed to make an interrupt service
request at specific intervals. One application of the PIT is to configure it to interrupt the processor every sec-
ond so that an interrupt service routine can update a clock.

INT_TEST.ASM produces a square wave on the port F pins of the MC68HC16Z1. The square wave has a
set frequency determined by the PIT timeout period. The program uses the level six autovector and the PIT
times out at 15.6 ms. Port F is initialized for discrete output, then the code enters a wait loop until the pro-
grammed interval elapses. The interrupt service routine creates the square wave. Figure 17 is a flowchart
of INT_TEST.ASM.

For detailed information concerning interrupts, the PIT, and port F, refer to the MC68HC16Z1 User ’s Man-
ual (MC68HC16Z1UM/D), the SIM Reference Manual (SIMRM/AD), and the CPU16 Reference Manual
(CPU16RM/AD).

INT_TEST.ASM Code Listing

 INCLUDE 'EQUATES.ASM' ;table of EQUates for common register addr
 INCLUDE 'ORG00000.ASM' ;initialize reset vector

 ORG $0200 ;start program after interrupt vectors

***** Initialization Routines *****

 INCLUDE 'INITSYS.ASM' ;initially set EK=F, XK=0, YK=0, ZK=0
 ;set sys clock at 16.78 MHz, disable COP
 INCLUDE 'INITRAM.ASM' ;initialize and turn on SRAM
 ;set stack (SK=1, SP=03FE)

***** Initialize level 6 autovector address
 LDAB #$00
 TBEK ;ek extension pointer = bank0
 LDD #INT_RT ;load Dacc with interrupt vector addr
 STD $002C ;store addr to level 6 autovector

***** Initialize PortF *****
 LDAB #$0F
 TBEK ;ek extension pointer = bankf
 LDAB #$00
 STAB PFPAR ;define port f as discrete i/o
 LDAA #$FF
 STAA DDRF ;define port f as all output
 STAA PORTF0 ;store $ff to port f

***** Initialize the PIT *****
 LDD #$0616
 STD PICR ;pirql=6, piv=$16
 LDD #$0080
 STD PITR ;set the periodic timer at 15.6msec
 ANDP #$FF1F ;set interrupt priority to 000

***** Infinite loop *****
LOOP NOP ;create an infinite loop
 BRA LOOP ; waiting for interrupts

***** Exceptions/Interrupts *****
INT_RT PSHM D,CCR ;stack Dacc and CCR on stack
 COM PORTF0 ;one's complement Port F, create square wave
 PULM D,CCR ;pull Dacc and CCR from stack
 RTI ;return from interrupt
AN1233/D MOTOROLA
21

Figure 17 INT_TEST.ASM Flowchart

AN1233 F17

START

INITIALIZE LEVEL 6
AUTOVECTOR ADDRESS

INFINITE LOOP WAITING FOR
PIT INTERRUPT LEVEL 6

NO OPERATION

INITIALIZE PORT F
DISCRETE OUTPUT ONLY

INITIALIZE PIT
REQUEST LEVEL 6
PIT VECTOR $16

15.6 mS INTERRUPT

START

ONE'S COMPLEMENT
PORT F

STACK D, C, AND K REG

LEVEL 6 INTERRUPT

PULL D, C, AND K REG

 RETURN FROM
LEVEL 6 INTERRUPT

CREATES A SQUARE WAVE
ON PORT F

INCLUDE 'EQUATES.ASM'
INCLUDE 'ORG00000.ASM'
INCLUDE 'INITSYS.ASM'
INCLUDE 'INITRAM.ASM'

THESE INCLUDE FILES CONTAIN THE FOLLOWING:
AN EQUATE FILE WITH ALL THE Z1 REGISTERS DEFINED
RESET VECTOR INITIALIZATION
SYSTEM INITIALIZATION FOR THE Z1
INTERNAL RAM INITIALIZATION FOR THE Z1
MOTOROLA AN1233/D
22

Signal Peak Detector (PEAK.ASM)

The signal peak detector graphically measures and displays the peak amplitude of a signal in real time. An
audio signal is sampled at 24.95 kHz. The peak amplitude of the signal is detected, then a value that rep-
resents the peak on a bar of eight light-emitting diodes (LED) is generated. A reference value of 0.775 Vrms
equivalent to 0 dB is used to relate the digital peak value to the LED display. The LED bar can display a
signal in the range –15 dB to +6 dB, in 3 dB steps. Figure 18 shows relationships between the LED bar,
decibels, Vrms, and Vp. Figure 19 shows the relationship between an analog input signal and the peak val-
ues displayed. Figure 20 is a flowchart of PEAK.ASM.

Figure 18 Relationship Between Signal Amplitude and LED Bar

PEAK.ASM code must be downloaded to the EVB in a slightly different manner than usual. The code must
be stored in the SRAM array, so it is important to enable and initialize SRAM module correctly before down-
loading. The steps listed below must be followed when downloading PEAK.ASM, 1K_FLTR.ASM, and
5BAND_SA.ASM.

1. Download the code

2. Set the IP to $200

3. Trace the code until you have executed the section labeled ‘RAM and Stack Initialization’

4. Set the IP to $200

5. Download the program again.

AN1233 F18

dB VRMS VPEAK

0.195

0.275

0.389

0.549

0.775

1.096

1.548

2.187+6

+3

 0

-3

-6

-9

-12

-15 0.138

0.195

0.275

0.389

0.549

0.775

1.096

1.548

LED BAR

dB 20
Vin

Vref

 log•=

0dB Vref≥ 0.775Vrms=

Vpeak 2 Vrms•=
AN1233/D MOTOROLA
23

The code originating in the internal RAM will now be correctly loaded into the MC68HC16Z1.

PEAK.ASM reads values from a look-up table in memory. The file OUTVAL2.ASM contains the table. Be
sure this file is in the same directory as PEAK.ASM before assembly.

Figure 19 Analog Input vs Peak Display Level

After initializing the SRAM, the ADC, the QSPI, and the PIT, the code jumps to internal RAM at location
$F0000. Internal RAM access time is less than access time for the external RAM on the EVB. This extra
speed is important to subsequent programs that use DSP routines.

The program then loops continuously, reading the ADC, encoding the ADC value to its equivalent LED
value, and checking to see if the current value is greater than the previous peak value. If so, then the current
peak value is updated and stored away in memory. The code can only increase the current peak value.

Peak value encoding is accomplished by self-modifying code that reads values from a look-up table in
memory. Cycle counts for each instruction are given on the right-hand side comment line in
OUTVAL2.ASM. They are used to determine the delay that is needed to create the 24.95-kHz sampling
frequency.

The LED array is updated with the current peak value every 10.26 ms. This routine only detects and displays
increases of the peak value. In order to follow a changing signal, the peak value must also be decreased
periodically. A PIT interrupt performs this task every 62.5 ms. When the PIT times out, the interrupt service
routine decrements the peak value and sends a new value to the display.

AN1233 F19

0.195
0.275
0.389
0.549

0.776

1.096

1.548

2.187

0.0

2.5

- 0.195
- 0.275
- 0.389
- 0.549

- 1.096

- 0.776

- 1.548

- 2.187

- 2.5

VOLTS

TIME
MOTOROLA AN1233/D
24

Using a PIT interrupt to decrement the peak value causes the LED display to decrease slowly, like a capac-
itor discharging, when the input signal decreases rapidly. This gives the display a more fluid appearance
when rapidly-changing peak values are measured. If the display jumped from peak to peak, the discontinuity
would lower the aesthetic appeal. In fact, most commercial audio analyzers show the relative peak differ-
ences of the frequency spectrum rather than attempt to display the peak signal precisely.

To test the code, hook up the system as shown in Figure 11. Input a known signal and observe the display.
Apply an audio signal from the sound source and watch the peak detector execute in real time. If there is
only one sound source output, connect it to either the left or right AFA input. The display is calibrated to the
output of a CD player. The CD player puts out a line level signal, with .775 Vrms equal to 0 dB. If the sound
source is not a CD player, adjust the output of the sound source so that the dynamic range of the signal is
fully displayed.

PEAK.ASM Code Listing

 INCLUDE 'EQUATES.ASM' ;table of EQUates for common register addr
 INCLUDE 'ORG00000.ASM' ;initialize reset vector

***** Temporary variable storage
PK EQU $0200 ; bank F
CNT EQU $0201 ; bank F

 ORG $0200

***** Initialization Routines *****

 INCLUDE 'INITSYS.ASM' ;initially set EK=F, XK=0, YK=0, ZK=0
 ;set sys clock at 16.78 MHz, disable COP

***** RAM and Stack Initialization
 LDD #$00FF
 STD RAMBAH ;store high ram array, bank F
 LDD #$0000
 STD RAMBAL ;store low ram array, 0000
 CLR RAMMCR ;enable ram
 LDAB #$0F
 TBSK ;set SK to bank F for system stack
 LDS #$02FE ;put SP in 1k internal SRAM

***** Initialize level 6 autovector address
 LDAB #$00
 TBEK ;ek extension pointer = bank0
 LDD #JMPINT ;load Dacc with interrupt vector addr
 STD $002C ;store addr to level 6 autovector

***** Initialize the PIT *****
 LDAB #$0F
 TBEK ;ek extension pointer = bankf
 LDD #$0616
 STD PICR ;pirql=6, piv=$16
 LDD #$0101
 STD PITR ;set the periodic timer at 62.5msec
 ANDP #$FF1F ;set interrupt priority to 000

***** QSPI Initialization *****
 LDAA #$08
 STAA QPDR ;output pcs0/ss* to 0 when asserted
 LDAA #$0F
 STAA QPAR ;assign QSM port pins to qspi module
 LDAA #$FE
 STAA QDDR ;assign all QSM pins as outputs except miso

 LDD #$8004 ;mstr, womq=cpol=cpha=0
 STD SPCR0 ;16 bits, 2.10MHz serial baud rate
 LDD #$0300 ;no interrupt generated, no wrap mode
 STD SPCR2 ;newqp=0, endqp=3, queued for 4 trans

***** Fill QSPI Command.ram to write the config registers of the 14489
 LDAA #$C0
 STAA CR0 ;cont=1, bitse=1, pcs0=0, no delays needed
AN1233/D MOTOROLA
25

 STAA CR1
 STAA CR2
 LDAA #$40
 STAA CR3 ;cont=0, bitse=1, pcs0=0, no delays needed

***** Fill QSPI Transmit.ram to write the config registers of the 14489
 LDAA #$3F
 STD TR0+1 ;store $3F to tran.ram registers
 STD TR2
 STD TR3+1
***** Turn on the QSPI, this will write to the config registers
***** of the MC14489 drivers
GO LDD #$8404
 STAA SPCR1 ;turn on spi
SPIWT LDAA SPSR ;after sending data we wait until the
 ANDA #$80 ;spif bit is set, before we can send more
 CMPA #$80 ;check for spi done
 BNE SPIWT

***** Fill QSPI Command.ram to write the display registers of the 14489
 LDAA #$C0
 STAA CR0 ;cont=1, bitse=1, pcs0=0, no delays needed
 STAA CR1
 LDAA #$40 ;cont=0, bitse=1, pcs0=0, no delays needed
 STAA CR2
 STAA CR4
 LDAA #$80 ;cont=1, bitse=0, pcs0=0, no delays needed
 STAA CR3

***** Fill QSPI Transmit.ram for display registers of the 14489
***** The beginning LED values will be $00, all of the LEDs will be off
 LDD #$8000
 STD TR0 ;TR0 = $8000
 STAA TR3+1 ;TR1 = $0080
 LDD #$0080 ;TR2 = $0000
 STD TR1 ;TR3 = $XX80
 CLRD ;TR4 = $0000
 STD TR2
 STD TR4

 LDD #$0400 ;display registers need 5 transmissions
 STD SPCR2 ;newqp=0, endqp=4

***** ADC Initialization *****
 LDD #$0000
 STD ADCMCR ;turn on ADC
 LDD #$0003
 STD ADCTL0 ;8-bit, set sample period

***** Initialize the extension registers for the internal ram in bank F
***** Set up the extension registers to point to bank F
 LDAB #$0F ;load b with $0F
 TBEK ;transfer Bacc to Ek
 TBXK ;transfer Bacc to Xk
 TBYK ;transfer Bacc to Yk
 TBZK ;transfer Bacc to Zk
 JMP RAM ;jump to internal ram for speed!

***** Start of Internal 1K RAM
 ORG $F0000
RAM CLR CNT ;clear LED update counter
 CLR PK ;clear peak value

LP CLRD ; 2 clear Dacc
 STD ADCTL1 ; 6 single 4 conversion, single channel AD0
 ; writing to the ADCTL1 reg starts conv
 LDE LJSRR0 ; 6 load e with x(n), left jus adc result0

* Check if LEDs need updating
 LDAA CNT ; 6 load Aacc with count
 ADDA #1 ; 2 add 1 to Aacc
 STAA CNT ; 6 store new count
 BNE TRAN ; 6,2 check to see if its time to update
 ; the LEDs, time = 256 * 668 cycles
 ; 668 cycles = 40.08usec
 ; so LED update time is 10.26msec
MOTOROLA AN1233/D
26

 LDD #$8404 ; 6 load up d
 STD SPCR1 ; 6 turn on QSPI, send LED data out

* Get LED encode value from look-up table
TRAN TED ; 2 transfer Eacc to Dacc
 STAA LD+3 ; 6 Dacc high byte -> instruction ldaa $03??
 NOP ; 2 no operation, wait for CPU pipeline
 NOP ; 2 no operation, wait for CPU pipeline
LD LDAA LED_TBL ; 6 load Aacc with the encoded LED value
 ; from scaled peak LED table

* Update peak value if needed
 CMPA PK ; 6 compare value to previous peak value
 BLS DN ; 6,2 branch if not more than peak value
 STAA PK ; 6 store new peak value
 STAA TR1 ; 6 store new value to all 5 qspi tran.rams
 STAA TR2 ; 6
 STAA TR2+1 ; 6
 STAA TR4 ; 6
 STAA TR4+1 ; 6

***** Loop to generate calculated delay
***** Clocks = 6 + 8*(N-1) N >= 1
***** N is the number put into the B accumulator

DN LDAB #$4B ; 75dec this loop will create an extra delay
WAIT DECB ; to make a 24.95kHz sampling rate
 BNE WAIT ; or a 668 cycle sampling period
 ; 598 cycles

 JMP LP ; 6 jump back to start another conversion

***** Exceptions/Interrupts *****
***** This interrupt is used to decrement each LED bar value
***** representing the peak value of the audio signal
INT_RT PSHM D,CCR ;stack Dacc and CCR on stack
 LDAA PK ;load Aacc with peak value
 BEQ DONE ;equal to 0?, then done

 ANDP #$FEFF ;clear C bit
 RORA ;rotate right once, decrease peak value
 STAA TR1 ;store Aacc to all qspi tran.ram
 STAA TR2
 STAA TR2+1
 STAA TR4
 STAA TR4+1
 STAA PK ;store Aacc to peak value
 LDD #$8404 ;load up Dacc
 STD SPCR1 ;turn on QSPI, send LED data out

DONE PULM D,CCR ;pull Dacc and CCR from stack
 RTI ;return from interrupt

***** Location of start of level 6 interrupt, has to be in bank 0
 ORG $A000
JMPINT JMP INT_RT

***** OUTVAL2 is a 256 byte lookup table to convert an
***** ADC reading to a LED value that can be transmitted to the 14489
***** Encodes to a scale of +6, +3, 0, -3, -6, -9, -12, -15 dB
 INCLUDE 'OUTVAL2.ASM' ;LED Look up table
AN1233/D MOTOROLA
27

Figure 20 PEAK.ASM Flowchart (Sheet 1 of 2)

AN1233 F20A

START

INITIALIZE LEVEL 6
AUTOVECTOR ADDRESS

INITIALIZE PIT
REQUEST LEVEL 6
PIT VECTOR $16

15.6 mS INTERRUPT

INCLUDE 'EQUATES.ASM'
INCLUDE 'ORG00000.ASM'

INITIALIZE INTERNAL RAM
AT LOCATION $F0000

STACK AT $F02FE

QSPI PORT INITIALIZATION
ASSIGN PORT PINS

TO OUTPUT QSPI SIGNALS

QSPI INITIALIZATION
MASTER MODE, 16 BIT

2.10 MHz SERIAL BAUD RATE
4 QUEUED TRANSMISSIONS

A

FILL QSPI COMMAND.RAM
FOR MC14489 CONFIG REGS

FILL QSPI TRANSMIT.RAM
FOR MC14489 CONFIG REGS

TURN ON QSPI

SPIF BIT SET?

YES

NO

FILL QSPI COMMAND.RAM
FOR MC14489 DISPLAY REGS

FILL QSPI TRANSMIT.RAM
FOR MC14489 DISPLAY REGS

CHANGE QSPI TO 5
QUEUED TRANSMISSIONS

A

THIS FIRST TRANSFER INITIALIZES THE
INTERNAL CONFIGURATION REGISTERS
OF THE MC14489 TO HANDLE 40 LEDS

B

ADC
INITIALIZATION

INITIALIZE EXTENSION REGISTERS
TO POINT TO BANK F

JUMP TO INTERNAL RAM
AT LOCATION $F0000

THESE INCLUDE FILES CONTAIN THE FOLLOWING:
AN EQUATE FILE WITH ALL THE Z1 REGISTERS DEFINED
RESET VECTOR INITIALIZATION
SYSTEM INITIALIZATION FOR THE Z1INCLUDE 'INITSYS.ASM'
MOTOROLA AN1233/D
28

Figure 20 PEAK.ASM Flowchart (Sheet 2 of 2)

AN1233 F20B

B

CLEAR LED UPDATE COUNTER
CLEAR PEAK VALUE

START THE ADC

READ ADC VALUE

READ LED UPDATE COUNTER

ADD 1 TO LED COUNTER

256 CYCLES?
YES

NO

TURN ON QSPI

 STORE ADC VALUE TO THE
READ LED TABLE INSTRUCTION

READ LED ENCODE PEAK VALUE
 FROM THE LED TABLE OFFSET

 BY THE ADC VALUE

 PEAK >
OLD PEAK?

YES

NO

STORE AWAY NEW ENCODED PEAK
 STORE NEW ENCODED PEAK
 TO QSPI TRANSMIT.RAM

WAIT UNTIL THE 40.08 ΜS
SAMPLING PERIOD EXPIRES

LOCATION $F0000

CHECK IF LEDS
NEED TO BE UPDATED

THE ADC VALUE IS USED
AS THE OFFSET WHEN READING
THE LED ENCODE VALUE
FROM THE LED TABLE

INCLUDE 'OUTVAL2.ASM'

OUTVAL2.ASM IS A 256 BYTE LOOKUP TABLE
TO CONVERT AN ADC VALUE TO AN LED VALUE THAT
WILL BE TRANSMITTED TO THE MC14489
THE TABLE WILL ENCODE THE VALUE TO A SCALE
OF +6, +3, 0, -3, -6, -9, -12, AND -15 DB
AN1233/D MOTOROLA
29

A 1-kHz Bandpass Filter (1K_FLTR.ASM)

This code is similar in function to the peak detector, except that it executes a 1-kHz IIR bandpass filter on
the input signal. The peak is detected and displayed on an LED bar in real time. The focus is on using the
MC68HC16Z1 to implement the digital filter. Figure 22 is a flowchart of 1K_FLTR.ASM.

The objective is to take incoming sampled data x(n), and run the bandpass filter function on the sample to
produce output y(n). Again, this is the basic ‘black box’ concept of electrical engineering — excite the input
and watch the output change. The function in the ‘black box’ is defined below.

y(n) = 2 ∗ {α ∗ [x(n) − x(n−2)] + γ ∗ y(n-1) − β ∗ y(n−2)}

This function implements an IIR bandpass function with characteristics defined by the coefficients α, β, and
γ. In an RLC bandpass filter circuit, resistors, capacitors, and inductors would characterize filter response.
In the digital implementation of the filter, the α, β, and γ coefficients determine the response in much the
same way.

The basic parameters that define digital filter response are the Q, the sampling frequency (Fs), and the cen-
ter frequency (Fo). The Q value defines the sharpness of the filter and is equal to the center frequency di-
vided by the bandwidth between the 3 dB points. The specified sampling frequency is 24.95 kHz, the center
frequency is 1 kHz, and Q value is 1.5. Figure 21 illustrates these relationships. Table 3 shows the way in
which coefficients are stored in memory.

Figure 21 Filter Relationships

1. To speed processing, the calculated β coefficient is made negative, then added to the expression, rather than
subtracted as shown in the equation above.

Table 3 DSP Filter Algorithm Memory Use

XN1_1K x(n − 1) YN1_1K y(n − 1) GAM_1K γ

XN2_1K x(n − 2) YN2_1K y(n − 2) BET_1K – β1

X_2_1K x(n) − x(n − 2) ALP_1K α

AN1233 F21

MAGNITUDE

0

FO FREQFS

-3

3dB BANDWIDTH

 (DB)

Q
Fo

BANDWIDTH
-------------------------------------=
MOTOROLA AN1233/D
30

Equations that define the coefficients are shown below. Coefficient values are also given in the code listing.

θ = {(2 ∗ π ∗ Fo) / Fs}
X = θ / (2 ∗ Q)

If X > π / 4 then X = 0.75398
β = 0.5 ∗{ 1 − tan (X)} / { 1+ tan (X)}

γ = (0.5 + β) ∗ cos θ
α = (0.5 − β) / 2

Where:
Fo = 1 kHz
Fs = 24.95 kHz
Q = 1.5

For more information concerning these equations, refer to Motorola Application Note Digital Stereo 10-Band
Generator (APR2/D).

Once coefficient values have been obtained, they must be encoded. The assembler does not understand
fractional decimal numbers, so fractional values are converted into signed 16-bit hexadecimal values. When
using two’s complement arithmetic, the most significant bit (bit 15) is the sign bit, and the fraction is con-
tained in bits 14 to 0. Fifteen bits can represent the decimal numbers from 0 to 32,767. Multiply the decimal
fraction by 32,768, then convert the value to the hexadecimal equivalent. Make certain that hexadecimal
equivalents of negative values are in two’s complement form. An example is given below.

Decimal fraction = 0.5

Multiply fractional decimal value by 32,768

0.5 ∗ 32,768 = 16,384

Change decimal value to hexadecimal and binary values

16,384 dec = 4000 hex = 0100 0000 0000 0000 bin

4000 hex is the 16-bit fractional value.

CPU16 multiply and add instructions are used to implement the function. Processing is streamlined so that,
in the final AFA design, five filters can be implemented in the 40.08 µs sampling period. For a more thorough
discussion of the DSP instruction set and related CPU16 architecture, please consult Chapter 11 in the
CPU16 Reference Manual (CPU16RM/AD). The processing sequence is as follows.

The ADC value x(n) is divided by two to prevent overflow.

The subtraction operation, x(n) – x(n – 2) is performed and the result is stored in location X_2_1K.

Three MAC instructions are executed, starting at address YN1_1K.

The value y(n –1) is multiplied by γ and added to the M accumulator.

The value y(n – 2) is multiplied by – β and added to the M accumulator.

The value [x(n) – x(n – 2)] is multiplied by α and added to the M accumulator.

The M accumulator is multiplied by two, using a left shift instruction, to obtain the y(n) value.

The x and y terms are updated before the next sample is processed:

x(n – 1) becomes x(n – 2) and x(n) becomes x(n – 1)

y(n – 1) becomes y(n – 2) and y(n) becomes y(n – 1)
AN1233/D MOTOROLA
31

As mentioned earlier, the 1-kHz bandpass filter is very similar to the peak detector design. Once the DSP
is finished on the input x(n) sample, the peak detect algorithm is executed.

The include file OUTVAL1.ASM is used to encode the DSP output with an LED display value multiplied by
two. Be sure this file is in the same directory as 1K_FLTR.ASM during assembly.

The best way to test this program is to connect a signal generator with sine-wave sweep capability to the
AFA inputs, then set it to sweep from 0 to 15 kHz. The 1-kHz LED bar should display the amplitude of a pure
1-kHz tone and the routine should filter out higher and lower frequency signals. Since Q is equal to 1.5,
some side-lobe frequencies in the pass band should be evident. For instance, if a 2-kHz pure signal is sent
into the filter, the side-lobe response of the 1-kHz bandpass will pass an attenuated level of the 2-kHz tone.

1K_FLTR.ASM Code Listing

 INCLUDE 'EQUATES.ASM' ;table of EQUates for common register addr
 INCLUDE 'ORG00000.ASM' ;initialize reset vector

***** Addresses of coefficients for the IIR Filters and initialization
COEFBS EQU $0280 ;base addr of coefficients
GAM_1K EQU COEFBS+$0 ;addr of the gamma coef
BETA_1K EQU COEFBS+$2 ;addr of the beta coef
ALPH_1K EQU COEFBS+$4 ;addr of the alpha coef
 ORG $F0280
 dc.w $7257 ;1k Hz gamma coef, Q=1.5
 dc.w $C9F0 ;1k Hz beta coef, Q=1.5
 dc.w $04F7 ;1k Hz alpha coef, Q=1.5

***** Addresses of filter terms for the x(n) terms and initialization
XTRMBS EQU $02A0 ;base addr of x(n) filter terms
XN1_1K EQU XTRMBS+$0 ;x(n-1)
XN2_1K EQU XTRMBS+$2 ;x(n-2)
 ORG $F02A0
 dc.w $0000 ;1k Hz x(n-1)
 dc.w $0000 ;1k Hz x(n-2)

***** Addresses of filter terms for the y(n) terms and initialization
YTRMBS EQU $02C0 ;base addr of y(n) filter terms
YN1_1K EQU YTRMBS+$0 ;y(n-1)
YN2_1K EQU YTRMBS+$2 ;y(n-2)
X_2_1K EQU YTRMBS+$4 ;x(n) - x(n-2), stored here for mac
 ORG $F02C0
 dc.w $0000 ;1k y(n-1)
 dc.w $0000 ;1k y(n-2)
 dc.w $0000 ;1k [x(n) - x(n-2)]

***** Addresses of various temporary variables and initialization
PKRES EQU $02E0 ;base addr of filter result storage
PK_1K EQU PKRES+$0 ;peak value for 1k Hz
CNT EQU PKRES+$1 ;count value for LED qspi update routine
AD EQU PKRES+$2 ;divided by two adc reading
 ORG $F02E0
 dc.w $0000 ;1k peak value, update count value
 dc.w $0000 ;divided by two adc location

 ORG $0200

***** Initialization Routines *****

 INCLUDE 'INITSYS.ASM' ;initially set EK=F, XK=0, YK=0, ZK=0
 ;set sys clock at 16.78 MHz, disable COP
MOTOROLA AN1233/D
32

***** RAM and Stack Initialization
 LDD #$00FF
 STD RAMBAH ;store high ram array, bank F
 LDD #$0000
 STD RAMBAL ;store low ram array, 0000
 CLR RAMMCR ;enable ram
 LDAB #$0F
 TBSK ;set SK to bank F for system stack
 LDS #$02FE ;put SP in 1k internal SRAM

***** Initialize level 6 autovector address
 LDAB #$00
 TBEK ;ek extension pointer = bank0
 LDD #JMPINT ;load Dacc with interrupt vector addr
 STD $002C ;store addr to level 6 autovector

***** Initialize the PIT *****
 LDAB #$0F
 TBEK ;ek extension pointer = bankf
 LDD #$0616
 STD PICR ;pirql=6, piv=$16
 LDD #$0101
 STD PITR ;set the periodic timer at 62.5msec
 ANDP #$FF1F ;set interrupt priority to 000

***** QSPI Initialization *****
 LDAA #$08
 STAA QPDR ;output pcs0/ss* to 0 when asserted
 LDAA #$0F
 STAA QPAR ;assign QSM port pins to qspi module
 LDAA #$FE
 STAA QDDR ;assign all QSM pins as outputs except miso

 LDD #$8004 ;mstr, womq=cpol=cpha=0
 STD SPCR0 ;16 bits, 2.10MHz serial baud rate
 LDD #$0300 ;no interrupt generated, no wrap mode
 STD SPCR2 ;newqp=0, endqp=3, queued for 4 trans

***** Fill QSPI Command.ram to write the config registers of the 14489
 LDAA #$C0
 STAA CR0 ;cont=1, bitse=1, pcs0=0, no delays needed
 STAA CR1
 STAA CR2
 LDAA #$40
 STAA CR3 ;cont=0, bitse=1, pcs0=0, no delays needed

***** Fill QSPI Transmit.ram to write the config registers of the 14489
 LDAA #$3F
 STD TR0+1 ;store $3F to tran.ram registers
 STD TR2
 STD TR3+1

***** Turn on the QSPI, this will write to the config registers
***** of the MC14489 drivers
GO LDD #$8404
 STAA SPCR1 ;turn on spi
SPIWT LDAA SPSR ;after sending data we wait until the
 ANDA #$80 ;spif bit is set, before we can send more
 CMPA #$80 ;check for spi done
 BNE SPIWT

***** Fill QSPI Command.ram to write the display registers of the 14489
 LDAA #$C0
 STAA CR0 ;cont=1, bitse=1, pcs0=0, no delays needed
 STAA CR1
 LDAA #$40 ;cont=0, bitse=1, pcs0=0, no delays needed
 STAA CR2
 STAA CR4
 LDAA #$80 ;cont=1, bitse=0, pcs0=0, no delays needed
 STAA CR3
AN1233/D MOTOROLA
33

***** Fill QSPI Transmit.ram for display registers of the 14489
***** The beginning LED values will be $00, all of the LEDs will be off
 LDD #$8000
 STD TR0 ;TR0 = $8000
 STAA TR3+1 ;TR1 = $0080
 LDD #$0080 ;TR2 = $0000
 STD TR1 ;TR3 = $XX80
 CLRD ;TR4 = $0000
 STD TR2
 STD TR4

 LDD #$0400 ;display registers need 5 transmissions
 STD SPCR2 ;newqp=0, endqp=4

***** ADC Initialization *****
 LDD #$0000
 STD ADCMCR ;turn on ADC
 LDD #$0003
 STD ADCTL0 ;8-bit, set sample period

***** Initialize the extension registers for the internal ram in bank F
***** Set up the extension registers to point to bank F
 LDAB #$0F ;load b with $0F
 TBEK ;transfer Bacc to Ek
 TBXK ;transfer Bacc to Xk
 TBYK ;transfer Bacc to Yk
 TBZK ;transfer Bacc to Zk
 JMP RAM ;jump to internal ram for speed!

***** Start of Internal 1K RAM
 ORG $F0000
RAM CLR CNT ;clear LED update counter
 CLR PK_1K ;clear 1K peak value

* Initialization for DSP
 ORP #$0010 ;set saturation mode for Macc
 CLRD ;clear Dacc
 TDMSK ;no modulo addressing
 LDY #COEFBS ;load y with the coef base addr
 LDX #YTRMBS ;load x with the yterm base addr

LP CLRD ; 2 clear Dacc
 STD ADCTL1 ; 6 single 4 conversion, single channel AD0
 ; writing to the ADCTL1 reg starts conv

* Divide input x(n) by 2, no overflow problem
 LDAA LJSRR0 ; 6 load Aacc with left jus signed ADC value
 ASRA ; 2 divide by 2
 STAA AD ; 6 store divide by 2 adc value away

* Check if LEDs need updating
 LDAA CNT ; 6 load Aacc with count
 ADDA #1 ; 2 add 1 to Aacc
 STAA CNT ; 6 store new count
 BNE TRAN ; 6,2 check to see if its time to update
 ; the LEDs, time = 256 * 668 cycles
 ; 668 cycles = 40.08usec
 ; so LED update time is 10.26msec
 LDD #$8404 ; 6 load up d
 STD SPCR1 ; 6 turn on QSPI, send LED data out

TRAN LDHI ; 8 load h and i multiplier and multiplicand
F1K CLRM ; 2 clear Macc
 LDE AD ; 6 load Eacc with AD
MOTOROLA AN1233/D
34

* Digital processing algorithm
 TED ; 2 transfer Eacc to Dacc
 SUBD XN2_1K ; 6 Dacc = x(n) - x(n-2)
 STD X_2_1K ; 6 store Dacc to [x(n) - x(n-2)] addr
 LDD XN1_1K ; 6 load Dacc with x(n-1)
 STED XN1_1K ; 8 store x(n) to x(n-1) and
 ; store x(n-1) to x(n-2)

 MAC 2,2 ;12 gamma*(yn1)+Macc=Macc
 MAC 2,2 ;12 beta*(yn2)+Macc=Macc
 MAC -4,-4 ;12 alpha*[x(n)-x(n-2)]+Macc=Macc
 TMET ; 2 transfer Macc to Eacc, truncate
 ASLE ; 2 multiply Eacc by 2

* Get LED encode value from look-up table
 TED ; 2 transfer Eacc to Dacc
 STAA LD1K+3 ; 6 Dacc high byte -> instruction ldaa $03??
 NOP ; 2 no operation, due to CPU pipeline
 NOP ; 2 no operation, due to CPU pipeline
LD1K LDAA LED_TBL ; 6 load Aacc with the encoded LED value
 ; from scaled peak LED table

* Update peak value if needed
 CMPA PK_1K ; 6 compare value to previous peak value
 BLS DN1K ; 6,2 branch if not more than peak value
 STAA PK_1K ; 6 store new peak value
 STAA TR2+1 ; 6 store new value to 1k qspi tran.ram

* Update y(n-1) and y(n-2)
DN1K LDD YN1_1K ; 6 load Dacc with y(n-1)
 STED YN1_1K ; 8 store Eacc to y(n-1), Dacc to y(n-2)

***** Loop to generate calculated delay
***** Clocks = 6 + 8*(N-1) N >= 1
***** N is the number put into the B accumulator

 LDAB #$3D ; 61 this loop will create an extra delay
WAIT DECB ; to make a 24.95kHz sampling rate
 BNE WAIT ; or a 668 cycle sampling period
 ; 486 cycles
 NOP ; 2
 NOP ; 2
 NOP ; 2
 JMP LP ; 6 jump back to start another conversion

***** Exceptions/Interrupts *****
***** This interrupt is used to decrement the LED bar value
***** representing the peak value of the 1k filter band
INT_RT PSHM D,CCR ;stack Dacc and CCR on stack
 LDAA PK_1K ;load Aacc with 1K peak value
 BEQ DONE ;equal to 0?, then done

 ANDP #$FEFF ;clear C bit
 RORA ;rotate right once, decrease peak value
 STAA TR2+1 ;store Aacc to 1k Hz qspi tran.ram
 STAA PK_1K ;store Aacc to 1k Hz peak value
 LDD #$8404 ;load up Dacc
 STD SPCR1 ;turn on QSPI, send LED data out

DONE PULM D,CCR ;pull Dacc and CCR from stack
 RTI ;return from interrupt

***** Location of start of level 6 interrupt, has to be in bank 0
 ORG $A000
JMPINT JMP INT_RT

***** OUTVAL1 is a 256 byte lookup table to convert an
***** ADC reading to a LED value that can be transmitted to the 14489
***** Multiplies by two and
***** Encodes to a scale of +6, +3, 0, -3, -6, -9, -12, -15 dB
 INCLUDE 'OUTVAL1.ASM' ;LED look up table
AN1233/D MOTOROLA
35

Figure 22 1K_FLTR.ASM Flowchart (Sheet 1 of 4)

AN1233 F20A

START

INITIALIZE LEVEL 6
AUTOVECTOR ADDRESS

INITIALIZE PIT
REQUEST LEVEL 6
PIT VECTOR $16

15.6 mS INTERRUPT

INCLUDE 'EQUATES.ASM'
INCLUDE 'ORG00000.ASM'

INITIALIZE INTERNAL RAM
AT LOCATION $F0000

STACK AT $F02FE

QSPI PORT INITIALIZATION
ASSIGN PORT PINS

TO OUTPUT QSPI SIGNALS

QSPI INITIALIZATION
MASTER MODE, 16 BIT

2.10 MHz SERIAL BAUD RATE
4 QUEUED TRANSMISSIONS

A

FILL QSPI COMMAND.RAM
FOR MC14489 CONFIG REGS

FILL QSPI TRANSMIT.RAM
FOR MC14489 CONFIG REGS

TURN ON QSPI

SPIF BIT SET?

YES

NO

FILL QSPI COMMAND.RAM
FOR MC14489 DISPLAY REGS

FILL QSPI TRANSMIT.RAM
FOR MC14489 DISPLAY REGS

CHANGE QSPI TO 5
QUEUED TRANSMISSIONS

A

THIS FIRST TRANSFER INITIALIZES THE
INTERNAL CONFIGURATION REGISTERS
OF THE MC14489 TO HANDLE 40 LEDS

B

ADC
INITIALIZATION

INITIALIZE EXTENSION REGISTERS
TO POINT TO BANK F

JUMP TO INTERNAL RAM
AT LOCATION $F0000

THESE INCLUDE FILES CONTAIN THE FOLLOWING:
AN EQUATE FILE WITH ALL THE Z1 REGISTERS DEFINED
RESET VECTOR INITIALIZATION
SYSTEM INITIALIZATION FOR THE Z1INCLUDE 'INITSYS.ASM'
MOTOROLA AN1233/D
36

Figure 22 1K_FLTR.ASM Flowchart (Sheet 2 of 4)

AN1233 F22B

B

CLEAR LED UPDATE COUNTER
CLEAR PEAK VALUE

READ LED UPDATE COUNTER

 ADD 1 TO LED COUNTER
STORE AWAY LED COUNTER

256 CYCLES?
YES

NO

TURN ON QSPI

LOCATION $F0000

CHECK IF LEDS
NEED TO BE UPDATED

SET SATURATION MODE
NO MODULO ADDRESSING

LOAD Y REG WITH COEFF ADDRESS
LOAD X REG WITH Y TERMS ADDRESS

READ ADC VALUE

LOAD UP H AND I REGISTERS

C

D

INITIALIZE INTERNAL CPU
REGISTERS FOR DSP OPERATIONS

START THE ADC

DIVIDE BY 2
STORE AWAY NEW VALUE AS AD
AN1233/D MOTOROLA
37

Figure 22 1K_FLTR.ASM Flowchart (Sheet 3 of 4)

AN1233 F22C

READ LED ENCODE PEAK VALUE
 FROM THE LED TABLE OFFSET
 BY THE ADC VALUE

 PEAK >
OLD PEAK?

YES

NO

STORE AWAY NEW ENCODED PEAK
STORE NEW ENCODED PEAK

TO QSPI TRANSMIT.RAM

SELF-MODIFYING CODE
THE ADC VALUE IS USED
AS THE OFFSET WHEN READING
THE LED ENCODE VALUE
FROM THE LED TABLE

 CLEAR ACCM
READ AD VALUE

Z = X(N) - X(N-2)
X(N-1) = X(N)

X(N-2) = X(N-1)
MACC = GAMMA * Y(N-1) + MACC
MACC = -BETA * Y(N-2) + MACC

MACC = ALPHA * Z + MACC
MACC = 2 * MACC

STORE DSP FILTER VALUE TO THE
 READ LED TABLE INSTRUCTION

WAIT UNTIL THE 40.08 ΜS
SAMPLING PERIOD EXPIRES

 Y(N-1) = Y(N)
Y(N-2) = Y(N-1)

C

D

THE DIGITAL PROCESSING ALGORITHM

INCLUDE 'OUTVAL1.ASM'
OUTVAL1.ASM IS A 256 BYTE LOOKUP TABLE
TO CONVERT AN ADC VALUE TO AN LED VALUE THAT
WILL BE TRANSMITTED TO THE MC14489
THE TABLE WILL MULTIPLY THE VALUE BY TWO AND ENCODE
IT TO A SCALE OF +6, +3, 0, -3, -6, -9, -12, AND -15 DB
MOTOROLA AN1233/D
38

Figure 22 1K_FLTR.ASM Flowchart (Sheet 4 of 4)

AN1233 F20C

START

STACK D AND C REG

LEVEL 6 INTERRUPT

PULL D AND C REG

 RETURN FROM
LEVEL 6 INTERRUPT

READ PEAK VALUE

PEAK = 0?
YES

NO

CLEAR C BIT IN CCR

ROTATE PEAK TO THE RIGHT

STORE AWAY NEW PEAK
 STORE NEW PEAK TO
 QSPI TRANSMIT.RAM

THIS INTERRUPT WILL DECREASE THE
LED ENCODED PEAK VALUE.
THE DECREASED PEAK VALUE IS THEN
TRANSMITTED TO UPDATE THE LED ARRAY.

TURN ON QSPI
AN1233/D MOTOROLA
39

The 5 Band Audio Frequency Analyzer (5BAND_SA.ASM)

The final design of the AFA is simple because of the groundwork that has already been done. Figure 23 is
a flowchart of 5BAND_SA.ASM. Notice that five iterations of the IIR bandpass filter are executed before
control passes to the interrupt routine.

The five bands and their Q values are: 125 Hz – 0.5, 500 Hz – 1.0, 1 kHz – 1.5, 4 kHz – 1.0, and 10 kHz –
0.5. Coefficient values are in the area labeled ‘Address of coefficients...’ at the beginning of the listing.

The specified Q values were chosen because they produce an appealing frequency display. If sharp filters
with high Q values were used, the display would not show the relative differences between the bass,
midrange, and treble frequency ranges. Energy associated to one particular frequency is not the primary
concern of the AFA design, but rather the energy of an entire frequency band.

Test the code as before with the 1-kHz filter. Sweep a sinusoidal tone across the frequency and watch the
appropriate LED array display signal energy. Apply a real time audio signal. Notice the differences between
the high and low ends of the audio spectrum, the visible contrast between a bass drum and a cymbal.

5BAND_SA.ASM Code Listing

 INCLUDE 'EQUATES.ASM' ;table of EQUates for common register addr
 INCLUDE 'ORG00000.ASM' ;initialize reset vector

***** Addresses of coefficients for the IIR Filters and initialization
COEFBS EQU $0280 ;base addr of coefficients
GAM_125 EQU COEFBS+$0 ;addr of the gamma coef
BET_125 EQU COEFBS+$2 ;addr of the beta coef
ALP_125 EQU COEFBS+$4 ;addr of the alpha coef
GAM_500 EQU COEFBS+$6 ;addr of the gamma coef
BET_500 EQU COEFBS+$8 ;addr of the beta coef
ALP_500 EQU COEFBS+$A ;addr of the alpha coef
GAM_1K EQU COEFBS+$C ;addr of the gamma coef
BET_1K EQU COEFBS+$E ;addr of the beta coef
ALP_1K EQU COEFBS+$10 ;addr of the alpha coef
GAM_4K EQU COEFBS+$12 ;addr of the gamma coef
BET_4K EQU COEFBS+$14 ;addr of the beta coef
ALP_4K EQU COEFBS+$16 ;addr of the alpha coef
GAM_10K EQU COEFBS+$18 ;addr of the gamma coef
BET_10K EQU COEFBS+$1A ;addr of the beta coef
ALP_10K EQU COEFBS+$1C ;addr of the alpha coef
 ORG $F0280
 dc.w $7C07 ;125 Hz gamma coef, Q=0.5
 dc.w $C3E9 ;125 Hz beta coef, Q=0.5
 dc.w $01F4 ;125 Hz alpha coef, Q=0.5
 dc.w $7774 ;500 Hz gamma coef, Q=1.0
 dc.w $C798 ;500 Hz beta coef, Q=1.0
 dc.w $03CB ;500 Hz alpha coef, Q=1.0
 dc.w $7257 ;1k Hz gamma coef, Q=1.5
 dc.w $C9F0 ;1k Hz beta coef, Q=1.5
 dc.w $04F7 ;1k Hz alpha coef, Q=1.5
 dc.w $2C13 ;4k Hz gamma coef, Q=1.0
 dc.w $ED7A ;4k Hz beta coef, Q=1.0
 dc.w $16BC ;4k Hz alpha coef,Q=1.0
 dc.w $CA66 ;10k Hz gamma coef, Q=0.5
 dc.w $FDFE ;10k Hz beta coef, Q=0.5
 dc.w $1EFE ;10k Hz alpha coef, Q=0.5
MOTOROLA AN1233/D
40

***** Addresses of filter terms for the x(n) terms and initialization
XTRMBS EQU $02A0 ;base addr of x(n) filter terms
XN1_125 EQU XTRMBS+$0 ;x(n-1)
XN2_125 EQU XTRMBS+$2 ;x(n-2)
XN1_500 EQU XTRMBS+$4 ;x(n-1)
XN2_500 EQU XTRMBS+$6 ;x(n-2)
XN1_1K EQU XTRMBS+$8 ;x(n-1)
XN2_1K EQU XTRMBS+$A ;x(n-2)
XN1_4K EQU XTRMBS+$C ;x(n-1)
XN2_4K EQU XTRMBS+$E ;x(n-2)
XN1_10K EQU XTRMBS+$10 ;x(n-1)
XN2_10K EQU XTRMBS+$12 ;x(n-2)
 ORG $F02A0
 dc.w $0000 ;125 Hz x(n-1)
 dc.w $0000 ;125 Hz x(n-2)
 dc.w $0000 ;500 Hz x(n-1)
 dc.w $0000 ;500 Hz x(n-2)
 dc.w $0000 ;1k Hz x(n-1)
 dc.w $0000 ;1k Hz x(n-2)
 dc.w $0000 ;1k Hz x(n-1)
 dc.w $0000 ;1k Hz x(n-2)
 dc.w $0000 ;1k Hz x(n-1)
 dc.w $0000 ;1k Hz x(n-2)

***** Addresses of filter terms for the y(n) terms and initialization
YTRMBS EQU $02C0 ;base addr of y(n) filter terms
YN1_125 EQU YTRMBS+$0 ;y(n-1)
YN2_125 EQU YTRMBS+$2 ;y(n-2)
X_2_125 EQU YTRMBS+$4 ;x(n) - x(n-2), stored here for mac
YN1_500 EQU YTRMBS+$6 ;y(n-1)
YN2_500 EQU YTRMBS+$8 ;y(n-2)
X_2_500 EQU YTRMBS+$A ;x(n) - x(n-2), stored here for mac
YN1_1K EQU YTRMBS+$C ;y(n-1)
YN2_1K EQU YTRMBS+$E ;y(n-2)
X_2_1K EQU YTRMBS+$10 ;x(n) - x(n-2), stored here for mac
YN1_4K EQU YTRMBS+$12 ;y(n-1)
YN2_4K EQU YTRMBS+$14 ;y(n-2)
X_2_4K EQU YTRMBS+$16 ;x(n) - x(n-2), stored here for mac
YN1_10K EQU YTRMBS+$18 ;y(n-1)
YN2_10K EQU YTRMBS+$1A ;y(n-2)
X_2_10K EQU YTRMBS+$1C ;x(n) - x(n-2), stored here for mac
 ORG $F02C0
 dc.w $0000 ;125 Hz y(n-1)
 dc.w $0000 ;125 Hz y(n-2)
 dc.w $0000 ;125 Hz [x(n) - x(n-2)]
 dc.w $0000 ;500 Hz y(n-1)
 dc.w $0000 ;500 Hz y(n-2)
 dc.w $0000 ;500 Hz [x(n) - x(n-2)]
 dc.w $0000 ;1k Hz y(n-1)
 dc.w $0000 ;1k Hz y(n-2)
 dc.w $0000 ;1k Hz [x(n) - x(n-2)]
 dc.w $0000 ;4k Hz y(n-1)
 dc.w $0000 ;4k Hz y(n-2)
 dc.w $0000 ;4k Hz [x(n) - x(n-2)]
 dc.w $0000 ;10k Hz y(n-1)
 dc.w $0000 ;10k Hz y(n-2)
 dc.w $0000 ;10k Hz [x(n) - x(n-2)]

***** Addresses of various temporary variables and initialization
PKRES EQU $02E0 ;base addr of filter result storage
PK_125 EQU PKRES+$0 ;peak value for 125 Hz
PK_500 EQU PKRES+$1 ;peak value for 500 Hz
PK_1K EQU PKRES+$2 ;peak value for 1k Hz
PK_4K EQU PKRES+$3 ;peak value for 4k Hz
PK_10K EQU PKRES+$4 ;peak value for 10k Hz
CNT EQU PKRES+$6 ;count value for LED qspi update routine
AD EQU PKRES+$8 ;divided by two adc reading
 ORG $F02E0
 dc.w $0000 ;125 peak value, 500 peak value
 dc.w $0000 ;1k peak value, 4k peak value
 dc.w $0000 ;10k peak value
 dc.w $0000 ;update count value
 dc.w $0000 ;divided by two adc reading

 ORG $0200
AN1233/D MOTOROLA
41

***** Initialization Routines *****

 INCLUDE 'INITSYS.ASM' ;initially set EK=F, XK=0, YK=0, ZK=0
 ;set sys clock at 16.78 MHz, disable COP

***** RAM and Stack Initialization *
 LDD #$00FF
 STD RAMBAH ;store high ram array, bank F
 LDD #$0000
 STD RAMBAL ;store low ram array, 0000
 CLR RAMMCR ;enable ram
 LDAB #$0F
 TBSK ;set SK to bank F for system stack
 LDS #$02FE ;put SP in 1k internal SRAM

***** Initialize level 6 autovector address
 LDAB #$00
 TBEK ;ek extension pointer = bank0
 LDD #JMPINT ;load Dacc with interrupt vector addr
 STD $002C ;store addr to level 6 autovector

***** Initialize the PIT *****
 LDAB #$0F
 TBEK ;ek extension pointer = bankf
 LDD #$0616
 STD PICR ;pirql=6, piv=$16
 LDD #$0101
 STD PITR ;set the periodic timer at 62.5msec
 ANDP #$FF1F ;set interrupt priority to 000

***** QSPI Initialization *****
 LDAA #$08
 STAA QPDR ;output pcs0/ss* to 0 when asserted
 LDAA #$0F
 STAA QPAR ;assign QSM port pins to qspi module
 LDAA #$FE
 STAA QDDR ;assign all QSM pins as outputs except miso

 LDD #$8004 ;mstr, womq=cpol=cpha=0
 STD SPCR0 ;16 bits, 2.10MHz serial baud rate
 LDD #$0300 ;no interrupt generated, no wrap mode
 STD SPCR2 ;newqp=0, endqp=3, queued for 4 trans

***** Fill QSPI Command.ram to write the config registers of the 14489
 LDAA #$C0
 STAA CR0 ;cont=1, bitse=1, pcs0=0, no delays needed
 STAA CR1
 STAA CR2
 LDAA #$40
 STAA CR3 ;cont=0, bitse=1, pcs0=0, no delays needed

***** Fill QSPI Transmit.ram to write the config registers of the 14489
 LDAA #$3F
 STD TR0+1 ;store $3F to tran.ram registers
 STD TR2
 STD TR3+1

***** Turn on the QSPI, this will write to the config registers
***** of the MC14489 drivers
GO LDD #$8404
 STAA SPCR1 ;turn on spi
SPIWT LDAA SPSR ;after sending data we wait until the
 ANDA #$80 ;spif bit is set, before we can send more
 CMPA #$80 ;check for spi done
 BNE SPIWT

***** Fill QSPI Command.ram to write the display registers of the 14489
 LDAA #$C0
 STAA CR0 ;cont=1, bitse=1, pcs0=0, no delays needed
 STAA CR1
 LDAA #$40 ;cont=0, bitse=1, pcs0=0, no delays needed
 STAA CR2
 STAA CR4
 LDAA #$80 ;cont=1, bitse=0, pcs0=0, no delays needed
 STAA CR3
MOTOROLA AN1233/D
42

***** Fill QSPI Transmit.ram for display registers of the 14489
***** The beginning LED values will be $00, all of the LEDs will be off
 LDD #$8000
 STD TR0 ;TR0 = $8000
 STAA TR3+1 ;TR1 = $0080
 LDD #$0080 ;TR2 = $0000
 STD TR1 ;TR3 = $XX80
 CLRD ;TR4 = $0000
 STD TR2
 STD TR4

 LDD #$0400 ;display registers need 5 transmissions
 STD SPCR2 ;newqp=0, endqp=4

***** ADC Initialization *****
 LDD #$0000
 STD ADCMCR ;turn on ADC
 LDD #$0003
 STD ADCTL0 ;8-bit, set sample period

***** Initialize the extension registers for the internal ram in bank F
***** Set up the extension registers to point to bank F
 LDAB #$0F ;load b with $0F
 TBEK ;transfer Bacc to Ek
 TBXK ;transfer Bacc to Xk
 TBYK ;transfer Bacc to Yk
 TBZK ;transfer Bacc to Zk
 JMP RAM ;jump to internal ram for speed!

***** Start of Internal 1K RAM
 ORG $F0000
RAM CLR CNT ;clear LED update counter
 CLR PK_125 ;clear 125 peak value
 CLR PK_500 ;clear 500 peak value
 CLR PK_1K ;clear 1k peak value
 CLR PK_4K ;clear 4k peak value
 CLR PK_10K ;clear 10k peak value
 CLRW AD ;clear AD

* Initialization for DSP
 ORP #$0010 ;set saturation mode for Macc
 CLRD ;clear Dacc
 TDMSK ;no modulo addressing

LP LDY #COEFBS ; 4 load y with the coef base addr
 LDX #YTRMBS ; 4 load x with the yterm base addr
 LDHI ; 8 load h and i multiplier and multiplicand
 CLRD ; 2 clear Dacc
 STD ADCTL1 ; 6 single 4 conversion, single channel AD0
 ; writing to the ADCTL1 reg starts conv

* Divide input x(n) by 2, no overflow problem
 LDAA LJSRR0 ; 6 load Aacc with left jus signed ADC value
 ASRA ; 2 divide by 2

 STAA AD ; 6 store divide by 2 adc value away

* Check if LEDs need updating
 LDAA CNT ; 6 load Aacc with count
 ADDA #1 ; 2 add 1 to Aacc
 STAA CNT ; 6 store new count
 BNE F125 ; 6,2 check to see if its time to update
 ; the LEDs, time = 256 * 668 cycles
 ; 668 cycles = 40.08usec
 ; so LED update time is 10.26msec
 LDD #$8404 ; 6 load up Dacc
 STD SPCR1 ; 6 turn on QSPI, send LED data out

***** Start of the 125 Hz routine
F125 CLRM ; 2 clear Macc
 LDE AD ; 6 load Eacc with AD
AN1233/D MOTOROLA
43

* Digital processing algorithm
 TED ; 2 transfer Eacc to Dacc
 SUBD XN2_125 ; 6 Dacc = x(n) - x(n-2)
 STD X_2_125 ; 6 store Dacc to [x(n) - x(n-2)] addr
 LDD XN1_125 ; 6 load Dacc with x(n-1)
 STED XN1_125 ; 8 store x(n) to x(n-1) and
 ; store x(n-1) to x(n-2)

 MAC 2,2 ;12 gamma*(yn1)+Macc=Macc
 MAC 2,2 ;12 beta*(yn2)+Macc=Macc
 MAC 2,2 ;12 alpha*[x(n)-x(n-2)]+Macc=Macc
 TMER ; 6 transfer Macc to Eacc, round for converg
 ASLE ; 2 multiply Eacc by 2

* Get LED encode value from look-up table
 TED ; 2 transfer Eacc to Dacc
 STAA LD125+3 ; 6 Dacc high byte -> instruction ldaa $03??
 NOP ; 2 no operation, due to CPU pipeline
 NOP ; 2 no operation, due to CPU pipeline
LD125 LDAA LED_TBL ; 6 load Aacc with the encoded LED value
 ; from scaled peak LED table

* Update peak value if needed
 CMPA PK_125 ; 6 compare value to previous peak value
 BLS DN125 ; 6,2 branch if not more than peak value
 STAA PK_125 ; 6 store new peak value
 STAA TR4+1 ; 6 store new value to 125 qspi tran.ram

* Update y(n-1) and y(n-2)
DN125 LDD YN1_125 ; 6 load Dacc with y(n-1)
 STED YN1_125 ; 8 store Eacc to y(n-1), Dacc to y(n-2)

***** Start of the 500 Hz DSP routine
F500 CLRM ; 2 clear Macc
 LDE AD ; 6 load Eacc with AD

* Digital processing algorithm
 TED ; 2 transfer Eacc to Dacc
 SUBD XN2_500 ; 6 Dacc = x(n) - x(n-2)
 STD X_2_500 ; 6 store Dacc to [x(n) - x(n-2)] addr
 LDD XN1_500 ; 6 load Dacc with x(n-1)
 STED XN1_500 ; 8 store x(n) to x(n-1) and
 ; store x(n-1) to x(n-2)
 MAC 2,2 ;12 gamma*(yn1)+Macc=Macc
 MAC 2,2 ;12 beta*(yn2)+Macc=Macc
 MAC 2,2 ;12 alpha*[x(n)-x(n-2)]+Macc=Macc
 TMET ; 2 transfer Macc to Eacc, truncate
 ASLE ; 2 multiply Eacc by 2

* Get LED encode value from look-up table
 TED ; 2 transfer Eacc to Dacc
 STAA LD500+3 ; 6 Dacc high byte -> instruction ldaa $03??
 NOP ; 2 no operation, due to CPU pipeline
 NOP ; 2 no operation, due to CPU pipeline
LD500 LDAA LED_TBL ; 6 load Aacc with the encoded LED value
 ; from scaled peak LED table

* Update peak value if needed
 CMPA PK_500 ; 6 compare value to previous peak value
 BLS DN500 ; 6,2 branch if not more than peak value
 STAA PK_500 ; 6 store new peak value
 STAA TR4 ; 6 store new value to 500 qspi tran.ram

* Update y(n-1) and y(n-2)
DN500 LDD YN1_500 ; 6 load Dacc with y(n-1)
 STED YN1_500 ; 8 store Eacc to y(n-1), Dacc to y(n-2)

***** Start of the 1k Hz routine
F1K CLRM ; 2 clear Macc
 LDE AD ; 6 load Eacc with AD
MOTOROLA AN1233/D
44

* Digital processing algorithm
 TED ; 2 transfer Eacc to Dacc
 SUBD XN2_1K ; 6 Dacc = x(n) - x(n-2)
 STD X_2_1K ; 6 store Dacc to [x(n) - x(n-2)] addr
 LDD XN1_1K ; 6 load Dacc with x(n-1)
 STED XN1_1K ; 8 store x(n) to x(n-1) and
 ; store x(n-1) to x(n-2)

 MAC 2,2 ;12 gamma*(yn1)+Macc=Macc
 MAC 2,2 ;12 beta*(yn2)+Macc=Macc
 MAC 2,2 ;12 alpha*[x(n)-x(n-2)]+Macc=Macc
 TMET ; 2 transfer Macc to Eacc, truncate
 ASLE ; 2 multiply Eacc by 2

* Get LED encode value from look-up table
 TED ; 2 transfer Eacc to Dacc
 STAA LD1K+3 ; 6 Dacc high byte -> instruction ldaa $03??
 NOP ; 2 no operation, due to CPU pipeline
 NOP ; 2 no operation, due to CPU pipeline
LD1K LDAA LED_TBL ; 6 load Aacc with the encoded LED value
 ; from scaled peak LED table

* Update peak value if needed
 CMPA PK_1K ; 6 compare value to previous peak value
 BLS DN1K ; 6,2 branch if not more than peak value
 STAA PK_1K ; 6 store new peak value
 STAA TR2+1 ; 6 store new value to 1k qspi tran.ram

* Update y(n-1) and y(n-2)
DN1K LDD YN1_1K ; 6 load Dacc with y(n-1)
 STED YN1_1K ; 8 store Eacc to y(n-1), Dacc to y(n-2)

***** Start of the 4k Hz routine
F4K CLRM ; 2 clear Macc
 LDE AD ; 6 load Eacc with AD

* Digital processing algorithm
 TED ; 2 transfer Eacc to Dacc
 SUBD XN2_4K ; 6 Dacc = x(n) - x(n-2)
 STD X_2_4K ; 6 store Dacc to [x(n) - x(n-2)] addr
 LDD XN1_4K ; 6 load Dacc with x(n-1)
 STED XN1_4K ; 8 store x(n) to x(n-1) and
 ; store x(n-1) to x(n-2)

 MAC 2,2 ;12 gamma*(yn1)+Macc=Macc
 MAC 2,2 ;12 beta*(yn2)+Macc=Macc
 MAC 2,2 ;12 alpha*[x(n)-x(n-2)]+Macc=Macc
 TMET ; 2 transfer Macc to Eacc, truncate
 ASLE ; 2 multiply Eacc by 2

* Get LED encode value from look-up table
 TED ; 2 transfer Eacc to Dacc
 STAA LD4K+3 ; 6 Dacc high byte -> instruction ldaa $03??
 NOP ; 2 no operation, due to CPU pipeline
 NOP ; 2 no operation, due to CPU pipeline
LD4K LDAA LED_TBL ; 6 load Aacc with the encoded LED value
 ; from scaled peak LED table

* Update peak value if needed
 CMPA PK_4K ; 6 compare value to previous peak value
 BLS DN4K ; 6,2 branch if not more than peak value
 STAA PK_4K ; 6 store new peak value
 STAA TR2 ; 6 store new value to 4k qspi tran.ram

* Update y(n-1) and y(n-2)
DN4K LDD YN1_4K ; 6 load Dacc with y(n-1)
 STED YN1_4K ; 8 store Eacc to y(n-1), Dacc to y(n-2)

***** Start of the 10k Hz routine
F10K CLRM ; 2 clear Macc
 LDE AD ; 6 load Eacc with AD
AN1233/D MOTOROLA
45

* Digital processing algorithm
 TED ; 2 transfer Eacc to Dacc
 SUBD XN2_10K ; 6 Dacc = x(n) - x(n-2)
 STD X_2_10K ; 6 store Dacc to [x(n) - x(n-2)] addr
 LDD XN1_10K ; 6 load Dacc with x(n-1)
 STED XN1_10K ; 8 store x(n) to x(n-1) and
 ; store x(n-1) to x(n-2)

 MAC 2,2 ;12 gamma*(yn1)+Macc=Macc
 MAC 2,2 ;12 beta*(yn2)+Macc=Macc
 MAC 2,2 ;12 alpha*[x(n)-x(n-2)]+Macc=Macc
 TMET ; 2 transfer Macc to Eacc, truncate
 ASLE ; 2 multiply Eacc by 2

* Get LED encode value from look-up table
 TED ; 2 transfer Eacc to Dacc
 STAA LD10K+3 ; 6 Dacc high byte -> instruction ldaa $03??
 NOP ; 2 no operation, due to CPU pipeline
 NOP ; 2 no operation, due to CPU pipeline
LD10K LDAA LED_TBL ; 6 load Aacc with the encoded LED value
 ; from scaled peak LED table

* Update peak value
 CMPA PK_10K ; 6 compare value to previous peak value
 BLS DN10K ; 6,2 branch if not more than peak value
 STAA PK_10K ; 6 store new peak value
 STAA TR1 ; 6 store new value to 10k qspi tran.ram

* Update y(n-1) and y(n-2)
DN10K LDD YN1_10K ; 6 load Dacc with y(n-1)
 STED YN1_10K ; 8 store Eacc to y(n-1), Dacc to y(n-2)
 NOP

END JMP LP ; 6 jump back to start another conversion
MOTOROLA AN1233/D
46

***** Exceptions/Interrupts *****
***** This interrupt is used to decrement each LED bar value
***** representing the peak value of each filter band
INT_RT PSHM D,CCR ;stack Dacc and CCR on stack

CK125 LDAA PK_125 ;load Aacc with 125 peak value
 BEQ CK500 ;equal to 0?, then CK500
 ANDP #$FEFF ;clear C bit
 RORA ;rotate right once, decrease peak value
 STAA TR4+1 ;store Aacc to 125 Hz qspi tran.ram
 STAA PK_125 ;store Aacc to 125 Hz peak value

CK500 LDAA PK_500 ;load Aacc with 500 peak value
 BEQ CK1K ;equal to 0?, then CK1K
 ANDP #$FEFF ;clear C bit
 RORA ;rotate right once, decrease peak value
 STAA TR4 ;store Aacc to 500 Hz qspi tran.ram
 STAA PK_500 ;store Aacc to 500 Hz peak value
CK1K LDAA PK_1K ;load Aacc with 1k peak value
 BEQ CK4K ;equal to 0?, then CK4K
 ANDP #$FEFF ;clear C bit
 RORA ;rotate right once, decrease peak value
 STAA TR2+1 ;store Aacc to 1k Hz qspi tran.ram
 STAA PK_1K ;store Aacc to 1k Hz peak value

CK4K LDAA PK_4K ;load Aacc with 4k peak value
 BEQ CK10K ;equal to 0?, then CK10K
 ANDP #$FEFF ;clear C bit
 RORA ;rotate right once, decrease peak value
 STAA TR2 ;store Aacc to 4k Hz qspi tran.ram
 STAA PK_4K ;store Aacc to 4k Hz peak value

CK10K LDAA PK_10K ;load Aacc with 10k peak value
 BEQ UPDATE ;equal to 0?, then UPDATE
 ANDP #$FEFF ;clear C bit
 RORA ;rotate right once, decrease peak value
 STAA TR1 ;store Aacc to 10k Hz qspi tran.ram
 STAA PK_10K ;store Aacc to 10k Hz peak value

UPDATE LDD #$8404 ;load up Dacc
 STD SPCR1 ;turn on QSPI, send LED data out

DONE PULM D,CCR ;pull Dacc and CCR from stack
 RTI ;return from interrupt

***** Location of start of level 6 interrupt, has to be in bank 0
 ORG $A000
JMPINT JMP INT_RT

***** OUTVAL1 is a 256 byte lookup table to convert an
***** ADC reading to a LED value that can be transmitted to the 14489
***** Multiplies by two and
***** Encodes to a scale of +6, +3, 0, -3, -6, -9, -12, -15 dB
 INCLUDE 'OUTVAL1.ASM' ;LED Look up table
AN1233/D MOTOROLA
47

Figure 23 5BAND_SA.ASM Flowchart (Sheet 1 of 4)

AN1233 F20A

START

INITIALIZE LEVEL 6
AUTOVECTOR ADDRESS

INITIALIZE PIT
REQUEST LEVEL 6
PIT VECTOR $16

15.6 mS INTERRUPT

INCLUDE 'EQUATES.ASM'
INCLUDE 'ORG00000.ASM'

INITIALIZE INTERNAL RAM
AT LOCATION $F0000

STACK AT $F02FE

QSPI PORT INITIALIZATION
ASSIGN PORT PINS

TO OUTPUT QSPI SIGNALS

QSPI INITIALIZATION
MASTER MODE, 16 BIT

2.10 MHz SERIAL BAUD RATE
4 QUEUED TRANSMISSIONS

A

FILL QSPI COMMAND.RAM
FOR MC14489 CONFIG REGS

FILL QSPI TRANSMIT.RAM
FOR MC14489 CONFIG REGS

TURN ON QSPI

SPIF BIT SET?

YES

NO

FILL QSPI COMMAND.RAM
FOR MC14489 DISPLAY REGS

FILL QSPI TRANSMIT.RAM
FOR MC14489 DISPLAY REGS

CHANGE QSPI TO 5
QUEUED TRANSMISSIONS

A

THIS FIRST TRANSFER INITIALIZES THE
INTERNAL CONFIGURATION REGISTERS
OF THE MC14489 TO HANDLE 40 LEDS

B

ADC
INITIALIZATION

INITIALIZE EXTENSION REGISTERS
TO POINT TO BANK F

JUMP TO INTERNAL RAM
AT LOCATION $F0000

THESE INCLUDE FILES CONTAIN THE FOLLOWING:
AN EQUATE FILE WITH ALL THE Z1 REGISTERS DEFINED
RESET VECTOR INITIALIZATION
SYSTEM INITIALIZATION FOR THE Z1INCLUDE 'INITSYS.ASM'
MOTOROLA AN1233/D
48

 Figure 23 5BAND_SA.ASM Flowchart (Sheet 2 of 4)

AN1233 F22B

B

CLEAR LED UPDATE COUNTER
CLEAR PEAK VALUE

READ LED UPDATE COUNTER

 ADD 1 TO LED COUNTER
STORE AWAY LED COUNTER

256 CYCLES?
YES

NO

TURN ON QSPI

LOCATION $F0000

CHECK IF LEDS
NEED TO BE UPDATED

SET SATURATION MODE
NO MODULO ADDRESSING

LOAD Y REG WITH COEFF ADDRESS
LOAD X REG WITH Y TERMS ADDRESS

READ ADC VALUE

LOAD UP H AND I REGISTERS

C

D

INITIALIZE INTERNAL CPU
REGISTERS FOR DSP OPERATIONS

START THE ADC

DIVIDE BY 2
STORE AWAY NEW VALUE AS AD
AN1233/D MOTOROLA
49

Figure 23 5BAND_SA.ASM Flowchart (Sheet 3 of 4)

AN1233 F22C

READ LED ENCODE PEAK VALUE
 FROM THE LED TABLE OFFSET
 BY THE ADC VALUE

 PEAK >
OLD PEAK?

YES

NO

STORE AWAY NEW ENCODED PEAK
STORE NEW ENCODED PEAK

TO QSPI TRANSMIT.RAM

SELF-MODIFYING CODE
THE ADC VALUE IS USED
AS THE OFFSET WHEN READING
THE LED ENCODE VALUE
FROM THE LED TABLE

 CLEAR ACCM
READ AD VALUE

Z = X(N) - X(N-2)
X(N-1) = X(N)

X(N-2) = X(N-1)
MACC = GAMMA * Y(N-1) + MACC
MACC = -BETA * Y(N-2) + MACC

MACC = ALPHA * Z + MACC
MACC = 2 * MACC

STORE DSP FILTER VALUE TO THE
 READ LED TABLE INSTRUCTION

WAIT UNTIL THE 40.08 ΜS
SAMPLING PERIOD EXPIRES

 Y(N-1) = Y(N)
Y(N-2) = Y(N-1)

C

D

THE DIGITAL PROCESSING ALGORITHM

INCLUDE 'OUTVAL1.ASM'
OUTVAL1.ASM IS A 256 BYTE LOOKUP TABLE
TO CONVERT AN ADC VALUE TO AN LED VALUE THAT
WILL BE TRANSMITTED TO THE MC14489
THE TABLE WILL MULTIPLY THE VALUE BY TWO AND ENCODE
IT TO A SCALE OF +6, +3, 0, -3, -6, -9, -12, AND -15 DB
MOTOROLA AN1233/D
50

 Figure 23 5BAND_SA.ASM Flowchart (Sheet 4 of 4)

AN1233 F23

THIS INTERRUPT WILL DECREASE
THE LED ENCODED PEAK VALUE FOR
EACH FILTER. THE DECREASED PEAK
VALUE IS THEN TRANSMITTED TO
UPDATE THE LED ARRAY.

START

STACK D AND C REG

LEVEL 6 INTERRUPT

READ 125 Hz FILTER PEAK VALUE

PEAK = 0?
YES

NO

CLEAR C BIT IN CCR

ROTATE 125 Hz PEAK TO THE RIGHT

STORE AWAY NEW 125 Hz PEAK
STORE NEW 125 Hz PEAK TO
QSPI 125 Hz TRANSMIT.RAM

PULL D AND C REG

 RETURN FROM
LEVEL 6 INTERRUPT

TURN ON QSPI

READ 500 Hz FILTER PEAK VALUE

PEAK = 0?
YES

NO

CLEAR C BIT IN CCR

ROTATE 500 Hz PEAK TO THE RIGHT

STORE AWAY NEW 500 Hz PEAK
 STORE NEW 500 Hz PEAK TO
 QSPI 500 Hz TRANSMIT.RAM

READ 1 kHz FILTER PEAK VALUE

PEAK = 0?
YES

NO

CLEAR C BIT IN CCR

ROTATE 1 kHz PEAK TO THE RIGHT

STORE AWAY NEW 1 kHz PEAK
STORE NEW 1 kHz PEAK TO
QSPI 1 kHz TRANSMIT.RAM

READ 4 kHz FILTER PEAK VALUE

PEAK = 0?
YES

NO

CLEAR C BIT IN CCR

ROTATE 4 kHz PEAK TO THE RIGHT

STORE AWAY NEW 4 kHz PEAK
STORE NEW 4 kHz PEAK TO
QSPI 4 kHz TRANSMIT.RAM

READ 10 kHz FILTER PEAK VALUE

PEAK = 0? YES

NO

CLEAR C BIT IN CCR

ROTATE 10 kHz PEAK TO THE RIGHT

STORE AWAY NEW 10 kHz PEAK
STORE NEW 10 kHz PEAK TO
QSPI 10 kHz TRANSMIT.RAM

J

I

I

J

AN1233/D MOTOROLA
51

Moto g
the s d
spec t
appl t
conv s
inten a
prod r
unau ,
cost h
unin a
regis

TO OB
US

JA

HO

MF
INT
rola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regardin
uitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, an
ifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in differen
ications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does no
ey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in system
ded for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorol
uct could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended o
thorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims

s, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with suc
tended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. M is
tered trademark of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

TAIN ADDITIONAL PRODUCT INFORMATION:
A/EUROPE: Motorola Literature Distribution;

P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447
PAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki,

6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315
NG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,

51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
AX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609
ERNET: http://www.mot.com

CONCLUSION

This application note is intended to give designers some insight concerning the use of digital signal process-
ing algorithms with a microcontroller. The finished project is flexible enough to permit experimenting with
different filters and LED output displays. DSP allows the experimenter to make on-the-fly changes in filter
response by changing the coefficients.

REFERENCES

The following Motorola documents are referred to in this application note.

• M68HC16Z1EVB User's Manual (M68HC16Z1EVB/D)

• MC68HC16Z1 User’s Manual (MC68HC16Z1UM/D)

• CPU16 Reference Manual (CPU16RM/AD)

• QSM Reference Manual (QSMRM/AD)

• ADC Reference Manual (ADCRM/AD)

• MC14489 Data Sheet (MC14489/D)

These items can be obtained through a Motorola Sales Office or Literature Distribution Center.

	USING M68HC16 DSP TO BUILD AN AUDIO FREQUENCY ANALYZER
	INTRODUCTION
	OBJECTIVES
	EQUIPMENT REQUIREDED
	THE AUDIO FREQUENCY ANALYZER
	AFA Hardware
	Figure 1 Frequency Analyzer System Diagram
	Figure 2 Bandpass Frequency Analyzer Transfer Func...
	Figure 3 Audio Frequency Analyzer System Diagram
	Figure 5 AFA Digital Back End

	The Analog Front End
	Figure 4 AFA Analog Front End
	The Summing Amplifier
	Anti-Aliasing Filter
	ADC Input Biasing
	Figure 6 Second-Order Filter Section
	Figure 7 AFA Aliasing Without Filter
	Figure 8 AFA Anti-Aliasing Filter Roll-Off
	Figure 9 ADC Conversion Formats
	Figure 10 Hexadecimal Representation of 8-Bit ADC ...

	The Digital Back End
	The MC14489 LED Driver

	The M68HC16Z1 EVB and Development Environment
	Assembling the Development Environment
	Table 1 Development Software
	Figure 11 AFA Development System Setup

	AFA Software
	Table 2 AFA Project Software
	Figure 12 AFA Software Template
	Software Design Constraints
	Figure 13 AFA System Software Flowchart
	Figure 14 AFA Sampling Period

	Software Design Implementation
	Analog-to-Digital Data Acquisition (ADC.ASM)
	ADC.ASM Code listing
	Figure 15 ADC.ASM Flowchart

	QSPI TO MC14489 Interface (QSPI_LED.ASM)
	QSPI_LED.ASM Code Listing
	Figure 16 QSPI_LED.ASM Flowchart

	The Periodic Interrupt Timer (INT_TEST.ASM)
	INT_TEST.ASM Code Listing
	Figure 17 INT_TEST.ASM Flowchart

	Signal Peak Detector (PEAK.ASM)
	Figure 18 Relationship Between Signal Amplitude an...
	Figure 19 Analog Input vs Peak Display Level
	PEAK.ASM Code Listing
	Figure 20 PEAK.ASM Flowchart (Sheet 1 of 2)
	Figure 20 PEAK.ASM Flowchart (Sheet 2 of 2)

	1-kHz Bandpass Filter (1K_FLTR.ASM)
	Figure 21 Filter Relationships
	Table 3 DSP Filter Algorithm Memory Use
	1K_FLTR.ASM Code Listing
	Figure 22 1K_FLTR.ASM Flowchart (Sheet 1 of 4)
	Figure 22 1K_FLTR.ASM Flowchart (Sheet 2 of 4)
	Figure 22 1K_FLTR.ASM Flowchart (Sheet 3 of 4)
	Figure 22 1K_FLTR.ASM Flowchart (Sheet 4 of 4)

	The 5 Band Audio Frequency Analyzer (5BAND_SA.ASM)
	5BAND_SA.ASM Code Listing
	Figure 23 5BAND_SA.ASM Flowchart (Sheet 1 of 4)
	Figure 23 5BAND_SA.ASM Flowchart (Sheet 2 of 4)
	Figure 23 5BAND_SA.ASM Flowchart (Sheet 3 of 4)
	Figure 23 5BAND_SA.ASM Flowchart (Sheet 4 of 4)

	CONCLUSION
	REFERENCES

