
© Motorola, Inc., 1996 AN1239

Order this document
by AN1239/D

Rev. 1.0

Motorola Semiconductor Application Note

AN1239

HC05 MCU Keypad Decoding Techniques
Using the MC68HC705J1A

By David Yoder
CSIC Applications

Introduction

This application note demonstrates the use of a matrix keypad including
wakeup from stop mode with HC05 J and K series microcontrollers. The
MC68HC705J1A is used as an example.

The code is divided into a main routine and two subroutines. The main
routine handles stop mode and the interrupt service routine that acts on
the key being pressed. The keypad subroutine actually decodes the
keypad. The delay subroutine is used by the interrupt service routine to
debounce the key press and key release.

Application Note

AN1239

2 MOTOROLA

Features

4 x 4 Matrix
Keypad

A matrix keypad allows a designer to implement a large number of inputs
with a small number of port pins. For example, a 16-key pad arranged
as a 4 x 4 matrix can be implemented with only eight port pins. To
minimize the number of pins required, the keys should be arranged in as
square a matrix a possible. As an example of a non-square matrix using
more pins, if 16 keys were arranged in an 8 x 2 matrix, 10 keys would be
required instead of eight.

Low-Component
Count

A matrix keypad requires the use of pulldown resistors. These pulldowns
have been built into the HC705J1A as well as several other Motorola
MCUs. This minimizes the need for external components and their
related cost.

In a battery-operated device, such as a remote control, current
consumption is paramount. Stop mode in HC05 parts often is used to
minimize current consumption when the microcontroller is not needed.
This mode stops the crystal or ceramic resonator from running, thereby
lowering the MCU’s current draw. To exit STOP and resume processing,
an external reset or interrupt is required. The MC68HC705J1A and
several other HC05 MCUs contain circuitry that minimizes the need for
external components to connect the keypad to the external interrupt pin
or the hardware reset pin.

The ceramic resonator is not related to the keypad but demonstrates a
low-component count. A three-pin device includes the resonator and
load capacitors in one package. The MC68HC705J1A’s internal bias
resistor mask option eliminates the external resistor. The oscillator
circuit requires only one external component in this arrangement.

Application Note
Features

AN1239

MOTOROLA 3

Low-Power
Consumption

Pulldowns also draw current. While a key is pressed, pulldowns are
shorted to an output that is driving high. While waiting for the debounce
delay, the current draw can be minimized by driving the outputs low after
the decoding is complete. The outputs must be re-configured to high
before the STOP instruction is executed so that they can pull a pulldown
up and cause an interrupt.

Floating inputs are another source of excess current in CMOS circuitry.
To ensure that floating inputs are tied to ground, the MC68HC705J1A
has software programmable pulldown resistors on all input/output pins.

High-Current Sink
Pins

This part has high-current sink capability on pins PA4 through PA7. This
keypad code leaves those pins free for use and does not modify their
state. The project in the appendices uses them to drive LEDs that show
the code of the key that was pressed.

Computer
Operating
Properly
Watchdog

The COP watchdog is serviced during the delay routine used for
debounce. This allows the watchdog to catch runaway code and reset
the part if a problem occurs.

Key Repeat Often a signal should be sent as long as the corresponding key is
pressed. For that reason, this routine loops until the key is released.

Application Note

AN1239

4 MOTOROLA

Implementation

Keypad decoding works by combining a matrix of switches with resistor
pulldowns. The keypad is to be connected in the following fashion:

1 2 3 A---PA0 input ports with pulldowns & interrupts
4 5 6 B---PA1
7 8 9 C---PA2
* 0 # D---PA3
| | | |
| | | ----PB3 output ports
| | ------PB2
| --------PB1
----------PB0

The wakeup on keypress and keypad decoding can be considered
seperately. Wakeup from STOP requires and external IRQ signal. The
MC68HC705J1A has circuitry to create an interrupt if any one of the port
A0 through A3 pins goes high. The IRQ edge/level sensitivity bit applies
to these pins also. In addition, all pins of the MC68HC705J1A have
internal pulldown devices that are enabled when the ports are
programmed as inputs.

To use this feature, port B0 through B3 are programmed to output high
logic levels. Now, if any one of the keys are pressed, an output high is
shorted to an input with a pulldown. The output has enough drive current
to defeat the pulldown and the result is a high on the input of the Port A
pin. The internal circuitry latches an interrupt request, bringing the part
out of STOP mode and executing code at the external interrupt vector.

Now that the interrupt service routine is executing, the keypad can be
decoded to find out which key was pressed. This is done in the
subroutine KEYPAD.SUB by matching a row with a column. Each
column is set to output high while the other columns are output low. For
each column, all rows are checked until one is found to be high. Rows
that are not shorted by a keypress to the column that is driving high will
be either pulled low by a pulldown or (if they are shorted to a column that
is driving low) driven low. The matching is done by writing the columns
to a value from a table, and then comparing the input value with another
entry in the table. When a column and row are matched, the appropriate
code is returned. If no match is found, a zero is returned.

Application Note
Implementation

AN1239

MOTOROLA 5

The core of the keypad decoding subroutine is:

lda portb ;Get value in port B
and #$f0 ;Do not allow high nibble to change
ora KeyPad_Table+1,x ;Get key decode value from table
sta portb ;Write to port

lda porta ;Get value in port A
and #$0F ;Throw out columns to read only rows
cmp KeyPad_Table,x ;See if high nibble bit was pulled low
beq KeyPad030 ;If key found, branch

This code outputs an entry from the decode table on the low nibble of
port B. A comparison is made between the low nibble of port A to
another table entry to see if the matching column was pulled high. If a
match was made, the code for that key is returned. Care is taken to
retain the state of pins not used by the keypad.

After the decoding is done, several milliseconds will be spent just
delaying for key debounce. Since it is likely that a key will be held down
during this period, and that a key pressed will short an output high to a
pulldown device and draw unnecessary current, the code should set the
column outputs to low. That way, no current will be drawn by a pressed
key.

The following code sets the low nibble of port B to the same level as the
pulldowns:

KeyPad035: lda portb ;'Help' the pulldowns by driving the
and #$F0 ; lines low. This minimizes current
sta portb ; draw while debouncing.

The appendices show a framework for a project using a keypad and stop
mode when not decoding. Operations to be performed when a key is
pressed are placed in the interrupt service routine. The example simply
outputs the code for each key pressed on LEDs attached to PA4 through
PA7. These pins have high current sink capability. Therefore, setting the
pin to output low turns the LED on. The codes, shown in the table at the
end of the KEYPAD.SUB subroutine, are first complemented and then
written to the high nibble of port A.

This project has been designed and implemented using Carnegie-
Mellon Sofware Engineering Institute Level 2 requirements. The
software is available on the Motorola CSIC BBS. To access the

Application Note

AN1239

6 MOTOROLA

software, set your modem software to eight data bits, no partity, and one
stop bit. The BBS phone number is:

(512) 891-3733
The file is under the app notes file area and has the name an1239.zip.

Modifications

Using a repeat bit, the code can be changed to repeat only certain keys.

The last key pressed can be stored in a variable to give a longer repeat
delay for the first repeat and then a fast repeat.

If low-power operation is not needed, the subroutine KeyPad_Body and
its associated initialization, Key Pad_Init, can be called without the rest
of the code to create a polled keypad routine.

An MC34064 low-voltage reset has been included to show the most
robust RESET circuit. This provides protection from slow-ramping power
supplies. Many bench-type power supplies ramp slowly, causing faulty
power-on of MCUs. The MC34064 holds RESET pin low until the power
supply is within a specified range. An internal pullup device on the
MC68HC705J1A brings the RESET pin high when the MC34064 no
longer drives it low. This also provides protection from brownout, when
the MCU’s minimum VDD requirements are exceeded. If such robust
protection is not required, engineering judgment may be used to design
a more cost-effective circuit.

Application Note
Appendix A: Software

AN1239

MOTOROLA 7

Appendix A: Software

**
**
* *
* Main Routine KeyPdInt - Low Power Keypad Interface *
* *
**
* *
* File Name: KeyPdInt.RTN Copyright (c) Motorola 1994 *
* *
* Full Functional Description Of Routine Design: *
* Program flow: *
* Reset: Calls init routine to setup port DDR's and data regs *
* STOP to remain in low power mode when key is not pressed *
* Loop to STOP instruction after returning from interrupt *
* ISR: Call KeyPad routine to see if a key is down. Just return *
* if it was a 'ghost' *
* If key was there, debounce keypad with DelaymS routine *
* If no key was there, just return *
* If key was there, perform action based on value returned *
* by KeyPad routine. *
* Branch to beginning of ISR to see if the key is still being *
* pressed. *
* Return path: delay to debounce the release of the key *
* RTI to return to main loop *
* *
**

**
* *
* MOR Bytes Definitions for Main Routine *
* *
**

 org MOR
 db PIRQ.+OSCRES. ;Enable Port A Interrupts
 ;If used on a mask rom part,
 ; be sure to specify this option.

Application Note

AN1239

8 MOTOROLA

**
* *
* Program Initialization *
* *
* This routine sets up the high nibble of port a to drive LED's *
* with it's high sink current. Due to the use of sink current, *
* the LED's will be on when an low is output and off when a high *
* is output. *
* *
* It then calls the Keypad_Init routine to setup the ports to *
* interrupt the processor when a key is pressed. *
* *
* To prevent floating inputs and associated high current draw, *
* the HC705J1A has pulldown devices on all I/O pins. This *
* initialization should enable these pulldowns on unused I/O *
* pins. RESET_ enables the pulldowns, so no code is required. *
* *
**

 org EPROM
Start:
KeyPdInt_Init: lda #00 ; This is for JICS only.
 ; JICS gives an error if an
 ; uninitialized register is used.
 ; X is "used" when it is stacked
 ; during a keypad interrupt service.
 lda #$F0 ;Set the high nibble as output
 sta PORTA ; high. This enables output drive
 STA DDRA ; for LED's but turns them off.
 jsr KeyPad_Init ;Set up the ports to interrupt
 ; on a keypress.

Application Note
Appendix A: Software

AN1239

MOTOROLA 9

**
* *
* KeyPdInt Main Program Loop *
* *
* This section simply services the COP watchdog and then enters STOP mode. *
* All other program execution is contained in the KeyPdInt_Isr, the *
* external interrupt service routine for this code. *
* *
**

KeyPdInt_Body:
 STOP ;Execute STOP instruction to put
 ; MCU in lowest power mode.
 ; The keypad can exit from STOP.
 ; STOP clears the I bit so CLI is
 ; not needed.
 ;When RTI returns from ISR, I bit
 ; will be clear, enabling ints.
 bra KeyPdInt_Body ;Infinite loop to stay in STOP.

Application Note

AN1239

10 MOTOROLA

**
* *
* IRQ Interrupt Service Routine *
* *
* This is the external interrupt service routine. Both the external *
* interrupt pin IRQ_ and the keypad interrupts use this routine. The real *
* work of the program is done withing this service routine. *
* *
**
KeyPdInt_Isr: ; Any decoding of external interrupts should be done here.
 ; The external and keypad interrupt share this vector.
KeyPdInt_Isr010:
 jsr KeyPad_Body ;See if a key is pressed
 ;If no key down, return
 ; to save power
 beq KeyPdInt_Isr090
 lda #$4 ;Debounce key for 4mS
 jsr DelaymS2_Body ;Jump to delay routine
 jsr KeyPad_Body ;Get the keypress
KeyPdInt_Isr020:
 beq KeyPdInt_Isr090 ;If no key down, return

 ;Operations that are to be performed based on a key should
 ; be placed here. This example will just flash the code.
 coma ;Complement the result
 ; because the LED's are
 ; negative logic.
 lsla ;Move the 4bit result into
 lsla ; the high nibble.
 lsla
 lsla
 sta PORTA ;Output the result for view.
 lda #!200 ;Show the result for 200mS.
 jsr DelaymS2_Body
 lda #$F0 ;Turn off the LED's
 sta PORTA
KeyPdInt_Isr080:
 bra KeyPdInt_Isr010 ;Back to beginning to repeat

KeyPdInt_Isr090 lda #!10 ;Delay 10 mS
 jsr DelaymS2_Body ;Debounce the release
 jsr KeyPad_Init ;Set up the port to interrupt
 bset IRQR,ISCR ;Clear any interrupt requests
 ; generated due to key bounce
 rti ;Return from Interrupt.
 ;Interrups can happen in any
 ; code in the main routine
 ; after this ISR has been
 ; called once.
 ;Remember this when changing
 ; the main routine!

Application Note
Appendix A: Software

AN1239

MOTOROLA 11

* *
* Subroutine Body Includes Section *
* *
* These include statements include the subroutines that are called by *
* this program. *
* KeyPad.SUB actually decodes the keypad *
* KelaymS.SUB delays operation in increments of milliseconds *
* *

#INCLUDE 'DelaymS2.SUB' ;Millisecond delay subroutine

#INCLUDE 'KeyPad.SUB' ;Keypad decode subroutine

* *
* Interrupt and Reset vectors for Main Routine *
* *

 org RESET
 fdb Start
 org IRQ_INT
 fdb KeyPdInt_Isr

Application Note

AN1239

12 MOTOROLA

**
* *
* Subroutine KeyPad - Decodes a matrix keypad on ports A & B *
* *
**
* *
* File Name: KEYPAD.SUB Copyright (c) Motorola 1994 *
* *
* Full Functional Description of Module Design: *
* Features: *
* Decodes a 4x4 matrix keypad attached to the low nibble of *
* ports A and B of an HC05 MCU. *
* Optimized for low-current drain. *
* Precharges pulldowns so that high resistors can be used. *
* This minimizes current draw. *
* No extra delay is needed for RC ramp - decode quickly. *
* For parts with high current drive on upper nibble of PortA: *
* Leaves PA4-PA7 and PB4-PB7 available. *
* Leaves PA4-PA7 and PB4-PB7 unchanged. *
* Key codes may be changed to any 8 bit number *
* ASCII is very possible *
* Multiple keys can have same code - see the two $0F codes *
* in the table. *
* Code 0 is used for the null key (no valid key decoded) *
* *
* Operation: *
* This code reads a matrix keypad by making one of the columns *
* high at a time. The row inputs are then compared to the *
* expected value for each of the keys in that column. The *
* data for this write and read is from the second and first *
* fields in the table Keypad_Table. *
* When a match is found, the ascii value for that key is read *
* from the third field in the table. *
* *
* *
* *
* *

Application Note
Appendix A: Software

AN1239

MOTOROLA 13

* 1 2 3 A---PA0 intput ports with pulldowns & interrupts *
* 4 5 6 B---PA1 *
* 7 8 9 C---PA2 *
* * 0 # D---PA3 *
* | | | | *
* | | | ----PB3 output ports *
* | | ------PB2 *
* | --------PB1 *
* ----------PB0 *
* *
* Key Row Col PA PB *
* 1 0 0 1 1 *
* 2 0 1 1 2 *
* 3 0 2 1 4 *
* A 0 3 1 8 *
* 4 1 0 2 1 *
* 5 1 1 2 2 *
* 6 1 2 2 4 *
* B 1 3 2 8 *
* 7 2 0 4 1 *
* 8 2 1 4 2 *
* 9 2 2 4 4 *
* C 2 3 4 8 *
* * 3 0 8 1 *
* 0 3 1 8 2 *
* # 3 2 8 4 *
* *

Application Note

AN1239

14 MOTOROLA

**
* *
* Keypad Initialization *
* *
* This code sets up the low nibble of ports A and B to decode a 4x4 matrix *
* keypad. This does not affect the high nibble of the port data or data *
* direction registers. *
* *
**

KeyPad_Init:
 lda ddra ;Set the low nibble of port a as input
 and #$F0 ; without affecting the high nibble.
 sta ddra ;This also enables the pulldowns.

 lda portb ;Set the low nibble of port b to high.
 ora #$0F ; This will defeat the pulldowns on
 sta portb ; port A if a key is pressed.

 lda ddrb ;Set the low nibble of Portb as output.
 ora #$0F
 sta ddrb

 clr PDRA ;Ensure that the pulldowns on port a
 ; are not disabled.

 rts ;Return to calling program.

**
* *
* KeyPad_Body *
* *
* This subroutine decodes a 4 x 4 matrix keypad on port B. *
* *
**

KeyPad_Body: ;Load X with the offset of the last
 ; entry in the table
 ldx #{KeyPad_Table_Top - KeyPad_Table}
KeyPad010:
 lda portb ;Get value in port B
 and #$f0 ;Do not allow high nibble to change
 ora KeyPad_Table+1,x ;Get key decode value from table
 sta portb ;Write to port

 lda porta ;Get value in port A
 and #$0F ;Throw out columns to read only rows
 cmp KeyPad_Table,x ;See if high nibble bit was pulled low
 beq KeyPad030 ;If key found, branch

Application Note
Appendix A: Software

AN1239

MOTOROLA 15

 decx ;Decrement X three times to point to
 decx ; next value in table
 decx
 bpl KeyPad010 ;If not below bottom of table
 ; try again.
 ldx #$00 ;A key was not decoded, so:
 bra KeyPad035 ;Return with null character
KeyPad030:
 lda KeyPad_Table+2,x ;Load key code into Acc.
 tax ;Store in X for now.

KeyPad035: lda portb ;'Help' the pulldowns by driving the
 and #$F0 ; lines low. This minimizes current
 sta portb ; draw while debouncing.

 txa ;Get result back to Acc.
 tsta ;Set the flags so calling routine
 ; can use them for decisions.
KeyPad040 rts ;Return with result value in Acc

 ;Table of keypad decode values and codes.
 ;Fill in your own key codes. Codes must be 1
 ; byte each. Currently limited to 4 bits to
 ; display on PA[4..7].
 ; Row Column
KeyPad_Table DB $01,$01,$1 ; PA0 PB0
 DB $01,$02,$2 ; PA0 PB1
 DB $01,$04,$3 ; PA0 PB2
 DB $01,$08,$A ; PA0 PB3
 DB $02,$01,$4 ; PA1 PB0
 DB $02,$02,$5 ; PA1 PB1
 DB $02,$04,$6 ; PA1 PB2
 DB $02,$08,$B ; PA1 PB3
 DB $04,$01,$7 ; PA2 PB0
 DB $04,$02,$8 ; PA2 PB1
 DB $04,$04,$9 ; PA2 PB2
 DB $04,$08,$C ; PA2 PB3
 DB $08,$01,$F ; PA3 PB0
 DB $08,$02,$E ; PA3 PB1
 DB $08,$04,$F ; PA3 PB2
KeyPad_Table_Top DB $08,$08,$D ; PA3 PB3

Application Note

AN1239

16 MOTOROLA

**
**
* *
* Subroutine Delayms2 - Delay for whole number of milliseconds *
* *
**
* *
* File Name: delayms2.SUB Copyright (c) Motorola 1994 *
* *
* Full Functional Description of Module Design: *
* *
* This routine delays operation for a whole number of milliseconds. *
* The number of milliseconds to delay is passed in the accumulator *
* The routine alters Acc, X and CCR. *
* A 4 MHz clock (2 MHz bus) is assumed. *
* The smallest delay is 2012 cycles which occurs when Acc = 1. (1 ms) *
* The largest delay is 512012 cycles which occurs when Acc = 0. (256 ms) *
* *
* Please note that passing 0 will NOT result in zero delay, but 256 ms delay.*
* *
* *
* The number of milliseconds to delay is passed in the accumulator. The *
* routine is formed by two loops. The inner loop (Delayms020) executes in *
* 1986 cycles. The outer loop executes once for each millisecond and adds *
* 14 bus cyces each time through the loop. This creates 2000 cycles for *
* each millisecond of delay. The RTS used to exit the routine add 6 bus *
* cycles to the total time. The JSR used to enter the routine may add 5 *
* or 6 bus cycles, for direct or extended addressing, respectively. *
* *
* The exact number of cycles for this routine to execute may be calculated *
* from (Assuming extended addressing): *
* *
* cycles = 6+Acc(2+248(3+2+3)+5+3+3+3)+6 order of execution *
* *
* or: *
* cycles = 12 + (Acc * 2000) simplified *
* *
* Upon exit, the accumulator and index register will be zero. *
* *
* *
**

Application Note
Appendix A: Software

AN1239

MOTOROLA 17

* *
* Delay for Xms *
* *
* Inner loop delays 1 ms. Outer loop counts ms. *
* Number of ms in passed through the accumulator. *
* *

Delayms2_Body: ;JSR EXT to get here 6
Delayms2010 ldx #$F8 ;Load delay into X 2--\
Delayms2020 decx ; Decrement delay 3-\|
 nop ; burn 2 bus cycles 2 ||
 bne DelaymS2020 ; Branch if not done 3-/|
 stx COPR ;Service the WDOG 5 |
 ;Note that X will |
 ;always be zero here |
 brn * ;Burn 3 bus cycles 3 |
 deca ;decrement # of mS 3 |
 bne DelaymS2010 ;branch if not done 3--/
Delayms2030 rts ;return 6

Application Note

AN1239

18 MOTOROLA

Appendix B: Flowcharts

Main Routine and External Interrupt Service Routine:

INITIALIZE
KEYPAD

RESET

STOP

KEY DOWN?

PAUSE FOR
DEBOUNCE TIME

DECODE KEY

VALID KEY?

PAUSE FOR
RELEASE

DEBOUNCE TIME
ACT ON KEY BEING

PRESSED

NO

YES

YES

NO

CALL
KEYPDINIT

CLEAR ANY
PENDING

INTERRUPTS

RETURN
FROM ISR

KEYPDISR

Application Note
Appendix B: Flowcharts

AN1239

MOTOROLA 19

Keypad Decode Subroutine:

START

POINT TO TOP
OF TABLE

GET KEY VALUE
FROM TABLE

IS THIS THE
CORRECT

KEY?

DECREMENT TABLE
POINTER

RETURN

NO

YES

STORE CODE
IN X

BOTTOM OF
TABLE?

STORE ERROR
CODE IN X

PRECHARGE
PULLUPS

MOVE CODE TO
ACC

NO

YES

LOOKUP CODE FOR
THIS KEY

Application Note

AN1239

20 MOTOROLA

Delay Subroutine:

START
W/ # MS IN A

PUT 1 MS DELAY IN
X

DECREMENT
X

X = 0 ?

KICK THE
WDOG

RETURN

NO

YES

DECREMENT
A

A = 0 ?
NO

YES

Application Note
Appendix C: Schematic

AN1239

MOTOROLA 21

Appendix C: Schematic

D
a
t
e
:

J
a
n
u
a
r
y

1
8
,

1
9
9
5
S
h
e
e
t

1
o
f

1

S
i
z
e
D
o
c
u
m
e
n
t

N
u
m
b
e
r

R
E
V

A
K
B
I
_
B
.
S
C
H

1
.
1

T
i
t
l
e

H
C
7
0
5
J
1
A

K
e
y
p
a
d

A
p
p
l
i
c
a
t
i
o
n

N
o
t
e

M
o
t
o
r
o
l
a

-

C
S
I
C

S
t
r
a
t
e
g
i
c

A
p
p
l
i
c
a
t
i
o
n
s

G
N
D

3

I
N
P
U
T

2

R
E
S
E
T

1

U
2

M
C
3
4
0
6
4

V
D
D

G
N
D

1

2

3

4

5
6

7
8

J
P
1

G
r
a
y
h
i
l
l

8
4
B
B
I
-
0
0
1

P
o
r
t
A
0

L
E
D
’
s

a
r
e

f
o
r

o
n
l
y
.

d
e
m
o
n
s
t
r
a
t
i
o
n

P
o
r
t
A
0

G
N
D

V
D
D

C
2

0
.
1
u
F

O
S
C
1

1

O
S
C
2

2

R
E
S
E
T

2
0

I
R
Q
/
V
P
P

1
9

P
A
0

1
8

P
A
1

1
7

P
A
2

1
6

P
A
3

1
5

P
A
4

1
4

P
A
5

1
3

P
A
6

1
2

P
A
7

1
1

P
B
0

8

V
S
S

1
0

V
D
D

9

P
B
1

7

P
B
3

5

P
B
2

6

P
B
4

4

P
B
5

3

U
1

M
C
6
8
H
C
7
0
5
J
1
A
P

P
o
r
t
B
0

P
o
r
t
B
1

P
o
r
t
A
1

P
o
r
t
A
2

P
o
r
t
A
3

P
o
r
t
A
4

P
o
r
t
A
5

P
o
r
t
A
6

P
o
r
t
A
7

V
D
D

D
2

L
E
D

D
3

L
E
D

P
o
r
t
A
1

P
o
r
t
A
2

P
o
r
t
A
3

D
1

L
E
D

D
4

L
E
D

P
o
r
t
B
0

P
o
r
t
B
1

R
3

3
9
0

R
4

3
9
0

R
1

3
9
0

R
2

3
9
0

P
o
r
t
A
7

G
N
D

3

2

1

X
1

4

M
H
z

C
e
r
a
m
i
c

R
e
s
o
n
a
t
o
r

M
u
R
a
t
a

C
S
T
4
.
0
0
M
G
W
A

P
o
r
t
B
2

P
o
r
t
B
3

P
o
r
t
A
6

P
o
r
t
A
5

P
o
r
t
A
4

P
o
r
t
B
2

P
o
r
t
B
3

Application Note

AN1239

22 MOTOROLA

NOTES

Application Note
Appendix C: Schematic

AN1239

MOTOROLA 23

NOTES

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Application Note

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405; Denver, Colorado 80217.1-800-441-2447 or

303-675-2140
Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 602-244-6609
INTERNET: http://Design-NET.com
JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan.

81-3-3521-8315
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

Mfax is a trademark of Motorola, Inc.

AN1239/D

© Motorola, Inc., 1966

	Introduction
	Features
	4 x 4 Matrix Keypad
	Low-Component Count
	Low-Power Consumption
	High-Current Sink Pins
	Computer Operating Properly Watchdog
	Key Repeat

	Implementation
	Modifications
	Appendix A: Software
	Appendix B: Flowcharts
	Main Routine and External Interrupt Service Routine:
	Keypad Decode Subroutine:
	Delay Subroutine:

	Appendix C: Schematic

