
Order this document
by AN1281/D

Motorola Semiconductor Application Note

AN1281
MPC505 Interrupts
By Steve Mihalik

The MPC505 interrupt controller receives interrupt requests from
multiple interrupt sources and generates a single interrupt signal to the
RCPU, as shown in Figure 1. This application note describes the
function of the interrupt controller and related interrupt registers, and
also provides example initialization and handler routines.

Figure 1. MPC505 Interrupt Structure Block Diagram

PROGRAMMABLE
INTERRUPT TIMER

PORT Q

PICSR

PIT

PITQIL[27:31]

PQPAR

PQEDGDAT

PITQIL[0:26]

INTERRUPT
CONTROLLER

IRQPEND

IRQENABLE

IRQAND

RCPU

EIE

EID

NRI

MPC505

IRQ[0:6]
© Motorola, Inc., 1999 AN1281

Application Note
Interrupt Basics

The PowerPC™ architecture uses unique vector offsets for “exceptions”
from normal processing. When an exception occurs, a hardware context
switch takes place and processing branches to the appropriate
exception vector address. The address is the sum of the vector offset
plus a physical base address of either 0x0000 0000 or 0xFFF0 0000 as
determined by the IP bit in the machine status register (MSR). In this
note, use of the 0x0000 0000 base address is assumed. Table 1 shows
types of exceptions and associated vectors.

There is a difference in terminology between Motorola and IBM
PowerPC literature. Motorola uses the term exception to mean any
event which causes the processor to transfer control to one of the vector
addresses in the range 0xxxx0 0000 to 0xxxx0 3FFF, as well as to mean
the action taken by the processor in response to such an event. The term
interrupt is used by Motorola to refer to events and the corresponding
processor responses which are associated with offset 0x00500.

IBM uses the term exception to refer to the event and the term interrupt
to refer to the action taken by the processor in response to any
exception, independent of the vector address. Thus, IBM literature
describes floating point overflow as a floating point exception, which

PowerPC is a trademark of International Business Machines Corporation.

Table 1. Exceptions and Vectors

Exception Type Vector Offset

Reserved 0x00000

System reset 0x00100

Machine check 0x00200

Reserved 0x00300

Reserved 0x00400

Interrupts 0x00500

Alignment 0x00600

etc. etc.
AN1281

2 MOTOROLA

Application Note
Interrupt Basics
causes the processor to take a floating point interrupt. The specific
interrupt with the vector offset of 0x0500 is called the external interrupt
to distinguish it from other interrupts.

In Motorola terminology, interrupts are one type of exception, and all
interrupts share vector offset 0x00500. Interrupt “sources” originate
interrupt service requests. These sources include the external interrupt
pins (IRQ0 through IRQ6), the periodic interrupt timer (PIT) and on-chip
peripheral residing on the intermodule bus. Each source is identified by
a “level”. Some interrupt sources, specifically the IRQ3 through IRQ6
pins, have fixed levels. Other levels can be assigned by the system
designer. Table 2 is a summary of interrupt sources and levels.

When an interrupt occurs, its corresponding level is set in the 32-bit
interrupt request pending (IRQPEND) register. Each bit represents one
level, hence up to 32 levels (or sources) are possible. This allows for
future expansion of interrupt sources in the MPC505.

Table 2. Sources Versus Levels

Source Level

External Pins:
IRQ0
IRQ1
IRQ2
IRQ3
IRQ4
IRQ5
IRQ6

Assignable between 0:31
Assignable between 0:31
Assignable between 0:31

6
8
10
12

Internal:
PIT
IMB Peripheral

Assignable between 0:31
(Future)
AN1281

MOTOROLA 3

Application Note
Enabling and
Configuring
Individual
Interrupts

Individual interrupt levels are enabled and disabled by the 32-bit
IRQENABLE register. Setting a bit enables a source of the
corresponding level to cause an actual interrupt; clearing a bit disables
the corresponding level. For instance, to enable interrupt level 3 and
disable all other levels, set bit 3 of IRQENABLE to one and clear all other
bits to zero.

External interrupt pins can be configured for either edge or level
sensitivity. An interrupt pin that is not needed for interrupt function can
be configured for general-purpose input or output.

Interrupt
Identification

When an interrupt occurs, software reads the IRQAND register to find
out which enabled interrupt caused the exception. The IRQAND register
is simply the logical AND of the IRQPEND register (which indicates
pending levels) with the IRQENABLE register (which indicates enabled
levels).

IRQAND = IRQPEND • IRQENABLE

Priorities If two interrupts occur at the same time, a priority scheme is needed to
determine which one to handle first. MPC505 interrupt priorities are not
determined by hardware, but rather by the way software responds to an
interrupt. An easy and efficient way to handle priorities is to assign levels
in order of priority, using level 0 for the highest priority and level 31 for
the lowest priority. The instruction “count leading zeros in a word”
(cntlzw) can be used to quickly identify the first bit set, i.e., the highest
priority interrupt.

More general priority schemes can be implemented by means of a set of
bitmasks to be ANDed with the IRQAND register. The first mask used
has a one in the bit position corresponding to each level in the highest
priority set, and so on. Such schemes allow multiple interrupts at the
same priority, and also allow the implementation of dynamic priorities by
changing the masks.

IRQENABLE

0 1 2 3 4 … 31

0 0 0 1 0 … 0
AN1281

4 MOTOROLA

Application Note
Initialization Example
Initialization Example

Table 3 shows steps used to initialize interrupts during a reset routine.
Keep in mind that after reset, most processor resources like the floating
point unit, interrupts, etc. are disabled.

Configure IRQ Pins
as Interrupts and
Assign Sensitivity

The IRQ pins can be used to make interrupt service requests or for
general-purpose input/output. Pin use is determined by the port Q pin
assignment register (PQPAR). PQPAR contains two 2-bit configuration
fields for each pin.

The port Q pin assignment (PQPA) field determines whether a pin is
used for general-purpose input, for general-purpose output, for interrupt
requests to the RCPU, or for interrupt requests to the interrupt controller.

The port Q edge (PQEDGE) field determines whether an interrupt pin is
level-sensitive, falling-edge sensitive, rising-edge sensitive, or rising-
and-falling edge sensitive.

Pins that are configured for interrupt requests to the RCPU bypass the
interrupt controller completely, and cannot be assigned an interrupt level
or individually enabled and disabled. It is assumed that most users will
configure pins for interrupt requests to the interrupt controller.

Assign Interrupt
Levels

In this example the assignable levels are also used as priorities. The
PIT/port Q interrupt levels (PITQIL) register is used to set up the levels.
Five bits per interrupt are used to assign a level between 0 and 31 for
the PIT and pins IRQ0, IRQ1, and IRQ2.

Table 3. Interrupt Initialization

Step Action Registers Used

1 Configure IRQ pins as interrupts and assign sensitivity PQPAR

2 Assign interrupt levels PITQIL

3 Initialize PIT PIT

4 Enable individual interrupts IRQENABLE

5 Enable external interrupts EIE
AN1281

MOTOROLA 5

Application Note
Initialize PIT An initial 16-bit PIT value is loaded into the periodic interrupt timer (PIT)
register. When the PIT is enabled, the register is automatically
decremented, and an interrupt service request is made each time the
count passes through zero. The initial value is automatically reloaded
into the register after each PIT time-out.

The periodic interrupt control and select register (PICSR) controls the
PIT. Bits and fields in PICSR perform the following functions:

• Select PIT clock frequency

• Define the 16-bit count value for the PIT

• Enable the PIT counter

• Enable the PIT interrupt

• Indicate PIT status (report whether a PIT interrupt request has
been asserted)

Enable Individual
Interrupts

Load the IRQENABLE register with a value to enable the desired
interrupt levels. A level is enabled by setting the corresponding bit to one
or disabled by clearing the corresponding bit to zero. For example,
setting bit 2 of IRQENABLE enables interrupt level 2.

Enable External
Interrupts

Following reset, all interrupts and other exceptions are disabled. To
enable interrupts, the external enable (EE) bit in the machine state
register (MSR) must be set. The recoverable interrupt (RI) bit must also
be set. This topic is discussed in subsequent sections. Both the EE and
RI bits can quickly be set by using one of the special purpose registers
(SPR) called the external interrupt enable (EIE). The only purpose of the
EIE is to efficiently set the EE and RI bits, which is accomplished by
loading any value to EIE.

In the PowerPC architecture, an SPR must be loaded from a general-
purpose register using the move to SPR instruction. Any GPR can be
used as a source. The following code enables interrupts and sets RI:

mstpr EIE, gpr0
AN1281

6 MOTOROLA

Application Note
Exception Context Switch
Exception Context Switch

After an interrupt or any other exception is recognized, the hardware
automatically performs a context switch, which includes the following:

1. Saves the current state of the machine:

a. The address of the next instruction is saved in register SRR0

b. The MSR value is saved in register SRR1

2. Changes the MSR:

a. Disables further interrupts by clearing the EE bit

b. Sets the privilege level to supervisor but clears the PR bit

c. Clears the RI bit to indicate that the interrupt may not be able
to recover if another exception immediately follows.

3. Branches to the interrupt exception vector

Key Handler Issues

Where to Store
Local Data
for Handler

Interrupt handlers require at least enough data storage to preserve the
previous state of the machine. Typically storage is allocated on the
stack. Special purpose registers SPRG0:3 can also be used for storage,
but the registers provide only four words of storage, and using them
prevents nesting of exceptions. Since this method makes the interrupt
handler non-reentrant, it can only be used for the highest priority
interrupt.

Assuming the stack is used for storage, care must be taken to ensure
there is enough room on the stack for a worst case of nested exceptions.
All stack manipulation code must also be carefully designed to ensure
that an interrupt during a stack operation does not cause problems.
Some programs use separate stacks for interrupt and non-interrupt
code.
AN1281

MOTOROLA 7

Application Note
How Long
Interrupts
are Disabled

As long as interrupts are disabled (EE bit reset in the MSR), additional
interrupts are not recognized. To minimize latency of the next interrupt,
the interrupt handler should be as short as possible (unless the handler
routines check for higher priority interrupts during its processing).

Non-Maskable
Exceptions During
Interrupt Handler
Routines

When an exception occurs, hardware automatically saves the state of
the machine in registers SRR0 and SRR1. When another exception
occurs, the contents of SRR0 and SRR1 are overwritten. If the machine
state of an exception is lost, the program cannot recover.

Interrupts can be masked, but most exceptions are non-maskable. To
minimize the risk of being unable to recover from nested exceptions,
take these precautions when writing interrupt or other exception
handlers:

1. Save registers that can be altered by non-maskable exceptions
early in the handler, preferably in the prologue. These registers
include SRR0 and SRR1, and in certain exceptions the DAR and
DSISR registers.

2. Once these registers are saved, set the recoverable interrupt (RI)
bit in the machine status register.

3. Ensure that exception-generating instructions (like “system call”)
are not executed during the prologue or epilogue (between
restoring of these registers and execution of the “rfi” instruction).

Example Interrupt Handler

The steps for an interrupt handler vary by application, but the issues are
similar. Table 4 shows a general case. Some general-purpose registers
must be used, so the previous contents of these registers needs to be
stored (typically on the stack) and then restored before the end of the
handler.
AN1281

8 MOTOROLA

Application Note
Example Interrupt Handler
Save Previous
State

Since a non-maskable exception (like RESET) can occur just after an
interrupt takes place, the previous state of the machine (SRR0 and
SRR1) must be stored on the stack as a first step.

Only general-purpose registers (GPR) can be written to memory, so a
GPR is needed for temporary storage of SRR0 and SRR1.
Asynchronous exceptions, like interrupts, must treat all registers as non-
volatile — the contents must be preserved so they can be restored at the
end of the interrupt routine. Synchronous exceptions, like system call
instructions, can treat registers as in function or subroutine calls.

After initial stack functions, like creating a stack frame, the contents of
the GPR used for temporary storage must be saved on the stack. After
that, the code to save SRR0 and SRR1 on the stack using GPR4 as
temporary storage and a predefined GPR as a stack pointer (SP) could
look like:

mfspr gpr4, SRR0 # move spr SRR0 to gpr4
stw spr4, 12 (SP) # store SRR0 value 12 bytes above SP
mfspr gpr4, SRR1 # move spr SRR1 to gpr4
stw gpr4, 16 (SP) # store SRR1 value 16 bytes above SP

Table 4. Interrupt Handler

Step Action Registers Used

1 Save previous state SRR0, SRR1, one GPR

2 Set the recoverable interrupt bit EID

3 Identify interrupt source IRQAND, one GPR

4 Branch to handler None

5 Perform handler functions Varies

6 Housekeeping
PQEDGDAT, NRI,

 SRR0, SRR1, GPR(s)
AN1281

MOTOROLA 9

Application Note
Set the
Recoverable
Interrupt Bit

Once the previous state is saved or copied into memory, it is possible to
recover if a non-maskable exception occurs. The recoverable interrupt
bit in the MSR must be set to communicate to any non-maskable
exception routine that recovery is possible.

Once again, a special purpose register has been implemented to quickly
assist this operation. Loading any value to the external interrupt disable
(EID) SPR sets the RI bit in the MSR while keeping interrupts disabled
(EE bit 0). Again, any GPR could be used to write to that SPR, since the
content of the GPR is unaltered. For example:

mtspr EID, gpr0

Identify Interrupt
Source

Read the IRQAND register (IRQAND = IRQENABLE • IRQPEND) to
identify which enabled level caused the interrupt. Under the priority
scheme set up during initialization, the most significant bit is the higher
priority interrupt to be serviced. The PowerPC instruction “count leading
zeros in the word” (cntlzw) can be used to identify the set bit in a register.
This instruction counts the number of consecutive zero bits starting at bit
0, the most significant bit. The result, from 0 through 32, is put in the first
register operand.

The following code identifies the source interrupt. Since a GPR is
required, the same GPR is used as before for temporary storage.

lis gpr4, SIUBASE_UPPER (gpr0) # Load SIU base addr
ori gpr4, IRQAND_OFFSET (gpr3) # Index to IRQAND
cntlzw gpr4, gpr4 # Find level number

Branch to
Appropriate
Routine

There are a number of ways to branch to the individual routine once the
integer value representing the interrupt level is loaded into GPR4. For
example, a table of interrupt handler addresses could be constructed,
and GPR3 could be used to index into that table, get the appropriate
interrupt handler address for a level, and branch to that address.

Perform Handler
Functions

Once in the handler, one approach would be to do all the interrupt
handler functions and then leave. But since interrupts are still disabled,
this would result in the longest interrupt latency. A popular approach is
to use a multitasking kernel operating system which would send
appropriate messages or flags and then exit.
AN1281

10 MOTOROLA

Application Note
Summary
Housekeeping
Items and Return

Before exiting the interrupt service routine, a number of housekeeping
items must be performed:

1. Clear the pending interrupt condition which set the bit in the
IRQPEND register.

2. If the PIT caused the interrupt, clear the PIT status (PS) bit in
PICSR.

3. If the interrupt was caused by an external interrupt pin in edge-
detect mode, clear the corresponding status bit in the port Q edge
detect/data (PQEDGDAT) register by first reading the bit as a one
and then writing it to a zero.

4. Restore any previously used GPR (e.g. GPR4 used above).

5. In case a non-maskable exception occurred during this interrupt
source routine,

a. Disable the recoverable interrupt (RI) bit in the MSR by writing
any value to the NRI register:

mtspr NRI, gpr0

b. Restore SRR0, SRR1 (and stack pointer if it changed).

6. Execute the return from interrupt instruction (which also enables
interrupts again):

rfi

Summary

With proper assignment of sources to levels, the MPC505 interrupt
controller provides an efficient priority mechanism. The interrupt level
can also be used as an offset to provide a branch to the appropriate
handler routine. Key issues a system designer must address include
handling non-maskable exceptions while interrupts are disabled,
handler data storage, and the length of time interrupts are disabled.
AN1281

MOTOROLA 11

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Application Note
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140

or 1-800-441-2447. Customer Focus Center, 1-800-521-6274
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu, Minato-ku, Tokyo 106-8573 Japan.

81-3-3440-8573
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate,

Tai Po, N.T., Hong Kong. 852-26668334
Mfax™, Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/;

TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848
HOME PAGE: http://motorola.com/sps/
AN1781/D

© Motorola, Inc., 1999

Mfax is a trademark of Motorola, Inc.

	Interrupt Basics
	Enabling and Configuring Individual Interrupts
	Interrupt Identification
	Priorities

	Initialization Example
	Configure IRQ Pins as Interrupts and Assign Sensitivity
	Assign Interrupt Levels
	Initialize PIT
	Enable Individual Interrupts
	Enable External Interrupts

	Exception Context Switch
	Key Handler Issues
	Where to Store Local Data for Handler
	How Long Interrupts are Disabled
	Non-Maskable Exceptions During Interrupt Handler Routines

	Example Interrupt Handler
	Save Previous State
	Set the Recoverable Interrupt Bit
	Identify Interrupt Source
	Branch to Appropriate Routine
	Perform Handler Functions
	Housekeeping Items and Return

	Summary

