

© Motorola, Inc., 1996 AN1287

Order this document
by AN1287/D

Motorola Semiconductor Application Note

AN1287

MC68HC708LN56 LCD Utilities

By Rick Cramer
CSIC Product Engineering
Austin, Texas

Introduction

A set of software utilities that causes the LCD module on the
MC68HC708LN56 to function is described in this application note.
Information about LCD software subroutines that, with minimal effort,
can be called to write text to the display also is included here.
Additionally, this information can be used as a basis to develop more
complex graphical subroutines.

LCD Hardware General Information

The LCD module has of group of frontplanes and backplanes that
intersect on the display to form pixels. The 40 frontplanes and 32
backplanes form 40 x 32 (or 1280) pixels. By implementing the LCD
hardware in different configurations, these pixels can be arranged to
form any type of display. When the hardware is arranged in a two-
dimensional array, the pixels form a display of 40 x 32 dots. By turning
on these pixels in a specific pattern, alphabet characters or special
symbols can be formed. All the characters on a typical computer
keyboard can be displayed by an array of pixels seven pixels high by five
pixels wide, which enables the MC68HC708LN56 to display an 8 x 4

Application Note

LCD Hardware General Information

AN1287

2

MOTOROLA

character array. However, by using different hardware implementation
methods, a 16 x 2 character array also can be formed.

This application note contains information for a 16 x 2 character array,
although the array can be modified easily to work for any configuration.
With this type of hardware configuration, the LCD array has 32 possible
character positions. The subroutines in this application note use the
values of $00 through $1F to represent the position in the array that each
character occupies. This is shown in

Figure 1

.

Figure 1. LCD Display Representation

The MC68HC708LN56 associates one RAM byte (8 bits) for each
column in a character. So, a 5 x 7 character actually takes up 5 x 8 bits
of RAM. Each column of every LCD character has a specific memory
address associated with it. By writing to these addresses, as shown in

Figure 2

, the display can be made to exhibit information.

$00 $01 $02 $03 $04 $05 $06 $07 $08 $09 $0A $0B $0C $0D $0E $0F

$10 $11 $12 $13 $14 $15 $16 $17 $18 $19 $1A $1B $1C $1D $1E $1F

Application Note
LCD Hardware General Information

AN1287

MOTOROLA

3

Figure 2. LCD Character Representation

Figure 3. LCD Panel Dot Matrix Example

$0
E

00

$0
E

01

$0
E

02

$0
E

03

$0
E

04

Bit 0

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

BP0

BP1

BP2

BP3

BP4

BP5

BP6

F
P

0

F
P

1

F
P

2

F
P

3

F
P

4

$7
C

$0
A

$0
9

$0
A

$7
C Data

Plane

Address

BP0

BP0-31

F
P

0
F

P
4

F
P

10

BP8

BP24

F
P

39

BP31

Application Note

Subroutine Descriptions

AN1287

4

MOTOROLA

Subroutine Descriptions

The next sections list and describe the subroutines’ functionality from the
programmer’s viewpoint, including a specific example of how the LCD
works. A set of tested, working LCD subroutines also is provided for
Motorola customers.

Because the input required to run the subroutines and the output
returned from the subroutines are provided, the code is presented from
the end-user’s point of view. This means that the user does not have to
understand the code to utilize the subroutines, which decreases
software development cycle time. Setting a few parameters in a couple
of tables and calling the subroutine are all that is necessary for using
these subroutines.

General
Description

The LCD utilities and their capabilities are listed here. They are
described in more detail in following sections to provide a more thorough
guide to their usage.

• The WR_STR (write string) subroutine writes an ASCII string to
the LCD. It is used to write text messages or user prompts such as
“Messages Waiting” or “Press Any Key."

• The BINTOASC (binary to ASCII) subroutine displays the
hexadecimal equivalent of a binary character. This is more of a
"programmer’s friend" subroutine that can be used in code
debugging. Its primary use is to display the value of data that is
contained in a memory location.

• The WR_BIN (write binary) subroutine displays the ASCII
representation of the data contained in the X register when called.
In short, it is called to access the character ROM table directly.
This is necessary for writing special user-designed graphic
characters.

• The CLS (clear screen) subroutine clears all positions on the
display.

Application Note
Subroutine Descriptions

AN1287

MOTOROLA

5

• The INV (invert screen) subroutine turns all the on pixels to off and
all the off pixels to on. It typically can be used for getting the user’s
attention.

Main

The main code section is designed as an example of what is needed to
enable the LCD and to call the subroutines. The main code clears the
display, writes text to the screen, then loops through memory, updating
only sections of the screen and displaying the current address and the
data contained at that address. The loop repeats after cycling through
memory.

RAM Subroutines

The RAM subroutines are designed to be called by other subroutines.
They are modified by the calling subroutine before they are called. The
RAM subroutines contain this assembled data:

 0050 C6 10 23 LDA $1023
 0053 81 RTS
 0054 C7 45 67 STA $4567
 0057 81 RTS

Memory location $50 contains the opcode for LDA, $C6. Two locations
contain the address where the data is to be loaded from: Location $53
contains the RTS opcode and location $54 contains the LDA opcode.

To change the address, the subroutine writes over the address portion
of the RAM with the new address. This way the subroutines can read by
reference memory locations in any memory page. That is, it is easy to
cross reference addresses. To call these routines, simply load the H:X
register with the pointer to the address you wish to read, store the H:X
register in location $51, then jump to the subroutine. Upon return from
the subroutine, the accumulator contains the value of the data at the
specific memory location.

NOTE:

Care must be taken not to overwrite the two opcodes, LDA and RTS. If
these locations are accidentally changed, the MCU could get hopelessly
lost executing code that is invalid.

Application Note

Subroutine Descriptions

AN1287

6

MOTOROLA

Location $54 contains the opcode necessary to perform the store A
(STA) function. This is set up to write data to any memory location on the
MC68HC708LN56 memory map.

WR_BIN

The write binary (WR_BIN) subroutine displays the ASCII representation
of the data contained in the X register. Before calling the WR_BIN
subroutine, load the accumulator with the position on the display and
load the X register with the data to be displayed. This subroutine starts
by storing the data into RAM location MSG. Then it stores the delimiter
character at MSG+1. This sets up the RAM message with a single-byte
string. WR_BIN then calls the write-string subroutine with the position of
the newly created message in RAM so the character can be written to
the display.

BINTOASC

The BINTOASC subroutine displays the hexadecimal equivalent of a
binary character. To call this routine, load the X register with the data to
be displayed and load the accumulator with the position on the LCD
where the first of two ASCII characters is to be placed. The subroutine
works by separately writing each nibble of the binary data to two
consecutive RAM locations. Then it calls the WR_STR subroutine.
BINTOASC first filters out the upper nibble from the data, leaving the
lower nibble. Then it loads the lower nibble into the X register. The
BINASC table converts the binary data (from $00 to $0F) to its ASCII
representation. This new ASCII data is stored in the MSG+1 memory
location for later use. The subroutine then takes the original data and
executes a nibble swap, placing the upper nibble in the lower nibble
position. After clearing the upper nibble, the BINASC table is used to
translate this binary data into its ASCII equivalent. This ASCII data is
stored in the MSG RAM location. Once both nibbles have been
converted, the delimiter character is placed at MSG+2, and the
WR_STR subroutine is called with the pointer MSG. The position on the
display is passed through to WR_STR unmodified.

WR_STR

The write string (WR_STR) subroutine writes an ASCII string to the LCD.
It is called by loading the H:X register pair with the pointer to the string
that is to be displayed and loading the accumulator with the position on
the LCD display where the first character of the string is to be placed.

Application Note
Subroutine Descriptions

AN1287

MOTOROLA

7

The string can be of any length as long as it ends with a delimiter. For
this application note, the end of string delimiter is the close-brace (})
character. Writing a string that is longer than one line will cause it to wrap
to the next line. A string that extends past the bottom of the display will
be truncated at the last screen position. The WR_STR subroutine starts
by putting the beginning memory location of the string off to RAM for later
use. The WR_STR routine modifies the RAM subroutines to do indexed
addressing by changing the opcode, then indexes through the string one
character at a time. While indexing, WR_STR checks to see if the
character is the delimiter. If the character is not the delimiter, WR_STR
writes the character to the display using the WR_POS subroutine if it is
not off the screen.

CLS

The clear screen (CLS) subroutine clears the LCD screen. Since the
memory locations are all cleared, how the LCD is wired is not important.
There are four blocks of LCD RAM starting at $0E00, $0E80, $0F00, and
$0F80. Each is 30 bytes. The CLS subroutine indexes through each byte
of all blocks and stores a $00 there. The $00 is the value associated with
turning off all the dots in the matrix.

INV

The invert screen (INV) subroutine takes the data on the display and
toggles each bit’s on/off state. INV works similarly to the CLS subroutine
in that it indexes through the blocks. But this routine first reads the data
already on the display, first, compliments it, then writes it back.

WR_POS

The write position (WR_POS) subroutine is designed to be called
directly by other subroutines. This subroutine has two major functions: It
uses the LCDLOC table to find the absolute memory location to write the
character data, and it uses the CHARROM table to get the character
pattern to write to the memory location. WR_POS starts by putting the
first LCD address in the RAM subroutine containing the LDA opcode.
Then it gets the absolute address of the first position of the LCD RAM for
the designated position. It puts this address in the RAM subroutine
containing the STA opcode. Once the addresses are stored, control is
passed to the writeit or writeit2 subroutines where all five data bytes are
written.

Application Note

Tables

AN1287

8

MOTOROLA

WRITEIT

The writeit subroutine is also designed to be called directly by other
subroutines. It, in essence, is part of the WR_POS subroutine. This
subroutine calls the RAM subroutines to load the character data from the
CHARROM table and then calls the RAM subroutine again to store the
data in the LCD RAM. Writeit then increments both addresses in the
RAM subroutines and writes the data again. It does this five times, once
each for the five bytes of data that represent the character.

WRITEIT2

The writeit2 subroutine is almost identical to the writeit subroutine,
except that it writes the character data into the LCD RAM in the reverse
order.

Tables

The LCD utilities use several tables which contain information that the
subroutines use for positioning the characters on the LCD display.

LCDLOC

The LCDLOC table is the most important table. It relates LCD character
position ($00 to $1F) to the absolute memory address in which the LCD
characters reside. The first entry in the table contains information
pertaining to position $00 of the LCD array. As shown in

Figure 1

, the
display’s upper lefthand corner is position $00 and the bottom righthand
corner is position $1F. As shown in

Figure 2

, the LCD location $00 is
wired to backplane 0 through backplane 6 along the side and frontplane
0 through frontplane 4 across the top. The MC68HC708LN56
specification s associate memory location $0E00 for FP0 and $0E01 for
FP1 and $0E02 for FP2 and so on. This table requires the lowest
memory location as its entry for each position. For instance, for position
$00, the memory location $0E00 is entered into the table. Depending on
how the LCD display hardware is configured, changes to this table could
be necessary.

Application Note
Tables

AN1287

MOTOROLA

9

LCDBACK

The LCDBACK table is used to indicate if the writeit subroutine is to write
a specific character on the LCD screen backward. This is necessary
because of circuit board layout restrictions that may require some of the
frontplanes to be wired in reverse order. This will enable the use of the
same character table no matter how the display is wired.

CHARROM

The CHARROM table contains the data necessary to form all the ASCII
characters. Since each letter is made of a 5 x 7 display, each ASCII
character requires five bytes of data. The table is placed in order of its
appearance in the ASCII character chart for easy cross reference. Most
of the data in the CHARROM table has been developed by Nortel and
has been used in this table with Nortel’s permission.

Application Note

Code Listings

AN1287

10

MOTOROLA

Code Listings

** LN56LCD.ASM **
** 26 May 96 Rick Cramer **
** **
** This program contains subroutines that will allow **
** easy access to the MC68HC708LN56's LCD Module. **
** Routines contained within will place ASCII characters **
** on the LCD screen. **

* Memory Map Equates *

RAM_Start equ $50 ; Location where RAM Starts
EPROM_Start equ $1E00 ; Location where EPROM Starts
LCDFL0 equ $33 ; LCD Control and Status Requsters.
LCDFL1 equ $34
LCDFL2 equ $35
LCDFL3 equ $36
LCDFL4 equ $37
LCDCR equ $38
LCDCCR equ $39
LCDDIV equ $3a
LCDFR equ $3b
RESET equ $FFFE ; Reset Vectors are at $FFFE
MOR equ $1f ; Mask Option Register

* RESET and Interrupt Vectors *
* *
* For any interrupts used, the ORG and FDB statement given *
* below must be placed in the routine using the interrupt. *
* *

org RESET
fdb BEGIN

Application Note
Code Listings

AN1287

MOTOROLA

11

* Varriables contained below are used by the LCD *
* Subroutines. *

 org RAM_Start

OPCD RMB 1 ; LDA
HI RMB 1 ; Hi Data
LO RMB 1 ; Lo Data
OPCD2 RMB 1 ; RTS
OPCD3 RMB 1 ; STA
HI2 RMB 1 ; Hi Data
LO2 RMB 1 ; Lo Data
OPCD4 RMB 1 ; RTS
HI3 RMB 1 ; String Pointer
LO3 RMB 1
POS RMB 1
POS2 RMB 1
DATA RMB 1
TEMP RMB 1
TEMP2 RMB 1
VARR RMB 2
OFFSET RMB 2
INVERT RMB 1
BACK RMB 1
STRPOS RMB 1 ; Current Position in String
ERRCNT RMB 1
MSG RMB 20 ; Space for controller generated
messages.

* BEGIN sets up the microcontroller for general use. *

 org EPROM_Start
BEGIN
mov #$01,MOR ; turn off cop

* MAIN subroutine is the main loop that shows how to call *
* subroutines. Also sets up microcontroller for LCD use. *

MAIN:

clra ; The following section of code
; writes RAM with executable code
; that will be called by subroutines.

clr ERRCNT
sta INVERT
lda #$C6 ; Load A Extended Opcode
sta OPCD
lda #$81 ; RTS OpCode
sta OPCD2

Application Note

Code Listings

AN1287

12

MOTOROLA

lda #$C7 ; Store A Extended Opcode
sta OPCD3
lda #$81 ; RTS OpCode
sta OPCD4

 jsr CLS ; Clear Screen Subroutine

* The following section of code turns on the LCD and enables*
* it to run at a given bus frequency. *
* *
* 32-kHz OSCILLATOR code follows *
* mov #$01,LCDDIV ; 32khzOSC *
* mov #$04,LCDFR ; Frame Rate 62hz *
* mov #$17,LCDCCR ; Contrast Control *
* mov #$C0,LCDCR ; SUPV=1 *
* *
* 4-Mhz OSCILLATOR code follows *
* mov #$9f,LCDDIV ; 4Mhz OSC *
* mov #$04,LCDFR ; 42h *
* mov #$17,LCDCCR ; Contrast Control *
* mov #$C0,LCDCR ; SUPV=1 *

mov #$9f,LCDDIV ; 4Mhz OSC
mov #$04,LCDFR ; 42h
mov #$17,LCDCCR ; VLL=7V
mov #$C0,LCDCR ; SUPV=1

* The X1, X2, and X2A section of code shows how to call *
* the Write_String subroutine. *

X1 ldhx #ERR ; H:X is a pointer to string

; At Location #ERR
lda #$10 ; $10 is the LCD Screen

; Position
jsr WR_STR ; jump to subroutine & RTN.

12 ldhx #ADDR ; H:X is a pointer to string
; At Location #ADDR

lda #$00 ; LCD Location $00
jsr WR_STR ; jump to subroutine & RTN.

X2A ldhx #DATR ; H:X is a pointer to string
; At Location #DATA

lda #$0A ; LCD Location $0A
jsr WR_STR ; jump to subroutine & RTN.

Application Note
Code Listings

AN1287

MOTOROLA

13

* The next section of code sets up a loop to cycle thru *
* the entire memory map starting at #BEGIN. *

Z1 ldhx #BEGIN

sthx VARR

* The X3, X4, and X4A section of code shows how to call *
* the BINTOASC subroutine. *
* X3 and X4 show how to write a 2 byte address to the *
* screen. *

X3 ldx VARR ; Load X reg with binary data

lda #$05 ; Load Acc with LCD Position
jsr BINTOASC ; jump to subroutine & RTN.

X4 ldx VARR+1 ; Load X reg with binary data
lda #$07 ; Load Acc with LCD Position
jsr BINTOASC ; jump to subroutine & RTN.

X4A ldx ERRCNT ; Load X reg with binary data
lda #$19 ; Load Acc with LCD Position
jsr BINTOASC ; jump to subroutine & RTN.

* The X5 Section of code shows how to call *
* the WR_BIN subroutine. *
* X5 Writes the ASCII EQUIVALENT of binary data *
* It can be used to write custom graphic characters. *

X5 ldx VARR

lda #$0F
jsr WR_BIN

* Following code increments the main loop address and jump *
* back to update the address and data. *

inc VARR+1
bne X3
inc VARR
ldhx VARR
cphx #ENDLOC
bne X3
bra Z1

********* END OF MAIN PROGRAM ****************************
********* BEGINNING OF SUBROUTINES ***********************

Application Note

Code Listings

AN1287

14

MOTOROLA

***** Binary write routine **
***** Enter with X = Binary Number **
***** and A = Location on LCD **

WR_BIN
stx MSG ; Store Data in RAM
sta TEMP ; Store loc in TEMP
lda #"}" ; End MSG delimiter
sta MSG+1 ;
ldhx #MSG ; Setup for subroutine call
lda TEMP ; Get position from TEMP
jsr WR_STR ; jump to subroutinr and return
rts ; return

***** Binary to ASCII MSG **
***** Enter with X = Binary Number **
***** and A = Location on LCD **

BINTOASC

sta TEMP2 ; Store LOC for later use
stx TEMP ; Store data for later use
txa ; Put data in A for use now
and #$0F ; Use only lower nibble
tax ; Store it in X for indexing
lda BINASC,x ; ASCII data stored at #BINASC
sta MSG+1 ; store the lower nibble
lda TEMP ; Get the data back
nsa ; put upper nibble in lower
and #$0F ; use only lower nibble
tax ; store in X for indexing
lda BINASC,x ; ASCII data stored at #BINASC
sta MSG ; store data off
lda #"}" ; End of MSG delimiter
sta MSG+2
lda TEMP2 ; Get the LCD Location
ldhx #MSG ; H:X = newly created Message
jsr WR_STR ; write it to screen
rts ; return

Application Note
Code Listings

AN1287

MOTOROLA

15

********* Write String Subroutine ***************************
** Writes an ASCII string to LCD. **
** H:X contains pointer to beginning of **
** string, string must end with a delimeter **
** character }. **
** If string goes past screen, subroutine **
** exits. **
** Call with H:X = String Pointer **
** and A = Position on LCD to start **

WR_STR

sthx HI3 ; Store off Pointer to string
sta POS2 ; Location on LCD
clr STRPOS ; Start at beginning
clrh

NXT lda #$D6 ; LDA indexed (IX2) OPCODE
sta OPCD ; store in RAM
ldx STRPOS ; Get Current string position
lda HI3 ; Copy string beginning
sta HI ; into RAM subroutine
lda LO3 ; do the low byte
sta LO ;
jsr OPCD ; execute RAM (LDA $HI LO,x)
cmp #"}" ; Is this data delimeter?
beq RT ; return
inc STRPOS ; Set up next character
ldx POS2 ; get LCD location
inc POS2 ; and increment for next char
cpx #$1f ; Is Character off Sceen?
bhi RT ; YES: Return
JSR WR_POS ; NO: Write Character
bra NXT ; always do next character

RT rts ; return

** CLS Subroutine **
** Clears LCD Screen **

CLS clrx ; Clear Pointer
 lda #$00 ; Data =$00 (BLANK)
LPX sta $0E00,x ; First Bank
 sta $0E80,x ; Second Bank
 sta $0F00,x ; Third Bank
 sta $0F80,x ; Forth Bank
 incx ; Next position in BANK
 cpx #$29 ; Cleared all of them?
 bne LPX ; No: Do the next
 RTS ; Yes: Return

Application Note

Code Listings

AN1287

16

MOTOROLA

** INV Subroutine **
** INVERTS LCD Screen **

INV clrx ; clear pointer
LPI

lda $0E00,x ; get Bank1, char x
coma ; Invert data
sta $0E00,x ; write it back

 lda $0E80,x ; get Bank2, char x
coma ; Invert data

 sta $0E80,x ; write it back
 lda $0F00,x ; get Bank3, char x

coma ; Invert data
 sta $0F00,x ; write it back
 lda $0F80,x ; Get Bank4, char x

coma ; Invert data
 sta $0F80,x ; write it back
 incx ; Next character
 cpx #$29 ; Done with bank?
 bne LPI ; No: do the next
 RTS ; yes: return

** WR_POS Subroutine **
** Writes ASCII data in A into LCD POS in X **

WR_POS:
 sta DATA ; store data for later use
 stx POS ; store POSition for later

** Setup ram subroutines to be called later
 lda #$C6 ; Load A Extended Opcode
 sta OPCD
 lda #$81 ; RTS OpCode
 sta OPCD2
 lda #$C7 ; Store A Extended Opcode
 sta OPCD3
 lda #$81 ; RTS OpCode
 sta OPCD4

** Get information about how to write this location
 lda LCDBACK,x ; Check if char POS is wired

backward
 sta BACK ; store data for later use

** Is character off screen?
 cpx #$1f ; Is X $1f (writing off screen)
 bhi RETRN ; branch if X > $1f to Return

Application Note
Code Listings

AN1287

MOTOROLA

17

** Find table memory location for this position
** by incrementing address POS amount of times
** The table contains ABSOLUTE memory locations for
** the lowest memory location in LCD position.
 ldhx #LCDLOC ; Beginning of LCD Character loc

Map
 sthx HI ; Store in Ram Subroutine
 clrh
 ldx POS; ; POS is $00-->$1f
LP0 beq FINLOC ; If POS = $00, $HI LO = LCDLOC
 jsr INLOC ; If not increment HI LO
 jsr INLOC ; Twice
 decx ; Dec POS Counter
 bra LP0
RETRN rts

*** load Acc with pointer table address in RAM subroutine.
FINLOC
 jsr OPCD ; (LDA #$HI LO)

 sta HI2 ; First byte of ABSOLUTE address
 jsr INLOC ; Get next byte in pointer table
 jsr OPCD
 sta LO2 ; Second byte of ABSOLUTE address

*** At this point the RAM subroutine contains the following:
*** OPCD2 STAq $HI2 LO2
*** RTS

*** Now, check out the Data to write there.
GETDAT
 clrh
 clrx
 ldx DATA ; Load X with Data
 cpx #$91 ; Past Character table?
 bls VAL ; No? Goto VAL
ERR2 nop
 RTS

** Find the beginning of character ROM data
VAL
 lda #$05 ; 5 bytes for each char
 mul ; X:A <--- A*X
 sta OFFSET+1 ; # of locations from beginning
 stx OFFSET ; of char pattern.
 ldhx #CHARROM ; Get loc for beginning of char
 sthx HI ; pattern and store

Application Note

Code Listings

AN1287

18

MOTOROLA

** find first data byte of the current char to write
 lda HI+1 ; Get base address of char rom
 add OFFSET+1 ; Add the offset
 sta OFFSET+1 ; To find the first data byte
 lda HI ;of single character to write
 adc OFFSET
 sta OFFSET
 ldhx OFFSET
 sthx HI
 clrh
 clrx

*** WriteIt subroutine takes beginning data byte and the ***
*** next four and writes it onto the LCD screen. ***

WRITEIT
 lda BACK; ; If Char is wired backward, call

writeit2
 BNE WRITEIT2 ; If LCD is wired backward

 jsr OPCD; ; LDA $HI LO BYTE 1
 eor INVERT ; char data with INVERT
 jsr OPCD3 ; STA $HI2 LO2
 jsr INLOC ; Increment Char Pattern Location
 jsr INLOC2 ; Increment LCD ABSOLUTE location

 jsr OPCD ; LDA $HI LO BYTE 2
 eor INVERT
 jsr OPCD3 ; STA $HI2 LO2
 jsr INLOC
 jsr INLOC2

 jsr OPCD ; LDA $HI LO BYTE 3
 eor INVERT
 jsr OPCD3 ; STA $HI2 LO2
 jsr INLOC
 sr INLOC2

 jsr OPCD ; LDA $HI LO BYTE 4
 eor INVERT
 jsr OPCD3 ; STA $HI2 LO2
 jsr INLOC
 jsr INLOC2

 jsr OPCD ; LDA $HI LO BYTE 5
 eor INVERT
 jsr OPCD3 ; STA $HI2 LO2

 RTS

Application Note
Code Listings

AN1287

MOTOROLA

19

*** WriteIt2 subroutine takes beginning data byte and the **
*** next four and writes it onto the LCD screen, but it **
*** does it backward. **

WRITEIT2
 jsr INLOC2 ; increment 4 positions in the
 jsr INLOC2 ; character table beacuse it
 jsr INLOC2 ; will be writen backward
 jsr INLOC2

 jsr OPCD ; LDA $HI LO BYTE 1
 eor INVERT ; char data with INVERT
 jsr OPCD3 ; STA $HI2 LO2
 jsr INLOC ; Increment Char Pattern Location
 jsr DECLOC2 ; Decrement LCD ABSOLUTE location

 jsr OPCD ; LDA $HI LO BYTE 2
 eor INVERT
 jsr OPCD3 ; STA $HI2 LO2
 jsr INLOC
 jsr DECLOC2

 jsr OPCD ; LDA $HI LO BYTE 3
 eor INVERT
 jsr OPCD3 ; STA $HI2 LO2
 jsr INLOC
 jsr DECLOC2

 jsr OPCD ; LDA $HI LO BYTE 4
 eor INVERT
 jsr OPCD3 ; STA $HI2 LO2
 jsr INLOC
 jsr DECLOC2

 jsr OPCD ; LDA $HI LO BYTE 5
 eor INVERT
 jsr OPCD3 ; STA $HI2 LO2

 RTS

Application Note

Code Listings

AN1287

20

MOTOROLA

** RAM Subroutine address Increment and Decrement **

DECLOC2 dec LO2 ; Increment Low Address

 lda #$ff ; Did LO2 Dec thru a page?
 cmp LO2

 bne RRR4 ; If next page
 dec HI2 ; Increment Page
RRR4 rts

INLOC inc LO ; Increment Low Address
 bne RRR ; If next page
 inc HI ; Increment Page
RRR rts

INLOC2 inc LO2 ; Increment Low Address
 bne RRR2 ; If next page
 inc HI2 ; Increment Page
RRR2 rts

** Beginning of Data **

** LCDLOC is a pointer table that points to memory locations
** in the LCD RAM the represents the "beginning" location
** of each character position.
LCDLOC:
 FDB $0F00 ; Pos $00
 FDB $0F05 ; Pos $01
 FDB $0F0A ; Pos $02
 FDB $0F0F ; Pos $03
 FDB $0F14 ; Pos $04
 FDB $0F19 ; Pos $05
 FDB $0F1E ; Pos $06
 FDB $0F23 ; Pos $07

 FDB $0E23 ; Pos $08
 FDB $0E1E ; Pos $09
 FDB $0E19 ; Pos $0A
 FDB $0E14 ; Pos $0B
 FDB $0E0F ; Pos $0C
 FDB $0E0A ; Pos $0D
 FDB $0E05 ; Pos $0E
 FDB $0E00 ; Pos $0F

Application Note
Code Listings

AN1287

MOTOROLA

21

 FDB $0F80 ; Pos $10
 FDB $0F85 ; Pos $11
 FDB $0F8A ; Pos $12
 FDB $0F8F ; Pos $13
 FDB $0F94 ; Pos $14
 FDB $0F99 ; Pos $15
 FDB $0F9E ; Pos $16
 FDB $0FA3 ; Pos $17

 FDB $0EA3 ; Pos $18
 FDB $0E9E ; Pos $19
 FDB $0E99 ; Pos $1A
 FDB $0E94 ; Pos $1B
 FDB $0E8F ; Pos $1C
 FDB $0E8A ; Pos $1D
 FDB $0E85 ; Pos $1E
 FDB $0E80 ; Pos $1F

*** LCDBACK is the data table of the individual characters
*** that are wired in backward. This table allows
*** the subroutines to print backward characters backward
*** which makes them look the correct way when read.
LCDBACK
 FCB $00,$00,$00,$00,$00,$00,$00,$00
 FCB $FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF
 FCB $00,$00,$00,$00,$00,$00,$00,$00
 FCB $FF,$FF,$FF,$FF,$FF,$FF,$FF,$FF

**** BINASC table converts binary numbers into their ASCII
equivalent.

BINASC
 FCB "0","1","2","3","4","5","6","7","8","9"
 FCB "A","B","C","D","E","F"

** The following data is sample strings.

PAGE:
 fcb 'Page}'
ADDR:
 fcb 'ADR}'
DATR:
 fcb 'DAT}'
ERR:
 fcb 'ERRORS:}'

Application Note

Code Listings

AN1287

22

MOTOROLA

** CHARROM table is the physical dot-matrix representation of
** each character in the ASCII table (from $00-$7f)
** It is arranged in order of its position in the
** ASCII table, so that cross referencing is done easily.
** Values higher than $7F are used for custom characters.
** The Motorola logo has been included as an example.
** Most of the data in the CHARROM table has been developed
** at Nortel and has been used in this table with Nortel’s

permission.

CHARROM:
 FCB $7F,$7F,$7F,$7F,$7F ; 00
 FCB $7F,$7F,$7F,$7F,$7F ; 01
 FCB $7F,$7F,$7F,$7F,$7F ; 02
 FCB $7F,$7F,$7F,$7F,$7F ; 03
 FCB $7F,$7F,$7F,$7F,$7F ; 04
 FCB $7F,$7F,$7F,$7F,$7F ; 05
 FCB $7F,$7F,$7F,$7F,$7F ; 06
 FCB $7F,$7F,$7F,$7F,$7F ; 07
 FCB $7F,$7F,$7F,$7F,$7F ; 08
 FCB $7F,$7F,$7F,$7F,$7F ; 09
 FCB $7F,$7F,$7F,$7F,$7F ; 0A
 FCB $7F,$7F,$7F,$7F,$7F ; 0B
 FCB $7F,$7F,$7F,$7F,$7F ; 0C
 FCB $7F,$7F,$7F,$7F,$7F ; 0D
 FCB $7F,$7F,$7F,$7F,$7F ; 0E
 FCB $7F,$7F,$7F,$7F,$7F ; 0F
 FCB $7F,$7F,$7F,$7F,$7F ; 10
 FCB $7F,$7F,$7F,$7F,$7F ; 11
 FCB $7F,$7F,$7F,$7F,$7F ; 12
 FCB $7F,$7F,$7F,$7F,$7F ; 13
 FCB $7F,$7F,$7F,$7F,$7F ; 14
 FCB $7F,$7F,$7F,$7F,$7F ; 15
 FCB $7F,$7F,$7F,$7F,$7F ; 16
 FCB $7F,$7F,$7F,$7F,$7F ; 17
 FCB $7F,$7F,$7F,$7F,$7F ; 18
 FCB $7F,$7F,$7F,$7F,$7F ; 19
 FCB $7F,$7F,$7F,$7F,$7F ; 1A
 FCB $7F,$7F,$7F,$7F,$7F ; 1B
 FCB $7F,$7F,$7F,$7F,$7F ; 1C
 FCB $7F,$7F,$7F,$7F,$7F ; 1D
 FCB $7F,$7F,$7F,$7F,$7F ; 1E
 FCB $7F,$7F,$7F,$7F,$7F ; 1F
 FCB $00,$00,$00,$00,$00 ; 20 <SPACE>
 FCB $00,$00,$5F,$00,$00 ; 21 !
 FCB $00,$06,$00,$06,$00 ; 22 "
 FCB $14,$7F,$14,$7F,$14 ; 23 #
 FCB $04,$2A,$6D,$2A,$10 ; 24 $
 FCB $27,$16,$08,$34,$32 ; 25 %
 FCB $20,$56,$49,$36,$50 ; 26 &
 FCB $00,$03,$05,$00,$00 ; 27 `

Application Note
Code Listings

AN1287

MOTOROLA

23

 FCB $00,$00,$1D,$22,$41 ; 28 (
 FCB $41,$22,$1D,$00,$00 ; 29)
 FCB $14,$08,$3E,$08,$14 ; 2A *
 FCB $20,$56,$49,$36,$50 ; 2B +
 FCB $00,$50,$30,$00,$00 ; 2C ,
 FCB $08,$08,$08,$08,$08 ; 2D -
 FCB $00,$30,$30,$00,$00 ; 2E .
 FCB $20,$10,$08,$04,$02 ; 2F /
 FCB $3E,$51,$49,$45,$3E ; 30 0
 FCB $00,$42,$7F,$40,$00 ; 31 1
 FCB $42,$61,$51,$49,$46 ; 32 2
 FCB $21,$41,$45,$4B,$31 ; 33 3
 FCB $18,$14,$12,$7F,$10 ; 34 4
 FCB $27,$45,$45,$45,$39 ; 35 5
 FCB $3C,$4A,$49,$49,$30 ; 36 6
 FCB $01,$71,$09,$05,$03 ; 37 7
 FCB $36,$49,$49,$49,$36 ; 38 8
 FCB $06,$49,$49,$29,$1E ; 39 9
 FCB $00,$36,$36,$00,$00 ; 3A :
 FCB $00,$56,$36,$00,$00 ; 3B ;
 FCB $08,$14,$22,$41,$00 ; 3C <
 FCB $14,$14,$14,$14,$14 ; 3D =
 FCB $00,$41,$22,$14,$08 ; 3E >
 FCB $02,$01,$51,$09,$06 ; 3F ?
 FCB $3E,$41,$4D,$4D,$06 ; 40 @
 FCB $7E,$11,$11,$11,$7E ; 41 A
 FCB $7F,$49,$49,$49,$36 ; 42 B
 FCB $3E,$41,$41,$41,$22 ; 43 C
 FCB $7F,$41,$41,$22,$1C ; 44 D
 FCB $7F,$49,$49,$49,$41 ; 45 E
 FCB $7F,$09,$09,$09,$01 ; 46 F
 FCB $3E,$41,$49,$49,$7A ; 47 G
 FCB $7F,$08,$08,$08,$7F ; 48 H
 FCB $00,$41,$7F,$41,$00 ; 49 I
 FCB $20,$40,$41,$3F,$01 ; 4A J
 FCB $7F,$08,$14,$22,$41 ; 4B K
 FCB $7F,$40,$40,$40,$40 ; 4C L
 FCB $7F,$02,$0C,$02,$7F ; 4D M
 FCB $7F,$04,$08,$10,$7F ; 4E N
 FCB $3E,$41,$41,$41,$3E ; 4F O
 FCB $7F,$09,$09,$09,$06 ; 50 P
 FCB $3E,$41,$51,$21,$5E ; 51 Q
 FCB $7F,$09,$19,$29,$46 ; 52 R
 FCB $46,$49,$49,$49,$31 ; 53 S
 FCB $01,$01,$7F,$01,$01 ; 54 T
 FCB $3F,$40,$40,$40,$3F ; 55 U
 FCB $1F,$20,$40,$20,$1F ; 56 V
 FCB $3F,$40,$38,$40,$3F ; 57 W
 FCB $63,$14,$08,$14,$63 ; 58 X
 FCB $07,$08,$70,$08,$07 ; 59 Y
 FCB $61,$51,$49,$45,$43 ; 5A Z

Application Note Code Listings

AN1287

24 MOTOROLA

 FCB $00,$7F,$41,$41,$00 ; 5B [
 FCB $02,$04,$08,$10,$20 ; 5C \
 FCB $00,$41,$41,$7F,$00 ; 5D]
 FCB $04,$02,$01,$02,$04 ; 5E ^
 FCB $02,$01,$51,$09,$06 ; 5F ?
 FCB $00,$00,$05,$03,$00 ; 60 `
 FCB $20,$54,$54,$54,$78 ; 61 a
 FCB $7F,$48,$44,$44,$38 ; 62 b
 FCB $38,$44,$44,$44,$20 ; 63 c
 FCB $38,$44,$44,$48,$7F ; 64 d
 FCB $38,$54,$54,$54,$18 ; 65 e
 FCB $08,$7E,$09,$01,$02 ; 66 f
 FCB $04,$2A,$2A,$2A,$1C ; 67 g
 FCB $7F,$08,$04,$04,$78 ; 68 h
 FCB $00,$44,$7D,$40,$00 ; 69 i
 FCB $20,$40,$44,$3D,$00 ; 6A j
 FCB $7F,$10,$28,$44,$00 ; 6B k
 FCB $00,$41,$7F,$40,$00 ; 6C l
 FCB $7C,$04,$18,$04,$78 ; 6D m
 FCB $7C,$08,$04,$04,$78 ; 6E n
 FCB $38,$44,$44,$44,$38 ; 6F o
 FCB $7C,$14,$14,$14,$08 ; 70 p
 FCB $08,$14,$14,$18,$7C ; 71 q
 FCB $7C,$08,$04,$04,$08 ; 72 r
 FCB $48,$54,$54,$54,$20 ; 73 s
 FCB $04,$3F,$44,$40,$20 ; 74 t
 FCB $3C,$40,$40,$20,$7C ; 75 u
 FCB $1C,$20,$40,$20,$1C ; 76 v
 FCB $3C,$40,$30,$40,$3C ; 77 w
 FCB $44,$28,$10,$28,$44 ; 78 x
 FCB $44,$64,$54,$4C,$44 ; 7A z
 FCB $7F,$7F,$7F,$7F,$7F ; 7B
 FCB $7F,$7F,$7F,$7F,$7F ; 7C
 FCB $7F,$7F,$7F,$7F,$7F ; 7D
 FCB $1E,$48,$90,$50,$8E ; 7E ~
 FCB $7F,$7F,$7F,$7F,$7F ; 7F
 FCB $0C,$50,$50,$50,$3C ; 79 y
 FCB $50,$08,$04,$60,$7A ; 80 (Batwing)
 FCB $3C,$71,$41,$71,$3C ; 81 (Batwing)
 FCB $7A,$60,$04,$08,$50 ; 82 (Batwing)
 FCB $05,$00,$17,$01,$20 ; 83 (Batwing)
 FCB $00,$40,$41,$40,$00 ; 84 (Batwing)
 FCB $20,$01,$17,$00,$05 ; 85 (Batwing)
 FCB $78,$10,$60,$10,$78 ; 86 M -TOP
 FCB $07,$00,$00,$00,$07 ; 87 M -BOT
 FCB $70,$08,$08,$08,$70 ; 88 O
 FCB $03,$04,$04,$04,$03 ; 89 O
 FCB $08,$08,$78,$08,$08 ; 8A T
 FCB $00,$00,$07,$00,$00 ; 8B T
 FCB $78,$48,$48,$48,$30 ; 8C R
 FCB $07,$00,$01,$02,$04 ; 8D R

Application Note
Code Listings

AN1287

MOTOROLA 25

 FCB $78,$00,$00,$00,$00 ; 8E L
 FCB $07,$04,$04,$04,$04 ; 8F L
 FCB $70,$08,$08,$08,$70 ; 90 A
 FCB $07,$01,$01,$01,$07 ; 91 A
ENDLOC:

Application Note Flow Chart

AN1287

26 MOTOROLA

Flow Chart

BEGIN

TURN OFF COP

MAIN

CLEAR VARIABLES

SETUP RAM

SUBROUTINE

CLEAR DISPLAY

TURN LCD ON

WRITE INITIAL

DISPLAY TEXT

INITIALIZE VARR

LOOP

WRITE DATA

TO DISPLAY

INCREMENT VARR
LOOP

Application Note
Flow Chart

AN1287

MOTOROLA 27

WR_BIN

SUBROUTINE

STORE DATA IN
RAM BUFFER MSG

STORE DELIMITER

CHARACTER

IN RAM MESSAGE

BUFFER (MSG+1)

CALL WR_STR

SUBROUTINE

BINTOASC

SUBROUTINE

STORE DATA AND
LOCATION IN RAM

CONVERT LOWER

NIBBLE OF DATA

FROM BINARY TO

ASCII

STORE LOWER

NIBBLE IN RAM

BUFFER (MSG+1)

CONVERT UPPER

NIBBLE OF DATA

FROM BINARY TO

ASCII

STORE DELIMITER
CHARACTER

IN RAM MESSAGE
BUFFER (MSG+2)

CALL WR_STR

SUBROUTINE

RTS

RTS

STORE UPPER

NIBBLE TO RAM

(MSG)

Application Note Flow Chart

AN1287

28 MOTOROLA

WRITE_STRING

SUBROUTINE

CLEAR POINTER
STRPOS

STORE DATA AND

LOCATION IN RAM

CHANGE RAM

SUBROUTINE

FOR INDEXED

ADDRESSING

COPY STRING

POINTER TO RAM

SUBROUTINE

GET CHARACTER

FROM STRING

IS

THE DELIMITER
RTS

YES

IS CHAR

POSITION OFF

SCREEN

YES

CALL WR_POS

SUBROUTINE
RTS

RTS

NO

NO

CHARACTER

?

?

Application Note
Flow Chart

AN1287

MOTOROLA 29

CLS
SUBROUTINE

CLEAR X

CLEAR LCD

CLEAR LCD CLEAR LCD

CLEAR LCD

X=#$29?

INCREMENT X

REGISTER

RTS
YESNO

BANK2,X

BANK3,XBANK4,X

BANK1,X

REGISTER

Application Note Flow Chart

AN1287

30 MOTOROLA

INV

SUBROUTINE

CLEAR X

COMPLIMENT LCD

BANK1,X

COMPLIMENT LCD

BANK4,X
COMPLIMENT LCD

BANK3,X

COMPLIMENT LCD

BANK2,X

X=#$29?

INCREMENT X

REGISTER

RTS
YESNO

REGISTER

Application Note
Flow Chart

AN1287

MOTOROLA 31

WRITE POSITION
SUBROUTINE

STORE DATA AND
LOCATION IN RAM

SETUP RAM
SUBROUTINE

FOR EXTENDED

GET BACKWARD

STORE BACKWARD
DATA IN "BACK"

IS

ON SCREEN
RTS

NO

LOOKUP LCD

LOCATION

STORE LCD
 LOCATION

IN RAM

LOOKUP CHAR

STORE CHAR
DATA IN RAM

ALL
WRITTEN

NO

RTS

YES

YES

DATA FROM TABLE

DATA

CHARACTER

ADDRESSING

? SUBROUTINE

SUBROUTINE

 MEMORY

 IN TABLE

?

 5 BYTES

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Application Note

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed:

MOTOROLA LITERATURE DISTRIBUTION: P.O. Box 20912; Phoenix, Arizona 85036.1-800-441-2447 or 602-303-5454
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244-6609
INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan.
03-81-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

AN1287/D

	Introduction
	LCD Hardware General Information
	Subroutine Descriptions
	General Description
	Main
	RAM Subroutines
	WR_BIN
	BINTOASC
	WR_STR
	CLS
	WR_POS
	WRITEIT
	WRITEIT2

	Tables
	LCDLOC
	LCDBACK
	CHARROM

	Code Listings
	Flow Chart

