
Order this document
by AN1292/D

Motorola Semiconductor Application Note

AN1292
Adding a Voice User Interface to M68HC05 Applications
By Derrick B. Forte and Hai T. Nguyen
CSIC Development Tools
Austin, Texas

Introduction

As embedded microcontroller-based products become more
sophisticated, additional emphasis is being placed on the design and
implementation of their user interfaces. Visually based interfaces are
commonly implemented with LCDs, LEDs, fluorescent displays, and
lights. Many of these components can be controlled directly by an
application’s processor without using additional components. Voice-
based user interfaces, on the other hand, are often implemented with
speech synthesizers, speech processors, sound generators, and digital
signal processors which operate in conjunction with an application’s
main processor. In addition to a processor dedicated to the generation
of speech, designs frequently require a memory device to hold the data
used by the processor, a loudspeaker, and audio amplification circuitry.
The added cost for components and space has limited the
implementation of speech-based user interfaces to higher end products
and products for the visually impaired. This application note discusses
adding a voice-based user interface to an application based on the
Motorola MC68HC(7)05J1A microcontroller. In particular, interfacing
members of the M68HC05 MCU Family to the Information Storage
Devices (ISD) 1000 and 2500 family of voice record/playback devices is
highlighted. The development of an audible thermometer application
concludes the discussion.
© Motorola, Inc., 1996 AN1292

Application Note Design Alternatives
Design Alternatives

Most applications that use speech as part or all of their user interface
utilize any one of a number of speech processors and synthesizers on
the market. The speech output by these devices usually is stored as
noncompressed or compressed digital data in on-chip or external
memory. In devices designed specifically for high-volume applications,
speech data usually is stored in on-chip ROM.

However, most speech processors and synthesizers designed for the
general market require more flexibility than can be offered by using on-
chip ROM. Data for these processors is provided by a programmed
external memory device. Depending on whether audio amplification is
done by the speech processor or not, external circuitry may be needed
to interface the processor to a loudspeaker. A block diagram of a typical
speech system is illustrated in Figure 1 .

Figure 1. Typical Speech System Design

The ISD 1000 and 2500 series of voice record/playback devices
discussed in this application note integrate all the circuitry needed to
record and play back audio signals on a single device. The speech
processor, memory, and audio amplifier functional blocks needed to
implement a speech interface are all integrated on this device. The
members of the device family differ in the length of their recording times,
ranging from 10 seconds to 90 seconds. The devices are designed to
operate in a number of standalone recording and playback modes or
under the control of an external microcontroller. The ease with which
these devices can be interfaced with microcontrollers makes them ideal

APPLICATION
 MAIN

 PROCESSOR

SPEECH
 SYNTHESIZER

AUDIO
AMPLIFIER
CIRCUITRY

SPEECH SYNTHESIZER
MEMORY
AN1292

2 MOTOROLA

Application Note
Audible Thermometer Feature Definition
for adding a voice-based user interface to an application based on a
member of Motorola’s M68HC05 Family of MCUs. The remainder of this
note discusses using one of these devices to add a voice-based user
interface to a simple M68HC05 MCU-based application, namely a digital
thermometer.

Audible Thermometer Feature Definition

The system design of the audible thermometer begins with the definition
of the application’s feature set. The audible thermometer senses
ambient temperature and outputs the temperature reading in a pre-
recorded human voice. The thermometer is capable of sensing
temperatures from –55 to +125 degrees Celsius in 0.5-degree
increments. The thermometer powers up and remains in a low-power
idle state until the user presses a button. Pushing the button wakes up
the thermometer, causing it to acquire and output a temperature reading.
After completing these tasks, the system returns to a low-power idle
state.
AN1292

MOTOROLA 3

Application Note Audible Thermometer Hardware Design
Audible Thermometer Hardware Design

The system design of digital thermometers is a well-established
paradigm in the design of embedded systems applications. The audible
thermometer follows this model and its hardware design can be divided
into two main functional blocks:

1. Temperature acquisition and conversion – Senses ambient
temperature and converts the reading to the digital domain

2. Audio processing and output – Outputs the temperature reading in
a human voice

To illustrate the ease with which a voice interface can be added to a
Motorola M68HC05 MCU-based application, the Motorola
MC68HC(7)05J1A microcontroller was chosen as the main system
processor for this application. This device is the simplest and the most
inexpensive member of Motorola’s M68HC05 Family of microcontrollers.
The MC68HC(7)05J1A’s main on-chip peripherals include an 8-bit free-
running timer and 14 bidirectional I/O pins. The MC68HC(7)05J1A’s
simplicity constrains the role that it plays in the hardware implementation
of these two blocks.

The temperature acquisition and conversion block consists of circuitry
that senses the application’s ambient temperature and converts it to a
suitable electrical signal for processing by the system’s microcontroller.
This block typically consists of a temperature sensor, signal conditioning
circuitry, and an A/D converter. The temperature sensor is capable of
varying a voltage or current signal in proportion to its ambient
temperature. The signal is then processed by some form of analog
conditioning circuitry. The conditioning circuitry design is heavily
dependent on the accuracy, sensitivity, and noise rejection parameters
of the application’s specifications and its components. This circuitry may
amplify, filter, and linearize the signal in preparation for its conversion to
the digital domain by the A/D converter. Once in digital form, the signal
can be processed by the microcontroller. In most M68HC05-based
applications, the temperature sensor and conditioning circuitry generate
and process an analog signal for use by the MCU’s on-chip A/D
converter peripheral. However, since the MC68HC(7)05J1A does not
AN1292

4 MOTOROLA

Application Note
Audible Thermometer Hardware Design
have an on-chip A/D converter, an external A/D converter is needed to
implement this block completely. The added cost and space required by
an external A/D converter led to the selection of the Dallas
Semiconductor DS1820 One-Wire Digital Thermometer to implement
the temperature acquisition and conversion block in this application. The
DS1820 is a 3-pin device that integrates the temperature sensor,
conditioning circuitry, and A/D converter needed to implement this block
on a single device. In addition, the DS1820 also has nine bytes of
scratchpad RAM and two bytes of EEPROM memory. Using this device
results in substantial cost and space savings. The temperature sensed
by this device is available to the microcontroller as a 9-bit binary number
which can be read serially from a single pin.

The audio processing and output block in this application serves to
output the temperature read in a human voice. As mentioned earlier, the
ISD 1000 and 2500 series voice record/playback devices contain most
of the circuitry needed to implement this block. The high degree of
integration provided by this device allows this block to be implemented
using this device, a few passive components, and a loudspeaker. The
device selected for use in the audible thermometer is the ISD2560. This
device is capable of recording and playing back 60 seconds of sound
and/or speech. The ISD2560 records by sampling a speech or sound
signal at 8 kHz and storing the samples as discrete analog levels in
storage cells. The ISD2560 has 480 K of such cells mapped in a memory
space that is divided into 600 addresses. Sound recording can be
initiated at any one of the 600 addresses and is stopped either by the
manipulation of device control signals or by reaching the end of the
device’s memory space. To separate recordings, special end of
message (EOM) markers are placed in memory at the end of each
recording. This gives the ISD2560 the ability to record a number of
separate recordings or messages and play them back as many times or
in any sequence desired. The audible thermometer uses this feature of
the ISD2560 to output a sequence of pre-recorded phrases that
correspond to the temperature read by the DS1820. In the thermometer,
the ISD2560 is pre-recorded with phrases for the numbers 0 through 19,
the numbers 20 through 90 in increments of 10, and the words “one
hundred,” “point,” “degrees,” “negative,” and “Celsius.” (See the Design
Manual for ISD1000A Family for recording instructions.) These phrases
AN1292

MOTOROLA 5

Application Note Audible Thermometer Hardware Design
are recorded at addresses in the ISD2560’s memory space that are 16
units apart starting at address $0000. This allots a time of 1.5 seconds
per phrase. The ISD2560 signals encountering an EOM marker by
pulsing the /EOM pin low and then high. The signal can be used by an
external controller to concatenate a sequence of messages.

Although the ISD2560 is capable of operating in a number of standalone
or operational modes, the MC68HC(7)05J1A interfaces with the device
at its microcontroller interface.

The following describes the ISD2560’s microcontroller interface pins and
their functions:

1. A0–A9 – Address lines 0–9: Inputs used to access the 600
addresses within the device’s memory space. Although the
number of lines allows the selection of 1024 addresses, only
addresses 00 to 257 hex are valid.

2. /CE – Chip Enable: An active low pin that enables recording and
playback operations

3. PD – Powerdown: An active high pin that puts the device in a low-
power idle state.

4. P/R – Playback/ Record: A pin that enables device recording when
it is high and enables playback operations when it is low.

5. /EOM – End of Message: An active low pin that pulses for 12.5
msec after the end of a message.

6. /OVF – Overflow: An active low pin that signals the end of the
device’s memory space. This signal can be used to cascade more
than one ISD device together for greater message storage
capacity.
AN1292

6 MOTOROLA

Application Note
Audible Thermometer Hardware Design
After defining the system’s hardware functional blocks of the audible
thermometer and selecting the components that comprise the blocks,
the system block diagram in Figure 2 was derived for the audible
thermometer.

Schematics for the application’s hardware design are located in Audible
Thermometer Schematics .

Figure 2. Audible Thermometer System Block Diagram

 DS1820 MC68HC(7)05J1A ISD2560
AN1292

MOTOROLA 7

Application Note Audible Thermometer Software Design
Audible Thermometer Software Design

The audible thermometer’s system software can be divided into the main
program functions and the low-level functions that interface the
MC68HC(7)05J1A to the DS1820 and the ISD2560. The low-level driver
routines are discussed first, since the main program routines are built on
them.

When given the proper command sequence, the Dallas Semiconductor
DS1820 One-Wire Digital Thermometer is designed to acquire a
temperature measurement within one second and convert it to a 9-bit
digital word. The temperature measured is mapped into a range of 9-bit
words that span from –55 to +125 degrees Celsius in 0.5-degree
increments. The upper byte of a word indicates whether the temperature
read is above or below 0 degrees Celsius. An upper byte value of $FF
corresponds to a negative temperature and a value of $00 corresponds
to a positive temperature. The lower byte values range from $01 to $FA
for positive temperatures and from $FF to $92 for negative ones. When
a temperature is read, the converted word is stored, least significant byte
first, in the first two bytes of the DS1820’s scratchpad RAM memory. The
device interfaces with a microcontroller over a single serial line using a
half-duplex serial protocol. The protocol prescribes that the MCU initiate
and sustain all communications with the DS1820. This protocol supports
a full-featured command set that provides the microcontroller with
complete control over the DS1820’s operation. The DS1820 command
set includes commands to read and write scratchpad RAM memory, to
read and write EEPROM memory, and to perform a temperature reading
and conversion operation. Although the DS1820 is a multi-featured
device, the audible thermometer only uses the commands required to
perform a temperature reading and conversion operation and read the
9-bit data word from the DS1820. In this application, the DS1820
interfaces to the MC68HC(7)05J1A at its PB5 bidirectional input/output
(I/O) pin. Since the DS1820’s protocol is not a standard, the
MC68HC(7)05J1A must manipulate or “bit bang” the PB5 pin to
communicate with a DS1820.

The DS1820’s serial protocol supports three communication functions:
reset, read, and write.
AN1292

8 MOTOROLA

Application Note
Audible Thermometer Software Design
A reset sequence initializes a DS1820 and prepares it to receive a
command from the MCU. A DS1820 reset can be initiated only by the
microcontroller and consists of a reset pulse from the microcontroller
followed by an acknowledgment pulse from the DS1820. This requires
that after driving the serial line to output the reset pulse, the MCU’s I/O
pin must be changed from an output to an input to receive the
acknowledgment pulse. Since setting the I/O line as an input three-
states the serial line, a pullup resistor is needed to pull the serial line high
while the microcontroller is not driving it. If an acknowledgment pulse is
not received from the DS1820 within 15 to 60 microseconds from the
rising edge of the reset pulse, the DS1820 is considered to be
inoperative. Figure 3 illustrates the timing requirements for a DS1820
reset operation.

Figure 3. DS1820 Reset Sequence

The MC68HC(7)05J1A sends commands and data to the DS1820 using
the device’s write protocol. The microcontroller initiates a write cycle or
time slot by pulling the serial line low. A write cycle must be a minimum
of 60 microseconds long with a minimum recovery time of 1 microsecond
between cycles. Data is output least significant bit first with each bit
requiring one complete write cycle. Figure 4 illustrates the timing
requirements for writing a 1 or 0 to the DS1820.

 RESET PULSE FROM THE MICROCONTROLLER 480-4800 µsec

 ACKNOWLEDGEMENT PULSE FROM DS1820 60-240 µsec

 15-60 µsec
AN1292

MOTOROLA 9

Application Note Audible Thermometer Software Design
Figure 4. Microcontroller to DS1820 Write Cycle

The MC68HC(7)05J1A reads data from the DS1820 using the device’s
read protocol. The microcontroller initiates a read cycle or time slot by
pulling the serial line low for a minimum of one microsecond. The
DS1820 outputs a valid bit 15 microseconds after the start of the read
cycle. Therefore, the MCU must change the I/O line driving the serial line
from an output to an input before the DS1820 starts to output data. The
pullup resistor on the serial line pulls up the line until the DS1820 is ready
to output a bit. A read cycle must be a minimum of 60 microseconds with
minimum recovery time of 1 microsecond between cycles. The DS1820
outputs data least significant bit first with each bit requiring one full read
cycle. Figure 5 illustrates the timing requirements for reading a 1or 0
from the DS1820.

15 µsec 15 �µsec 30 �µsec

 DS1820 samples data from the microcontroller.

 Microcontroller writes a 0 bit to the DS1820.

15 �µsec

15� µsec 30 �µsec

 DS1820 samples data from the microcontroller.

 Microcontroller writes a 1 bit to the DS1820.
AN1292

10 MOTOROLA

Application Note
Audible Thermometer Software Design
Figure 5. DS1820 Read Cycle

The ISD2560 driver functions enable the device to play back a sequence
of pre-recorded phrases under the direction of the MC68HC(7)05J1A.
The MC68HC(7)05J1A performs this simple sequence of I/O port
operations to cause the ISD2560 to output a single pre-recorded phrase:

1. Pulls the ISD2560’s PD low, taking the device out of powerdown
mode

2. Sets the ISD2560’s P/R pin high, enabling playback operation

3. Places the starting address of the message on the ISD2560’s
address bus

4. Pulses the ISD2560’s /CE pin low then high for a minimum of 100
nanoseconds

5. Waits for a falling edge on ISD2560’s /EOM pin, indicating that an
EOM marker has been encountered

6. Waits for the rising edge on the ISD2560’s /EOM pin, indicating
the end of the EOM pulse

Figure 6 illustrates a timing diagram for the ISD2560’s signals.

15 �µsec 15 �µsec 30 �µsec

Microcontroller reads a 0 bit from the DS1820.

15 �µsec

Microcontroller reads a 1 bit from the DS1820.

MCU
SAMPLES DATA

MCU
 SAMPLES DATA
AN1292

MOTOROLA 11

Application Note Audible Thermometer Software Design
Figure 6. ISD2560 Control Signals Timing Diagram

The audible thermometer’s main program flow is:

1. Initialize the MC68HC(7)05J1A’s I/O ports.

2. Put the MC68HC(7)05 into low-power stop mode.

3. Wait for the user to press the pushbutton.

4. Acquire a temperature reading from the DS1820.

5. Output the reading to the ISD2560.

6. Return to stop mode and wait for the user to press the pushbutton.

Consult Main Program Flowchart for a detailed flowchart of the main
program’s operation.

 25 msec

 100 nsec

300 nsec

15 µsec

 0 nsec

 /EOM

SP+/–

A0-A9

/CE

PD

 VALID ADDRESS DON’T CAREDON’T CARE

SPEECH OUTPUT
AN1292

12 MOTOROLA

Application Note
Audible Thermometer Software Design
After initializing the MC68HC(7)05J1A’s I/O ports, the MCU is placed in
stop mode. Pressing the pushbutton generates an MCU IRQ interrupt
that wakes the processor out of stop mode. The processor then uses
low-level driver routines to start a DS1820 temperature acquisition and
conversion operation and read a 9-bit data word from the DS1820.
(Consult Appendix B for a flowchart of the temperature acquisition
routine.) If an error occurs during the acquisition of the word, the
thermometer is placed into stop mode. Otherwise, the
MC68HC(7)05J1A processes the word and determines the sequence of
phrases to be output by the ISD2560. The processor then finds the
address of each phrase from a series of tables. The address of each
phrase is placed in the proper order in a phrase buffer. (Consult
Appendix C for the flowchart of the audio processing routine.) The MCU
then uses the ISD2560 low-level routines to output the sequence of
phrases whose addresses are in the phrase buffer. After outputting the
phrase sequence, the MCU returns to stop mode.
AN1292

MOTOROLA 13

Application Note Summary
Summary

The ISD2560 1000 and 2500 series of voice record/playback devices
permit the implementation of cost-effective, voice-based user interfaces
in products based on Motorola’s M68HC05 microcontrollers. The
devices are designed with a microcontroller interface that easily
interfaces with even the simplest member of the M68HC05 Family.

Bibliography

Motorola MC68HC705J1A Technical Data

ISD Information Storage Devices ISD2500 Series Preliminary Data
Sheet

Design Manual for the ISD1000A Family

Dallas Semiconductor DS1820 One-Wire Digital Thermometer Data
Sheet
AN1292

14 MOTOROLA

Application Note

Main Program Flowchart

Main Program Flowchart

INITIALIZE
MC68HC(7)05J1A’S

I/O PORTS.

ENTER STOP MODE.
WAIT FOR THE USER TO

PRESS THE PUSHBUTTON.

IF AN EXTERNAL INTERRUPT
OCCURS, DELAY FOR 250

MSEC TO DEBOUNCE.

 NOIS THE
INTERRUPT

VALID
?

YES

GET TEMPERATURE
READING FROM THE

DS1820. SEE
TEMPERATURE READING

PROCEDURE FLOWCHART .

WAS THE
READING OPERATION

SUCCESSFUL
?

NO

OUTPUT THE
TEMPERATURE
AUDIBLY. SEE

AUDIO OUTPUT PROCE-
DURE FLOWCHART .

YES
AN1292

MOTOROLA 15

Application Note Temperature Reading Procedure Flowchart
Temperature Reading Procedure Flowchart

WAS
ACKNOWLEDGEMENT

PULSE RECEIVED
?

SET ERROR BIT IN
SYSTEM STATUS

VARIABLE.

NO

SEND A DS1820
 SKIP ROM ($CC)

 COMMAND.

YES

SEND A DS1820
CONVERT T

($44) COMMAND.

RESET THE
DS1820 *.

SEND A DS1820.
SKIP ROM ($CC)

COMMAND.

SEND A DS1820
 READ SCRATCHPAD

($BE) COMMAND.

READ 9-BIT
TEMPERATURE DATA
FROM THE DS1820.

RESET DS1820*.

DS1820
RESET PROCEDURE *

SEND A DS1820
RESET PULSE.
AN1292

16 MOTOROLA

Application Note
Audio Output Procedure Flowchart
Audio Output Procedure Flowchart

DIVIDE THE DATA BY 10.
PLACE THE QUOTIENT

IN A QUOTIENT VARIABLE.
PLACE THE REMAINDER IN
A TEMPORARY VARIABLE.

CHECK THE TEMPERATURE
WORD TO SEE IF IT IS

AN ODD MULTIPLE OF 0.5.

IS THE
MULTIPLE

ODD
?

SET THE POINT
FLAG VARIABLE.

 YES

IS THE
TEMPERATURE

NEGATIVE
?

NO

YES

PLACE THE ADDRESS
OF THE "NEGATIVE"

PHRASE IN THE PHRASE
BUFFER.

IS THE
TEMPERATURE >

THAN OR =100
DEGREES C

?

PLACE THE ADDRESS
OF THE "ONE HUNDRED"

PHRASE IN PHRASE
BUFFER.

SUBTRACT THE
DS1820’S VALUE FOR
100 FROM THE DATA.

FIND THE ADDRESS
OF THE PHRASE FOR
THE NUMBER IN THE

TBL0_19 TABLE.

NO

YES

NO

NO

YES

IS THE
TEMPERATURE >

THAN 19 DEGREES
C?

A

FIND THE ADDRESS
OF THE QUOTIENT’S

PHRASE IN THE TBL20_90.

 PLACE THE ADDRESS OF
 THE QUOTIENT’S PHRASE
 IN THE PHRASE BUFFER.

PLACE THE ADDRESS
OF THE PHRASE IN
THE PHRASE BUFFER.
AN1292

MOTOROLA 17

Application Note Audio Output Procedure Flowchart (Continued)
 Audio Output Procedure Flowchart (Continued)

A

IS POINT
FLAGVARIABLE

SET?

 YES

NO

PLACE ADDRESSES
OF THE "POINT" AND
"FIVE" PHRASES IN
PHRASE BUFFER.

 PLACE ADDRESS OF
PHRASE "DEGREES"

 IN PHRASE BUFFER.

 PLACE ADDRESS OF
PHRASE "CELCIUS"

 IN PHRASE BUFFER.

PLACE AN $FF IN
PHRASE BUFFER.

ISD2560 OUTPUTS
SEQUENCE IN PHRASE
BUFFER UNTIL A $FF IS

ENCOUNTERED.

FIND ADDRESS OF THE
REMAINDER’S PHRASE
IN THE TBL0_19 TABLE.

PLACE ADDRESS OF
THE PHRASE IN THE

PHRASE BUFFER.
AN1292

18 MOTOROLA

Application Note
Audible Thermometer Schematics
Audible Thermometer Schematics

D
a
t
e
:

A
u
g
u
s
t

1
2
,

1
9
9
6
S
h
e
e
t

1

o
f

1

S
i
z
e
D
o
c
u
m
e
n
t

N
u
m
b
e
r

R
E
V

B
O

T
i
t
l
e

T
A
L
K
I
N
G

T
H
E
R
M
O
M
E
T
E
R

V
C
C

R
3
1
0
0
K

C
2
1
u
F

V
D
D

3

D
Q

2

G
N
D

1

U
3

D
S
1
8
2
0

V
C
C

S
1

S
W

P
U
S
H
B
U
T
T
O
N

G
N
D

G
N
D

V
C
C

1 2

P
1

G
N
D

R
2
1
0
0
K

C
3
1
u
F

V
D
D

9

V
S
S

1
0

R
E
S
E
T

2
0

I
R
Q

1
9

P
A
7

1
1

P
A
6

1
2

P
A
5

1
3

P
A
4

1
4

P
A
3

1
5

P
A
2

1
6

P
A
1

1
7

P
A
0

1
8

P
B
5

3

P
B
4

4

P
B
3

5

P
B
2

6

P
B
1

7

P
B
0

8

O
S
C
1

1

O
S
C
2

2

U
1

M
6
8
H
C
7
0
5
J
1
A

V
C
C

V
C
C

G
N
D

A
9

1
0

A
8

9

A
7

8

A
6

7

A
5

6

A
4

5

A
3

4

A
2

3

A
1

2

P
D

2
4

P
/
R

2
7

E
O
M

2
5

V
C
C
D

2
8

V
C
C
A

1
6

S
P
+

1
4

S
P
-

1
5

M
I
C

R
E
F

1
8

M
I
C

1
7

V
S
S
A

1
3

V
S
S
D

1
2

A
U
X

I
N

1
1

A
N
A

I
N

2
0

A
N
A

O
U
T

2
1

A
G
C

1
9

X
C
L
K

2
6

O
V
F

2
2

C
E

2
3

A
0

1

U
2

I
S
D
2
5
4
5

V
C
C

L
S
1

S
P
E
A
K
E
R

J
1

P
H
O
N
E
J
A
C
K

P
2

P
H
O
N
E
P
L
U
G

G
N
D

G
N
D

G
N
D

R
1
4
7
0
K

C
1

4
.
7
u
F

R
4

1
0

G
N
D

V
C
C

V
C
C

G
N
D N
C

1

V
C
C

1
4

O
U
T

8

G
N
D

7

Y
1

C
A
N
_
O
S
C

G
N
D

AN1292

MOTOROLA 19

Application Note Source Code
Source Code

* Motorola reseves the right to make changes without further notice *
* to any product herein to improve reliability, function, or design. *
* Motorola does not assume any liability arising out of the *
* application or use of any product , circuit, or software described *
* herein; neither does it convey any license under its patent rights *
* nor the right of others. Motorola products are not designed, *
* intended or authorised for use as components in systems intended *
* for surgical implant into the body, or other applications intended *
* to support life, or for any other application in which failure *
* of the Motorola product could create a situation where personal *
* injury or death may occur. Should Buyer purchase or use Motorola *
* products for any such intended or unauthorised application, Buyer *
* shall indemnify and hold Motorola and its officers, employees *
* subsidiaries, affiliates, and distributors harmless against all *
* claims, costs, damages, expenses and reasonable attorney fees *
* arising out of, directly or indirectly, any claim of personal *
* injury or death associated with such unint ended or unauthorised *
* use, even if such claim alleges that Motorola was negligent *
* regarding the design or manufacture of the part. Motorola and the *
* Motorola logo* are registered trademarks of Motorola Ltd. *

 THERMO.ASM
********* SYSTEM EQUATES *********

PORTA EQU $00 ; Port A register
PORTB EQU $01 ; Port B register
DDRA EQU $04 ; Port A Data Direction register
DDRB EQU $05 ; Port B Data Direction register
ERROR EQU 0 ; Error Bit
DQ EQU 5 ; 1820 DQ signal
DQ_CTRL EQU 5
SKIPROM EQU $CC ; 1820 Skip ROM command byte
CONVERT EQU $44 ; 1820 Temperature Convert command byte
READRAM EQU $BE ; 1820 Read RAM command byte
CE EQU $02 ; ISD2560 chip enable bit
PD EQU $03 ; ISD2560 powerdown bit
EOM EQU $04 ; ISD2560 end of message bit
DDRAMSK EQU $FF ; Port A Data Direction register mask
DDRBMSK EQU $2F ; Port B Data Direction register mask
PORTAMSK EQU $00 ; Port A mask
PORTBMSK EQU $2C ; Port B mask
POSITIVE_SIGN EQU $00 ; MSB of a positive temperature reading
NEGATIVE_SIGN EQU $FF ; MSB of a neagtive temperature reading
AN1292

20 MOTOROLA

Application Note
Source Code
POSITIVE_LIMIT EQU $FA ; The highest LSB for a positive temperature.
NEGATIVE_LIMIT EQU $92 ; The lowest LSB for a negative temperature.

********* VARIABLES *********

 ORG $C0

SYS_STATUS DS 1 ; System status variable
TEMP_HI DS 1 ; Stores the temperature reading high byte
TEMP_LO DS 1 ; Stores the temperature reading low byte
TEMP DS 1 ; Temporary storage space
TEMPA DS 1 ; Register A tempoary storage space
TEMPX DS 1 ; Register X temporary storage space

RAW_TEMP EQU TEMP_HI ; Storage space for converted reading
PHRASE_BUFFER DS $11 ; Stores addresses of phrases to be output
POINT_FLAG DS 1 ; Flag indicating a .5 increment in temperature
QUOTIENT DS 1 ; Storage space for the result of division
PHRASE_POINTER DS 1 ; Pointer to current address in phrase buffer

 ORG $300

START: JSR INITIALIZE ; Initialize J1A's I/O ports
WAIT4INT STOP ;Stop
 BRA WAIT4INT

IRQ_INT: CLR SYS_STATUS ; Clear the error bit
 JSR DEBOUNCE ; Debounce the activation switch
 BRSET ERROR,SYS_STATUS,IRQ_INT_EXIT ; If the error bit is
 ; set, the exit routine
 JSR GET_TEMP ; Get a temperature reading from the 1820
 BRSET ERROR,SYS_STATUS,IRQ_INT_EXIT ; If the error bit is
 ; set, the exit routine
 JSR FORM_PHRASE ; Form table of addresses of the phrases to

be output
 JSR OUTPUT_TEMP ; Audibly output temperature
IRQ_INT_EXIT BCLR ERROR,SYS_STATUS ; Clear the error bit
 RTI
AN1292

MOTOROLA 21

Application Note Source Code

* *
* Function Name: OUTPUT_TEMP *
* Function Inputs: None *
* Functions Outputs: None *
* *
* Purpose: This function outputs the contents of the *
* phrase_buffer to the ISD2560 which outputs them *
* audibly. *
* *

OUTPUT_TEMP: BCLR PD,PORTB ; Take the ISD2560 out of powerdown mode.
 LDX #PHRASE_BUFFER ; Point to the phrase buffer.
OUT_PHRASE: LDA PORTB
 AND #$FC
 ORA ,X
 STA PORTB
 INCX
 LDA ,X ; Put the address of the next phrase to
 STA PORTA ; be output on the address bus of the ISD2560
 INCX
 BCLR CE,PORTB ; Pulse the ISD2560's chip enable pin to start
 BSET CE,PORTB ; outputting the current phrase.
EOM_H_WAIT: BRSET EOM,PORTB,EOM_H_WAIT ; Wait for the ISD2560's End of Message
EOM_L_WAIT: BRCLR EOM,PORTB,EOM_L_WAIT ; pulse before continuing
 LDA ,X ; Look for the end of the phrases to be output
 CMP #$FF ; if it is found exit the routine. Otherwise
 BNE OUT_PHRASE ; continue outputting phrases.
 BSET PD,PORTB ; Put the ISD2560 into powerdown mode.
 RTS
AN1292

22 MOTOROLA

Application Note
Source Code

* *
* Function Name: FORM_PHRASE *
* Function Inputs: None *
* Functions Outputs: None *
* *
* Purpose: This function converts the temperature read *
* from the 1820 to the addresses of the phrases in *
* the ISD2560 that match the individual digits in the *
* reading. These addresses are stored in the phrase *
* buffer. *
* *

FORM_PHRASE: CLR POINT_FLAG ; Check to see if the temperature reading is a
 ; a .5 increment, if it is set the POINT_FLAG.
 BRCLR 0,(RAW_TEMP+1),NOT_POINT
 INC POINT_FLAG
NOT_POINT: LDX #PHRASE_BUFFER
 LDA RAW_TEMP ; Check to see if the temperature is negative

 BEQ NOT_NEG ; if it is, place the address of the "Negative"
 LDA NEG_ADDR ; phrase at the start of the phrase buffer.

Otherwise
 STA ,X ; convert the temperature into its positive

equivalent.
 INCX
 LDA (NEG_ADDR+1)
 STA ,X
 INCX
 COM (RAW_TEMP+1)
 INC (RAW_TEMP+1)
NOT_NEG: LSR (RAW_TEMP+1) ; Check for the temperature being lower than 100
degrees
 LDA (RAW_TEMP+1) ; Celcius.
 CMP #$64
 BLO BELOW_100
 SUB #$64
 STA (RAW_TEMP+1)

 LDA HUNDRED_ADDR ; If the temperature is greater than or equal to
; 100 degrees

 STA ,X ; put the address of the "One hundred" phrase in
the phrase

 INCX ; buffer and subtract the equivalent value of 100
from the value.

 LDA (HUNDRED_ADDR+1)
 STA ,X
 INCX
 LDA (RAW_TEMP+1)
 BEQ POINT
AN1292

MOTOROLA 23

Application Note Source Code
BELOW_100: LDA (RAW_TEMP+1) ; Check to see if the remaining temperature value
is less than 20

 CMP #$14 ; degrees. If it is, search for it in the TB0_19
table.

 BLO BELOW_20 ; Otherwise divide the data by ten. Store the
quotient in the

CLR QUOTIENT ; quotient variable and the remainder in
(RAW_TEMP+1).

 SUB #$14
DIV10 CMP #$A
 BLO DIV_DONE
 INC QUOTIENT
 SUB #$A
 BRA DIV10
DIV_DONE STA (RAW_TEMP+1)
 ASL QUOTIENT
 STX PHRASE_POINTER ; Find the address of the quotient's phrase in
 LDX QUOTIENT ;the TBL20_90 table and store it in the phrase
buffer.
 LDA TBL20_90,X
 INCX
 STX TEMP
 LDX PHRASE_POINTER
 STA ,X
 INCX
 STX PHRASE_POINTER
 LDX TEMP
 LDA TBL20_90,X
 LDX PHRASE_POINTER
 STA ,X
 INCX
 LDA (RAW_TEMP+1)
 BEQ POINT
BELOW_20 LDA (RAW_TEMP+1) ; Find the address of the remainder's phrase in

the
 ASLA ; TBL0_19 table and store it in the phrase

buffer.
 STX PHRASE_POINTER
 TAX
 LDA TBL0_19,X
 INCX
 STX TEMP
 LDX PHRASE_POINTER
 STA ,X
 INCX
 STX PHRASE_POINTER
 LDX TEMP
 LDA TBL0_19,X
 LDX PHRASE_POINTER
 STA ,X
 INCX
AN1292

24 MOTOROLA

Application Note
Source Code
POINT TST POINT_FLAG ; If the temperature is a .5 increment reading
 BEQ END_RAWTEMP ; load the phrase buffer with the addresses for

the
 LDA POINT_ADDR ; "Point" and "Five" phrases.
 STA ,X
 INCX
 LDA (POINT_ADDR+1)
 STA ,X
 INCX
 LDA FIVE_ADDR
 STA ,X
 INCX
 LDA (FIVE_ADDR+1)
 STA ,X
 INCX
END_RAWTEMP LDA DEGREE_ADDR ; Load the phrase buffer with the address for
 STA ,X ; the "Degrees" phrase.
 INCX
 LDA (DEGREE_ADDR+1)
 STA ,X
 INCX
 LDA CELCIUS_ADDR ; Load the phrase buffer with the address for
 STA ,X ; the "Celcius" phrase.
 INCX
 LDA (CELCIUS_ADDR+1)
 STA ,X
 INCX
 CLR ,X
 DEC ,X
 RTS

* *
* Function Name: INITIALIZE *
* Function Inputs: None *
* Functions Outputs: None *
* *
* Purpose: This function configures PORT A and PORT B *
* and their data direction registers. *
* *

INITIALIZE LDA #DDRAMSK
 STA DDRA
 LDA #PORTAMSK
 STA PORTA
 LDA #DDRBMSK
 STA DDRB
 LDA #PORTBMSK
 STA PORTB
 RTS
AN1292

MOTOROLA 25

Application Note Source Code

* *
* Function Name: GET_TEMP *
* Function Inputs: None *
* Functions Outputs: None *
* *
* Purpose: This function performs the required reads and *
* writes to the 1820 to perform a temperature conversion *
* and acquisition. The temperature read is returned in *
* TEMP variable. *
* *

GET_TEMP JSR RESET_1820 ; Reset the 1820.
 BRSET ERROR,SYS_STATUS,GET_ERROR
 LDA #SKIPROM ; Send the 1820's SKIP ROM command.
 STA TEMP
 JSR WRITE_1820
 LDA #CONVERT ; Send the 1820's CONVERT T command.
 STA TEMP
 JSR WRITE_1820
READ_LOOP JSR READ_1820
 LDA TEMP
 CMP #$FF
 BNE READ_LOOP
 JSR RESET_1820 ; Reset the 1820.
 BRSET ERROR,SYS_STATUS,GET_ERROR ; If the reset fails set the
 LDA #SKIPROM ; error bit and exit the routine.
 STA TEMP ; Send the 1820's SKIP ROM command.
 JSR WRITE_1820
 LDA #READRAM vccccccccc; Read the 1820's RAM to get

the temperature
 STA TEMP ; reading.
 JSR WRITE_1820
 JSR READ_1820
 LDA TEMP
 STA TEMP_LO
 JSR READ_1820
 LDA TEMP
 STA TEMP_HI
 CMP #POSITIVE_SIGN ; Check for an invalid positive
 BEQ CHK_POSITIVE ; data value.
 CMP #NEGATIVE_SIGN ; Check for an invalid negative
 BNE GET_ERROR ; data value.
 LDA TEMP_LO
 CMP #NEGATIVE_LIMIT
 BLO GET_ERROR
 BRA GET_EXIT
AN1292

26 MOTOROLA

Application Note
Source Code
CHK_POSITIVE LDA TEMP_LO
 CMP #POSITIVE_LIMIT
 BLS GET_EXIT
GET_ERROR BSET ERROR,SYS_STATUS ; Set the error bit if an error
GET_EXIT JSR RESET_1820 ; occurs.
 RTS

* *
* Function Name: RESET_1820 *
* Function Inputs: None *
* Functions Outputs: None *
* *
* Purpose: This function resets the 1820. If the 1820 *
* resets properly, it will return a response pulse. If *
* a pulse is not received, the error bit is set in *
* system status. *
* *

RESET_1820 STA TEMPA ; Save the CPU registers
 STX TEMPX
 BSET DQ,PORTB ; Send a reset pulse to
 BSET DQ_CTRL,DDRB ; the 1820
 BCLR DQ,PORTB
 JSR DELAY_500uS
 BSET DQ,PORTB
 BCLR DQ_CTRL,DDRB ; Set the J1A to receive the
 JSR DELAY_100uS ; response pulse from the 1820
 BRSET DQ,PORTB,RESET_ERR ; If the start of the pulse
 JSR DELAY_500uS ;is not received, handle the error
 BRSET DQ,PORTB,RESET_EXIT
RESET_ERR BSET ERROR,SYS_STATUS ;Set the error bit
RESET_EXIT BSET DQ,PORTB ; Set the J1A for transmission
 BSET DQ_CTRL,DDRB
 LDA TEMPA ; Restore CPU registers
 LDX TEMPX
 RTS
AN1292

MOTOROLA 27

Application Note Source Code

* *
* Function Name: WRITE_1820 *
* Function Inputs: None *
* Functions Outputs: None *
* Purpose: This function writes the data stored in the *
* TEMP variable to the 1820. *
* *

WRITE_1820 STA TEMPA ; Save CPU registers.
 STX TEMPX
 LDX #8 ; Load X with count.
WRITE_SHIFT LSR TEMP ; Shift out the bit to be sent
 BCS WRITE_ONE
WRITE_ZERO BCLR DQ,PORTB ; Send a zero to the 1820
 JSR DELAY_80uS
 BSET DQ,PORTB
 BRA DEC_WRITE
WRITE_ONE BCLR DQ,PORTB ; Send a one to the 1820
 NOP
 NOP
 NOP
 BSET DQ,PORTB
 JSR DELAY_80uS
DEC_WRITE DECX
 BNE WRITE_SHIFT
 LDA TEMPA ; Restore CPU registers
 LDX TEMPX
 RTS

* *
* Function Name: READ_1820 *
* Function Inputs: None *
* Functions Outputs: None *
* *
* Purpose: This function reads data from the 1820 and *
* returns the data in the TEMP variable. *
* *

READ_1820 STA TEMPA ; Save CPU registers
 STX TEMPX
 LDX #8 ; Load X registers with count
AN1292

28 MOTOROLA

Application Note
Source Code
READ_BIT BSET DQ,PORTB ; Set up the DQ line for read
 BSET DQ_CTRL,DDRB
 BCLR DQ,PORTB
 NOP
 NOP
 NOP
 NOP
 NOP
 BCLR DQ_CTRL,DDRB ; Set the DQ line to receive data
 BRSET DQ,PORTB,READ_ONE ; Read bit
 CLC
 BRA READ_SHIFT
READ_ONE SEC
READ_SHIFT ROR TEMP ; Rotate the bit in the TEMP variable
 JSR DELAY_80uS
 DECX
 BNE READ_BIT
 BSET DQ,PORTB
 BSET DQ_CTRL,DDRB
 LDA TEMPA ; Restore CPU registers
 LDX TEMPX
 RTS

* *
* Function Name: DEBOUNCE *
* Function Inputs: None *
* Functions Outputs: None *
* *
* Purpose: This function debounces the pushbutton switch. *
* *

DEBOUNCE LDX #$FF
DEBOUNCE_LOOP JSR DELAY_500uS
 DECX
 BNE DEBOUNCE_LOOP
 BIL DEBOUNCE_EXIT ; If the interrupt is valid, exit
 ; the routine
 BSET ERROR,SYS_STATUS ; If the interrupt is invalid, set
 ; the error bit and exit
DEBOUNCE_EXIT RTS
AN1292

MOTOROLA 29

Application Note Source Code

* *
* Function Inputs: None *
* Functions Outputs: None *
* *
* Purpose: This function provides delays. *
* *

DELAY_80uS LDA #$0C
 BRA DELAY_LOOP
DELAY_100uS LDA #$0F
 BRA DELAY_LOOP
DELAY_500uS LDA #$52
 BRA DELAY_LOOP
DELAY_LOOP NOP
 NOP
 NOP
 DECA
 BNE DELAY_LOOP
 RTS

* *
* PHRASE ADDRESS TABLE *
* *

 org $700

TBL0_19: DW $0000 ; Address for the phrase "Zero".
 DW $0010 ; Address for the phrase "One".
 DW $0020 ; Address for the phrase "Two".
 DW $0030 ; Address for the phrase "Three".
 DW $0040 ; Address for the phrase "Four".
FIVE_ADDR: DW $0050 ; Address for the phrase "Five".
 DW $0060 ; Address for the phrase "Six".
 DW $0070 ; Address for the phrase "Seven".
 DW $0080 ; Address for the phrase "Eight".
 DW $0090 ; Address for the phrase "Nine".
 DW $00A0 ; Address for the phrase "Ten".
 DW $00B0 ; Address for the phrase "Eleven".
 DW $00C0 ; Address for the phrase "Twelve".
 DW $00D0 ; Address for the phrase "Thirteen".
 DW $00E0 ; Address for the phrase "Fourteen".
 DW $00F0 ; Address for the phrase "Fifteen".
 DW $0100 ; Address for the phrase "Sixteen".
 DW $0110 ; Address for the phrase "Seventeen".
AN1292

30 MOTOROLA

Application Note
Source Code
 DW $0120 ; Address for the phrase "Eighteen".
 DW $0130 ; Address for the phrase "Nineteen".

TBL20_90: DW $0140 ; Address for the phrase "Twenty".
 DW $0150 ; Address for the phrase "Thirty".
 DW $0160 ; Address for the phrase "Forty".
 DW $0170 ; Address for the phrase "Fifty".
 DW $0180 ; Address for the phrase "Sixty".
 DW $0190 ; Address for the phrase "Seventy".
 DW $01A0 ; Address for the phrase "Eighty".
 DW $01B0 ; Address for the phrase "Ninety".

HUNDRED_ADDR: DW $01C0 ; Address for the phrase "One Hundred".

POINT_ADDR: DW $01D0 ; Address for the phrase "Point".

DEGREE_ADDR: DW $01E0 ; Address for the phrase "Degree".

NEG_ADDR: DW $01F0 ; Address for the phrase "Negative".

CELCIUS_ADDR: DW $0200 ; Address for the phrase "Celcius".

 ORG $7FA
 DW IRQ_INT

 ORG $7FE
 DW START

 END
AN1292

MOTOROLA 31

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Application Note
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.1-800-441-2447 or

602-303-5454
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602-244-6609
INTERNET: http://Design-NET.com
JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan.

03-81-3521-8315
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

	Introduction
	Design Alternatives
	Audible Thermometer Feature Definition
	Audible Thermometer Hardware Design
	Audible Thermometer Software Design
	Summary
	Bibliography
	Main Program Flowchart
	Temperature Reading Procedure Flowchart
	Audio Output Procedure Flowchart
	Audio Output Procedure Flowchart (Continued)
	Audible Thermometer Schematics
	Source Code
	THERMO.ASM

