
 Motorola, Inc. 1996 REV 1.0

SEMICONDUCTOR
APPLICATION NOTE

MOTOROLA

IEEE 1149.1 Boundary Scan for H4EPlus TM Arrays
Prepared by: Roy Jones and Nick Spence
Edited by: Clarence Nakata and Tim Hunkler
Application Specific Integrated Circuits Division, Chandler AZ

AN1500

Table of Contents Page
1.0 Introduction . 1
2.0 H4EPlus JTAG Macro Descriptions 1
3.0 JTAG Clock & Control Signal Distribution. 3
4.0 ATPG-Compatible JTAG . 5
5.0 JTAG I/O Macro Placement and Pin-out Assignment 15
6.0 CAD Design Flows . 17
Appendix
A. Manufacturing Rules Verifier (MARV) Rules for JTAG21
B. TAP Controller Design for ATPG Compatibility 24

1. Introduction
This application note describes how IEEE standard bound-

ary scan, commonly referred to as “JTAG,” has been imple-
mented on Motorola’s H4EPlus family of sub-micron CMOS
gate arrays. The user is assumed to have a working knowl-
edge of JTAG boundary scan. For background information re-
fer to the IEEE specification entitled “Standard Test Access
Port and Boundary-Scan Architecture, IEEE Std. 1149.1-
1990,” and to the textbook entitled “The Test Access Port and
Boundary-Scan Architecture” by Maunder and Tulloss, pub-
lished by the IEEE Computer Society Press.

Section 2.0 describes the macros which have been added
to the H4EPlus library to facilitate designing boundary scan
circuitry into an H4EPlus gate array.

Section 3.0 describes how the JTAG clock and control sig-
nals are distributed around the chip periphery to each pin’s
boundary scan cell (BSC). The design constraints associated
with the distribution of these signals are also described.

Section 4.0 describes how to add boundary scan to a chip
whose system logic has been designed using conventional
scan techniques. An ATPG (Automatic Test Pattern Genera-
tion) tool is then used to test the JTAG circuitry as well as the
system scan circuitry.

Section 5.0 presents an example JTAG circuit and de-
scribes the process the designer must go through to establish
the chip pin-out. The constraints described in Section 3.0
must be taken into consideration.

Section 6.0 describes the CAD design flows used when
designing an H4EPlus array which incorporates JTAG bound-
ary scan.

Appendix A lists the MARV (MAnufacturing Rules Verifier)
rules that are specific to JTAG circuitry. The majority of these
rules are associated with the design constraints described in
Section 3.

Appendix B provides background information relevant to
the “ATPG-Compatible JTAG” discussed in Section 4.

2. H4EPlus JTAG Macro Descriptions
Technical data, including logic diagrams, for all JTAG mac-

ros in the H4EPlus library can be found in the H4EPlus Series
Design Reference Guide. These macros have been placed in
three categories in the descriptions that follow: I/O macros,
core macros and special purpose macros.

2.1 I/O Macros
I/O macros include the input, output and bidirectional

boundary scan cells. The JTAG boundary scan logic associ-
ated with these macros is diffused into the peripheral I/O
sites. The JTAG logic in a given I/O site is used only if a JTAG
BSC macro is instantiated at the package pin bonded to that
I/O site.

2.2 Core Macros
Macros residing in the core of the array include the Bypass

Register (BPREG), Device Identification Register (IDREG),
Instruction Register (MC_IREG4), and TAP Controller
(FMC_TAPCB).

The IDREG and BPREG are hard macros in the H4EPlus
library. Motorola assigns JTAG device identification codes
according to the following format:

Bit #: 31-28 27---22 21--------------1211----------------0
Value: VVVV 000111 DDDDDDDDDD000000011101

where
Bits 31-28: version number assigned by Motorola ASIC
Bits 27-22: unique number assigned to Motorola ASIC
Bits 21-12: sequence number assigned by Motorola ASIC
Bits 11-0: unique number assigned to Motorola Inc.
The MC_IREG4 is a soft macro; it consists of a schematic

capture symbol (or Verilog HDL module) which is comprised
of individual gate and flip-flop hard macros, which are placed
and routed individually. There is no fixed layout for the
MC_IREG4 as an entity. A functional diagram of the
MC_IREG4 is shown in Section 4.3, Figure 4-2.

The FMC_TAPCB is a firm macro; it is like a soft macro in
that it is comprised of, and modeled as, individual gate and
flip-flop hard macros. Unlike a soft macro, a firm macro such
as the FMC_TAPCB has been placed and routed as a single
entity. Consequently, both the internal metal interconnect and
timing of a firm macro are fixed and do not change when the
chip is laid out. A functional diagram of the FMC_TAPCB is
shown in Figure B-3 in Appendix B, which discusses this mac-
ro in detail.

Order this document
by AN1500/D

2

MOTOROLA AN1500

2.3 Special Purpose Macros
2.3.1 TAP macros: TCK, TMS, TRSTB, TDI and
TDOUT.

TCK, TMS, TRSTB and TDI are simply input buffers with
no BSC logic. Each must be used at the pin driven by the
JTAG signal of the same name.

The TDOUT macro is a tristatable output driver and a input
buffer. The output driver is controlled from the core logic and
used to terminate the JTAG scan chain, while the input buffer
returns the TDI/TDO boundary scan chain from the periphery
into the core through the ‘TDOC’ port.

A diagram illustrating the use of the TDOUT macro is
shown in Figure 2-1. To be compliant with the IEEE1149.1
specification the customer should add the mux and flip-flop
shown. The ‘EN’ signal comes from the TAP controller and
goes to the ‘EN’ port of the TDOUT macro. The ‘SL’ signal
from the TAP controller is used to select the scan chain be-
tween either the ‘IR’ signal from the TDO port of the Instruc-
tion Register or the ‘DR’ signal from whichever JTAG data
register is activated by the current JTAG instruction (The out-
put of the Data Register Mux). The resulting signal is regis-
tered on the rising edge of TCKB (falling edge of TCK) to
avoid timing problems, and then output through the ‘DO’ port
of the TDOUT macro.

 The ‘TDOC’ port will be connected to the TDI port of the
first ENSCANI macro if there is one, otherwise to the appro-
priate input of the Data Register Mux (see Figure 4-4).

Figure 2-1 TDOUT Macro

2.3.2 ENSCANJ/I
The ENSCAN BSC’s are used to drive the enable port of 3-

state bidirectional and output BSC’s. The ENSCANJ and EN-
SCANI are functionally identical. The difference is that the
ENSCANJ must reside in the I/O area on an unused I/O site
or a power/ ground site. The ENSCANI macro must reside in
the array core.

A
B
SL

X

MUX2IH

JTAG CORE LOGIC

TDOUT PERIPHERY LOGIC

D Q

CK QB
DFFP

PAD

EN SL IR DR TCKB TDO

EN DO TDOC

 CUSTOMER
CORE LOGIC

In the example of Figure 2-2 an ENSCANJ supplies the 3-
state enable to an output bus. The BSEN input is driven from
the core by the system 3-state enable signal, and the OEN
output feeds into the core where it can be buffered if neces-
sary before driving the EN inputs of the 3-state output buffers.

Figure 2-2 ENSCANJ Driving 3-State Enable of 8-bit
Output Bus

If an ENSCANI had been used instead, it would go at the
end of the BSC scan chain closest to TDO as shown in Figure
2-3. The BSC scan data path enters the core through a port
on the TDOUT macro, passes through all ENSCANI’s, then
gets multiplexed with the scan paths from all other JTAG data
registers before passing to the DR signal shown in Figure 2-
1 on its way off chip. (Note that test data must shift coun-
terclockwise through the BSC’s around the periphery of
the chip.) ENSCANI’s in the core receive CKDR, SHDR, UD-
DR, and OMC directly from the core signals which drive the
inputs to the peripheral CKDRMID, SHDR, UDDR, OMCDR,
and OMCDR buffers, respectively.

It is recommended that ENSCANI’s be used only if there
are no power sites or unused I/O sites available on which to
place ENSCANJ’s.

2.3.3 TDBUF
If consecutive peripheral BSC’s are separated by more

than seven I/O sites, a TDBUF buffer macro must be inserted
between them since a BSC’s TDO output has limited drive
strength. The TDBUF must not be more than seven I/O sites
away from the BSC driving it.

3

AN1500 MOTOROLA

2.3.4 I/O BSC Control Signal Buffers
These are the buffers that distribute CKDR, SHDR, UDDR,

IMC and OMC to the peripheral BSC’s. These buffers are de-
scribed in detail in Section 3.0, “JTAG Clock & Control Signal
Distribution.”

Figure 2-3 Position of ENSCANI 3-State Enable Macros
within I/O Boundary Scan Register

3. JTAG Clock & Control Signal Distribution

3.1 Overview
On Motorola’s sub-micron H4EPlus arrays the JTAG

boundary scan cells are diffused into the periphery, or I/O ar-
ea, of the chip. The advantages realized, as compared to im-
plementing the BSC’s with core macros, are as follows:

1. Area savings
a. 100% utilization in the periphery versus 60-70% in

the core (i. e., no unused gates in the periphery).
b. transistor sizes can be optimized to their small, non-

varying loads
c. interconnect between BSC’s is done by abutment,

minimizing wire length. For these reasons, diffusing
the BSC’s into the I/O area conserves a significant
amount of chip area compared to implementing the
BSC’s in the array core, even though the chip I/O
area is ~20% larger than it would be if it did not
include built-in JTAG logic.

TDI TDOUT

• Boundary scan shift data enters array core when it reaches

TDOUT macro. Data passes through all ENSCANI macros in

core, then gets mux'ed with core JTAG data registers

before leaving chip via TDOUT.

• Note that test data flows counter-clockwise around the chip.

CORE

ENSCANI

ENSCANI

ENSCANI

BSC BSC BSC

BSC

BSC

BSC

BSCBSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSCBSCBSCBSC

BSC

BSC

BSC

DFFP

TCKB
SL

INSTRUCTION
REG

BPREG
IDREG

USER DEFINED

2. There is less additional data path delay due to the mux
in the input BSC’s since it has been optimized in terms
of transistor size and minimum wire interconnect.

3. There are no distribution “trees” for the BSC control sig-
nals to increase routing congestion in the core.

4. RAM and MPU diffused blocks don’t interfere with the
peripheral distribution “rings” for these control signals,
preventing increased signal skew.

5. Hold time violations should not occur when shifting the
boundary scan register since the clock nets to all BSC’s
have a fixed routing.

The five JTAG clock and control signals are CKDR, SHDR,
UDDR, IMC and OMC. A method is provided for distributing
these signals to the boundary scan cells located in the periph-
ery of H4EPlus arrays.

In Figures 3-1 to 3-3, a dotted line marks the boundary be-
tween the core and periphery of the array. All of the special
buffers for the JTAG clock and control signals reside in power
sites or unused I/O sites in the periphery in order to:

1. maximize the drive capability of these buffers by utiliz-
ing the large transistors that normally drive off-chip, and
to:

2. facilitate optimum buffer placement to achieve:
a. minimum insertion delay for each signal,
b. minimum skew for each signal between a buffer's

nearest and farthest BSC loads, and
c. minimum SHDR-to-CKDR skew and CKDR-to-

UDDR skew at any given BSC.
For packages with highly inductive leads HSPICE simula-

tions have shown large voltage spikes on OUTVDD and OUT-
VSS (the output driver power and ground buses) due to
simultaneously switching outputs (SSO). These spikes can
couple to the outputs of “quiet” (inactive) drivers. For this rea-
son the JTAG buffers are powered from INPVDD/INPVSS
(the core power and ground buses), since they drive BSC's
which are also powered from INPVDD/INPVSS. These buff-
ers are also slew-rate controlled in order to inject as little
switching noise as possible onto INPVDD and INPVSS. The
JTAG buffers are all roughly equivalent to an ON4S4 output
buffer.

3.2 CKDR Distribution
Because the CKDR ring must encircle the entire chip, the

resistance of the metal can be several hundred ohms. The
same is true of the control lines as well. As a result, one very
large buffer cannot drive the ring without suffering severe per-
formance loss in terms of long prop delays and edge-rates at
the more distant BSC’s. A much better approach is to use
multiple, distributed buffers to drive the ring. As shown in Fig-
ure 3-1, the TAP controller drives a CKDRMID buffer, which
in turn drives one CKDRCC1 and one CKDRCC2 buffer via
an “extra” ring. The CKDRCC1 and CKDRCC2 each drive
roughly half of the JTAG I/O cells on the chip via the CKDR
ring. Because these two buffers are placed diametrically op-
posite to each other, only half of the extra ring is needed to
distribute CKDR to them. By detaching the unneeded half of

4

MOTOROLA AN1500

the extra ring, metal capacitance on this net is greatly re-
duced and substantial speed improvement is realized. There
is a physical cut in the extra ring within the CKDRCC1 and
CKDRCC2 macros such that detachment of the unneeded
half of the extra ring is accomplished automatically when
these macros are placed.

There is a physical cut in the CKDR ring within the TDOUT
macro and another within the ISOR macro. This is shown in
Figure 3-1, CKDRCC1 drives all BSC's on CKDRNET1 (mac-
ros placed between TDI and ISOR) and CKDRCC2 drives all
BSC's on CKDRNET2 (macros placed between ISOR and
TDOUT).

Figure 3-1 CKDR Distribution

The ISOR macro registers the TDI/TDO signal on the fall-
ing edge of the clock to prevent setup and hold time errors be-
tween the two halves of the Boundary Scan Chain.

CKDR, SHDR, UDDR and OMC are routed within the core
directly from the TAP Controller to ENSCANI bidirectional en-
able BSC's, which reside in the core.

TDI TDOUT

CKDR
(from TAPCTLR)

BSC BSC BSC

BSC

BSC

BSC

BSCBSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSCBSCBSCBSC

CORE

CKDRCC1 CKDRCC2

CKDRMID
extra ring

CKDR

BSC

D Q

CKBSC BSC

ISOR

TDO TDI TDO TDI

CKDRRing CKDRRing

CKDRNET1 CKDRNET2

ISO R

ring

3.2.1 SHDR, UDDR Distribution
SHDR and UDDR use a distribution scheme which is dif-

ferent from the CKDR scheme, which was able to make use
of the extra ring. SHDR will be used for illustration (see Figure
3-2).

The TAP controller drives two SHDR buffers, each of
which drives roughly half of the JTAG I/O cells on the chip via
the SHDR ring. The SHDR and UDDR rings are each split into
two halves in the same way as the CKDR ring, with cuts inside
the TDOUT and ISOR macro.

Figure 3-2 SHDR, UDDR Distribution

3.2.2 IMC, OMC Distribution
The distribution scheme for IMC and OMC is similar to the

scheme for SHDR. The difference is that the SHDR line is cut
by the TDOUT and ISOR macros, whereas the IMC and OMC
lines are cut by the CKDRCC1 and CKDRCC2 macros. The
IMCDR and OMCDR buffers can now be placed in a different
area from the SHDR and UDDR buffers (see Figure 3-3), re-
lieving buffer congestion so that as many JTAG buffers as
possible can be placed on power sites, allowing more efficient
use of the I/O sites.

TDI TDOUT

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC BSCBSCBSC

TAP
Ctlr

CORE

gap 1

gap 2

BSC
#1

branch (a) branch (c)

branch (d)branch (b)
net1

BUF4B

SHDR

BSCBSCBSC BSC BSC
BSC
#2

• Gaps exist in netlist and silicon, so balancing not required for
 accurate simulation, but desirable for best performance.

• Gap 2 created (in both control lines) by placement of
 a special I/O site "ISOR" (isolation) macro.

• Gap 1 created (in both control lines) by TDOUT macro.

ISOR

SHDR

shdr-i2

net2

SHDR

shdr-i1

net1 net2

5

AN1500 MOTOROLA

Figure 3-3 IMC, OMC Distribution

3.3 JTAG I/O signal timing
The routing of the JTAG signals is the I/O is fixed by the

layout of the option, so the parasitics and timing can be deter-
mined before the design has been placed or routed.

The customer must use PREDIX to compute the actual
RC’s for the peripheral nets. This can be done any time after
the pinout has been assigned, but should be done before se-
rious timing analysis is performed. The JTAG parasitics are
determined by PREDIX and stored in the predix.jtagrc file.
DECAL merges the PREDIX peripheral RC’s with either DE-
CAL-estimated RC’s for the array core (for pre-predix simula-
tions), PREDIX-estimated RC’s for the array core (for post
predix simulations) or with Gate Ensemble-generated actual
RC’s for the array core (for post-layout simulations).

Simulation or timing analysis using PREDIX RC’s now will
show if enough skew exists between CKDRNET1 and
CKDRNET2 to cause timing violations when shifting data
through the boundary scan chain.

TDI TDOUT

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC

BSC BSC

BSCBSCBSC

BSCBSC

BSC

BSC

BSC

IREG
DECODE

CORE

IMC

branch (b) branch (d)

branch (c)branch (a)
IMCDR

IMCDR

BUF4B

• JTAG buffers more spread out to facilitate placement
 on power sites.

• Gaps exist in netlist and silicon, so balancing not required for
 accurate simulation, but desirable for best performance.

• Gap 1 created by CKDRCC1 macro.
 Gap 2 created by CKDRCC2 macro.

net2 net2

net1 net1

gap 1 gap 2

imcdr-i1

imcdr-i2

4. ATPG-Compatible JTAG

4.1 Introduction
On the Motorola H4EPlus family of CMOS arrays, JTAG

boundary scan circuitry has been designed to be compatible
with many popular ATPG tools. However, as defined by the
IEEE 1149.1 specification, JTAG boundary scan violates sev-
eral conventional scan design rules. Section 4.0 and Appen-
dix B describe how the JTAG boundary scan circuitry has
been implemented on H4EPlus arrays in order to allow it to be
tested with patterns generated by ATPG methods.

4.2 Design Overview
Motorola has designed scan-compatibility into the JTAG

circuitry by modifying the TAP Controller to include scannable
flip-flops and by making other changes to satisfy some com-
mon ATPG design rules. However, the user is still responsible
for:

• ensuring that no timing problems arise due to clock
skews, and

• interconnecting all JTAG circuitry such that ATPG DRC
rules are satisfied.

4.2.1 Handling of Clock Skew
Motorola’s H4EPlus arrays use the gated-clock JTAG im-

plementation shown in IEEE 1149.1. That is, the original clock
TCK is gated within the TAP Controller and the instruction de-
coding logic to provide the CKIR, CKDR, UDIR and UDDR
signals to the JTAG cells. This can cause skew problems in
ATPG test mode, particularly due to the large clock delays to
the boundary scan cells. Section 4.3 addresses the preven-
tion of timing problems due to clock skew.

4.2.2 JTAG Circuitry Interconnection
An extra pin, called “MTST” for “Motorola Test Mode”, must

be added to the chip to logically reconfigure the JTAG circuit-
ry when ATPG testing is to be done. When this input is active
all circuit elements including the TAP Controller will become
scan-compatible, the JTAG TMS pin will be used as the scan/
shift enable control signal, and the scan chain connected be-
tween the TDI and TDO pins will contain all the flip-flops
which are part of the JTAG circuitry. The JTAG logic must
also be correctly controlled in ATPG scan mode to ensure
that the scan paths are completed (requires that IMC and
OMC both be low). Section 4.4 describes in detail how to
properly hook-up all JTAG circuitry for ATPG compatibility.

4.3 Handling of Clock Skew
The JTAG design can suffer from clock skew problems

during ATPG test mode because the gated clocks (CKIR,
UDIR, CKDR’s for each data register) must be enabled at the
same time. The problems occur when the clock arrives early
to one flip-flop causing its output to change before the clock
arrives at the next flip-flop. This can result in hold time viola-
tions and/or the wrong data being loaded.

The JTAG logic does not suffer from this problem during
normal operation because some sections are clocked on the
rising edge of TCK while others are clocked on the falling
edge, such that input data to each JTAG register always
changes on the inactive edge of the clock to that register. For

6

MOTOROLA AN1500

example, a new instruction becomes active when the shadow
latches in the instruction register are “clocked” by UDIR,
which occurs on the falling edge of TCK. The new instruction
drives decode logic which enables CKDR to the appropriate
data register (e. g. the Identification Register, Bypass Regis-
ter or peripheral boundary scan register). These CKDR en-
able signals change on the falling edge of TCK in order to be
stable during the rising edge of TCK/CKDR. Likewise the
SHDR and TDI signals, which feed each data register,
change on the falling edge of TCK in order to be stable during
the rising edge of TCK/CKDR. Also, the flip-flop within the
TDO macro is clocked on the falling edge of TCK because its
input data, which comes from either the “CKIR” flops in the In-
struction Register or from one of the data registers, changes
on the rising edge of TCK.

As described above, during normal JTAG operation input
data to each JTAG register always changes on the inactive
edge of the clock to that register, so that the data is stable dur-
ing clocking of the state elements. However, when operating
in ATPG test mode all flip-flops should clock on the same
edge of the clock signal. This can cause problems both during
scan operation (the shift in and shift out of scan data) and also
during the pulsing of the system or TCK clocks. (An ATPG
scan test consists of three parts: shift in of scan stimulus,
pulsing of zero or one of the clocks or asynchronous sets/re-
sets -- referred to as “clock pulse mode,” and shift out of the
chip’s response to the scan stimulus.)

As described in Section 4.4, all JTAG registers will be in-
cluded in the same scan chain during ATPG testing. Each
data register is clocked by its own gated version of CKDR,
and the Instruction Register’s CKIR and UDIR flops are
clocked by CKIR and UDIR respectively. Consequently, the
JTAG scan chain is operated by several different clocks
which have different insertion delays, creating the potential
for skew problems during the scan operation. Skew problems
during scanning can be controlled by putting registers whose
clocks have longer insertion delays at the beginning of the
scan chain. Since the I/O boundary scan register has the
slowest clock distribution it should be the first part of the scan
chain. Also, if timing analysis shows it to be necessary, delays
can be added between flip-flops driven by different clocks.

In order to prevent skew problems when ATPG pulses the
system or TCK clocks, the JTAG clock gating must be altered
so that the clock pulse is applied either to the flip-flops that
would normally change on the rising edge of TCK or to the
flip-flops that would normally change on the falling edge of
TCK. This is done by adding a flop to the TAP controller which
controls the clock gating only during ATPG clock pulse mode.
(This flop is labeled “TCK/TCKB Select Flop” in Figure B-3 of
Appendix B.) Putting this flop inside the TAP Controller allows
all of the JTAG logic within the TAP controller to remain in a
single scan chain using a single clock edge.

As shown in Figure 4-1 the Instruction Register UDIR
latches have been changed to flops, for the following reasons:

1. to eliminate the undetectable stuck-at-one faults which
are present on each latch gate input (for more details
see Section B.1 of Appendix B),

2. to enable separate clocking of the UDIR flop, which
must change on the falling edge of TCK.

Figure 4-1 Single-Bit Instruction Register Cell
(MC_IREG).

The “MC_IREG4” four-bit Instruction Register macro is
shown in Figure 4-2. During scan mode CKIR and UDIR are
active simultaneously, with CKIR leading UDIR by a few
nanoseconds at the output of the TAP Controller. Conse-
quently, to prevent hold-time violations during scan mode, the
“UDIR flops” must precede the “CKIR flops” in the JTAG scan
chain. For this purpose, SDI and SDO ports are provided on
the MC_IREG and MC_IREG4 macros to serve as “Scan-
Data-In” and “Scan-Data-Out” for the UDIR flops (see Figures
4-1, 4-2 and 4-3). As shown in Figure 4-3, during ATPG scan
mode (MSE high) scan data from the TAP Controller’s “TDO”
port enters the UDIR flops in the MC_IREG4 via the SDI port.
After exiting at SDO, the scan data is fed back to the
MC_IREG4 “TDI” port to pass through the CKIR flops. During
normal JTAG operation (MSE low), JTAG test data from the
TAP TDI pin is passed to the CKIR flops in the MC_IREG4 as
required.

Extra delays are included in the scan paths within the
MC_IREG4 because it is currently a soft macro. As such, the
metal interconnect between its four MC_IREG cells will differ
somewhat from layout to layout, potentially causing a small
amount of CKIR or UDIR skew between the four cells. The
DLY8 macros within the MC_IREG4 add delay in the scan
path to compensate for any such skew.

Referring to the ATPG-compatible TAP Controller in Ap-
pendix B, Figure B-3, note the inclusion of the following cir-
cuitry:

1. A “TCK/TCKB Select Flop” to control the clock gating in
ATPG clock pulse mode.

2. An extra delay on TDO to prevent skew problems
caused by the early clocking of the flip-flops in the TAP
Controller. The TDO signal would normally be passed
onto the Instruction Register as shown in Section 4.4.
The Instruction Register clock CKIR will arrive later
than the clock to the flip-flops in the TAP Controller
because of the clock gating circuitry within the TAP
Controller.

3. A delay macro in the scan path between the top left flip
flop and the top right flip-flop and on the “TCK/TCKB
Select Flop” because these flops have separate clocks
which pass through different gating logic.

7

AN1500 MOTOROLA

Figure 4-2 MC_IREG4 Functional Diagram

Figure 4-3 Scan Chain Hook-up of MC_IREG4

Since the FMC_TAPCB ATPG-compatible TAP Control-
ler is a firm macro, its fixed layout guarantees no timing
problems will ever arise internal to the FMC_TAPCB.

It is very difficult to control clock skew between core/sys-
tem flip-flops and the boundary scan cells because of the
long insertion delay of clock CKDR in the periphery. In order
to prevent skew problems from occurring between the JTAG
logic and the system logic during ATPG test mode, either:

1. the clock TCK should be different from the system
clock, or

2. circuitry similar to the “TCK/TCKB Select Flop” and
“Clock Select” gates in the TAP Controller should be
implemented to prevent ATPG tools from pulsing both
TCK and the system clock in the same clock cycle, or

3. the ATPG tool should be setup to avoid asserting multiple
clocks any test cycle, except during scan chain shifting.

It is important that timing analysis be done to verify that no
setup or hold time violations occur due to the aforementioned
sources of clock skew. Motive and Veritime are able to take into
account the effects of variations in process/voltage/temperature
across a chip.

8

MOTOROLA AN1500

Figure 4-4 Non-Scan JTAG Example Circuit

9

AN1500 MOTOROLA

Figure 4-4 Non-Scan JTAG Example Circuit (continued)

10

MOTOROLA AN1500

4.4 JTAG Circuitry Interconnection
First a non-scan, JTAG design will be discussed to show

the essential circuitry required to implement JTAG on
H4EPlus arrays. Afterwards, the requirements for a scan-
compatible JTAG design will be discussed and illustrated.

4.4.1 Non-Scan JTAG Interconnection
An example of a non-scan JTAG design is shown in Figure

4-4. Note that:
• the MTST pin is not required
• the MSE and TDO TAP Controller outputs are not used
• the TAP Controller MTST input and Instruction Register

MSE input should be tied low
Except for the three flip-flops labeled “System Logic,” all of

the circuitry in Figure 4-4 is part of the JTAG logic. The BSC’s
and peripheral JTAG buffers are located around the periphery
of the schematic. Note that test data must shift counter-
clockwise through the BSC’s around the periphery of the
chip.

On H4EPlus arrays, JTAG boundary scan uses a gated
CKDR signal as described in the IEEE 1149.1 specification.
That is, CKDR is gated to the appropriate data register (pe-
ripheral boundary scan register, Bypass Register, Device
Identification Register, etc.) under control of the Instruction
Register decode logic. For example, if the Instruction Register
holds the Sample, INTEST or EXTEST instruction, then
CKDR and UDDR will be gated to the peripheral boundary
scan register. In addition, the Instruction Register decode log-
ic must generate the Input Mode Control (IMC) and Output
Mode Control (OMC) signals. IMC and OMC control the se-
lect lines of the data path multiplexers within the input and
output BSC’s, respectively. Since users may define their own
JTAG instruction sets, the Instruction Register decode logic is
design specific; therefore it is not implemented as a special
macro in the H4EPlus library. However, in this example a
DEC8AH macro from the H4EPlus library is sufficient to im-
plement the Instruction Register decoder.

Because instruction decoding is done by combinatorial log-
ic, the decoded control signals may glitch temporarily when
UDIR activates a new instruction. Such glitches are harmless
on some control signals, but not on others. Control signals
which cannot afford to be glitched should be decoded from
the instruction register CKIR flops instead of the UDIR flops.
The decoded signals then drive flops which are clocked by
UDIR. In Figure 4-4 the “Glitch-Free IMC/OMC Decode” block
uses this method to decode the IMC/OMC, HI-Z and UDEF1
signals. The IREG3 is a 3-bit instruction register built from
three 1-bit MC_IREG cells in order to bring out the CKIR flop
outputs at the TDO0, TDO1 and TDO2 ports (see Figure 4-5).
These signals are used to decode the IMC/OMC, HI-Z and
UDEF1 signals as shown in Figure 4-6. Alternatively, all in-
struction decoding could be performed on the instruction reg-
ister CKIR flops, with each decoded signal driving its own
“UDIR” flop.

Note that even though IMC and OMC are independent
lines in the chip periphery, driven by separate IMCDR and
OMCDR drivers, both IMC and OMC are functionally equiva-
lent to the “Mode” control signal defined in IEEE 1149.1.
Therefore they would normally have a common source in the
array core. In Figure 4-6 this common source is labeled “IMC/
OMC.”

The ENSCANP and ENSCANJ macros have been
hooked-up such that they can be reset either by resetting the
TAP Controller or by loading a “HI_Z” instruction, which puts
all 3-state outputs in the hi-impedance state.

Figure 4-6 Glitch-Free IMC/OMC Decode Block

The implementation of the “System Scan Reg” shown in
Figure 4-4 is just an example of what could be done. When a
user-defined JTAG instruction (code = binary 101) is active,
the “E1” input to the System Scan Reg becomes the IDLE
output from the Tap Controller so as to allow the System Scan
Reg to be clocked while in the “Run-Test/Idle” state. When
the user-defined test is completed the contents of the System
Scan Reg can be shifted out through TDO under control of
SHDR from the TAP Controller, just like any other JTAG test
data register such as the Bypass register or peripheral bound-
ary scan register. If the user has no interest in doing such a
test, E1 could be tied high (always enabled) and SE could be
wired directly to MSE, for example.

Figure 4-5 IREG3 3-Bit Instruction Register

11

AN1500 MOTOROLA

4.4.2 ATPG Compatible JTAG Interconnection
In order to make a JTAG design ATPG compatible the

FMC_TAPCB TAP Controller of Figure B-3 must be used, as
well as an Instruction Register like the one in Figure 4-2. The
designer must also add extra circuitry to link up all of the
JTAG registers into one scan chain during ATPG test mode.
The requirements, which are illustrated in Figure 4-8, are as
follows:

1. An extra MTST input pin, which will only be active dur-
ing ATPG testing, must be added to the design. A pull-
up/pull-down resistor may be used to hold this pin inac-
tive during normal operation. Note: the input macro
driven by MTST must be either a non-JTAG macro
or a “sample-only” macro such as an ICNCKHJ.

2. The ATPG test mode input pin must be connected to
the MTST input of the TAP Controller and to OR gates
which perform clock gating for JTAG data registers.
This will cause all of the JTAG scan chains (i. e. the
TAP Controller, Instruction Register, and data registers)
to be clocked together in ATPG test mode, during
which they are part of one scan chain between TDI and
TDO.

3. The ATPG scan path through the JTAG logic must be
connected starting with the boundary scan chain, then
any internal data registers (e.g. Bypass register and ID
code register), then the TAP Controller and finally the
Instruction Register. This reduces the probability of
clock skew problems occurring.

4. Two-input multiplexers must be placed on the connec-
tions between the TDI pin and each internal/core JTAG
scan chain to enable all JTAG scan chains to be con-
nected up as one long chain during ATPG test mode.
The output of each multiplexer will feed the input to a
JTAG scan chain. The select input on the multiplexer
must be connected to the TAP Controller’s Motorola
Scan Enable (MSE) output (MSE is TMS logically
AND’ed with MTST). The TDI signal should be con-
nected to the A input of the multiplexers. The B input of
the multiplexers should be connected to the end of the
previous JTAG scan chain, where the order is that
defined in item 3 above.

5. In order to use JTAG input and output BSC’s as the
input to or output from a scan chain they must be
forced into transparent mode. If the output has an
enable line then this too must be activated during scan.
This is done by adding gating logic to the IMC and
OMC control lines to force them low during scan mode.

6. If the TCK and system clocks are derived from the
same source then they must be clocked on the same
edge of the source clock. This may require placing an
exclusive-or gate on the TCK input to the TAP Control-
ler, as well as adding clock gating circuitry similar to
that built into the TAP Controller, which is described in
Appendix B. This circuitry would serve to prevent race
conditions between the BSC’s and the system/core
logic.

7. ATPG design rules require all asynchronous control
lines to be controlled only by an external input pin. Any
internal sources which provide asynchronous set or
reset must be gated with the MTST input to block their
control during ATPG test mode.

8. All inputs which operate in ATPG test mode as a shift
clock, a capture clock, a RAM read or write clock, or an
asynchronous set or reset control must enter the chip
through a non-JTAG macro or through a “sample-only”
macro such as an ICNCKHJ.

Other Motorola tester induced design rules should be men-
tioned at this point:

9. Bidirectional I/O pins which are not used as scan chain
outputs should be placed in their input mode during
scan chain loading and unloading (TMS=1, MSE=1).
This helps to avoid potential excessive switching noise
on I/O during scan load/unloads.

4.5 ATPG-Compatible JTAG Example Circuit
In Figure 4-8 the non-scan JTAG design in Figure 4-4 has

been modified, according to the requirements of Section
4.4.1, to create an ATPG-compatible JTAG design. The sys-
tem logic in this example consists solely of the “System Scan
Reg,” which is a conventional scan design consisting of one
scan chain starting at the IN0 input and exiting at the OUT0
output. The remaining circuitry implements JTAG boundary
scan which, during ATPG testing, is configured as one scan
chain which enters the chip at pin TDI and exits at pin TDO,
as described in Section 4.4-2. (Larger designs typically have
multiple scan chains for the system logic because of the long
time taken to load/scan them.) The “Glitch-Free IMC/OMC
Decode” block functions as described in Section 4.4-1, except
that the flops inside it are now scan flops (see Figure 4-7).

Figure 4-7 ATPG Glitch-Free IMC/OMC Decode Block

ATPG test mode is established by forcing the MTST pin
high. During ATPG test mode the TMS pin controls scan
mode (MTST and TMS high), during which bidirectional pin
output drivers must be disabled. Using TRSTB, instead of
TMS, to disable the bidirectionals during scan mode improves
the fault coverage of the bidirectionals.

12

MOTOROLA AN1500

Figure 4-8 ATPG-Compatible JTAG Example Circuit

13

AN1500 MOTOROLA

Figure 4-8 ATPG-Compatible JTAG Example Circuit (continued)

14

MOTOROLA AN1500

During scan mode all JTAG registers are configured into
one scan chain via 2-input multiplexers at the TDI inputs of
the Device Identification Register, Bypass Register, TAP
Controller, and Instruction Register. Within the Instruction
Register, UDIR flops as well as CKIR flops become part of
this same chain as described previously in Section 4-3. The
scan chain order is as follows: TDI, BSC’s, IDREG, BPREG,
FMC_TAPCB, MC_IREG4, IMC/OMC DECODE, TDO. Also,
during ATPG scan mode IMC and OMC are forced low so that
I/O BSC’s will pass scan data into and out of the chip.

The Fastscan control files for this design are shown below:

Figure 4-9 Fastscan Control file

 // ***** Fastscan Control File *****
 // <DESIGN>/<VECTORS>/test/fastscan.control

 // --- Place the environment into a known state ---
set system mode setup // make sure we are in setup mode
set sim mode comb -d 0 // ensure combinational atpg mode
del read controls -all // remove prior read controls
del write controls -all // remove prior write control lines
del scan chains -all // remove prior scan chains
del scan groups -all // remove prior scan groups
del clocks -all // remove prior clocks/resets
del cell constraint -all // remove prior cell constraints
del cone blocks -all // remove prior clock cone blockages
del nofault -all // remove prior nofault settings
del pin constraint -all // remove prior constraints on pins
del tied signals -all // remove prior tied nets or pins

 // --- DECLARE CLOCKS AND RESETS and their OFF states ---
add clock 0 SCLK // CLK’s off state is 0
add clock 0 TCK // JTAG clock
add clock 1 TRSTB // JTAG async reset

 // --- DEFINE SCAN GROUP PROCEDURE NAME and FILE ---
add scan group grp1 g1 // define label “grp1’, file = “g1”

 // --- DEFINE SCAN CHAIN NAMES, INPUTS, OUTPUTS ---
add scan chain REG1 grp1 IN0 OUT0 // chain REG1
add scan chain JTAG grp1 TDI TDO // typical JTAG scan chain

 // --- DECLARE PIN CONSTRAINTS ---
add pin constraint MTST c1 // hold MTST at constant 1 at all times

 // --- ADJUST DESIGN RULE CHECKING ---
set drc hand C9 note nover // hide details of C9 checks
set capture hand -te X -atpg // autocorrect C3 & C4 problems

 // --- SWITCH TO ATPG MODE and PERFORM DFT CHECKS -
set sys mode atpg // prepare to generate patterns
report drc rules -verb // record DRC rules into log

 // --- POPULATE FAULTS INTO THE DESIGN ---
add faults -all // populate faults

 // --- GENERATE TEST PATTERNS ---
set dofile abort off // from this point on, ignore problems
run // generate patterns
report stat // report fault stats so far

set abort limit 500 // increase abort limit
run // go for any remaining undetected faults
report stat // report fault of 2nd run

 // --- STATIC PATTERN COMPRESSION ---
comp pat 100 -reset -max 8 // try until 8 iterations w/o decrease

 // --- SAVE PATTERNS ---
save pat fastscan.patterns -binary -pad0 -rep
save pat utic2.fastscan_0_9 timeplate -utic -rep -pad0 -scan -beg
0 -end 9
save pat utic2.fastscan timeplate -utic -pad0 -rep

report env // log the environment

 // --------------------------------
 // --- OTHER DESIGN INFORMATION ---
 // --------------------------------
set fault mode collapsed
report faults -hier 12 -min 100 -class au
report nonscan cells // report flops & latches not in scan
chains
rep stat // final fault coverage
exit

Figure 4-10 Fastscan g1 Procedure File

Figure 4-11 Fastscan Timeplate File

These control files can be edited from the template control
file built by UDS_FASTSCAN in the <DESIGN>/design_data
directory.

In the Fastscan Control file it is important to use the com-
mand ‘set capture hand -te X -atpg ’ to automatically correct
C3 and C4 DRC violations, otherwise Fastscan will not han-
dle the ISOR macro correctly and miscompares will occur in
Testsim re-simulation.

The fault coverage obtained for this example circuit was
>85%. This fault coverage is essentially that of the JTAG cir-
cuitry alone since the system logic in this example consists
solely of one 3-stage shift register. The fault coverage for the
JTAG logic is limited by the extra circuitry added for test, but
can be improved by applying JTAG vectors during normal
functional testing.

 // ============== PROCEDURE FILE ================
 // <DESIGN>/<VECTORS>/test/g1

// SHIFT timing suitable for S1650 tester
procedure shift =
 force_sci 0; // force scan chain inputs
 measure_sco 50; // measure scan chain outputs
 force SCLK 1 100; // shift clock ON
 force TCK 1 100; // shift clock ON
 force SCLK 0 150; // shift clock OFF
 force TCK 0 150; // shift clock OFF
 period 200; // shift cycle period
end;

// - The load_unload procured is applied prior to each shift
procedure load_unload =
 force MTST 1 0; // place in test mode
 force TMS 1 0; // enable scan mode
 force SCLK 0 0; // clk to off state
 force TCK 0 0; // clk to off state
 force TRSTB 1 0; // async rst to off state
// - put bidirects NOT used as scan outputs into hi-z for 1 cycle
 force BI0 Z 0;
 break 500;
// - then force them to a known state
 force BI0 1 500;
// --- shift procedure applied at end of period
 apply shift 999 1000;
 period 1000;
end;

procedure test_setup =
 force MTST 1 0; // constrained pin to 1 for ATPG
 force SCLK 0 0; // system clk to off
 force TCK 0 0; // JTAG clk to off
 force TRSTB 1 0; // JTAG reset to off
 force BI0 Z 0; // bidi pin to Z
 period 500;
end;

 // ============= TIMEPLATE FILE ===============
 // <DESIGN>/<VECTORS>/test/timeplate

set time scale 1 nS;
set split_bidi_cycle time 500;
set strobe_window time 32;
set procedure file;

Timeplate “master” =
 force_pi 0;
 bidi_force_pi 500;
 measure_po 700;
 capture_clock_on 750;
 capture_clock_off 800;
 period 1000;
end;

15

AN1500 MOTOROLA

4.6 Conclusions
The methodology presented here allows ATPG methods to

be used with JTAG by modifying the designs of the TAP Con-
troller and the Instruction Register. The results show that it is
possible to achieve high fault coverage using fully automated
test pattern generation. However, ATPG methods cannot test
the gate (G) input to the BSC shadow latches. Nor can ATPG
methods test all of the JTAG Instruction Register decoding
logic. Testing of these areas should be achieved by supple-
menting the ATPG test patterns with some manually written
vectors which test the JTAG circuitry in its normal functional
mode of operation. Merging of these functional vectors with
the ATPG vectors is accomplished by TESTMERGE, which is
one of the Motorola supplied CAD tools.

5. JTAG I/O Macro Placement and Pin-out
Assignment

5.1 Pin & I/O Site Placement of JTAG I/O Macros
5.1.1 Placement of Test Access Port (TAP) Pins

It is recommended that TMS be adjacent to TCK, and that
TDI be adjacent to TDO. TDI must be counterclockwise from
TDO, and no BSC’s should be placed between TDI and TDO
(clockwise from TDI) because these BSC’s would not be con-
tained in the I/O boundary scan data register.

5.1.2 Placement of Non-bonded JTAG Macros
“Non-bonded” macros reside in I/O or power sites but have

no off-chip connections. These macros include TDBUF, EN-
SCANJ, ISOR, CKDRMID, CKDRCC1, CKDRCC2, SHDR,
UDDR, IMCDR and OMCDR.

It is preferable to place these macros on I/O sites that can-
not be used for normal I/O, but they can be placed on any un-
used I/O. For example referring to the “H4EP075 100 QFP
Pad-to-Pin Cross Reference” in the H4EPlus Series Design
Reference Guide, the following I/O sites would be good choic-
es:

• I/O sites which do not connect to a pad (e. g., I/O sites
26 & 31), or

• I/O sites which connect to a pad which is not bonded
out to a package pin (e. g., I/O sites 5 and 6), or

• I/O sites which are used for power/ground pads (e. g., I/
O sites 15 and 25).

In addition, the JTAG buffers must reside within 25 sites of
the nearest INPVSS and INPVDD (or BOTHVSS and BOTH-
VDD). The Pad-to-Pin Cross Reference for the pertinent array
and package is used to select a site for each non-bonded
macro.

5.1.3 Use of Pinout for Placement of JTAG I/O
Once the design has been entered (schematically or tex-

turally as a netlist) the I/O pinout must be created. This is
done using the PINOUT tool. When PINOUT is run it will read
in the netlist and design information, and create a list of the I/
O cells that need to be placed.

The designer should position the I/O in the manner de-
scribed in this section using the graphical entry tools. PI-
NOUT also provides the capability to shift blocks of I/O
macros. Power, ground and the ENID macro must then be
added.

The pinout can then be verified using the ‘Check’ function
within PINOUT, and the designer can make any corrections
needed to make the option pass the manufacturing rules.

When PINOUT saves the I/O placement information it is
stored in the <DESIGN>/design_data/attributes file. An ex-
ample attribute file is shown for the design in Figure 4-8.

Figure 5-1 Example Attribute File

* Pinout(TM) Version 3.02 Sun Jul 28 18:33:40 1996
* Copyright 1994 - 1996, Motorola Inc.
* Design “JTAG_EP”
* Technology “H4EP5”
* Array “h4ep075”
* Package “100qfp”
* Bondout “h4ep075_100qfp”
*
* Top Level Module Scope
-MODULE JTAG_EP
* Power Cells
-POWERCELL
* PowerCellType InstanceName PortName
 BOTHOVDD BOTHOVDD_1 PAD_BOTHOVDD_1 ;
 BOTHOVDD BOTHOVDD_2 PAD_BOTHOVDD_2 ;
 BOTHOVDD BOTHOVDD_3 PAD_BOTHOVDD_3 ;
 BOTHOVDD BOTHOVDD_4 PAD_BOTHOVDD_4 ;
 ENID ENID_1 PAD_ENID_1 ;
 OVSS OVSS_1 PAD_OVSS_1 ;
 OVSS OVSS_2 PAD_OVSS_2 ;
 OVSS OVSS_3 PAD_OVSS_3 ;
 OVSS OVSS_4 PAD_OVSS_4 ;
 VDD VDD_1 PAD_VDD_1 ;
 VSS VSS_1 PAD_VSS_1 ;
*
*
* Instance Properties
-INSTANCE
* InstanceName PropertyName “PropertyValue”
 \TDBUF.120P_1 FIX “P185” ;
 \TDBUF.116P_1 FIX “P006” ;
 \TDBUF.35P_1 FIX “P053” ;
 \ISOR.112P_1 FIX “P076” ;
 \ENSCANJ.107P_1 FIX “P082” ;
 \BN2TJ.83P_1 OUTPUT_THRESHOLD “TTL” ;
 \ENSCANJ.85P_1 FIX “P097” ;
 \TDBUF.87P_1 FIX “P100” ;
 \ON2TJ.86P_1 OUTPUT_THRESHOLD “TTL” ;
 \ON4J.88P_1 OUTPUT_THRESHOLD “TTL” ;
 \TDBUF.89P_1 FIX “P142” ;
 \TDOUT.110P_1 OUTPUT_THRESHOLD “CMOS” ;
 \CKDRCC1.114P_1 FIX “P027” ;
 \CKDRCC2.121P_1 FIX “P140” ;
 \CKDRMID.118P_1 FIX “P190” ;
 \IMCDR.53P_1 FIX “P187” ;
 \IMCDR.65P_1 FIX “P075” ;
 \OMCDR.113P_1 FIX “P078” ;
 \OMCDR.117P_1 FIX “P195” ;
 \SHDR.38P_1 FIX “P026” ;
 \SHDR.91P_1 FIX “P143” ;
 \UDDR.109P_1 FIX “P144” ;
 \UDDR.115P_1 FIX “P025” ;
*
* Port Properties
-PORT
* PortName PropertyName “PropertyValue”
 TDI IO_PIN1 “91” ;
 IN0 IO_PIN1 “4” ;
 SCLK IO_PIN1 “25” ;
 IN1 IO_PIN1 “28” ;
 BI0 IO_PIN1 “44” ;
 OUT0 IO_PIN1 “68” ;
 OUT1 IO_PIN1 “69” ;
 TDO IO_PIN1 “88” ;
 PAD_BOTHOVDD_1 IO_PIN1 “2” ;
 PAD_BOTHOVDD_2 IO_PIN1 “26” ;
 PAD_BOTHOVDD_3 IO_PIN1 “52” ;
 PAD_BOTHOVDD_4 IO_PIN1 “77” ;
 PAD_ENID_1 IO_PIN1 “85” ;
 MTST IO_PIN1 “95” ;
 PAD_OVSS_1 IO_PIN1 “3” ;
 PAD_OVSS_2 IO_PIN1 “30” ;
 PAD_OVSS_3 IO_PIN1 “53” ;
 PAD_OVSS_4 IO_PIN1 “79” ;
 TCK IO_PIN1 “98” ;
 TMS IO_PIN1 “97” ;
 TRSTB IO_PIN1 “100” ;
 PAD_VDD_1 IO_PIN1 “78” ;
 PAD_VSS_1 IO_PIN1 “27” ;
*
* End Attributes

16

MOTOROLA AN1500

5.2 Guidelines for Finding a MARV-Compatible
Chip Pin-out

In both procedures that follow, wherever possible the
JTAG clock and control signal buffers should be placed on
power sites or I/O sites that are not connected to package
pins.

5.2.1 Full Boundary Scan Pin-Out Guidelines
In selecting the pin-out for a chip which uses full boundary

scan (the vast majority of system signal pins use BSC’s), it is
recommended that the following steps be done in sequence:

1. Place TDI and TDOUT on a pair of adjacent pins. TDI
must be counterclockwise from TDO. Place TCK, TMS
and TRSTB on pins in the same general area as TDI
and TDOUT.

2. Place remaining system pins, and any additional
power/ground pins required, in conformance with the
MARV rules governing the placement of output drivers
relative to power pin locations. Also keep in mind the
rules governing sharing of a single I/O site by two differ-
ent macros.

3. Place ENSCANJ 3-state control BSC’s on available I/O
or power sites.

4. Between every pair of BSC’s separated by >7 non-BSC
I/O sites, a TDBUF must be inserted on an I/O site
within 7 sites of the BSC whose TDO port drives the
other’s TDI port. (TDBUF is built from the input buffer
portion of an I/O site, and can therefore share an I/O
site with a non-JTAG output driver or with a “paralleled”
output driver used to build a hi-drive.)

5. Place the CKDRCC1 and CKDRCC2 buffers such that,
in Figure 3-1, nets CKDRNET1 and CKDRNET2 drive a
similar number of loads.

6. Place the CKDRMID buffer equidistant between
CKDRCC1 and CKDRCC2 as shown in Figure 3-1.

7. Place the ISOR macro diametrically opposite from
TDOUT (approximately).

8. Place the SHDR buffers approximately in the center of
nets 1 and 2 as shown in Figure 3-2. Do the same for
the UDDR buffers.

9. Place the IMCDR buffers approximately halfway
between the CKDRCC1 and CKDRCC2 buffers, which
create gap 1 and gap 2 in Figure 3-3. Do the same for
the OMCDR buffers.

5.2.2 Partial Boundary Scan Pin-Out Guidelines
“Partial boundary scan” refers to a chip on which many sys-

tem signal pins use non-JTAG I/O macros. In selecting the
pin-out for such a chip, it is recommended that the following
steps be done in sequence:

1. Place system pins (i. e., all pins except TDI, TDOUT,
TMS, TCK, and TRSTB), and any additional power/
ground pins required, in conformance with the MARV

rules governing the placement of output drivers relative
to power pin locations. Also keep in mind the rules gov-
erning sharing of a single I/O site by two different mac-
ros.

2. Place ENSCANJ 3-state control BSC’s on available I/O
or power sites.

3. Choose a pair of adjacent pins for TDI and TDOUT
(with TDI counterclockwise from TDO) such that a line
drawn from TDOUT through the center of the chip cre-
ates two halves which each contain an equal number of
BSC’s, and to the extent possible, an equal number of
non-JTAG pins. Place TCK, TMS and TRSTB on pins
in the same general area as TDI and TDOUT.

4. Between every pair of BSC’s separated by >7 non-BSC
I/O sites, a TDBUF must be inserted on an I/O site
within 7 sites of the BSC whose TDO port drives the
other’s TDI port. (TDBUF is built from the input buffer
portion of an I/O site, and can therefore share an I/O
site with a non-JTAG output driver or with a “paralleled”
output driver used to build a hi-drive.)

5. Place the CKDRCC1 and CKDRCC2 buffers such that
between each buffer and TDOUT there is an equal
number of BSC’s, and to the extent possible, an equal
number of non-JTAG pins. Refer to Figure 3-1.

6. Place the CKDRMID buffer equidistant between
CKDRCC1 and CKDRCC2 (typically near TDOUT).
Refer to Figure 3-1.

7. Place the ISOR macro diametrically opposite from
TDOUT (approximately).

8. Place the SHDR buffers approximately halfway
between the TDOUT and ISOR, in terms of BSC’s (see
Figure 3-2). Do the same for the UDDR buffers.

9. Place the IMCDR buffers approximately halfway
between the CKDRCC1 and CKDRCC2 buffers, in
terms of BSC’s (see Figure 3-3). Do the same for the
OMCDR buffers.

17

AN1500 MOTOROLA

6. CAD Design Flows
For Verilog simulation, design entry can be done by either

schematic capture or, for Synopsys users, by writing a Verilog
HDL circuit description. The “Schematic Capture/Verilog De-
sign Flow” in Section 6.1 and the “Synopsys/Verilog Design
Flow” in Section 6.2 both follow a “top-down” design method-
ology where the chip is initially described behaviorally using
Verilog HDL. In Section 6.1 the HDL is manually converted
into gates using schematic capture, whereas in Section 6.2
the HDL is synthesized into gates using Synopsys.

For real world schematic capture designs, it may be more
practical to capture the BSC’s in rows rather than trying to
capture the I/O in the shape of a chip outline as in Figure 4-8.

During pre-Predix simulations, estimated parasitic resis-
tance and capacitance values are used for the metal intercon-
nect between peripheral JTAG macros, as is done for
interconnect between core macros. As a result, it is possi-
ble to get pre-layout DECAL edge-rate warnings or errors
for nets in the periphery. These warnings and errors are
invalid. After Predix generation of the actual resistance and
capacitance values (predix.jtagrc file) are used, at which time
no edge-rate errors should occur on peripheral nets.

6.1 Schematic Capture/Verilog Design Flow
I. Behavioral-Level Design

1. As part of the behavioral verification of the entire sys-
tem, create and verify a Verilog HDL behavioral
description for all system logic on the H4EPlus chip.

II. Determine Chip Pin-Out and Capture JTAG I/O
2. Use UDS_CONCEPT to capture a schematic of the

JTAG I/O, following the “Guidelines for Finding a
MARV-Compatible Chip Pin-Out” in Section 5.2.

3. Use PINOUT to assign I/O placement and run periph-
eral rule checks. Repeat steps 2 and 3 until all checks
pass.

4. Use MARV to verify all I/O and core rules.
III.Design Chip’s System (Non-JTAG) Logic

A. Convert Behavioral Description to an RTL (Regis-
ter-Transfer Level) Description

5. For one chip sub-block “X,” convert the behavioral
description to an RTL description. If X is to be con-
verted into gates by logic synthesis as opposed to
schematic capture, then the RTL description must use
only those Verilog constructs supported by Synopsys.

6. Simulate X’s RTL description, by itself. Modify and re-
simulate X’s RTL description until its functionality
matches X’s behavioral description.

7. Repeat step 1’s simulation of the chip behavioral
description, but use the RTL description for X in place
of X’s behavioral description. Modify X’s RTL descrip-
tion as necessary until chip functionality matches that
of the all-behavioral chip description in step 1. Repeat
steps 5-7 for each of the chip’s sub-blocks.

8. Simulate all system logic on the chip at the RTL level.
Modify the sub-blocks’ RTL descriptions as necessary
until chip functionality matches that of the all-behavioral
chip description in step 1.

B. Convert Sub-Block RTL Descriptions to Gate-Level
Netlists

9. Use UDS_CONCEPT to capture a schematic for one
system sub-block “X”. Set the Write Verilog option to ‘Y’
to create a Verilog netlist when you exit Concept.

10.(Optional) Do unit-delay simulation of X’s gate-level
netlist by itself, using the same vectors used to verify
X’s RTL description in step 6. If X’s functionality is
incorrect return to step 9 to correct the schematic, or
correct X’s RTL description and return to step 6, 7 or 8
to verify the correction.

11.(Optional) Repeat step 8’s simulation of the chip RTL
description, but use the gate-level netlist for sub-block
X in place of X’s RTL description. Handle bugs as pre-
scribed in step 10.

12.Run PINOUT to assign and verify I/O placement. If
errors are found correct the I/O placement or return to
step 9 to correct the schematic.

13.Run MARV to verify X conforms to electrical design
rules. If violations occur return to step 9 to correct the
schematic.

14.If the chip is a scan design, run the FASTSCAN design
rule checker to verify X conforms to scan design rules.
(Also generate test patterns if Y’s fault coverage is
desired.) If violations occur return to step 9 to correct
the schematic.

15.Verify X via real-time simulation and timing analysis:
a. Run DECAL to calculate real-time delays. If edge-

rate violations occur, return to step 8 to correct the
schematic.

b. Repeat step 10, using DECAL delays instead of unit
delays.

c. Repeat step 11, using DECAL delays instead of unit
delays.

16.Repeat steps 8-15 for each system sub-block on the
chip.

C. Combine Netlists for All of Chip’s System Sub-
Blocks

17.Use UDS_CONCEPT to combine the sub-blocks for all
system logic on the chip. Set the Write Verilog option to
‘Y’ to create a Verilog netlist when you exit Concept.

18.Run MARV.
19.If the chip is a scan design, run the ATPG tool.
20.Run DECAL; then simulate the gate-level netlist for the

chip’s system logic using the same vectors which were
used in step 7 to verify the RTL description of the chip’s
system logic. If violations occur in any of these tools, do
one of the following for each erroneous sub-block:
a. return to step 9 to correct the sub-block’s schematic.
b. correct the sub-block’s RTL description and return to

step 6, 7 or 8 to verify the correction.
c. Re-verify each corrected sub-block individually to

the extent desired in section III, part B, then return to
step 17.

18

MOTOROLA AN1500

IV.Combine JTAG Circuitry with Chip’s System Logic
21.Use UDS_CONCEPT to capture a schematic of the

core JTAG logic (including the TAP Controller etc.).
Verify All JTAG Circuitry by Itself (Optional)
22.In UDS_CONCEPT, combine the core JTAG logic with

the JTAG I/O from step 2. Set the Write Verilog option
to ‘Y’ to create a Verilog netlist when you exit Concept.

23.Use PINOUT to assign I/O placement determined in
step 2 and run peripheral rule checks. Repeat steps 22
and 23 until all checks pass.

24.Run MARV.
25. If the chip is a scan design, run the ATPG tool’s design

rule checker.
26.Run PREDIX to generate the JTAG RC file (pre-

dix.jtagrc) using that actual I/O placement information.
27.Run DECAL followed by Verilog real-time simulation. If

violations occur in any of these tools, return to step 22
to correct the schematic.

Verify Combined System and JTAG Circuitry
28.Use UDS_CONCEPT to combine the core JTAG logic,

JTAG I/O, and system logic. Set the Write Verilog
option to ‘Y’ to create a Verilog netlist when you exit
Concept

29.Run MARV to verify entire chip conforms to electrical
design rules.

30.If the chip is a scan design, run the ATPG tool’s design
rule checker to verify entire chip conforms to scan
design rules.

31.Run PREDIX to generate the JTAG RC file (pre-
dix.jtagrc) using that actual I/O placement information.

32.Verify entire chip via real-time simulation and timing
analysis:
a. Run DECAL to calculate real-time delays.
b. Simulate the gate-level netlist for the entire chip

using the same vectors which were used in step 8 to
verify the RTL description of the chip’s system logic.
Then exercise the JTAG logic in a separate simula-
tion. If errors occur in any of steps 29-32, return to
step 22 to correct the core JTAG logic, or do one of
the following for each erroneous sub-block:
i) return to step 9 to correct the sub-block’s sche-

matic.
ii) correct the sub-block’s RTL description and return

to step 6, 7 or 8 to verify the correction. Re-verify
each corrected sub-block individually to the extent
desired in section III, part B, then continue at step
17 or 22 as desired.

33.If the chip is a scan design, run the ATPG tool to gen-
erate scan test patterns.

34.Run TESTPAS to combine the functional and scan test
patterns from steps 32 and 33, respectively.

6.2 Synopsys/Verilog Design Flow

I. Behavioral-Level Design
1. As part of the behavioral verification of the entire sys-

tem, create and verify a Verilog HDL behavioral
description for all system logic on the H4EPlus chip.

II. Determine Chip Pin-Out and Create JTAG I/O Netlist
2. Create a Verilog netlist for the JTAG I/O only (no core

module instantiation).
3. Use PINOUT to assign I/O placement and run periph-

eral rule checks. Repeat steps 2 and 3 until all checks
relating solely to the I/O pass.

III.Design Chip’s System (Non-JTAG) Logic
A. Convert Behavioral Description to RTL (Register-

Transfer Level) Description

4. For one chip sub-block “X,” convert the behavioral
description to an RTL description. If X is to be con-
verted into gates by logic synthesis as opposed to
schematic capture, then the RTL description must use
only those Verilog constructs supported by Synopsys.

5. Simulate X’s RTL description, by itself. Modify and re-
simulate X’s RTL description until its functionality
matches X’s behavioral description.

6. Repeat step 1’s simulation of the chip behavioral
description, but use the RTL description for sub-block X
in place of X’s behavioral description. Modify X’s RTL
description as necessary until chip functionality
matches that of the all-behavioral chip description in
step 1. Repeat steps 4-6 for each of the chip’s sub-
blocks.

7. Simulate all system logic on the chip at the RTL level.
Modify the sub-blocks’ RTL descriptions as necessary
until chip functionality matches that of the all-behavioral
chip description in step 1.

B. Synthesize Sub-Block RTL Descriptions into Gate-
Level Netlists

Synopsys/Verilog Debug Loop
8. For one sub-block “X,” synthesize the RTL description

into a gate-level Verilog netlist using Synopsys.
9. Simulate X’s gate-level netlist by itself, using the same

vectors used to verify X’s RTL description in step 5.
Use Synopsys delays. If X’s functionality or timing is
incorrect:
a. return to step 8 to modify the synthesis constraints

and re-run Synopsys.
b. correct X’s RTL description and return to step 5, 6 or

7 to verify the correction.
10.Repeat step 7’s simulation of the chip RTL description,

but use the gate-level netlist for sub-block X in place of
X’s RTL description. Use Synopsys delays for X. Han-
dle bugs as prescribed in step 9.

19

AN1500 MOTOROLA

OACS Verification
11.Create the required netlists for X:

a. Run Synopsys to generate a Verilog netlist.
b. Edit the verilog.index file in the <DESIGN>/netlists

directory to include the pathname of the verilog
netlist.

c. Run MARV to verify X conforms to electrical design
rules. If violations occur, correct X’s RTL description
and return to step 5, 6 or 7 to verify the correction.

12.If the chip is a scan design, run the ATPG tool’s design
rule checker to verify X conforms to scan design rules.
(Also generate test patterns if X’s fault coverage is
desired.) If violations occur, correct X’s RTL description
and return to step 5, 6 or 7 to verify the correction.

13.Verify X via real-time simulation and timing analysis:
a. Run DECAL to calculate real-time delays. Handle

edge-rate violations as prescribed in step 9.
b. Repeat step 9, using DECAL delays instead of Syn-

opsys delays.
c. Repeat step 10, using DECAL delays instead of

Synopsys delays.
14.Repeat steps 8-14 for each synthesized sub-block until

each one has a correct gate-level Verilog netlist.

C. Design “Not-To-Be-Synthesized”/Schematic Cap-
ture Sub-Blocks

OACS Verification
15. Use UDS_CONCEPT to capture a schematic for one

system sub-block “Y”. Set the Write Verilog option to ‘Y’
to create a Verilog netlist when you exit Concept.

16. (Optional) Do unit-delay simulation of Y’s gate-level
netlist by itself, using the same vectors used to verify
Y’s RTL description in step 5. If Y’s functionality is
incorrect return to step 15 to correct the schematic. or
correct Y’s RTL description and return to step 5, 6 or 7
to verify the correction.

17. (Optional) Repeat step 7’s simulation of the chip RTL
description, but use the gate-level netlist for sub-block
Y in place of Y’s RTL description. Handle bugs as pre-
scribed in step 16.

18. Run MARV to verify Y conforms to electrical design
rules. If violations occur return to step 15 to correct the
schematic.

19. If the chip is a scan design, run the ATPG tool’s design
rule checker to verify Y conforms to scan design rules.
(Also generate test patterns if Y’s fault coverage is
desired.) If violations occur return to step 15 to correct
the schematic.

20. Verify Y via real-time simulation and timing analysis:
a. Run DECAL to calculate real-time delays. If edge-

rate violations occur, return to step 8a to correct the
schematic.

b. Repeat step 16, using DECAL delays instead of unit
delays.

c. Repeat step 17, using DECAL delays instead of unit
delays.

21. Repeat steps 15 - 20 for each sub-block to be entered
via schematic capture until each one has a correct
gate-level Verilog netlist.

D. Combine All of Chip’s System Sub-Blocks
Synopsys/Verilog Debug Loop
22.Read into Synopsys the gate-level Verilog netlists for

all system sub-blocks on the chip. Run Synopsys with
logic optimization turned off (i. e., no “compile”) to write
out one Verilog netlist which contains all system logic
on the chip. There should not be any busses at the top
level of the design.

23.Simulate the gate-level netlist for all system logic,
using Synopsys delays. Use the same vectors which
were used in step 7 to verify the RTL description of the
chip’s system logic. If violations occur, do one of the fol-
lowing for each erroneous sub-block:
a. return to step 15 to correct the sub-block’s sche-

matic, or
b. correct the sub-block’s RTL description and return to

step 5, 6 or 7 to verify the correction.
Re-verify each corrected sub-block individually to the ex-

tent desired in section III, part B or C, then return to step 22.

OACS Verification
24.Edit the verilog index file to include the path to the

block level Verilog netlist.
25.Run MARV. Handle violations as prescribed in step 23.
26.If the chip is a scan design, run the ATPG tool to gen-

erate patterns. Handle violations as prescribed in step
23.

27.Run DECAL and then repeat step 23, using DECAL
delays instead of Synopsys delays.

IV.Combine JTAG Circuitry with Chip’s System Logic
OACS Verification
28.Create a gate-level Verilog netlist for the core JTAG

logic (including the TAP Controller etc.) by one of two
methods:
a. capture a schematic and write Verilog netlist.
b. write a Verilog netlist manually.
c. run PINOUT and add all the macros required in the

design. The macros can then be placed and
PINOUT will write out a top level Verilog netlist (ver-
ilog.net_pinout_top)

Verify All JTAG Circuitry by Itself (Optional)
29.Merge the core JTAG logic and the JTAG I/O into one

Verilog netlist using Synopsys. (The Verilog netlists for
any “soft” macros used, such as the MC_IREG or
MC_IREG4, must be read into Synopsys; likewise for
the Verilog netlists for any “firm” macros used, such as
the FMC_TAPCB.)

20

MOTOROLA AN1500

30.Use PINOUT to assign I/O placement and run periph-
eral rule checks. Repeat steps 29 and 30 until all
checks pass.

31.(Optional) Do a unit-delay simulation on all JTAG cir-
cuitry. (Synopsys delays are not usable for simulation
because they only include the core<-->PAD data path
through each BSC.) If violations occur return to step 28
to correct the netlist.

Verify Combined System and JTAG Circuitry
32.Run MARV to verify entire chip conforms to electrical

design rules.
33.If the chip is a scan design, run the ATPG tool’s design

rule checker to verify entire chip conforms to scan
design rules.

34.Verify entire chip using estimated delay simulation and
timing analysis:
a. Run PREDIX to generate the JTAG RC file (pre-

dix.jtagrc) using that actual I/O placement informa-
tion.

b. Run DECAL to calculate estimated delays.
c. Simulate the gate-level netlist for the entire chip

using the same vectors which were used in step 7 to
verify the RTL description of the chip’s system logic.
Then exercise the JTAG logic in a separate simula-
tion.

If errors occur in any of steps 32-34, return to step 28 to
correct the core JTAG logic, or do one of the following for
each erroneous sub-block:

i) return to step 15 to correct the sub-block’s sche-
matic, or

ii) correct the sub-block’s RTL description and return
to step 5, 6 or 7 to verify the correction.

Re-verify each corrected sub-block individually to the ex-
tent desired in section III, part B or C, then continue at step
22, 28 or 32 as desired.

35.If the chip is a scan design, run the ATPG tool to gen-
erate scan test patterns.

36.Run TESTPAS to combine the functional and scan test
patterns from steps 34 and 35, respectively.

21

AN1500 MOTOROLA

Appendix A: Manufacturing Rules Verifier (MARV)
Rules for JTAG

Each rule presented in this appendix has been classified
as either a warning (W) or an error (E) based upon the sever-
ity of the violation. Warnings are used to indicate a possible
violation of JTAG specification requirements which will not
cause any failure in the design methodology or manufacture.
As such, a warning may be ignored if the condition that it flags
is truly what the designer intended to implement. On the other
hand, errors must be corrected.

Appendix A.1: General Rules for H4EPlus
1. (E, W)All the MARV rules that apply to non-JTAG input

macros apply to input BSC macros and to TCK, TMS,
TDI, TRSTB macros.

2. (E, W)All the MARV rules that apply to non-JTAG out-
put macros apply to output BSC macros and to TDOUT
macros.

3. (E, W)All the MARV rules that apply to non-JTAG bidi-
rectional instances apply to bidirectional BSC
instances. A bidirectional BSC instance is constructed
from a bidirectional output BSC macro and a bidirec-
tional input BSC macro.

4. (E, W)All the MARV rules that apply to non-JTAG bidi-
rectional output macros apply to bidirectional output
BSC macros.

5. (E, W)All the MARV rules that apply to non-JTAG bidi-
rectional input macros apply to bidirectional input BSC
macros.

6. (E, W)All the MARV rules that apply to non-JTAG oscil-
lator macros apply to oscillator BSC macros.

7. (E) For peripheral JTAG macros, an I/O site can be
shared only in the following ways.
a. Any normal drive input BSC macro and any normal

drive non-JTAG input macro can share its I/O site
with a parallel/slave buffer used in JTAG or non-
JTAG high-drive output and high-drive bidirectional
macros.

b. A TDBUF macro can share its I/O site with a parallel/
slave buffer used in JTAG or non-JTAG high-drive
output and high-drive bidirectional macros

c. A bidirectional BSC instance is constructed from a
bidirectional output BSC macro and a bidirectional
input BSC macro. A bidirectional input BSC macro
shares a site with the bidirectional output BSC
macro to which it gets connected.

8. (E) The special JTAG I/O buffer cells which do not have
pads can only be placed in the following ways:
a. On unused I/O sites.
b. On output power and ground sites.
c. All buffer macros except CKDRCC1, CKDRCC2,

TDBUF, ISOR and ENSCANJ can also be placed on
input power and ground sites.

9. The paralleled output buffer portion of a hi-drive, such
as an ON32, can reside on an output-ground I/O site if

that ground is an OVSSP macro.
10.(E) When placing I/O macros and JTAG buffers in the

periphery, the user must leave room for hi-drive paral-
lel/slave buffers. (Paralleled buffers cannot be placed
on power sites.) There also must be enough empty I/O
sites for VERILOG2X to place all BUFX and INVX mac-
ros used in the design.

11.(E) Only peripheral macros can be located in the
periphery of a chip. Peripheral macros must be located
in the periphery of a chip.

Appendix A.2: Test Access Port Connections
The rules in this section ensure that the Test Access Port

is implemented correctly.
1. (W)There must be one and only one macro from the set

{TCK, TCKT, TCKH, TCKHT, TCKX, TCKTX, TCKHX,
TCKHTX} in the design.

2. (E) There must be one and only one macro from the set
{TMS, TMST, TMSX, TMSTX} in the design.

3. (E) There must be one and only one macro from the set
{TDI, TDIT, TDIX, TDITX} in the design.

4. (E) There must be one and only one TDOUT or
TDOUTX macro in the design.

5. (E) There must not be more than one macro from the
set {TRSTB, TRSTBT, TRSTBX, TRSTBTX} in the
design.

6. (E) There must be a pullup resistor connected to the IC
ports of {TMS, TMST, TMSX, TMSTX, TDI, TDIT, TDIX,
TDITX, TRSTB, TRSTBT, TRSTBX, TRSTBTX} mac-
ros.

Appendix A.3: JTAG Conformance
The rules in this section ensure that the design conforms

to the internal requirements of the JTAG specification. Since
most of these are not required in order to have a fully function-
al device they are warnings.

1. (W)The number of BPREG macros in the design must
be greater than zero.

2. (E) There must not be more than one BPREG macro in
the design.

3. (E) There must not be more than one IDREG macro in
the design.

4. (E) If the device I. D. code is specified in the design
information then there must be one IDREG macro in
the design.

5. (E) If there is one IDREG macro in the design then the
value set on the D31 to D0 pins must match the I. D.
code specified in the design information. D31 is the
most significant bit. If a bit is 1(0), the corresponding D-
port must be connected to VDD (VSS).

6. (W)If any 3-state BSC’s are used in the design then
there must be one or more instances of a macro from
the set {ENSCANI, ENSCANJ}.

22

MOTOROLA AN1500

Appendix A.4: JTAG I/O Scan Ring
The rules in this section ensure that the connection and

placement of JTAG I/O macros in the periphery conform to
the H4EPlus array implementation of JTAG.

1. (E) No BSC JTAG macros may be placed between a
TDI macro and a TDOUT macro in the direction clock-
wise from the TDI macro.

2. (E) The fanout of the TDIP port of the TDI macro must
be one. The TDIP port of the TDI macro must be con-
nected to the TDI port of a peripheral BSC or the TDI
port of a TDBUF macro or the TDOUT macro.

3. (E) The fanout of the TDO port of every peripheral BSC
or TDBUF macro must be one. The TDO port of such a
macro must be connected to the TDI port of another
peripheral BSC or the TDI port of a TDBUF macro or
the TDOUT macro.

4. (E) The fan-in of the TDI port of every peripheral BSC
and TDBUF macro must be one. The TDI port of such a
macro must be connected to the TDO port of another
peripheral BSC, TDBUF, or the TDIP port of the TDI
macro.

5. (E) The fanin of the TDI port of the TDOUT macro must
be one, and must be connected to the TDO port of a
peripheral BSC, TDBUF, or the TDIP port of the TDI
macro.

6. (E) Starting from the TDI macro, the order of the periph-
eral BSC’s obtained by tracing fanouts of their TDO
ports must be the same as the order obtained by tra-
versing I/O sites in the counter-clockwise direction from
the TDI macro.

7. (W)If there are any unused I/O sites then there should
be zero ENSCANI macros.

8. (E) The number of I/O sites between a peripheral BSC
and the fanout instance of its TDO port must be <= 7
(not including the I/O sites of the driver and the
receiver).

Appendix A.5: JTAG Clock & Control Signal
Distribution

The rules in this section ensure correct placement and
connection of the JTAG I/O control signals CKDR, SHDR,
UDDR, IMC and OMC. An “E” or “W” in parenthesis classifies
each rule as either an error or a warning.

The following rule applies to all six of these signals:
1. (E) All JTAG buffers must reside within 25 I/O sites of

the nearest INPVSS or BOTHVSS macro, and within
25 I/O sites of the nearest INPVDD or BOTHVDD
macro.

Appendix A.5.1: CKDR Distribution
The rules in this section verify proper distribution of the

CKDR signal in the periphery, as shown in Figure 3-1.
1. (E) There must be one and only one occurrence of

each of the following macros: CKDRCC1, CKDRCC2
and CKDRMID.

2. (E) The CKDRMID must be driven by a core macro.

3. (E) CKDRMID can only drive CKDRCC1 and
CKDRCC2.

4. (E) CKDRCC1 and CKDRCC2 can only be driven by a
CKDRMID.

5. (E) CKDRCC1 and CKDRCC2 cannot drive same net.
6. (E) CKDRCC1 and CKDRCC2 can only drive the

CKDR port of peripheral BSC's. Conversely, the CKDR
port of peripheral BSC's can only be driven by either
CKDRCC1 or CKDRCC2.

7. (E) CKDRCC1 must drive only the CKDRNET1 net.
8. (E) CKDRCC2 must drive only the CKDRNET2 net.
9. (E) The CKDRMID must reside in an I/O site between

TDI and CKDRCC1, or between CKDRCC2 and
TDOUT, or between TDOUT and TDI.

10.(E) There must not be any common IO sites among IO
sites covered by physical CKDRNET1 and physical
CKDRNET2.

11.(E) CKDRCC1 must reside at an IO/power/ground site
covered by physical CKDRNET1. CKDRCC2 must
reside at an IO/power/ground site covered by physical
CKDRNET2.

Appendix A.5.2: SHDR, UDDR Distribution
The rules in this section verify proper distribution of the

SHDR and UDDR signals in the array periphery, as shown in
Figure 3-2. The rules are given for SHDR explicitly. These
need to be repeated for UDDR by substituting “UDDR” wher-
ever “SHDR” appears.

1. (E) There must be two and only two occurrences of the
SHDR macro.

2. (E) Both SHDR's cannot drive the same net.
3. (E) Each SHDR must be driven by a core macro.
4. (E) There must be one and only one occurrence of

ISOR macro.
5. (E) Each SHDR can only drive the SHDR port of

peripheral BSC's. Conversely, the SHDR port of periph-
eral BSC's can only be driven by a SHDR.

In Figure 3-2, the SHDR macro driving net1 is called ‘shdr-
i1’ and the SHDR macro driving net2 is called ‘shdr-i2’, for the
purpose of explanation.

6. (E) shdr-i1 must reside in an I/O site between TDOUT
and ISOR, as IO sites are traversed counter-clockwise
from TDOUT. shdr-i2 must reside in an I/O site between
TDOUT and ISOR, as IO sites are traversed clockwise
from TDOUT.

7. (E) All the peripheral BSC's on IO sites between
TDOUT and ISOR, as IO sites are traversed counter-
clockwise from TDOUT, must have their SHDR ports
driven by shdr-i1. All the peripheral BSC's on IO sites
between TDOUT and ISOR, as IO sites are traversed
clockwise from TDOUT, must have their SHDR ports
driven by buffer shdr-i2.

23

AN1500 MOTOROLA

Appendix A.5.3: IMC, OMC Distribution
The rules in this section verify the distribution of the IMC

and OMC signals in the periphery, as shown in Figure 3-3.
The rules are given for IMC explicitly. These need to be re-
peated for OMC by substituting OMC in place of IMC.

1. (E) There must be two and only two occurrences of
IMCDR.

2. (E) Both IMCDR's cannot drive the same net.
3. (E) An IMCDR must be driven by a core macro.
4. (E) Each IMCDR can only drive the IMC port of periph-

eral BSC's. Conversely, the IMC port of peripheral
BSC's can only be driven by an IMCDR.

In Figure 3-3, the IMCDR driving net1 is called ‘imcdr-i1’
and the IMCDR driving net2 is called ‘imcdr-i2’, for the pur-
pose of explanation.

5. (E) imcdr-i1 must reside in an IO/power/ground site
between CKDRCC1 and CKDRCC2, as I/O sites are
traversed clockwise from CKDRCC1. imcdr-i2 must
reside in an IO/power/ground site between CKDRCC1
and CKDRCC2, as I/O sites are traversed counter-
clockwise from CKDRCC1.

6. (E) All the peripheral BSC's on IO sites between
CKDRCC1 and CKDRCC2, as I/O sites are traversed
clockwise from CKDRCC1, must have their IMC ports
driven by imcdr-i1. All the peripheral BSC's on IO sites
between CKDRCC1 and CKDRCC2, as I/O sites are
traversed counter-clockwise from CKDRCC1, must
have their IMC ports driven by imcdr-i2.

24

MOTOROLA AN1500

Appendix B: TAP Controller Design for ATPG Com-
patibility

The TAP Controller implementation given in the IEEE
1149.1 JTAG specification is shown in Figure B-2. This TAP
Controller design is not compatible with scan design rules be-
cause:

a. it contains static elements that are not scannable
b. it contains signals which are gated by the TCK clock
c. both the rising and falling edges of TCK are used as

active edges.
In order to correct these problems the following steps were

taken:
1. Two extra inputs and one extra output have been

added to the TAP Controller. The MTST input is active
high whenever the design is to be used in ATPG-com-
patible mode (such as during production test at Motor-
ola).Scan data enters the TAP Controller via the TDI
input and leaves via the TDO output. The TDI and TDO
mentioned here are ports on the TAP Controller macro
and should not be confused with the TDI and TDO pins.

2. All of the flip flops were changed to scannable devices.
3. The inverter in the path generating TCKB was replaced

with an exclusive-or gate to ensure that all of the static
elements will be clocked on the rising edge of the TCK
clock. The paths to the CKIR and CKDR outputs are
unaltered since these already clock on the correct
edge.

4. NAND gates were added to the following outputs to put
them into the specified state during ATPG scan mode:
a. SL = 1: TDO used as scan output for Instruction

Register scan chain.
b. ENABLE = 1: Enables TDO 3-state output.
c. RB = 1: Prevents reset of JTAG logic while shifting

scan chains.
d. SHIR = 1: Puts Instruction register into scan mode.
e. SHDR = 1: Puts Data registers into scan mode.
f. UDDR = 1: Holds data register shadow latches

transparent.

In addition, the TMS input is AND'ed with the MTST input
to form the Motorola Scan Enable (MSE) signal. MSE is
passed to the scan enable of all flip-flops in the TAP Control-
ler. When high, MSE places these flops in scan/shift mode.

Suppose a core/system flop gets its data from an input
BSC having the standard shadow register structure. The latch
within this BSC is driven by UDDR, which is derived from
clock TCK in Figure B-2. Some ATPG tools cannot handle the
condition when a clock derivative (UDDR) propagates
through a latch to drive the data input of the system flop. The
problem can be overcome in the TAP Controller by replacing
the NAND which gates TCK to UDDR with a flip-flop which is
clocked on the falling edge of TCK. This has the additional ef-
fect of extending the update pulse from half a cycle to a com-
plete cycle, which satisfies the ATPG requirement that the
data input to a flop be an NRZ (non-pulsed) waveform.

Since the latch portion of the Instruction Register has been
changed to a flop (see Figure 4-1) this problem does not exist
on UDIR, which therefore need not be generated by a flop. In
fact, UDIR must not be generated by a flop now that it drives
a flop clock port instead of the shadow latch. The reason is
that ATPG tools require flip-flops to have pulsed clocks.

The new functionality for UDDR is shown in the waveform
diagram of Figure B-1, which demonstrates the loading of a
data register.

Figure B-1 JTAG Control Signals Waveform Diagram

The waveform diagram shows the operation of the TAP
Controller while performing the fastest cycle of loading and
updating the data register. This shows the shortest time pos-
sible, during JTAG operation, between UDDR going inactive
and the next occurrence of a CKDR pulse. UDDR is the cur-
rent update signal while UDDR1 is the signal that is generat-
ed by the new TAP Controller design in Figure B-3. This
diagram shows that the addition of a flip-flop on the UDDR
signal causes no functional change in the operation of the
JTAG boundary scan circuitry.

Some additional circuitry has been added to the TAP Con-
troller to improve its fault coverage:

1. A large number of faults on the NAND gates on the left
are not detectable because the TMS line which feeds
into them also puts the flip flops which observe them
into scan mode. This is resolved by adding gating to
allow the TDI input to control the NAND gates when the
device is in ATPG test mode.

2. Faults on gates feeding the CKDR, CKIR, and UDIR
outputs are undetected because they are unobserv-
able. (MTST overrides the TAP Controller state for con-
trol of these signals during ATPG test mode because
ATPG tools requires control of all clocks from a pin, in
this case the TCK pin.) The fault coverage is improved
by monitoring all three signals with an exclusive-or
gate, which is observed by a flop that is added to the
scan chain.

TCK
STATE

CKDR

SHDR
UDDR

UDDR1

7 6 2 12 5 7 6 2

25

AN1500 MOTOROLA

Figure B-2 TAP Controller Shown in IEEE 1149.1 JTAG Specification

26

MOTOROLA AN1500

Figure B-3 ATPG-Compatible TAP Controller (FMC_TAPCB).

27

AN1500 MOTOROLA

Notes:

AN1500/D

Trademarks
H4EPlus, DECAL, and TestPAS are trademarks of Motorola, Inc.
Verilog and Gate Ensemble are trademarks of Cadence Design Systems, Inc.
Synopsys is a registered trademark of Synopsys, Inc.

ASIC REGIONAL DESIGN CENTERS – U.S.A .

California, San Jose Georgia, Atlanta Illinois, Chicago Massachusetts, Marlborough
(408) 749-0510 (404) 729-7100 (847) 413-2500 (508) 481-8100

ASIC REGIONAL DESIGN CENTERS – International

European Headquarters
Germany, Munich England, Aylesbury, Bucks France, Velizy Holland, Best
(089) 92103-306 (0)1296) 395252 (01) 3463900 (04998) 61211

Hong Kong, Tai Po Israel, Tel Aviv Italy, Milan Japan, Tokyo
(852)2666-8333 (09) 590-303 (02) 82201 (03) 440-3311

Sweden, Stockholm
(08) 734-8800

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center,
P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 or 602-303-5454 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315

MFAX: RMFAX0@email.sps.mot.com -TOUCHTONE (602) 244-6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
INTERNET: http://Design-NET.com 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary overtime. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and b are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

