Motorola Semiconductor Application Note

AN1702

Brushless DC Motor Control Using the MC68HC705MC4

By John Deatherage and Jeff Hunsinger CSIC Systems Technology Austin, Texas

Introduction

This application note details the design and analysis of a brushless DC motor control system using the MC68HC705MC4 with two evaluation boards available from Motorola. For many years, brushed DC motors have been popular partly because of minimal requirements for electronic control. The trade-off between electromechanical commutation and efficiency has traditionally leaned in favor of the former (electromechanical commutation). Today, however, the popularity of reasonably priced, electrically commutated, brushless DC motors is rising as is the need for electronic motor control. In particular, brushless DC motors (also called permanent magnet motors) are found in computers (disk drives), households (appliances), and automobiles (fans and body controllers), among other applications. Designers of these types of motor control systems are confronted with requirements of electronic commutation, variable speed control for energy efficiency, communication to outside nodes (distributed control, diagnostics, etc.), and flexibility at little or no extra cost. The MC68HC705MC4, from Motorola's HC05 Family of microcontrollers, provides a low-cost, highly integrated, flexible platform for brushless DC motor control.

Brushless DC Motor Tutorial

Reviewing a few basic points about brushless DC motors will assist in understanding them. First, the rotor (rotating part) of a brushless DC motor is fitted with cylindrical magnets and its stator (stationary part, usually bolted down) consists of several (typically four, six, or eight) poles which project out from the stator perpendicular to the rotor. For a 3-phase motor, the poles are wrapped with windings which are symmetrically grouped in three sets around the stator and then connected in a delta or wye configuration. Thus, when current is injected through two of the motor's phase windings an electromagnetic force will cause the magnetic rotor to partially rotate (remember the "right hand rule"). In addition, most brushless DC motors have sensors (Hall Effect or optical) built into the housing of the motor to sense the position of the motor shaft. In this fashion, the motor can be rotated by sensing the position of the rotor and feeding signals into two of the three phases of the motor's (see Figure 1 and Figure 2) stator coils. This will cause the rotor to rotate (30 degrees for a motor with three sensors) to its next position, which in turn will be sensed.

- **NOTE:** The control sequence which generates the output waveform is called electronic commutation (hence the term "brushless" motor) and is typically implemented by a state machine or a microcontroller unit (MCU).
- **NOTE:** Heat (wasteful energy) is generated in the stator of a brushless DC motor and can escape easily from the motor compared to motors with rotor windings (which is why brushless DC motors are much more efficient than brushed DC motors).

Once the motor is rotating, speed and torque control of the motor need to be considered. One method of closed loop speed control under steady-state operating conditions (the motor already is running at a constant speed) involves an interrelationship between the magnitude of voltage across the stator coils and the speed of commutation. For example, a brushless DC motor will rotate faster by increasing the voltage magnitude of the waveform fed into its stator coils. As the motor rotates faster the controller must increase the speed of its commutation sequence. Thus, the maximum motor speed can be limited both by the maximum voltage rating of the motor and the ability of the controller to commutate at high speeds. On the other hand closed loop torque control is related directly to both the magnitude of magnetic flux (which is constant with a permanent magnet motor) and the magnitude of current fed into the motor's coil windings. One method of torque control can be more easily understood by observing this steady state equation for a motor circuit using Kirchoff's Voltage Law:

$$V = IR + E$$

where **V** is the voltage across the stator coils, **I** is the current through the stator coils, **R** is the resistance of the coils, and **E** is the electromotive force (EMF) generated by the rotating motor. Therefore, the steady state torque of a brushless DC motor can be controlled by sensing its back EMF and thus adjusting the voltage across its coils to control the coil current. From this discussion, it becomes obvious that torque and speed are related, but keep in mind that although speed control will affect the torque of the motor, it does not imply torque control. A pulse width modulation (PWM) method of speed control with interrupt-driven timer feedback is presented in this application note. Torque control will not be discussed any further.

Figure 1. 3-Phase Motor Waveform, 100% Duty Cycle, Full Speed

Figure 2. 3-Phase Motor Waveform, 50% Duty Cycle, Half Speed

Several methods can be used to control variable speed, brushless DC motors. Frequently, these motors are driven by an inverter circuit, consisting of complementary pairs of drivers (typically one pair of FETs or IGBTs per phase) which are controlled by PWM signals from an MCU. An inverter is defined as a circuit which is powered by a DC input, and in conjunction with a control (commutation) algorithm acts to create crude AC voltage output signals (Crude voltage signals can actually generate smooth current signals.) to rotate a motor's shaft. The commutation algorithm will assure that the motor's coils are injected alternately with current in a sequential and repetitive fashion. The voltage magnitude across the motor's coils, controlled by the duty cycle of the PWM signals, will control its rotor speed (see Figure 1 and Figure 2). In addition, the sensors built into brushless DC motors feed back the angular position of the motor to the controller (MC68HC705MC4). The position sensors (typically 3 or 4) allow the controller to commutate the motor properly and to monitor the motor's actual speed. The motor chosen for this application note is a 3-phase, 6 pole, brushless DC motor with three Hall effect sensors.

The commutation sequences for clockwise and counterclockwise rotation are shown in **Table 1** and **Table 2**. **Table 1** shows how the 6-step sequence will mechanically rotate the motor 180 degrees in a clockwise direction. The sequence must be repeated twice in succession to rotate the motor completely around. It is helpful to note that the left columns of **Table 1** (labeled Sensor 1, Sensor 2, and Sensor 3) are

inputs to the MCU and the right columns (labeled Phase A, Phase B, and Phase C) are controlled by a mixture of PWM and logic level outputs from the MCU. The rotation speed of the motor is controlled by adjusting the duty cycle of the PWM signals (see **Figure 1** and **Figure 2**) which are fed into the bottom side (low side) FETs (field effect transistor) of the inverter. The period of the PWM signals does not directly affect the speed of the motor, but is important when choosing a control algorithm. For example, a higher speed PWM can increase the effective resolution of speed control and can reduce the amount of audible noise from the motor with the trade-off of higher switching losses in the inverter. Weighing these trade-offs, choosing a PWM control frequency just above the audio range is often desirable.

Rotation Angle in Degrees	Sensor 1	Sensor 2	Sensor 3	Phase A	Phase B	Phase C
0 & 180	1	0	0	+15	-15	NC
30 & 210	1	1	0	+15	NC	-15
60 & 240	0	1	0	NC	+15	-15
90 & 270	0	1	1	-15	+15	NC
120 & 300	0	0	1	-15	NC	+15
150 & 330	1	0	1	NC	-15	+15

 Table 1. Commutation Sequence for Clockwise Rotation

Table 2. Commutation	n Sequence for	Counterclockwise Rotation
----------------------	----------------	----------------------------------

Rotation Angle in Degrees	Sensor 1	Sensor 2	Sensor 3	Phase A	Phase B	Phase C
0 & 180	1	0	0	-15	+15	NC
-30 & -210	1	0	1	NC	+15	-15
-60 & -240	0	0	1	+15	NC	-15
-90 & -270	0	1	1	+15	-15	NC
-120 & -300	0	1	0	NC	-15	+15
-150 & -330	1	1	0	-15	NC	+15

Under "no load" conditions, motor speed control simply amounts to following the commutation sequence at a constant PWM duty cycle. However, a few conditions occur that will complicate the motor control algorithm. First, the presence of a load usually will produce a different motor speed than desired. Thus, a closed loop algorithm such as a PID (proportional, integral, derivative) control loop is required to maintain constant or predictable speeds under acceptable load conditions for the motor. Such an algorithm will continuously compare the desired motor speed with the actual motor speed, derived by an MCU timer using the sensor input interrupts from the motor, and will gradually correct the system output (PWM duty cycle) accordingly. The PID control loop used in this experiment is detailed in a later section.

Stall is another condition that will complicate a motor control algorithm. Stall occurs when the motor is starting up or when a sudden heavy load is placed on the motor and it completely stops. The control algorithm must sense and correct for stall by creating a steady increase of current (increase the PWM duty cycle) over a period of time to the motor's coils or alternatively shut the motor off under extreme conditions. Additional conditions such as shoot through prevention, dead time generation, and current feedback for torque control also should be considered, but are outside the scope of this application note.

System Overview

A simplified version of the hardware system used to demonstrate brushless DC motor control is shown in **Figure 3**. The system includes a KITITC127 MC68HC705MC4 motion control development board (available from Motorola), a KITITC122 low-voltage MCU to motor interface module, a 3-phase brushless DC motor, and a split DC power supply. The MC68HC705MC4 integrates several features for motor control including a high-speed (up to 23.4 kHz), 2-channel, doublebuffered PWM module (eight bits of resolution) with a commutation multiplexer (three pins per PWM channel), which allows for a flexible interface to motors, and an interlock mechanism for coherent updates. Other key features include a 6-channel analog-to-digital (A/D) converter (eight bits of resolution) which can be used for measuring the speed, position, or back EMF of the motor; an asynchronous serial port (SCI) for communications outside of the motor control system; and a 3-MHz bus (333 ns instruction cycle) which will allow the MC68HC705MC4 to efficiently control the motor at higher speeds. (See Motor Control Software Analysis.)

Following a brief hardware overview, the remainder of this application note will focus on the commutation scheme and software used by the MC68HC705MC4 to control the brushless DC motor shown in Figure 3.

Figure 3. MC68HC705MC4 Motor Control Circuit

Brushless DC Motor Control Hardware

As shown in **Figure 3**, the interface for this experiment is quite simple. On the KITITC127 board, a 6-MHz crystal across the OSC1 and OSC2 pins will allow the MC68HC705MC4 to output a 23.4-kHz PWM signal with eight bits of resolution. The motor's three position sensors are directly connected to the MC68HC705MC4's IRQ, TCAP1, and TCAP2 pins to cause separate, time stamped interrupts (for measuring actual motor speed) to the MC68HC705MC4 as the motor rotates. In addition, pins PA0 and PB6–PB7 are used to read the position sensor inputs which allow the MC68HC705MC4 to commutate the motor properly.

- **NOTE:** The position sensor pins can be read directly from the TCAP1, TCAP2, and IRQ pins if extra port pins are not available.
- **NOTE:** The position sensor inputs toggle in such a manner that only one of the three changes state per MCU interrupt (see **Table 1**), which consequently allows the software to handle one interrupt at a time.

Another feature on KITITC127 is a potentiometer input into pin PC3/AD3 of the MC68HC705MC4 which is used to interactively control the speed of the motor in software. Additional features of KITITC127 (not discussed in this application note) include amplifiers for overvoltage and over-temperature, an RS232 port from the SCI on the MC68HC705MC4, and run/stop and forward/reverse switches which are input into port C (PC4 and PC5) for control of the motor. The motor drive interface (through ITC122) is controlled by port A (pins PA1–PA6) of the MC68HC705MC4. The KITITC122 is designed to drive three phases of a fractional horsepower motor (12–40 volts) and accepts six logic inputs which control a 3-phase inverter (constructed of MOSFETs).

NOTE: All of the drivers on KITITC122 use negative logic such that a logic level zero will turn on a driver and a logic level one will turn it off. Additional features of the KITITC122 include level shifters (from CMOS logic to the MOSFET inputs), automatic lockout of invalid inputs (for shoot through prevention), current and temperature sense outputs, and various noise/EMI (electromagnetic interference) considerations.

Brushless DC Motor Control Software

The motor control software kernel presented in this section will rotate a 3-phase brushless DC motor in a clockwise direction, implementing variable speed control under various load conditions. The MC68HC705MC4 assembly code is relatively simple due in large part to a 3-pin commutation multiplexer on each PWM channel in combination with an interlock mechanism which allows a coherent update to the motor in less than 100 instruction cycles (33.3 useconds). In detail, Figure 4 describes the control register for channel A of the PWM module (CTLA), which controls the polarity of PWM A and the commutation multiplexer output signals to pins PWMA1/PA1, PWMA2/PA3, and PWMA3/PA5 (the lowside drivers on the inverter). The commutation multiplexer will allow individual control of pins PA1, PA3, and PA5 to be forced to a logic level or to receive the channel A PWM signal output. Similarly, the CTLB register controls the polarity of PWM B and the multiplexer signals to pins PWMB1/PA2, PWMB2/PA4, and PWMB3/PA6 (the highside drivers on the inverter). The six output pins (PA1–PA6) are coherently updated via a hardware interlock mechanism which requires writes to CTLB and then CTLA for a commutation sequence to take effect (other interlock sequences exist for updates to the PWM duty cycle and period). Observing the flow chart in Figure 5, the software in this application is responsible for three major tasks. First, and simplest, is the rotation of the motor. Second, the software runs a PID control algorithm during each motor rotation to maintain desired speed under load conditions. And third, the software will detect and correct for a stall condition. In total, the motor control software kernel consumes less than 300 bytes of program memory.

Application Note

Address: \$0014

	Bit 7	6	5	4	3	2	1	Bit 0
Read: Write:	MEA	POLA	MSK3A	MSK2A	MSK1A	CS3A	CS2A	CS1A
l								
Reset:	0	0	0	0	0	0	0	0

MEA — Mask Enable for PWM Channel A

- 0 = Mask bits for commutation multiplexer disabled; MSKxA bits disabled
- 1 = Mask bits for communication multiplexer enabled; apply MSKxA bits
- POLA Polarity for PWM Channel A
 - 0 = Negative polarity; PWM output(s) toggled to one at data match
 - 1 = Positive polarity; PWM output(s) toggled to zero at data match
- MSKxA Mask Bit for PWMAx Pin
 - 0 = PWMAx pin forced to a logic level low
 - 1 = PWMAx pin forced to a logic level high
- CSxA Channel Select Bit for PWMAx Pin
 - 0 = PWMAx pin does not get a PWM signal from channel A
 - 1 = PWMAx pin gets a PWM signal from channel A (overrides mask bit)

Figure 4. PWM Control Register for Channel A (CTL-A)

Figure 5. Motor Control Software Flowchart

Initialization

Immediately after each reset, the software will initialize several variables and registers before jumping to the main loop. In detail, the variable "delta," used in the PID routine, and the variable "timeout," used to count timer overflow interrupts are both cleared to zero. Also, the timer control register is set to enable input capture interrupts for the TCAP1 and TCAP2 pins, as well as timer overflow interrupts. For the PWM outputs, the PWM control registers for channels A and B are initialized to disable the PWM outputs, the rate register is initialized for a PWM period of 23.4 kHz, and the duty cycle is initialized to 6% via the PWM data register. The A/D converter is enabled and initialized to measure conversions on channel 3 for motor speed selection. Finally, the global interrupt bit in the condition code register is cleared to enable hardware interrupts.

Application Note

Stall Condition	Stall conditions occur when the motor is initially started or when
	excessive loads are placed on the motor shaft. A stall condition is
	detected by the MC68HC705MC4 when three or more successive timer
	overflows occur — an indication that the motor is not rotating. The stall
	interrupt routine (triggered by timer overflow interrupts) will slowly
	increase the PWM duty cycle (by 16 counts per overflow), thus
	increasing the amount of current to the motor's coils (see the equation
	on page 3), until the motor rotates. Once the motor begins rotating, the
	PID algorithm will retain control to commutate the motor at its desired
	speed.

Rotation of One of the three sensor interrupts (IRQ, TCAP1, or TCAP2) will occur to the Shaft begin an iteration of commutation. The interrupt service routine will clear (Commutation) the interrupt, check the polarity of the interrupt input pin, toggle the polarity of the pin for its next interrupt, read the position sensor port, and branch to a location which will commutate the motor to its next position in accordance with **Table 1**. Note that the actual commutation sequence involves only writing the two PWM control registers (CTL-B and CTL-A) and the MC68HC705MC4's double buffered PWM output is coherently updated at the end of each PWM period. The desired speed of the motor's shaft (PWM duty cycle) is set by an external potentiometer which is input into channel 3 (PC3/AD3) of the MC68HC705MC4's A/D converter. The main loop continually reads the AD3 pin and implements a PID loop to maintain an updated desired motor speed.

PID Control Algorithm

PID (proportional, integral, derivative) control algorithms often are used in closed-loop systems which need to correct for varying conditions. The underlying concept of PID is to smoothly (over time) correct for an error in the output of a system by comparing its known output to a desired output. First, an error term is calculated and amplified via the proportional operation. And then the integral operation acts to correct for the error, but is damped by the derivative operation which allows for a smooth correction. In this application, a closed-loop PID control algorithm using speed feedback is implemented twice per rotation to compensate for load conditions which require an adjustment to the PWM duty cycle (motor speed). First, actual motor speed is calculated by reading the MC68HC705MC4's 16-bit timer at two different rotation angles of the motor and calculating the difference. Next, the actual motor speed is compared to the desired motor speed which is obtained from the scaled potentiometer value on pin PC3/AD3. The delta between actual and desired speeds is used to calculate a PID error term using the control algorithm shown in Figure 6. The PID error term represents a gradual correction from actual to desired motor speed (for instance, as the actual speed approaches the desired speed, the error term gets smaller). In this experiment, the constants for each PID term (K_P , K_D , and K₁) were determined by trial and error. Note that for ease of programming, all scale factors were limited to fractional powers of two which allows shifts for multiplication and division calculations. Finally, the PID error term is used to "smoothly" correct the rotation speed of the motor in an iterative fashion. A negative error indicates that the motor is rotating too fast, thus the PID error term is subtracted from the PWM duty cycle. Conversely, a positive error term indicates the motor is rotating too slowly and the PID error term is added to the PWM duty cycle.

Figure 6. PID Control Loop Equation

Motor Control Software Analysis

This section analyzes the motor kernel shown in **Software Listing**. Three important software characteristics are investigated: code size, code speed, and CPU loading.

Code Size The motor control algorithm in Software Listing consumes 298 bytes of user ROM (8.3% of total) and 10 bytes of user RAM (5.7% of total). This leaves a large amount of user memory for other important routines such as communications protocols, diagnostics analysis, and A/D calculations.

Speed The execution speed of the motor software is related directly to the of Execution MC68HC705MC4's ability to rotate the motor fast. The motor's speed will be limited by the time it takes the MC68HC705MC4 to read the motor's position and commutate it to its next position. Table 3 shows the cycle counts and total time required for each commutation sequence in one rotation of the motor. Studying Table 3 reveals that the software is limited by the sequences at rotation angles 150° and 330° which perform the PID control loop. Since the motor's position sensors are equally spaced, all sequences must be assumed to take 272 cycles (90.67µ seconds). Therefore, the minimum rotation time is:

(12)(90.67 µmicroseconds) = 1.088 ms

And the maximum rotation speed of the motor is:

(1 rotation/1.088 ms)(1000 ms/1 second) (60 seconds/1min) = 55147 rpm

which is quite adequate for most applications. For higher motor speed requirements, the PID routine could be broken up into equal segments over the commutation sequence of the motor or a simpler control algorithm (such as PI or PD) could be implemented.

Rotation Angle in Degrees	Cycles	Time (μs) @ 3 MHz Bus	Interrupt Source
0 & 180	98	32.67	IRQ
30 & 210	100	33.33	TCAP1
60 & 240	98	32.67	TCAP2
90 & 270	99	33	IRQ
120 & 300	95	31.67	TCAP1
150 & 330	272 (Worst Case)	90.67	TCAP2

|--|

CPU Bandwidth CPU loading involves the amount of CPU bandwidth consumed by the motor control algorithm and will indicate the amount of free time for other algorithms. Totalling the number of cycles in Table 3 and dividing by the rotation time will yield the CPU loading. Table 4 shows a worst case loading of 46.7% CPU bandwidth at maximum speed. Keeping in mind that most brushless DC motors operate at less than 10 k rpm, the MC68HC705MC4 has a high level of efficiency for these types of applications and will allow designers to add extra features to their system.

Motor Speed (rpm)	CPU Bandwidth (%)
55.1 k	46.7
40 k	33.9
20 k	16.9
10 k	8.5
5 k	4.2
3500	3.0

Table 4. CI O Danuwiulii ior various wolor Speeus

Application Note

Conclusion

The MC68HC705MC4 solution provides a good balance of hardware and software for low-cost 3-phase, brushless DC motor control. Variable speed motor control with a PID loop can be achieved using less than 300 bytes of code and minimal CPU bandwidth for most applications. In addition to motor control, the MC68HC705MC4's general-purpose features (such as A/D, SCI, and flexible PWM in a 28-pin package) make it a useful MCU for other applications such as power supply control, smart sensor controller, and battery chargers.

References

MC68HC705MC4 General Release Specification; HC05MC4GRS/D

Electric Motors and Drives: Fundamental, Types, and Applications, 2nd ed.; Austin Hughes; 1993; Newnes

Software Listing

```
1 **********
  * MC68HC705MC4 3-phase brushless DC variable speed motor
2
3 * controller for clockwise rotation.
                                                     *
4 *
   * Interrupt driven
5
  * Version 4/15/96 FOR MC4 APP NOTE
 6
7 *
8
  * Assumed Commutation Sequence for clockwise rotation:
9
   * Angle Hall1 Hall2 Hall3 PhaseA PhaseB PhaseC
                                                     *
10
     0&180 1 0 0 +15V -15V
                                            NC
  * 30&210
                   1
                         0
11
             1
                              +15V
                                     NC
                                            -15V
12
   *
     60&240
              0
                   1
                          0
                               NC
                                      +15V
                                            -15V
                                                     *
  * 90&270
             0
13
                   1
                         1
                               -15V
                                    +15V
                                            NC
  * 120&300
             0
                   0
                         1
                               -15V
                                     NC
                                           +15V
                                                     *
14
15 * 150&330
             1
                   0
                         1
                               NC
                                      -15V
                                            +15V
                                                     *
16
17 * ITC127 Wirelist:
18 * IRQ,PB6
            Phase A sensor (Hall 1)
19 * TCAP1, PB7 Phase B sensor (Hall 2)
20 * TCAP2, PA0 Phase C sensor (Hall 3)
21 * PWMA1/PA1 Phase A Bottom (LOW SIDE)
22 * PWMA2/PA3 Phase B Bottom (LOW SIDE)
23
  * PWMA3/PA5 Phase C Bottom (LOW SIDE)
24 * PWMB1/PA2 Phase A Top (HIGH SIDE)
25 * PWMB2/PA4 Phase B Top (HIGH SIDE)
26 * PWMB3/PA6 Phase C Top (HIGH SIDE)
  * PA7
27
         Not used (Pull up to Vdd)
28 * PC0/AD0 Power board buffered B+ feedback
29 * PC1/AD1 Power board current feedback
30 * PC2/AD2
            Power board temperature diode feedback
31 * PC3/AD3 Speed control pot
32 * PC4/AD4 Direction control
33 * PC5/AD5 Run/Stop control
   34
35
```

AN1702

	36	******	* * * * * * * *	* * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* *
	37	*		I/O	REGISTERS	*
	38	******	* * * * * * * *	* * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * *
0000	39	PORTA	EQU	\$00	;DATA REGISTER FOR PORT A	
0000	40	PORTB	EQU	\$01	;DATA REGISTER FOR PORT B	
0000	41	PORTC	EQU	\$02	;DATA REGISTER FOR PORT C	
0000	42	PORTD	EQU	\$03	;DATA REGISTER FOR PORT D	
0000	43	DDRA	EQU	\$04	;DATA DIRECTION REGISTER FO	DR PORT A
0000	44	DDRB	EQU	\$05	;DATA DIRECTION REGISTER FO	DR PORT B
0000	45	DDRC	EQU	\$06	;DATA DIRECTION REGISTER FO	DR PORT C
0000	46	DDRD	EQU	\$07	;DATA DIRECTION REGISTER FO	DR PORT D
0000	47	CTCSR	EQU	\$08	;CORE TIMER CONTROL AND STA	TUS REGISTER
0000	48	CTCR	EQU	\$09	;CORE TIMER COUNTER REGISTE	lR
	49					
0000	50	PWMAD	EQU	\$10	;PWM A DATA REGISTER	
0000	51	PWMAI	EQU	\$11	; PWM A INTERLOCK REGISTER	
0000	52	PWMBD	EQU	\$12	;PWM B DATA REGISTER	
0000	53	PWMBI	EQU	\$13	; PWM B INTERLOCK REGISTER	
0000	54	CTLA	EQU	\$14	; PWM A CONTROL REGISTER	
0000	55	CTLB	EQU	\$15	; PWM B CONTROL REGISTER	
0000	56	RATE	EQU	\$16	;PWM RATE REGISTER	
0000	57	UPDATE	EQU	\$27	; PWM UPDATE REGISTER	
	58					
0000	59	TCR	EQU	\$17	;TIMER CONTROL REGISTER	
0000	60	TSR	EQU	\$18	;TIMER STATUS REGISTER	
0000	61	ICRH2	EQU	\$19	; INPUT CAPTURE 2 REGISTER -	HIGH BYTE
0000	62	ICRH1	EQU	\$1b	; INPUT CAPTURE 1 REGISTER -	HIGH BYTE
0000	63	OCRH	EQU	\$1d	;OUPUT COMPARE REGISTER - H	IIGH BYTE
0000	64	TMRH	EQU	\$20	;TIMER REGISTER - HIGH BYTE	1
0000	65	ACRH	EQU	\$22	;ALTERNATE TIMER REGISTER -	HIGH BYTE
	66					
0000	67	ADDR	EQU	\$24	;A/D CONVERTER DATA REGISTE	lR
0000	68	ADSCR	EQU	\$25	;A/D CONVERTER STATUS & CNI	RL REGISTER
	69					
0000	70	ISCR	EQU	\$0f	; IRQ STATUS AND CONTROL REG	JISTER
	71					

	72	******	* * * * * *	* * * * * * * * * * *	*********
	73	*			CONSTANTS *
	74	* * * * * * *	* * * * * *	* * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
0000	75	MIN	EQU	\$10	; MINIMUM ALLOWED PWM DUTY CYCLE
0000	76	MAX	EQU	\$FF	;MAXIMUM ALLOWED PWM DUTY CYCLE
	77				
0000	78	HALL1	EQU	0	;HALL 1 SENSOR CONNECTED TO BIT 0
0000	79	HALL2	EQU	7	;HALL 2 SENSOR CONNECTED TO BIT 7
0000	80	HALL3	EQU	6	;HALL 3 SENSOR CONNECTED TO BIT 6
	81				
	82	* Note:	the f	Eollowing c	ontrol constants are valid for ITC122 which uses
	83	* negat	ive lo	ogic (0 is	on, 1 is off) for all 6 drivers. These constants
	84	* should	d be d	changed if	positive logic is used for any of the drivers.
	85				
0000	86	ABOT	EQU	\$09	; CONTROL FOR PWM TO PHASE A BOTTOM
0000	87	BBOT	EQU	\$12	; CONTROL FOR PWM TO PHASE B BOTTOM
0000	88	CBOT	EQU	\$24	; CONTROL FOR PWM TO PHASE C BOTTOM
0000	89	ATOP	EQU	\$08	;CONTROL FOR PHASE A TOP POSITIVE
0000	90	BTOP	EQU	\$10	;CONTROL FOR PHASE B TOP POSITIVE
0000	91	CTOP	EQU	\$20	;CONTROL FOR PHASE C TOP POSITIVE
0000	92	CTLMSK	EQU	\$B8	;CONTROL MASK FOR CTLA AND CTLB REGISTERS
	93				
	94	* * * * * * *	* * * * * *	* * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
	95	*			RAM VARIABLES *
	96	******	* * * * * *	* * * * * * * * * * *	**********************************
0050	97		ORG	\$50	
0050	98	REF	RMB	1	;DESIRED PWM RATE
0051	99	FIRST	RMB	1	;TIMER VALUE AT MOTOR POSITION 0
0052	100	SECOND	RMB	1	;TIMER VALUE AT MOTOR POSITION 5
0053	101	PERIOD	RMB	1	;CALCULATED PWM PERIOD
0054	102	DELTA	RMB	1	;DIFF. BETWEEN DESIRED & ACTUAL SPEED
0055	103	DIFF	RMB	1	;DIFFERENTIAL TERM FOR PID ALGORITHM
0056	104	INT	RMB	1	; INTEGRAL TERM FOR PID ALGORITHM
0057	105	TMP	RMB	1	;TEMPORARY STORAGE VARIABLE #1
0058	106	TMP2	RMB	1	;TEMPORARY STORAGE VARIABLE #2
0059	107	TIMEOUT	RMB	1	; COUNTER FOR TIMER OVERFLOW TIMEOUTS
	108				

	109	******	* * * * * * * *	******	*******
	110	* PROGRA	AM CODE	- Start with ini	tialization of variables and registers *
	111	* * * * * * *	* * * * * * * *	* * * * * * * * * * * * * * * * * *	**************
	112				
0100	113		ORG	\$100	
0100	114	START	EQU	*	
0100 3F14	115		CLR	CTLA	;NEGATIVE PWM POLARITY, MASK DISABLED
0102 3F15	116		CLR	CTLB	
0104 A6F0	117		LDA	#\$F0	;INITIALIZE REFERENCE SPEED
0106 B750	118		STA	REF	
0108 A6E0	119		LDA	#\$E0	;ENABLE TOF, TCAP1, AND TCAP2 INTERRUPTS
010A B717	120		STA	TCR	
010C 3F16	121		CLR	RATE	;INITIALIZE PWM PERIOD TO 23.4 KHZ
010E 3F54	122		CLR	DELTA	;INITIALIZE VARIABLES
0110 3F59	123		CLR	TIMEOUT	
0112 A6F0	124		LDA	#\$F0	;START AT SLOWEST SPEED
0114 B710	125		STA	PWMAD	;PWM DUTY CYCLE TO 6%
0116 A623	126		LDA	#\$23	;ENABLE CHANNEL 3 OF A/D CONVERTER
0118 B725	127		STA	ADSCR	;TURN ON A/D CONVERTER
011A 9A	128		CLI		;ENABLE HARDWARE INTERRUPTS
	129				
	130	******	******	* * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
	131	* The M	MAIN loo	p will continuou	sly monitor PC0/AD0 to determine *
	132	* the c	desired	speed of the mot	or. MAIN can be interrupted from *
	133	* four	sources	(IRQ,TCAP1,TCAP	2, and TOF) as the motor is commutated *
	134	* * * * * * *	******	******	* * * * * * * * * * * * * * * * * * * *
	135				
011B 0F25FD	136	MAIN	BRCLR	7, ADSCR, MAIN	;LOOP ON THE A/D READY BIT
011E B624	137		LDA	ADDR	;GET THE POT VALUE
0120 44	138		LSRA		;SCALE THE POT VALUE
0121 AB50	139		ADD	#\$50	
0123 43	140		COMA		
0124 B750	141		STA	REF	;UPDATE THE REFERENCE SPEED
0126 20F3	142		BRA	MAIN	
	143				
	144	* * * * * * *	******	* * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
	145	* IRQ i	interrup	ts will occur wh	en the sensor on the IRQ pin toggles.*
	146	* This	routine	will clear the	int., toggle the sensitivity of the $\;$ *
	147	* next	trigger	ed interrupt, an	d then branch to a routine which will st
	148	* sense	e the po	sition of the mo	tor. *
	149	******	******	* * * * * * * * * * * * * * * * * *	*************
	150				
0128 A620	151	IRQ	LDA	#\$20	;TOGGLE IRQ SENSITIVITY
012A B80F	152		EOR	ISCR	
012C B70F	153		STA	ISCR	
012E 140F	154		BSET	2,ISCR	;ACKNOWLEDGE INTERRUPT
0130 2016	155		BRA	POS	
	156				

Application Note Software Listing

		157	* * * * * * * *	* * * * * * * *	* * * * * * * * * * * *	* * * *	* * * * * * * * * * * * * * * * * * * *
		158	* Input	capture	interrupts	will	occur when either TCAP1 or TCAP2 *
		159	* senso:	r pins to	oggle. This	rout	ine will first check the source of *
		160	* int.	- TCAP1 (or TCAP2, th	en c	lear the interrupt, toggle the *
		161	* sensi	tivity o	f the next t	rigg	ered interrupt, & then branch to a *
		162	* routin	ne which	will sense	the	position of the motor. *
		163	******	* * * * * * * * *	* * * * * * * * * * * *	* * * *	******
		164					
0132	B618	165	ICISR	LDA	TSR		FIRST PART OF CLEARING FLAG
0134	2A0A	166		BPL	TC1		
0136	B61A	167		LDA	ICRH2+1		
0138	A602	168		LDA	#\$02		;TOGGLE EDGE SENSITIVITY
013A	B817	169		EOR	TCR		
013C	В717	170		STA	TCR		
013E	2008	171		BRA	POS		
0140	B61C	172	TC1	LDA	ICRH1+1		; AND CLEAR ANY FLAGS
0142	A604	173		LDA	#\$04		;Toggle edge sensitivity
0144	B817	174		EOR	TCR		
0146	В717	175		STA	TCR		
		176					
		177	******	* * * * * * * *	* * * * * * * * * * * *	* * * *	*******
		178	* This :	routine v	will sense t	he p	os. of the motor shaft by reading *
		179	* port j	pins PAO	,PB6,and PB7	. т	he routine will then use the value to $*$
		180	* genera	ate an in	ndex into a	jump	table which is used to jump to the $\;$ *
		181	* prope	r commuta	ation sequen	ce.	*
		182	* * * * * * *	* * * * * * * *	* * * * * * * * * * * *	* * * *	* * * * * * * * * * * * * * * * * * * *
		183					
0148	3F57	184	POS	CLR	TMP		
014A	010002	185		BRCLR	HALL1, PORTA	, NOT	1 ;HALL 1 GRAY WIRE NOT = 1
014D	1057	186		BSET	0,TMP		
014F	0F0102	187	NOT1	BRCLR	HALL2, PORTB	, NOT	2 ;HALL 2 BLUE WIRE NOT = 1
0152	1257	188		BSET	1,TMP		
0154	0D0102	189	NOT2	BRCLR	HALL3, PORTB	,NOT	3 ;HALL 3 WHITE WIRE NOT = 1
0157	1457	190		BSET	2,TMP		
0159		191	NOT 3	EQU	*		
		192					
0159	B657	193		LDA	TMP		;GET THE PATTERN
015B	4A	194		DECA			; CHANGE TO NUMBER BETWEEN 0 AND 5
015C	B758	195		STA	TMP2		
015E	48	196		LSLA			;MULTIPLY BY 3
015F	BB58	197		ADD	TMP2		
0161	97	198		TAX			;MOVE ACCUMLATOR TO INDEX REGISTER
0162	DC01FC	199		JMP	JMPTABF,X		;USE THE CLOCKWISE JUMP TABLE
		200	* Note:	use	JUMTABR,X	for	counter clockwise rotation
		201					

		202	* * * * * * *	******	****	* * * * * * * * * * * * * * * * * * * *			
		203	* Commu	tation	pos. 0 degrees f	or the motor. Read/store the value of *			
		204	* the 1	6-bit t	imer and commuta	te the motor to its next position. *			
		205	* * * * * * *	* * * * * * *	*****	* * * * * * * * * * * * * * * * * * * *			
		206							
0165	B622	207	A_TO_B	LDA	ACRH	;SAVE TIMER VALUE AT POSITION 0			
0167	в751	208		STA	FIRST				
0169	A6AA	209		LDA	#CTLMSK^BBOT	;PA3=PWM (PHASE B BOTTOM)			
016B	AEBO	210		T'DX	#CTLMSK^ATOP	; PA6=0 (CTOP) $PA4=0$ (BTOP) $PA2=1$ (ATOP)			
016D	BF15	211	POSX	STX	CTLB	: IIIO a (CIOI), IIII a (DIOI), III a I (IIIO)			
016F	B714	212	1002	STA	CTLA	IIIDATE DA1 DA3 AND DA5			
0171	D/14 D623	212		1 DA		COMDITE TEL SEAD SEATENCE			
0172	0023	213	DOGVO		ACINITI	COMPLETE READ SEQUENCE			
01/3	80	214	PUSAZ	RII					
		215	* * * * * * * *	* * * * * * *	· • • • • • • • • • • • • • • • • • • •	* * * * * * * * * * * * * * * * * * * *			
		210	* 0						
		217	* Commu	tation	pos. 30 degrees	for the motor. Commutate the motor to *			
		218	* its n	ext pos	sition.				
		219	* Note:	if rot	ating the motor	CCW, the PID control routine *			
		220	* must	be rur	during this com	mutation sequence *			
		221	* * * * * * *	* * * * * * *	****	***************************************			
		222							
0174	A69C	223	A_TO_C	LDA	#CTLMSK^CBOT	;PA5=PWM (PHASE C BOTTOM)			
0176	AEB0	224		LDX	#CTLMSK^ATOP	;PA6=0 (CTOP),PA4=0 (BTOP),PA2=1 (ATOP			
0178	20F3	225		BRA	POSX				
		226							
		227	* * * * * * *	* * * * * * *	* * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *			
		228	* Commu	tation	pos. 60 degrees	for the motor. Commutate the motor to *			
		229	* its n	ext pos	sition.	*			
		230	* * * * * * *	* * * * * * *	****	* * * * * * * * * * * * * * * * * * * *			
		231							
017A	A69C	232	B_TO_C	LDA	#CTLMSK^CBOT	;PA5=PWM (PHASE C BOTTOM)			
017C	AEA8	233		LDX	#CTLMSK^BTOP	;PA6=0 (CTOP),PA4=1 (BTOP),PA2=0 (ATOP			
017E	20ED	234		BRA	POSX				
		235							
		236	* * * * * * *	* * * * * * *	****	* * * * * * * * * * * * * * * * * * * *			
		237	* Commu	tation	pos. 90 degrees	for the motor. Commutate the motor to *			
		238	* its n	ext pos	sition.	*			
		239							
		240							
0180	A6B1	210	в то а	עם.ד	#CTT.MCK^ABOT	:DA1-DWM (DHASE A ROTTOM)			
0100	AUDI AFAQ	241	D_10_A	TDX		(PRAL=PWM (PRASE A DOITOM) (DRA=0 (CTOD) DA = 1 (DTOD) DA = 0 (ATOD)			
0104	ALAO	242			#CILMAR BIOP	(CIOP), PA4-1 (BIOP), PA2-0 (AIOP			
0104	20E/	243		BKA	PUSA				
		244				* * * * * * * * * * * * * * * * * * * *			
		245	* ~		100]				
		246	* Commu	tation	pos. 120 degrees	ior the motor. Commutate the motor *			
		247	* to it	s next	position.	*			
		248	******	******	* * * * * * * * * * * * * * * * * * * *	***************************************			
		249							
0186	A6B1	250	C_TO_A	LDA	#CTLMSK^ABOT	;PA1=PWM (PHASE A BOTTOM)			
0188	AE98	251		LDX	#CTLMSK^CTOP	;PA6=1 (CTOP),PA4=0 (BTOP),PA2=0 (ATOP			
018A	20E1	252		BRA	POSX				

		253				
		254	******	* * * * * * *	*****	*************
		255	* Commu	tation	pos. 150 degress	for the motor. Read the timer, *
		256	* excut	e PID a	lgorithm, &commu	tate the motor to its next position. *
		257	* Note:	the P	ID algo. should	NOT be run during this commutation *
		258	* sequ	ence if	the motor rotat	ion is counterclockwise. *
		259	* * * * * * *	* * * * * * *	*****	************
		260				
018C	AD08	261	C_TO_B	BSR	PID	; BRANCH TO PID ROUTINE
018E	АбАА	262		LDA	#CTLMSK^BBOT	;PA3=PWM (PHASE B BOTTOM)
0190	AE98	263		LDX	#CTLMSK^CTOP	;PA6=1 (CTOP),PA4=0 (BTOP),PA2=0 (ATOP)
0192	3F59	264		CLR	TIMEOUT	CLEAR TIMEOUT COUNTER
0194	20D7	265		BRA	POSX	
		266				
		267	* * * * * * *	* * * * * * *	****	***************************************
		268	* This	routine	e will implement	a PID algo. to correct for conditions *
		269	* which	will c	ause the motor t	o rotate slower or faster than desired. $*$
		270	* The P	ID rout	ine will smoothl	y correct for speed by incrementally *
		271	* closi	ng in o	on the desired mo	tor speed. *
		272	******	* * * * * * *	* * * * * * * * * * * * * * * * *	***************************************
		273				
0196	B622	274	PID	LDA	ACRH	;SAVE SECOND TIME
0198	В752	275		STA	SECOND	
		276				
019A	B051	277		SUB	FIRST	;SUBTRACT FIRST
019C	B753	278		STA	PERIOD	;SAVE AS PERIOD
		279				
019E	B050	280		SUB	REF	;CALCULATE DELTA TERM
						(MEASURED PERIOD - ACTUAL)
01A0	в757	281		STA	TMP	
01A2	B054	282		SUB	DELTA	;CALCULATE DIFFERENTIAL TERM
01A4	B755	283		STA	DIFF	
01A6	2A05	284		BPL	ABS	;TAKE ABSOLUTE VALUE
01A8	4F	285		CLRA		
01A9	B055	286		SUB	DIFF	
01AB	B755	287		STA	DIFF	
OIAD	B65/	288	ABS	LDA	TMP	CALCULATE INTEGRAL TERM
01AF	BB54	289		ADD	DELTA	
01BT	B/56	290		STA	INT	
01B3	2AU5	291		вър	ABZU	ABSOLUTE VALUE
01B5	4F	292		CLRA	TNU	
0100	BU50 D756	293		SUB	INI	
01DA	B/50	294	3 D O O	SIA		
01BA	B057	295	ABZU			
01BC	B/54	290		SIA	DELIA	
01CO	∠AUD ∕I⊑	297		OT D A	54	ADOUTITE ANTOR OL DETIN
0101		270 200		CUKA	גיד דידי	
0102	B054 B754	299		SUB CTTN		
0105	44 44	300	c 2	JIA I.QDA	אוחקת	SCALF IT
0106	 11	300	54	TGDV		I DEALE II
0.1.0	- T	J U Z		TOT/H		

AN1702

Application Note

01C7	44	303		LSRA		
01C8	44	304		LSRA		
01C9	В757	305		STA	TMP	
01CB	B655	306		LDA	DIFF	;READ DIFFERENTIAL TERM
01CD	44	307		LSRA		;SCALE IT
01CE	44	308		LSRA		
01CF	44	309		LSRA		
01D0	44	310		LSRA		
01D1	BB57	311		ADD	TMP	;ADD IT ON
01D3	B757	312		STA	TMP	
01D5	B656	313		LDA	INT	;READ INTEGRAL TERM
01D7	44	314		LSRA		;SCALE IT
01D8	44	315		LSRA		
01D9	44	316		LSRA		
01DA	44	317		LSRA		
01DB	BB57	318		ADD	TMP	;ADD IT ON
01DD	В757	319		STA	TMP	
		320				
01DF	B653	321		LDA	PERIOD	;COMPARE ACTUAL SPEED TO DESIRED SPEED
01E1	B150	322		CMP	REF	
01E3	240C	323		BCC	FASTER	;LESS THAN ZERO? -> FASTER
		324				
01E5		325	SLOWER	EQU	*	;DECREASE THE MOTOR SPEED
01E5	B610	326		LDA	PWMAD	
01E7	B057	327		SUB	TMP	;DECREASE PWM DUTY CYCLE
01E9	A110	328		CMP	#MIN	;CHECK LOW SPEED LIMIT
01EB	240C	329		BCC	DONE	
01ED	A610	330		LDA	#MIN	
01EF	2008	331		BRA	DONE	
		332				
01F1		333	FASTER	EQU	*	;INCREASE THE MOTOR SPEED
01F1	B657	334		LDA	TMP	
01F3	BB10	335		ADD	PWMAD	;INCREASE PWM DUTY CYCLE
01F5	2402	336		BCC	DONE	;CHECK THE HIGH SPEED LIMIT
01F7	A6FF	337		LDA	#MAX	
01F9	В710	338	DONE	STA	PWMAD	
01FB	81	339		RTS		
		340				
		341	* Jump	table for	r clockwise rota	tion
01FC		342	JMPTABF	EQU	*	
01FC	CC0165	343		JMP	A_TO_B	;TURN ON Atop AND Bbot DRIVERS
01FF	CC017A	344		JMP	B_TO_C	;TURN ON Btop AND Cbot DRIVERS
0202	CC0174	345		JMP	A_TO_C	;TURN ON Atop AND Cbot DRIVERS
0205	CC0186	346		JMP	C_TO_A	TURN ON Ctop AND Abot DRIVERS
0208	CC018C	347		JMP	C_TO_B	TURN ON Ctop AND Bbot DRIVERS
020B	CC0180	348		JMP	B_TO_A	TURN ON BLOP AND Abot DRIVERS
		349				
		350	* Jump	table for	r counterclockwi	se rotation
		351	* Note:	it using	g counterclockwis	se rotation the PID routine needs
		352	* to b	e run dui	ring the A_TO_C o	commutation sequence

020E		353	JMPTABR	EQU	*	
020E CC	20180	354		JMP	B_TO_A	;TURN ON Btop AND Abot DRIVERS
0211 CC	C018C	355		JMP	C_TO_B	;TURN ON Ctop AND Bbot DRIVERS
0214 CC	20186	356		JMP	C_TO_A	;TURN ON Ctop AND Abot DRIVERS
0217 CC	20174	357		JMP	A_TO_C	;TURN ON Atop AND Cbot DRIVERS
021A CC	C017A	358		JMP	B_TO_C	;TURN ON Btop AND Cbot DRIVERS
021D CC	20165	359		JMP	A_TO_B	;TURN ON Atop AND Bbot DRIVERS
		360				
		361	* * * * * * * *	*******	*****	**************
		362	* Timer	overflow	v int. service r	outine. Checks for prolonged stall *
		363	* condit	cions. Ir	ncreases PWM dut	y cycle until normal operation occurs *
		364	******	*******	* * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
		365				
0220 B6	518	366	TOFISR	LDA	TSR	;CLEAR FLAG
0222 ве	521	367		LDA	TMRH+1	
0224 ве	559	368		LDA	TIMEOUT	;TIMEOUT?
0226 A1	103	369		CMP	#\$03	
0228 23	30D	370		BLS	TOFX	;NO -> EXIT
022A B6	510	371		LDA	PWMAD	;YES -> INCREASE POWER TO COILS
022C AB	310	372		ADD	#\$10	
022E 24	402	373		BCC	TOF2	;OVERFLOW -> SET TO MAX
0230 A6	5FF	374		LDA	#\$FF	
0232 B7	710	375	TOF2	STA	PWMAD	
0234 CC	20148	376		JMP	POS	; MOVE TO NEXT POSITION
0237 30	259	377	TOFX	INC	TIMEOUT	; INCREMENT TIMEOUT COUNTER
0239 80	0	378		RTI		
		379				
		380	******	******	* * * * * * * * * * * * * * * * * *	***************
		381	* Reset,	/Interrup	pt Vectors.	*
		382	* Note t	hat the	core timer and :	SCI vectors are not used in *
		383	* this a	applicati	lon.	*
		384	******	* * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
		385			*	
0 F.F.O		386		ORG	Ş0FF0	
	1.0.0	387			~~~~	
0FF0 01	100	388		FDB	START	CORE TIMER VECTOR - NOT USED
0FF2 01	100	389		FDB	START	SCI VECTOR - NOT USED
	220	390		FDB	TOFISR	TIMER VECTOR 1 - TIMER OVERFLOW
	132	39T		FDB	ICISK	TIMER VECTOR 2 - TCAPI
	1 2 0	392 202		FDB	TCISK	ILMER VECTOR 3 - TCAP2
OFFA 01	100	393 201		FDB	TKČ	IND VECTOR
	100	394 205		FDB	SIART	SWI VECTOR
OFFE UI	LUU	395		F.DR	SIART	KESEI VECIOR

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death masociated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (\widehat{A}) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405; Denver, Colorado 80217.1-800-441-2447 or 303-675-2140

Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 602-244-6609

INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298 Mfax is a trademark of Motorola, Inc.

© Motorola, Inc., 1997