
AN1707
1

MOTOROLA FAST SRAM

Dual Port Memory for Multiprocessor Applications
Prepared by: Jim Lewis and Lakshmi Mandyam

The most common implementation of a multiprocessor
(MP) system is a bus–based multiprocessor, i.e., one where
the processors in the system share a common system bus.
In this implementation, the system bus is the sole avenue to
access main memory and the system’s I/O devices. Because
of this, the system bus becomes a bottleneck causing perfor-
mance degradation. The use of external cache memory can
help alleviate this problem. There are various issues that
should be considered when implementing external caches in
MP systems. This applications note discusses the various
implementations of external caches and the pros and cons of
each implementation. In particular, this document will illus-
trate the advantages of using Motorola’s dual port SRAM, the
MCM69D618, for both the tag and data RAM of an inline
cache. First we will discuss the issues involved with shared
bus architectures, and then we will discuss the issues in-
volved with inline cache implementation.

ISSUES WITH SHARED BUS ARCHITECTURES

A major problem in such a system is that the shared bus
becomes a bottleneck. Each microprocessor has a large ap-
petite for data which will require frequent accesses to
memory. Today’s microprocessors have large internal
caches but these are not enough to satisfy all requests. Each
processor has to compete with other devices for access to

the shared system bus to satisfy its internal data require-
ments. With processor internal clock speeds reaching the
hundreds of megahertz range, but system bus speeds re-
maining in the 66 to 133 MHz range, the gap between the two
is widening rapidly. Therefore, requests from the processor
can queue up more quickly than the main memory system
can satisfy them, leading to system saturation and perfor-
mance degradation.

A solution to these problems is larger external caches that
can satisfy more of the processors’ memory requests, thus
taking some of the burden off of the main memory controller.
However, if these external caches are resident on the system
bus, in addition to everything else already present, the bus
bottleneck problem is still not solved.

The ideal solution is to make the external caches “inline”,
i.e., a given cache sits logically between the system bus and
the processor being supported by the cache. This allows the
processor to have unimpeded access to its own external
cache and also limits the traffic on the system bus to those
transactions which cannot be satisfied by the external
caches.

The system shown in Figure 1 is a generic MP system.
There are four microprocessors connected to the system bus
through an inline cache. The System bus also has I/O and
memory controllers connected to it which are in turn con-
nected to I/O devices and main memory respectively.

I/O
 CONTROL

Figure 1. Generic MP System

I/O DEVICES

MEMORY
CONTROL

MAIN MEMORY

µP

INLINE
CACHE

INLINE
CACHE

INLINE
CACHE

INLINE
CACHE

SYSTEM BUS

µP µP µP

NetRAM is a trademark of Motorola, Inc.

Order this document
by AN1707/D

��������
SEMICONDUCTOR TECHNICAL DATA

AN1707

1/31/97

 Motorola, Inc. 1997

AN1707 MOTOROLA FAST SRAM
2

As with most designs, there is more than one way to solve
the problem of implementing an inline cache. There are two
basic assumptions to be made about the cache:

• It will require two logical forms of RAM: tag and data
• A controller will be needed to communicate with both the

processor and system buses as well as control the tag
and data RAMs.

To better understand the advantages of each inline cache
implementation, we will first examine cache coherency with
inline caches.

CACHE COHERENCY WITH INLINE CACHES

In addition to limiting system bus traffic, an inline cache
helps to maintain the coherence of system memory by moni-
toring all transactions that occur on the system bus. In partic-
ular, the inline cache “snoops” or watches for transactions
which may require state changes to cached data due to the
cache coherence protocol of the system. These transactions
shall be referred to as snoop transactions. When a snoop
transaction is detected, the inline cache is responsible for en-
suring that the data in both the processor’s on–chip cache
and the inline’s own data RAM transition to the proper state
when the transaction completes.

A straightforward method of ensuring that coherence is
maintained is for the inline cache to mimic all snoop transac-
tions on the processor bus. For example, when the inline

cache detects snoop transaction A on the system bus, it will
initiate transaction A’ on the processor bus. See Figure 2a.
This, in effect, causes the processor to see all snoop trans-
actions as if the inline cache were not there. While transac-
tion A’ is proceeding, the inline cache will also check its own
tag to determine if any state changes are necessary. This im-
plementation negates one of the advantages of having an in-
line cache, i.e., isolating the processor from the system so
that it will have higher bandwidth access to its external
cache.

Processor isolation can be achieved by the inline cache
with a process called snoop filtering. Snoop filtering limits the
snoop transactions propagated by the cache to the proces-
sor bus from the system bus. “Inclusion” is a necessary
condition for snoop filtering. Inclusion means that the con-
tents of the processor’s cache are a subset of the contents of
the external cache. By maintaining inclusion, the inline cache
can now query its own tag RAM when it detects a snoop
transaction. So when there is a snoop transaction A on the
system bus, the cache generates a transaction A’ to the
cache tag. If the cache tag does not contain the memory
locations affected by snoop transaction A then no further ac-
tion needs to be taken and the processor will never be made
aware that the transaction even occurred. However, if the in-
line cache determines that the snoop transaction affects its
own contents, it will propagate the snoop transaction as
transaction B to the processor bus. See Figure 2b.

PROCESSOR BUS

CONTROL CACHE TAG RAM

SYSTEM BUS

ADDRESS
AND

CONTROL

ADDRESS
AND

CONTROL

ADDRESS

DATA

2. TRANSACTION A’

1. TRANSACTION A

PROCESSOR BUS

CONTROL CACHE TAG RAM

SYSTEM BUS

ADDRESS
AND

CONTROL

ADDRESS
AND

CONTROL

ADDRESS

DATA

3. TRANSACTION B

1. TRANSACTION A

a. Without Snoop Filtering b. With Snoop Filtering

Figure 2. Cache Coherency Implementations

2. TRANSACTION A’

µP µP

AN1707
3

MOTOROLA FAST SRAM

The inline cache, as previously described, now has the
task of handling requests from two different sources: proces-
sor–initiated transactions on the processor bus and snoop
transactions on the system bus. Both of these transactions
require access to the tag RAM of the inline cache.

One utilization of this shared resource is to have a single
physical tag RAM as shown in Figure 3. In this design, the
inline cache implements an arbitration scheme to resolve
collisions between two simultaneous requests. While this im-
plementation may be the least expensive, it imposes a per-
formance penalty on the processor by forcing it to give up
access to its external cache whenever there is a snoop trans-
action occurring on the system bus.

Another design uses two physical copies of the tags, one
dedicated to servicing processor transactions and the other
dedicated to queries from snoop transactions as shown in Fig-
ure 4. While this allows the processor the greatest access to
the external cache it has the added cost of twice as much tag
RAM and the overhead of maintaining two copies of the tag.

The third alternative is implemented using Motorola’s
MCM69D618 as the tag RAM as shown in Figure 5. The
MCM69D618 is a dual port memory with two address ports
(AX,AY) and two data ports (DQX, DQY) into the same
SRAM array. The MCM69D618 can be clocked at 83 MHz
and the user can perform reads and writes to different ad-
dresses simultaneously. Figure 5 illustrates how the
MCM69D618 could be situated within the inline cache sub-
system. The X port can be used to satisfy processor re-
quests and the Y port can be used to query the tag when
snoop transactions are detected. It is assumed that to pre-
vent overloading the bus, the Y address port (AY) cannot be
direct ly connected to the system bus. By using the
MCM69D618 in this manner, an excellent cost–effective
solution is obtained without compromising performance.

PROCESSOR BUS

CONTROL CACHE TAG
RAM

SYSTEM BUS

ADDRESS
AND

CONTROL

ADDRESS
AND

CONTROL

ADDRESS

DATA

Figure 3. Inline Cache Implementation
with a Single Tag RAM

INLINE
CACHE

µP

PROCESSOR BUS

CONTROL

PROCESSOR
CACHE TAG

RAM

SYSTEM BUS

ADDRESS
AND

CONTROL

ADDRESS
AND

CONTROL

ADDRESS

DATA

Figure 4. Inline Cache
with Two Tag RAMs

SYSTEM
CACHE TAG

RAM

INLINE
CACHE

DATA

ADDRESS

µP

PROCESSOR BUS

CONTROL

CACHE TAG
NetRAM
64K X 18

MCM69D618

SYSTEM BUS

CONTROL

ADDRESS
AND

CONTROL

Figure 5. Inline Cache Tag Using Dual
Port SRAM

INLINE
CACHE

ADDRESS

DQX AX

DQY AY

µP

AN1707 MOTOROLA FAST SRAM
4

Figure 6.

DATA CACHE
NetRAM
64K X 18

MCM69D618
CONTROL

PROCESSOR LOCAL BUS

DATA CACHE
NetRAM
64K X 18

MCM69D618

DATA CACHE
NetRAM
64K X 18

MCM69D618

DATA CACHE
NetRAM
64K X 18

MCM69D618

SYSTEM BUS

14 14 1414 2

2
DQX AX

DQY AY

DQX AX

DQY AY

DQX AX

DQY AY

DQX AX

DQY AY

A27 – A28
BURST COUNT

A

µP

DATA RAM IMPLEMENTATION IN AN INLINE CACHE

Another function that must be performed by an inline
cache is the transfer of data between the processor and sys-
tem buses. Assuming 64–bit buses plus parity, the inline
cache must have 144 signal pins just for the data path be-
tween the two buses. The MCM69D618 has a pass through
function which can write the data input from one data port to
the other enabling the RAM to serve as a data path from the
processor bus to the system bus. Therefore, by using
MCM69D618 as the building block for the data RAM of the
inline cache, the data signal pins can be removed from the
inline cache control device.

Figure 6 shows four MCM69D618s being used to imple-
ment a 512KB cache. As with the tag RAM described earlier,
the X port connects to the processor bus and the Y port con-
nects to the system bus. Again, the Y port addresses are as-
sumed to come from the inline cache controller rather than
the system bus to reduce loading. Since the MCM69D618 is
not a BurstRAM, the two least significant bits of the X port
address will need to come from the inline cache controller to
support burst responses to processor requests.

The configurable I/Os let the user read from or write to ei-
ther of the data ports. Although the clock speed is 83 MHz
because of the dual port feature, we can get the same perfor-
mance as a 166 MHz single address RAM. The

MCM69D618 provides a cost–effective method of imple-
menting an inl ine cache for systems that have cost
constraints placed on them.

CONCLUSION

This document has shown how the MCM69D618 can be
used as the building block to implement an inline cache. The
MCM69D618 provides an excellent solution for the tag RAM
without compromising performance. It can also facilitate a
cost–effective solution for the data RAM at the expense of a
lower performance system.

The MCM69D618 system performance enhancing fea-
tures are:

• The external clock runs at 83 Mhz.
• The fast access times of 6 ns help boost performance.
• The dual addressing scheme enables the user to

perform simultaneous read/writes, reads/reads,
writes/writes in the same clock cycle. This provides
performance equivalent to 166 MHz of a conventional
single address RAM.

• The price will be at a better competitive price point
compared to other dual ports of this depth and
performance.

Thus the MCM69D618 can greatly enhance system price/
performance.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

Mfax is a trademark of Motorola, Inc.
How to reach us:
USA/EUROPE/Locations Not Listed : Motorola Literature Distribution; JAPAN : Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4–32–1,
P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447 Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan. 81–3–5487–8488

Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 ASIA/PACIFIC : Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

INTERNET: http://motorola.com/sps

AN1707/D◊

