

Order this document
 by AN1718/D

SEMICONDUCTOR

MOTOROLA

APPLICATION NOTE

A Serial Bootloader for Reprogramming
the MC68HC912B32 Flash EEPROM
By Gordon Doughman, Field Applications Engineer Software Specialist

1 Introduction
The MC68HC912B32 is a member of the M68HC12 family of 16-bit microcontrollers. It contains 32,768
bytes of bulk-erasable, byte- or word-programmable Flash EEPROM memory. Including Flash EE-
PROM, rather than EPROM or ROM, memory on a microcontroller has significant advantages for both
the OEM and the end customer.

For the OEM, placing system firmware in Flash EEPROM memory provides numerous benefits. First,
firmware development can be extended late into the product development cycle by eliminating the ROM
lead times. Second, when an OEM has several products based on the same microcontroller, it can help
reduce the inventory problems associated with ROM-based microcontrollers. Finally, if a severe bug is
found in the product’s firmware during the manufacturing process, the in-circuit reprogrammability of
Flash EEPROM memory prevents the OEM from having to scrap any of the work-in-process.

The ability of Flash EEPROM memory to be electrically erased and reprogrammed also provides ben-
efits for the OEM’s end customers. The customers’ products can be updated or enhanced with new fea-
tures and capabilities without having to replace any components or return the product to the factory.

Unlike the the M68HC11 family, the MC68HC912B32 does not have a Bootstrap ROM containing firm-
ware that allows initial programming of the Flash EEPROM directly through the on-chip Serial Commu-
nications Interface (SCI) port. Initial on-chip Flash EEPROM programming requires either special test
and handling equipment to program the device before it is placed in the target system or a programming
tool such as the SDI12 or the M68EVB912B32, available from Motorola, that is capable of programming
the Flash EEPROM through the Real Time Background Debug interface.

The M68EVB912B32 on-chip Flash EEPROM, however, does contain a 2k-byte erase-protected boot-
block. The bootblock may be used to contain a special bootloader program that allows erasure and pro-
gramming of the remaining 30k of the on-chip Flash. In addition to implementing the Flash programming
and erase algorithms, the serial bootloader firmware may contain a simple serial communications pro-
tocol that allows the use of the on-chip SCI port for obtaining the data to be programmed into the Flash.

Programming and erasing the on-chip Flash EEPROM memory of the MC68HC912B32 presents some
unique challenges. Even though the on-chip Flash EEPROM memory has an erase-protected bootblock
to contain the firmware implementing the programming and erase algorithms, the code cannot be run
directly out of the Flash EEPROM bootblock while the remainder of the Flash array is being erased or
programmed. Consequently, during the erase and reprogram process, the code must reside in other
on-chip memory or in external memory. In addition, because the erase protected bootblock resides in
the top 2k of the memory map ($F800—$FFFF), the reset and interrupt vectors cannot be changed with-
out erasing the entire bootblock. This necessitates that a secondary reset/interrupt vector table be
placed outside of the 2k bootblock.

The remainder of this application note will explore the requirements of a serial bootloader and the im-
plementation of the programming algorithm for the MC68HC912B32 Flash EEPROM.
© MOTOROLA INC, 1997

2 Overview of the MC68HC912B32’s Flash EEPROM
The MC68HC912B32 Flash EEPROM module is arranged as a 16,384 x 16-bit module and may be
read as bytes or aligned or misaligned words. Programming is accomplished only by writing bytes or
aligned words. The Flash module requires an externally applied program/erase voltage (VFP) to pro-
gram or erase the array. The program/erase voltage is applied statically to the VFP pin, however, the
VFP pin must always be kept at greater-than-or-equal to VDD -0.5 volts to prevent damage to the Flash
array. To prevent the accidental erasure or programming of the Flash array, the VFP should only be ap-
plied during the program/erase procedure.

Like most external Flash memory devices, the MC68HC912B32 Flash EEPROM module does not pro-
vide any automatic timing sequences during the erase or programming cycles. Programming or erasure
is accomplished by a sequence of timed writes to the Flash control registers and a byte or aligned word
write to the Flash array itself. The programming firmware is entirely responsible for the implementation
of the erase and programming algorithms.

2.1 Erasure of the Flash EEPROM Array

Erasure of the MC68HC912B32 Flash EEPROM involves a procedure that can be divided into two
parts. Erase pulses to the Flash array are applied by manipulating bits in the FEECTL register. After a
pulse is applied, each location of the Flash array is checked for an erased state. When all locations in
the Flash array are found to be in the erased state, or the maximum number of erase pulses have been
applied, the same number of erase pulses required to erase the array are applied again. This procedure
provides a 100% erase margin to the Flash array. After the margin pulses are applied, the Flash array
should again be checked to ensure that it was properly erased. The simplified flowchart shown in Figure
1 describes these steps. Detailed descriptions and flowcharts, including timing requirements, describing
the Flash erase procedure can be found in the MC68HC912B32 Technical Summary (document num-
ber MC68HC912B32TS/D).
 MOTOROLA AN1718/D
2

Figure 1 Simplified Flash Erase Algorithm Flowchart

2.2 Flash Array Programming

Programming the Flash array involves a procedure similar to the erase procedure. As mentioned pre-
viously, the MC68HC912B32 Flash may be programmed as either bytes or aligned words. Attempting
to program a misaligned word of Flash memory will result in only the high byte (lower address) of the
word being programmed into the Flash memory array. As with the erase procedure, programming the

Configure Array
For Erasure

Apply VFP to
VFP pin

Flash
Array

Erased?

Yes

No

Max Erase
Pulses

Applied?

Yes

No

Apply Erase
Pulse

Apply Margin
Erase Pulse(s)

Flash
Array

Erased?

YesNo

Remove VFP
From VFP pin

Bad Fl ash
Array

Flash Erase
Successful
AN1718/D MOTOROLA
3

Flash involves applying a series of programming pulses to the Flash array by manipulating bits in the
FEECTL register. After each pulse is applied, the programmed location is checked to ensure that it con-
tains the proper data. After the location reaches the proper value, or the maximum number of program-
ming pulses have been applied, the same number of pulses required to program the array are applied
again. The second set of programming pulses provides a 100% programming margin to the Flash
memory location and ensures the integrity of the programmed data. The simplified flowchart shown in
Figure 2 describes these steps. Detailed descriptions and flowcharts, including timing requirements, de-
scribing the Flash programming procedure can be found in the MC68HC912B32 Technical Summary
(document number MC68HC912B32TS/D).

Figure 2 Simplified Flash Programming Algorithm Flowchart

Configure Array
For Programming

Apply VFP to
VFP pin

Location
Programmed?

Yes

No

Max
Programming

Pulses
Applied?

Yes

No

A pply
Program mi ng

Pul se

Apply Margin
Programming

Pulse(s)

Location
Programmed?

YesNo

Remove VFP
From VFP pin

Bad Flash
Array

Program Next
Byte/Word
 MOTOROLA AN1718/D
4

3 General Flash Serial Bootloader Requirements
Two of the most important requirements for a program such as the Flash serial bootloader are that it
have minimal impact on the final product’s software performance and add little or nothing to the hard-
ware costs. The Flash serial bootloader described in this application note meets both of these require-
ments.

Because the MC68HC912B32 includes an on-chip SCI, no additional external hardware is required to
communicate with a host computer with the possible exception of an RS-232 level translator chip. In
many systems, this may already be a part of the system design as the SCI is often used as a diagnostic
port. If an RS-232 level translator is not included as part of the basic system design, a small adapter
board could be constructed containing the level translator and RS-232 connector. This board could then
be used by service personnel when updating the system firmware so that the cost of the level translator
would not have to be added to each system. In addition to the SCI port, a single input pin is required to
inform the serial bootloader startup code whether to execute the Flash serial bootloader code or jump
to the system application program.

As mentioned previously, because the MC68HC912B32 interrupt and reset vectors reside in the 2k-byte
bootblock, they cannot be changed without erasing the bootblock itself. Even though it is possible to
erase and reprogram the bootblock from within the bootloader program, it is inadvisable to do so. If
anything were to go wrong during the process of reprogramming the bootblock, it would be impossible
to recover from the situation without the use of special programming hardware. For this reason, the se-
rial bootloader includes a jump table that uses a secondary interrupt and reset vector table located just
below the 2k bootblock. Each entry in the secondary interrupt table consists of a 2-byte address that
mirrors the primary interrupt and reset vector table located in the erase-protected bootblock. Table 1
shows the correspondence between the primary and secondary interrupt vector tables.

Making use of the CPU12’s indexed-indirect program counter relative addressing, each jump table entry
consists of a single 4-byte JMP instruction. This form of the JMP instruction requires only six CPU clock
cycles to execute, adding only 750 ns to the interrupt latency for a system operating at 8.0 MHz. In most
applications this small amount of additional time will not affect the overall performance of the system.
AN1718/D MOTOROLA
5

Table 1 Primary/Secondary Interrupt Vector Addresses

4 Using The S-Record Bootloader
The S-Record bootloader utilizes the on-chip SCI for communications and does not require any special
programming software for the host computer. The only host software required is a simple terminal pro-
gram that is capable of communicating at 9600 baud and is able to wait for a prompt string before send-
ing a line of text to the MC68HC912B32. The serial bootloader presents a simple command line
interface to the user and accepts Motorola S-Record object files. The communications rate of 9600
baud was chosen simply because it is the most common baud rate available on a wide range of com-
puting devices. However, the communication baud rate is the limiting factor in the length of time re-
quired to program the Flash. At 9600 baud, an S-record file containing 30k of object code requires
approximately 90 seconds to be programmed into the Flash. If the communication rate were doubled to
19,200 baud or quadrupled it to 38,400 would cut the programming time by approximately one half or
one quarter respectively.

Execution of the serial bootloader is selected by connecting port pin PDLC0 to a logic ‘0’ level. Applying
power to the target system or pressing the reset switch causes the bootloader to display the following
prompt on the host terminal’s screen:

(E)rase or (P)rogram:

Before selecting the Erase or Program function, VFP must be applied to the VFP pin of the
MC68HC912B32.

Interrupt Vector Address I nterrupt Source Secondary Vector Address

$ FFC0 – $ FFCF Reserved $ F7 C0 – $ F7 CF
$ FFD0 – $ FFD1 BDLC (J1850) $F7D0
$ FFD2 – $ FFD3 ATD $F7D2
$ FFD4 – $ FFD5 Reserved $F7D4
$ FFD6 – $ FFD7 SCI 0 $F7D6
$ FFD8 – $ FFD9 SPI $F7D8
$ FFDA – $ FFDB Pulse Acc. Input Edge $F7DA
$ FFDC – $ FFDD Pulse Acc. Overflow $F7DC
$ FFDE – $ FFDF Timer Overflow $F7DE
$ FFE0 – $ FFE1 Timer Channel 7 $F7E0
$ FFE2 – $ FFE3 Timer Channel 6 $F7E2
$ FFE4 – $ FFE5 Timer Channel 5 $F7E4
$ FFE6 – $ FFE7 Timer Channel 4 $F7E6
$ FFE8 – $ FFE9 Timer Channel 3 $F7E8
$ FFEA – $ FFEB Timer Channel 2 $F7EA
$ FFEC – $ FFED Timer Channel 1 $F7EC
$ FFEE – $ FFEF Timer Channel 0 $F7EE
$ FFF0 – $ FFF1 Real Time Interrupt $F7F0
$ FFF2 – $ FFF3 IRQ $F7F2
$ FFF4 – $ FFF5 XIRQ $F7F4
$ FFF6 – $ FFF7 SWI $F7F6
$ FFF8 – $ FFF9 Illegal Opcode Trap $F7F8
$ FFFA – $ FFFB COP Failure Reset $F7FA
$ FFFC – $ FFFD Clock Mon. Fail Reset $F7FC
$ FFFE – $ FFFF Reset $F7FE
 MOTOROLA AN1718/D
6

4.1 Flash Erasure

Selecting the Erase function by typing an upper or lower case ‘E’ on the terminal will cause a bulk-erase
of the Flash EEPROM array except for the 2k bootblock where the S-Record bootloader program re-
sides. After the erase operation, a verify operation is performed to ensure that all locations are properly
erased. If the erase operation was successful, the message ‘Erased’ is displayed on the screen and the
bootloader’s prompt is redisplayed.

If any locations were found to contain a value other than $FF, the message ‘Not Erased’ is displayed
on the terminal screen and the bootloader prompt is redisplayed. If the MC68HC912B32 device will not
erase after one or two attempts, check the VFP connection and measure the value of VFP to ensure that
it complies with the value published in the Technical Supplement MC68HC912B32 Electrical Charac-
teristics. A VFP voltage lower than that specified may cause the erase operation to fail. Applying a VFP
voltage higher than that specified may cause permanent damage to the device.

4.2 Flash Programming

The programming algorithm used for the on-chip FLASH memory is such that the time required to pro-
gram each byte or word can vary from as little as 60 µs to as long as 3.5 ms. However the programming
time for each byte or word will typically take no more than 120–180 µs. Because of this variability, the
S-Record bootloader uses a software handshaking protocol to control the flow of S-Record data from
the host computer. When the S-Record bootloader is ready to receive an S-Record, an ASCII asterisk
character (*) is sent to the host computer. The host computer should respond by sending a single S-
Record. The S-Record may include a carriage return and/or line feed character(s). Most commercial
terminal programs capable of sending ASCII text files have the ability to wait for a specific character or
string before sending a line of text.

Typing an upper or lower case ‘P’ on the terminal causes the bootloader to enter programming mode
and wait for S-Records to be sent from the host computer. The host computer should begin by sending
a single S-Record and then waiting for the bootloader to return an ASCII asterisk character (*) before
sending subsequent S-Records.

The programming operation is terminated when the bootloader receives an ‘S9’ end-of-file record. If the
S-Record object file being sent to the bootloader does not contain an ‘S9’ record, the bootloader will not
return its prompt and will continue to wait for the end of file record. Pressing the target’s reset switch,
will cause the bootloader to return to its prompt.

If a Flash memory location will not program properly, the message ‘Not Programmed’ is displayed on
the terminal screen and the bootloader’s prompt is redisplayed. If problems are encountered when pro-
gramming the Flash memory, check the VFP connection to the target MCU and measure the value of
VFP to ensure that it complies with the value published in the MC68HC912B32 data sheet. A VFP volt-
age lower than that specified may cause the programming operation to fail. Applying a VFP voltage high-
er than that specified may cause permanent damage to the device.

If the VFP connection is okay and VFP is within the specified range, the problem may be caused by an
S-Record containing data that is outside the range of the available on-chip Flash. The S-Record data
must be within the range $8000—$F800.

Note: The S-Record bootloader should not be used with S-Records containing a code/data field longer
than 64 bytes (S-Record length field greater than 67 (0 x 43) bytes). Sending an S-Record with a code/
data field longer than 64 bytes (S-Record length field greater than 67 (0 x 43) bytes) will cause the boot-
loader to crash and/or program incorrect data into the Flash.
AN1718/D MOTOROLA
7

5 Bootloader Software
The software implementing the serial Flash bootloader, shown in Listing 1, consists of five basic parts:
Startup code, secondary interrupt vector jump table, bootloader control loop, programming code and
erase code.

5.1 Startup Code

At power up or reset, CPU control is transferred to the routine beginning at the label BootStart. This
routine checks the state of PORTDLC bit number 6. If PORTDLC bit number 6 is equal to a logic ‘0’, the
code between the labels BootLoad and BootLoadEnd are copied from Flash into the on-chip RAM
and CPU control is passed to the bootloader code in RAM. If PORTDLC bit number 6 is equal to a logic
‘1’, CPU control is transferred to the program defined by the address in the secondary reset vector.

5.2 Bootloader Control Loop

The bootloader control loop begins by initializing the SCI and timer system. The SCI is initialized to 9600
baud, 8 data bits, 1 start bit, 1 stop bit and no parity. The timer system is enabled with the fast flag clear
option and configures channel 0 for use as an output compare. The output compare function is used to
produce accurate timing delays for both the programming and erase routines. Enabling the fast flag
clear option allows the timer interrupt flag bit for channel 0 to be cleared simply by writing a new value
to the channel 0 timer register.

After initialization of the hardware, the bootloader displays its prompt and waits for the erase or program
command to be entered. If a letter other than ‘E’ or ‘P’ is entered, the bootloader prompt is simply redis-
played on the next line. After returning from the execution of either the erase or program command, a
message is displayed indicating either success or failure. Execution is then transferred back to the top
of the control loop where the command prompt is redisplayed.

5.3 Erase Command Code

The code implementing the erase command consists of a single subroutine beginning at the label FE-
rase in Listing 1. The subroutine implements the Flash erase algorithm as described in the
MC68HC912B32 Technical Summary (document number MC68HC912B32TS/D). Basically the algo-
rithm involves applying successive 100 ms erase pulses to the Flash array until the array is erased or
a maximum of five erase pulses have been applied. Once the array is erased, the same number of erase
pulses that were required to erase the Flash array is applied once again to provide a 100% erase mar-
gin. Figure 3 contains a detailed flow chart of the FErase subroutine.
 MOTOROLA AN1718/D
8

Figure 3 FErase Subroutine Flowchart

5.4 Program Command Code

The software required to implement the program command is more complex that the Flash erase rou-
tine and requires three major subroutines and several simple supporting subroutines. The main sub-
routine implementing the program command begins at the label FProg in Listing 1. This small
subroutine, shown in the flowchart in Figure 4, simply coordinates the reception of S-Records, the pro-
gramming of the S-Record data into the Flash and sending the ‘pace’ character to the host computer
requesting that the host send the next S-Record. In addition, it checks the type of each S-Record re-
ceived from the host, ignoring ‘S0’ records and terminating the command when an ‘S9’ record is re-
ceived. Each time a valid ‘S1’ record is received, the ProgFBlock subroutine is called to program the
received data into Flash. If an error occurs during the reception of an S-Record or during the Flash pro-
gramming process, the program command is terminated.

Set Timer
Prescaler to ÷ 32

Disable Erasure
of Bootblock

Enable Address/
Data Latches

Write To Flash
Latches

Apply Vpp to
Flash Array

Delay
100ms

Remove Vpp
from Flash Array

Delay 1ms

NumPulses
= 0

MarginFlag
= 0

Flash
Array

Erased?

Yes

No

NumPulses++

NumPulses
<=

MaxPulses?

YesNo

MarginFlag
= 1

MarginFlag
==
1?

Yes
No

Flash
Array

Erased?

Yes

No

Return Erased
Status

Return
 NotErased'Error'

MarginFlag
==
0?

No

Yes
NumPulses--

Yes

NumPulses
==
0?

No
AN1718/D MOTOROLA
9

Figure 4 Program Command Flowchart

5.5 GetSRecord Subroutine

The GetSRecord subroutine is called by FProg to receive a single S-Record from the host computer.
GetSRecord begins by allocating space on the stack for two local variables, SRecBytes and Check-
Sum. The SRecBytes variable is used to hold the converted value of the S-Record length field. This
value includes the number of bytes contained in the load address field, the length code/data field and
the checksum field. The variable CheckSum is used to contain the calculated checksum value as the

Set Timer
Prescaler to ÷ 1

S-Record
Received

OK?

No

Yes

Call GetSRecord
to receive S-Rec.

S0
Received?

No

Yes

S9'Record'
Received?

No

Yes

Program S-Record
Data into Flash

Request Next
S-Record From

Host

Return

Return Error
Indication

Data
Programmed

Properly?

NoYes Return Error
Indication

'Record'
 MOTOROLA AN1718/D
10

S-Record is received.

Next, the subroutine begins to receive characters from the host searching for the character pairs ‘S0’,
‘S1’ or ‘S9’ which indicate the start of a valid S-Record. Once a start of record is found, the S-Record
length byte is received and saved in the local variable SRecBytes. Three is subtracted from the S-
Record length byte and saved in the global variable DataBytes. This value represents the length of
the code/data field and is used by the ProgFBlock subroutine when programming the S-Record data
into the Flash. Finally, the load address, code/data field and the checksum field are received and placed
in a global data buffer.

During the process of receiving the load address, code/data field and the checksum field each received
byte is added to the CheckSum local variable. Because the received checksum is actually the ones
compliment of what the calculated checksum should be, adding the two values should produce a result
of $FF. The increment of the variable CheckSum at the end of the receive loop should produce a result
of zero if the checksum and all the S-Record fields were received properly. This will result in a ‘equal’
condition being returned if the S-Record was properly received and a ‘not equal’ condition being re-
turned if there was a problem receiving the S-Record. Figure 5 contains the flowchart for the
GetSRecord subroutine.

Figure 5 GetSRecord Subroutine Flowchart

5.6 ProgFBlock Subroutine

The ProgFBlock subroutine programs the data received by the GetSRecord subroutine into the on–
chip Flash. The subroutine implements the Flash programming algorithm as described in the
MC68HC912B32 Technical Summary (document number MC68HC912B32TS/D). Essentially the algo-

Get a character
from the SCI

Start of
Record

Character?

Yes

No

Get a character
from the SCI

S0
Record?

Yes

No S1
Record?

Yes

No S9
Record?

Yes

No

RecType
== 0''

Get Record
Length Byte

Receive
Load Address code
/data & ChkSum

Checksum
OK?

Yes

No Return
Error

RecType
== 1''

RecType
== 9''

Return

Calculate & Save
Data Field Length
AN1718/D MOTOROLA
11

rithm involves applying successive 20–25 µs programming pulses to a byte or aligned word until the
memory location is properly programmed or a maximum of 50 programming pulses. Once the memory
location is programmed, the same number of pulses that were required to program the location are ap-
plied again to provide a 100% programming margin.

To simplify the implementation of the programming algorithm and to keep the bootloader code as small
as possible, the ProgFBlock routine only programs a single byte of the Flash at a time. This may seem
to impose a severe time penalty when programming 30k of Flash. However, the actual time saved would
be extremely small in relation to the amount of time required to send an S-Record file containing 30k of
object code. Consider, for example, that most Flash locations are able to be programmed with the ap-
plication of three programming and three margin pulses. Therefore using a total time of 33 µs per byte,
22 µs programming time and 11 µs read/recovery time, would require 33 µs x 6 * 30720 or approximate-
ly 6.1 seconds to program 30K bytes a byte at a time. If words were programmed instead, the time would
be cut approximately in half.

As mentioned previously, the communication baud rate is the limiting factor in the length of time re-
quired to program the Flash. Consider an S-Record file containing 30k of object code. If each S–Record
contained 32 bytes in the code/data field, each S-Record would be comprised of 74 ASCII characters
and the file would contain 960 S-Records for a total file size of 71040 bytes not counting carriage return
and/or line feeds. Just transmitting this much ASCII data at 9600 baud would require approximately 74
seconds. This is more than an order of magnitude greater than the three seconds that would be saved
by programming a word at a time. Even at a baud rate of 38,400 it would require approximately 19 sec-
onds to transmit 71040 bytes.

The ProgFBlock routine begins by allocating space on the stack for two variables, ProgPulses and
PMarginFlag. During programming, the ProgPulses variable is used to maintain a count of the num-
ber of programming pulses applied to each programmed byte. When applying the margin pulses, this
value is decremented until it reaches zero. The PMarginFlag variable is used as a boolean flag to in-
dicate that the programming margin pulses are being applied. When set to non-zero, it modifies the pro-
gram flow so that the contents of the Flash memory is not compared to the S-Record data after the
application of each margin pulse.

Like the FErase subroutine, channel 0 of the on-chip timer is used to produce the timing delays re-
quired for the programming pulses and the read/recovery period. However, because of the need to pro-
duce short, accurate time delays, the timer is used in a slightly different manner. Before each program
and read/recovery cycle begins, the timer subsystem is disabled by clearing the Timer ENable (TEN)
bit in the Timer Status and Control Register (TSCR). When the timer is disabled, the contents of all timer
registers, including the value of the Timer CouNTer Register (TCNT), are maintained. This allows the
software to read the static value of the TCNT register, add to it a value that will produce a delay of 22
µs and write the resulting value to the TC0 register without having to compensate for the intervening
instruction execution time. The programming voltage is then applied to the array by setting the ENable
Programming/Erase bit (ENPE) in the Flash EEPROM ConTroL register (FEECTL) and the timer sys-
tem enabled. When the programming time period has expired, the programming voltage is removed
from the Flash array. The timer is then setup to produce a delay of approximately 11 µs for the read/
recovery period. Because this delay does not have to be as accurate as the programming pulse, the
specification states a minimum of 10 µs, the timer system is not disabled when setting up the output
compare register.

At the end of each program and read/recovery cycle, the Flash data is compared to the received S–
Record data. If the two do not match, the program and read/recovery cycle is repeated until the data
matches or the maximum number of programming pulses have been applied. Next, an equal number
of program and read/recovery cycles are once again applied to the Flash memory location to provide a
100% programming margin. Finally, the Flash data is once again compared to the received S–Record
data. If the two do not match, the ProgFBlock routine terminates returning a ‘not equal’ condition in-
dicating that the programming operation failed.
 MOTOROLA AN1718/D
12

 Figure 6 contains a detailed flow chart of the ProgFBlock subroutine.

Figure 6 ProgFBlock Subroutine Flowchart

5.7 Support Routines

Several additional support subroutines are required by the program and erase functions of the bootload-
er. The getchar and putchar subroutines provide SCI character I/O. The GetHexByte, CvtHex,
and IsHex subroutines provide ASCII hexadecimal-to-binary conversion. The OutStr subroutine is
used to send a null (0) terminated ASCII string to the on-chip SCI. It is called by the bootloader main
loop to display the its prompt, error messages and command results. Because of the simplicity of these
subroutines, no flowcharts are provided.

5.8 Secondary Reset/Interrupt Table

As noted previously, the bootloader supports a secondary reset/interrupt vector table that resides just
below the 2k erase-protected bootblock. The jump table, located near the beginning of Listing 1, utilizes
a form of indexed addressing that may not be supported by all assemblers. This addressing mode is a
form of indexed indirect addressing that uses the program counter as an index register. The pcr mne-

Set Timer
Prescaler to ÷ 1

Enable Address/
Data Latches

Write Data To
Flash Latches

Apply Vpp to
Flash Array

Delay
22 µs

Remove Vpp
from Flash Array

Delay 11 µs

ProgPulses
= 0

PMarginFlag
= 0

Flash
Byte

Programmed?

Yes

ProgPulses++

NumPulses
<=
50?

YesNo

PMarginFlag
= 1

PMarginFlag
==
1?

Yes
No

Yes

No

Return 'Not
Programmed'

PMarginFlag
==
0?

No

Yes
ProgPulses--

Yes

ProgPulses
==
0?

No

Flash
Byte

Programmed?

Yes

No

Return NoError''
Status

All
Bytes

Programmed?

No

Error'
AN1718/D MOTOROLA
13

monic used in place of an index register name stands for Program Counter Relative addressing. In re-
ality, the CPU12 does not support an addressing mode known as Program Counter Relative or pcr.
Instead, the CPU supports constant offsets from the value of the PC at the first byte of the next instruc-
tion. The PCR mnemonic is used to instruct the assembler to calculate an offset to the address specified
by the expression preceding the ‘,pcr’ index specification. The offset is calculated by subtracting the
value of the PC at the address of the first object code byte of the next instruction from the value supplied
in the index offset field. When the JMP instruction is executed, just the opposite occurs. The CPU12
adds the value of the PC at the first object code byte of the next instruction to the offset embedded in
the instruction object code. The indirect addressing, indicated by the square brackets, specifies that the
address calculated as the sum of the index register (in this case the PC) and the 16-bit offset contains
a pointer to the destination of the JMP.

If an assembler does not support Program Counter Relative addressing the following substitution may
be made. Replace the text between the square brackets of each JMP instruction with:

[(<InterruptVectorName> - $800) - (* + 4),pc]

Where <InterruptVectorName> represents the name of the interrupt vector as shown in each JMP
instruction, the (* + 4) represents the value of the program counter at the beginning of the next instruc-
tion and $800 is the offset from real interrupt vector to the secondary interrupt vector. This entire ex-
pression allows the assembler to calculate the proper offset to the interrupt relative to the value of the
program counter.

5.9 Stack Space Allocation

Several of the subroutines in Listing 1 allocate storage space on the stack for temporary variables.
These variables are accessed using indexed addressing with the stack pointer as the index register.
The offsets to these variables are calculated using the facilities of the assembler and may not be avail-
able in all assemblers. As an example, the assembler source sequence that appears just before the
FProgBlock subroutine is shown below.

CurrentPC set * ; save the current value of the PC
 org 0 ; set PC to zero so we can use assembler to
 ; generate an offset into the stack.
;
ProgPulses: ds 1 ; local variable to hold the number of
 ; programming pulses.
PMarginFlag: ds 1 ; local variable to indicate we're applying the
 ; margin pulses
;

org CurrentPC ; restore the original value of the PC

In this example the set assembler directive is used to assign a value to the label CurrentPC. In this
case it is assigning or saving the current value of the Program Counter. In this regards the set directive
is similar to the equ directive. However, the set directive may be used to reassign a new value to a
label. So the label CurrentPC may be used to save the current value of the program counter each time
labels are declared for accessing local storage. Next, the program counter is then set to zero with the
use of the org directive. The ds directive, normally used to reserve global variable storage, is simply
used to advance the program counter, assigning ‘offset’ values for the labels ProgPulses and PMar-
ginFlag that may be used to access the actual variables on the stack. Finally, the assembler’s pro-
gram counter is restored to its previous value through the use of the org assembler directive.
 MOTOROLA AN1718/D
14

6 Program Listings

6.1 Listing 1 — Serial Flash Bootloader
 -- Micro Dialects, Inc. uASM-HC12 Assembler Tue, Mar 18, 1997 3:10 PM -- Page 1

 1 ;
 2 ;
 3 00FE PORTDLC: equ $00fe ; BDLC Port data register
 4 ;
 5 0016 COPCTL: equ $0016 ; COP timer control register.
 6 ;
 7 00C4 SR1: equ $00c4 ; SCI0 status register #1.
 8 00C7 DRL: equ $00c7 ; SCI0 data register (low byte).
 9 00C0 Baud: equ $00c0 ; SCI0 baud rate register (16-bits).
 10 00C3 CR2: equ $00c3 ; SCI0 control register.
 11 ;
 12 0086 TSCR: equ $0086 ; timer status & control register.
 13 0080 TIOS: equ $0080 ;
 14 0084 TCNT: equ $0084 ; timer/counter register (16-bits).
 15 008D TMSK2: equ $008d ; timer interrupt mask/prescaler control register.
 16 008E TFLG1: equ $008e ; timer interrupt flag register.
 17 0090 TC0: equ $0090 ; timer capture/compare register (16-bits).
 18 ;
 19 00F4 FEELCK: equ $00f4 ; Flash bootblock lock register.
 20 00F5 FEEMCR: equ $00f5 ; Flash module configuration register.
 21 00F7 FEECTL: equ $00f7 ; Flash erase/programming control register.
 22 ;
 23 0080 TDRE: equ $80 ; transmit data register empty bit.
 24 0020 RDRF: equ $20 ; receive data register full bit.
 25 ;
 26 0010 FEESWAI: equ $10 ; Disable FLASH array in WAIT mode bit in FEECTL register
 27 0008 SVFP: equ $08 ; Flash programming voltage present bit in FEECTL register
 28 0004 ERAS: equ $04 ; Flash Erase bit in FEECTL register
 29 0002 LAT: equ $02 ; Address/Data latch enable bit in FEECTL register
 30 0001 ENPE: equ $01 ; Flash programming voltage enable bit in FEECTL register
 31 ;
 32 0080 TEN: equ $80 ; Timer enable bit.
 33 ;
 34
;***
 35 ;
 36 ;Constants
 37 ;
 38 1200 EClock: equ 8000000 ; E-clock frequency in Hz.
 39 0034 Baud9600: equ 8000000/16/9600 ; value for baud register, based on clock frequwncy.
 40 61A8 mS100: equ EClock/320 ; timer delay constant for 100 mS delay based on /32 prescaler.
 41 00FA mS1: equ EClock/32000 ; timer delay constant for 1 mS delay based on /32 prescaler.
 42 00B0 us22: equ ((EClock/10000)*22)/100 ; timer delay constant for 22 uS delay based on /1 prescaler.
 43 0058 uS11: equ ((EClock/10000)*11)/100 ; timer delay constant for 11 uS delay based on /1 prescaler.
 44 ;
 45 8000 FlashStart: equ $8000 ; Flash EEPROM start address (Single chip).
 46 8000 FlashSize: equ 32768 ; Flash size for 912B32.
 47 0800 BootBlkSize: equ 2048 ; Erase protected bootblock size.
 48 0032 MaxProgPulses: equ 50 ; maximum number of programming pulses.
 49 0005 MaxErasePulses: equ 5 ; maximum number of erase pulses.
 50 ;
 51 0800 RAMStart: equ $800 ; start address of on-chip RAM.
 52 0400 RAMSize: equ $400 ; size of on-chip RAM.
 53 0C00 StackTop: equ RAMStart+RAMSize ; address to initialize the stack pointer.
 54 ;
 55 0030 S0RecType: equ '0' ; ASCII '0' used as S0 record type indicator.
 56 0031 S1RecType: equ '1' ; ASCII '1' used as S1 record type indicator.
 57 0039 S9RecType: equ '9' ; ASCII '9' used as S9 record type indicator.
 58
 59 ;
 60 ;
 61
;***
 62 ;
 63 ;
 64 FC00 org $fc00
 -- Micro Dialects, Inc. uASM-HC12 Assembler Tue, Mar 18, 1997 3:10 PM -- Page 2

 65 ;
 66 ;
 67 FC00 CF0C00 BootStart: lds #StackTop ; initialize the stack pointer
 68 FC03 4FFE4004 brclr PORTDLC,$40,BootCopy ; PortDLC bit #6 == 0?
 69 FC07 05FBFBF3 jmp [Reset-$800,pcr] ; no. jump to the users program pointed to by the the secondary
 70 ; 'reset' vector.
 71 ;
 72 FC0B 790016 BootCopy: clr COPCTL ; disable watchdog
 73 FC0E CEFC7C ldx #BootLoad ; point to the start of the Flash bootloader in Flash.
 74 FC11 CD0800 ldy #RAMStart ; point to the start of on-chip RAM.
 75 FC14 CCFECF ldd #BootLoadEnd ; calculate the size of the bootloader code.
 76 FC17 83FC7C subd #BootLoad
 77 FC1A 180A3070 MoveMore: movb 1,x+,1,y+ ; move a byte of the bootloader into RAM.
 78 FC1E 0434F9 dbne d,MoveMore ; dec byte count, move till done.
 79 FC21 060800 jmp RAMStart ; execute the bootloader code.
 80 ;
 81
AN1718/D MOTOROLA
15

;***
 82 ;
 83 ; This is the jump table that is used to access the secondary interrupt vector table. Each one
 84 ; of the actual interrupt vectors, begining at $ffd0, points to an entry in this table. Each jmp
 85 ; instruction uses indexed indirect program counter relative (pcr) addressing to access the
 86 ; secondary interrupt vector table that is located just below the 2k bootblock.
 87 ;
 88
;***
 89 ;
 90 ;
 91 FC24 05FBFBA8 JBDLC: jmp [BDLC-$800,pcr]
 92 FC28 05FBFBA6 JATD: jmp [ATD-$800,pcr]
 93 FC2C 05FBFBA6 JSCI0: jmp [SCI0-$800,pcr]
 94 FC30 05FBFBA4 JSPI: jmp [SPI-$800,pcr]
 95 FC34 05FBFBA2 JPACCIE: jmp [PACCIE-$800,pcr]
 96 FC38 05FBFBA0 JPACCOv: jmp [PACCOv-$800,pcr]
 97 FC3C 05FBFB9E JTimerOv: jmp [TimerOv-$800,pcr]
 98 FC40 05FBFB9C JTimerCh7: jmp [TimerCh7-$800,pcr]
 99 FC44 05FBFB9A JTimerCh6: jmp [TimerCh6-$800,pcr]
 100 FC48 05FBFB98 JTimerCh5: jmp [TimerCh5-$800,pcr]
 101 FC4C 05FBFB96 JTimerCh4: jmp [TimerCh4-$800,pcr]
 102 FC50 05FBFB94 JTimerCh3: jmp [TimerCh3-$800,pcr]
 103 FC54 05FBFB92 JTimerCh2: jmp [TimerCh2-$800,pcr]
 104 FC58 05FBFB90 JTimerCh1: jmp [TimerCh1-$800,pcr]
 105 FC5C 05FBFB8E JTimerCh0: jmp [TimerCh0-$800,pcr]
 106 FC60 05FBFB8C JRTI: jmp [RTI-$800,pcr]
 107 FC64 05FBFB8A JIRQ: jmp [IRQ-$800,pcr]
 108 FC68 05FBFB88 JXIRQ jmp [XIRQ-$800,pcr]
 109 FC6C 05FBFB86 JSWI: jmp [SWI-$800,pcr]
 110 FC70 05FBFB84 JIllop: jmp [Illop-$800,pcr]
 111 FC74 05FBFB82 JCOPFail: jmp [COPFail-$800,pcr]
 112 FC78 05FBFB80 JClockFail: jmp [ClockFail-$800,pcr]
 113 ;
 114 ;
 115
;***
 116 ;
 117 ; The code residing between the labels BootLoad and BootLoadEnd comprises the bootloader code
 118 ; that is copied into RAM. The bootloader must execute from the on-chip RAM because the Flash
 119 ; array is not accessable while it is being programmed or erased. The bootloader code was
 120 ; written in a position independent manner so that it will execute properly when copied into RAM.
 121 ;
 122
;***
 123 ;
 124 ;
 125 FC7C BootLoad: equ *
 126 FC7C CC0034 ldd #Baud9600 ; set SCI to 9600 baud @ 8.0 MHz
 127 FC7F 5CC0 std Baud
 128 FC81 C60C ldab #$0c ; enable the transmitter & receiver.
 -- Micro Dialects, Inc. uASM-HC12 Assembler Tue, Mar 18, 1997 3:10 PM -- Page 3

 129 FC83 5BC3 stab CR2
 130 FC85 C601 ldab #$01 ; disable the erasure or programming of the 2k bootblock.
 131 FC87 5BF4 stab FEELCK
 132 FC89 C6B0 ldab #$b0 ; enable the timer system. set for fast flag clears.
 133 FC8B 5B86 stab TSCR
 134 FC8D C601 ldab #$01 ; enable timer channel 0 as an output compare.
 135 FC8F 5B80 stab TIOS
 136 FC91 1AFA006C BLLoop: leax BLPrompt,pcr ; point to the bootloader prompt.
 137 FC95 15FA022C jsr OutStr,pcr ; display it.
 138 FC99 15FA01F6 jsr getchar,pcr ; get the command from the user.
 139 FC9D 15FA01F9 jsr putchar,pcr ; echo it.
 140 FCA1 37 pshb ; save it.
 141 FCA2 1AFA0058 leax CrLfStr,pcr ; go to the next line.
 142 FCA6 15FA021B jsr OutStr,pcr
 143 FCAA 33 pulb ; restore the entered character.
 144 FCAB C4DF andb #$df ; simple convert to upper case (only works for alpha characters).
 145
 146 FCAD C145 CheckFErase: cmpb #'E' ; erase command entered?
 147 FCAF 261A bne ChkProg ; no. go check for the program command.
 148 FCB1 15FA003A jsr CheckVfp,pcr ; yes. check for Vfp present.
 149 FCB5 26DA bne BLLoop ; go print prompt if not present.
 150 FCB7 15FA0118 jsr FErase,pcr ; yes. go erase the Flash.
 151 FCBB 1AFA005A leax ENot,pcr ; point to the 'not erased' string.
 152 FCBF 2604 bne BadErase ; branch if it didn't erase properly.
 153 FCC1 1AFA0058 leax Erased,pcr ; if it did, point to the 'erased' string
 154 FCC5 15FA01FC BadErase: jsr OutStr,pcr
 155 FCC9 20C6 bra BLLoop ; go back & print the prompt again.
 156 ;
 157 FCCB C150 ChkProg: cmpb #'P' ; program command entered?
 158 FCCD 26C2 bne BLLoop ; no. go redisplay the command prompt.
 159 FCCF 15FA001C jsr CheckVfp,pcr ; yes. check for Vfp present.
 160 FCD3 26BC bne BLLoop ; go print prompt if not present.
 161 FCD5 15FA006C jsr FProg,pcr ; yes. go program the Flash.
 162 FCD9 39 EEProgStat: pshc ; save the returned success/fail condition.
 163 FCDA 1AFA0020 leax CrLfStr,pcr ; go to the next line.
 164 FCDE 15FA01E3 jsr OutStr,pcr
 165 FCE2 38 pulc ; restore the returned success/fail condition.
 166 FCE3 1AFA003D leax PNot,pcr ; point to the 'not programmed' string.
 167 FCE7 26DC bne BadErase ; go display the string if programming failed.
 168 FCE9 1AFA003B leax Programmed,pcr ; otherwise, point to the 'programmed' string.
 169 FCED 20D6 BadProg: bra BadErase ; go display the prompt again.
 MOTOROLA AN1718/D
16

 170 ;
 171 ;
 172
;***
 173 ;
 174 ; The CheckVfp subroutine checks the SVFP bit in the FEECTL register to see if Vfp has been applied
 175 ; to the Vfp pin. If Vfp is present, a zero or equal condition is returned. If Vfp is not present,
 176 ; a not zero or not equal condition is returned.
 177 ;
 178
;***
 179 ;
 180 FCEF 87 CheckVfp: clra ; assume that Vfp is present (set Z == 1).
 181 FCF0 4EF70809 brset FEECTL,SVFP,VfpOK ; programming voltage present?
 182 FCF4 1AFA003B leax NoVfpError,pcr ; no. inform the user.
 183 FCF8 15FA01C9 jsr OutStr,pcr
 184 FCFC 42 inca ; return Z == 0 (not zero condition)
 185 FCFD 3D VfpOK: rts
 186 ;
 187 ;
 188
;***
 189 ;
 190 FCFE 0D0A00 CrLfStr: fcb $0d,$0a,0
 191 FD01 0D0A28452972 BLPrompt: fcb $0d,$0a,"(E)rase or (P)rogram:",0
 192 FD19 4E6F7420 ENot: fcb "Not "
 -- Micro Dialects, Inc. uASM-HC12 Assembler Tue, Mar 18, 1997 3:10 PM -- Page 4

 193 FD1D 457261736564 Erased: fcb "Erased",0
 194 FD24 4E6F7420 PNot: fcb "Not "
 195 FD28 50726F677261 Programmed: fcb "Programmed",0
 196 FD33 0D0A56667020 NoVfpError: fcb $0d,$0a,"Vfp Not Present",0
 197 ;
 198 ;
 199
;***
 200 ;
 201 FD45 FProg: equ *
 202 FD45 C600 ldab #$00 ; set the prescaler to /1.
 203 FD47 5B8D stab TMSK2
 204 FD49 2006 bra FSkipFirst ; don't send the 'pace' character the first time.
 205 FD4B C62A FSendPace: ldab #'*' ; the ascii asterisk is the pace character.
 206 FD4D 15FA0149 jsr putchar,pcr ; tell the host it's ok to send the next S-Record.
 207 FD51 15FA00E4 FSkipFirst: jsr GetSRecord,pcr ; go get the S-Record.
 208 FD55 2612 bne ProgDone ; non-zero condition means there was an error
 209 FD57 E6FA0174 ldab RecType,pcr ; check the record type.
 210 FD5B C139 cmpb #S9RecType ; was it an S9 record?
 211 FD5D 270A beq ProgDone ; yes. we're done.
 212 FD5F C130 cmpb #S0RecType ; no. was it an S0 record?
 213 FD61 27E8 beq FSendPace ; yes. just ignore it.
 214 FD63 15FA0003 jsr ProgFBlock,pcr ; no. that means it was an S1 record. go program the data into Flash.
 215 FD67 27E2 beq FSendPace ; zero condition means all went ok.
 216 FD69 3D ProgDone: rts ; if we fall through, we automatically return a non-zero condition.
 217 ; if we get here after detecting an S9 record, we'll return a zero condition.
 218 ;
 219 ;
 220
;***
 221 ;
 222 ;
 223 FD6A CurrentPC set * ; save the current value of the PC
 224 0000 org 0 ; set PC to zero so we can use assembler to generate an
offset into the stack.
 225 ;
 226 0000 ProgPulses: ds 1 ; local variable to hold the number of programming pulses.
 227 0001 PMarginFlag: ds 1 ; local variable to indicate we're applying the margin pulses
 228 ;
 229 FD6A org CurrentPC
 230 ;
 231 FD6A ProgFBlock: equ *
 232 FD6A 3B pshd ; easy way to allocate 2 bytes on the stack.
 233 FD6B EEFA0162 ldx LoadAddr,pcr ; get the S-Record (Flash) load address.
 234 FD6F 19FA0160 leay SRecData,pcr ; point to the received S-Record data.
 235 FD73 6980 ProgLoop: clr ProgPulses,sp ; initialize the ProgPulses local variable.
 236 FD75 6981 clr PMarginFlag,sp ; initialize the PMarginFlag local variable.
 237 FD77 4CF702 bset FEECTL,LAT ; turn on the Flash address/data latches.
 238 FD7A 180A4000 movb 0,y,0,x ; put the data into the latches.
 239 FD7E 4D8680 PPulseLoop: bclr TSCR,TEN ; stop the timer so we can produce accurate time delays.
 240 FD81 6280 inc ProgPulses,sp ; add 1 to the number of programming pulses we've applied.
 241 FD83 E680 ldab ProgPulses,sp ; get the new value.
 242 FD85 C132 cmpb #MaxProgPulses ; have we applied the maximum allowable programming pulses?
 243 FD87 2304 bls PMarginLoop ; no. go apply a programming pulse.
 244 FD89 18088101 movb #1,PMarginFlag,sp ; yes. now try applying 'MaxProgPulses' of margin.
 245 FD8D CC00B0 PMarginLoop: ldd #us22 ; get the constant for a 22 uS delay.
 246 FD90 D384 addd TCNT ; add it to the current value of the timer counter register.
 247 FD92 5C90 std TC0 ; initialize the output compare register with the delay value.
 248 FD94 4CF701 bset FEECTL,ENPE ; turn on Vfp
 249 FD97 4C8680 bset TSCR,TEN ; turn on the timer.
 250 FD9A 4F8E01FC brclr TFLG1,$01,* ; wait here until Vfp has been applied for 22 uS.
 251 FD9E 4DF701 bclr FEECTL,ENPE ; turn off Vfp.
 252 FDA1 CC0058 ldd #uS11 ; get the constant for a 11 uS delay.
 253 FDA4 D384 addd TCNT ; add it to the current value of the timer counter register.
 254 FDA6 5C90 std TC0 ; initialize the output compare register with the delay value.
 255 FDA8 4F8E01FC brclr TFLG1,$01,* ; wait here until Vfp has been removed for 11 uS.
AN1718/D MOTOROLA
17

 256 FDAC E781 tst PMarginFlag,sp ; are we applying the programming margin pulses?
 -- Micro Dialects, Inc. uASM-HC12 Assembler Tue, Mar 18, 1997 3:10 PM -- Page 5

 257 FDAE 2706 beq CmpData ; no. go see if the data programmed properly.
 258 FDB0 6380 dec ProgPulses,sp ; yes. have we applied margin pulses equal to the numper
of programming pulses?
 259 FDB2 26D9 bne PMarginLoop ; no. go apply more margin pulses.
 260 FDB4 200C bra PMarginDone ; yes. go check the data again.
 261 ;
 262 FDB6 E600 CmpData: ldab 0,x ; get the data from the Flash memory.
 263 FDB8 E140 cmpb 0,y ; same as the S-Record data?
 264 FDBA 26C2 bne PPulseLoop ; no. go apply some more programming pulses.
 265 FDBC 18088101 movb #1,PMarginFlag,sp ; yes. set the programming margin flag.
 266 FDC0 20CB bra PMarginLoop ; go apply the margin programming pulses.
 267 ;
 268 FDC2 4DF702 PMarginDone: bclr FEECTL,LAT ; turn off the Flash address/data latches to prepare for
programming the next location.
 269 FDC5 E630 ldab 1,x+ ; get the data from the Flash memory for a final compare.
 270 FDC7 E170 cmpb 1,y+ ; same as the S-Record data?
 271 FDC9 2606 bne PDone ; no. bad Flash memory (or Vfp not applied).
 272 FDCB 63FA0101 dec DataBytes,pcr ; done with all the S-Record bytes?
 273 FDCF 26A2 bne ProgLoop ; no. program the next location.
 274 FDD1 3A PDone: puld ; deallocate the locals.
 275 FDD2 3D rts ; return.
 276 ;
 277
;***
 278 ;
 279 FDD3 CurrentPC set * ; save the current value of the PC
 280 0000 org 0 ; set PC to zero so we can use assembler to generate an
offset into the stack.
 281 ;
 282 0000 NumPulses: ds 1 ; local variable to hold the number of erase pulses.
 283 0001 EMarginFlag: ds 1 ; local variable to indicate we're applying margin erase pulses.
 284 0002 NotErasedFlag: ds 1 ; local variable to indicate thet the Flash array is not erased.
 285 ;
 286 FDD3 org CurrentPC
 287 ;
 288 FDD3 FErase: equ *
 289 FDD3 1B9D leas -3,sp ; allocate stack space for locals.
 290 FDD5 C605 ldab #$05 ; set the prescaler to /32.
 291 FDD7 5B8D stab TMSK2
 292 FDD9 6981 clr EMarginFlag,sp ; clear the margin pulse flag.
 293 FDDB 6980 clr NumPulses,sp ; clear the erase pulse count.
 294 FDDD 4CF706 bset FEECTL,LAT+ERAS ; turn on the address/data latches & erase bit.
 295 FDE0 7C8000 std FlashStart ; write to any Flash address (data doesn't matter).
 296 ;
 297 FDE3 E680 EraseLoop: ldab NumPulses,sp ; get the 'pulse' count
 298 FDE5 C105 cmpb #MaxErasePulses ; applied the maximum number of erase pulses?
 299 FDE7 2738 beq DoEMargin ; yes. go apply the erase margin pulse.
 300 FDE9 6280 inc NumPulses,sp ; add 1 to the number of 100 mS 'pulses' to apply
 301 FDEB 4CF701 PulseLoop: bset FEECTL,ENPE ; turn on Vfp.
 302 FDEE CC61A8 ldd #mS100 ; timer constant to produce a 100 mS delay
 303 FDF1 D384 addd TCNT ; add it to the current value of the timer.
 304 FDF3 5C90 std TC0 ; initialize the output compare register.
 305 FDF5 4F8E01FC brclr TFLG1,$01,* ; check for the output compare flag to be set.
 306 FDF9 4DF701 bclr FEECTL,ENPE ; no turn off Vfp
 307 FDFC CC00FA ldd #mS1 ; timer constant to produce a 1 mS delay
 308 FDFF D384 addd TCNT ; add it to the current value of the timer.
 309 FE01 5C90 std TC0 ; initialize the output compare register.
 310 FE03 4F8E01FC brclr TFLG1,$01,* ; check for the output compare flag to be set.
 311 FE07 E781 tst EMarginFlag,sp ; are we applying margin erase pulses?
 312 FE09 2704 beq CheckErase ; no. go check to see if the last pulse erased the array.
 313 FE0B 6380 dec NumPulses,sp ; yes. have we applied enough margin pulses?
 314 FE0D 26DC bne PulseLoop ; no. go apply some more.
 315 ;
 316 FE0F 6982 CheckErase: clr NotErasedFlag,sp ; clear the erased flag
 317 FE11 CE8000 ldx #FlashStart ; point to the start of the flash block.
 318 FE14 CD3C00 ldy #(FlashSize-BootBlkSize)/2 ; get a count of the number of words we're going to check.
 319 FE17 CCFFFF ldd #$FFFF ; the value of an erased word.
 320 FE1A AC31 EraseChkLoop: cpd 2,x+ ; this word erased?
 -- Micro Dialects, Inc. uASM-HC12 Assembler Tue, Mar 18, 1997 3:10 PM -- Page 6

 321 FE1C 260B bne NotErased ; no. go set flag & apply another erase pulse.
 322 FE1E 0436F9 dbne y,EraseChkLoop ; yes. decrement word count & go check the next word.
 323 ;
 324 FE21 E781 DoEMargin: tst EMarginFlag,sp ; have we already applied the margin pulse?
 325 FE23 260C bne EraseDone ; yes. we're done. the result of the erase function is in
the NotErasedFlag.
 326 FE25 6281 inc EMarginFlag,sp ; no. set the 'margin pulse applied' flag.
 327 FE27 20C2 bra PulseLoop ; go apply the margin erase pulse.
 328 ;
 329 FE29 6282 NotErased: inc NotErasedFlag,sp ; array was not erased. flag the condition.
 330 FE2B E781 tst EMarginFlag,sp ; have we already applied the margin pulse?
 331 FE2D 2602 bne EraseDone ; yes. we're done. the Flash is bad.
 332 FE2F 20B2 bra EraseLoop ; haven't yet applied the margin pulse. go apply another erase pulse.
 333 ;
 334 FE31 7900F7 EraseDone: clr FEECTL ; make sure that the LAT & ERAS bit is clear.
 335 FE34 E682 ldab NotErasedFlag,sp ; get the erase result.
 336 FE36 1B83 leas 3,sp ; get rid of the locals.
 337 FE38 3D rts ; return.
 338
 339 ;
 MOTOROLA AN1718/D
18

 340
;***
 341 ;
 342 FE39 CurrentPC set * ; save the current value of the PC
 343 0000 org 0 ; set PC to zero so we can use assembler to generate an
offset into the stack.
 344 ;
 345 0000 SRecBytes: ds 1 ; holds the number of bytes in the received S-Record.
 346 0001 CheckSum: ds 1 ; used for calculated checksum.
 347 ;
 348 FE39 org CurrentPC
 349 ;
 350 FE39 GetSRecord: equ *
 351 FE39 1B9E leas -2,sp ; allocate stack space for variables.
 352 FE3B 15FA0054 LookForSOR: jsr getchar,pcr ; get a character from the receiver.
 353 FE3F C153 cmpb #'S' ; start-of-record character?
 354 FE41 26F8 bne LookForSOR ; no. go back & get another character.
 355 FE43 15FA004C jsr getchar,pcr ; yes. we found the start-of-record character (ASCII 'S')
 356 FE47 C130 cmpb #S0RecType ; found an S0 (header) record?
 357 FE49 2708 beq SaveRecType ; no. go check for an S9 record.
 358 ;
 359 FE4B C139 CheckForS9: cmpb #S9RecType ; found an S9 (end) record?
 360 FE4D 2704 beq SaveRecType ; no. go check for an S1 record.
 361 ;
 362 FE4F C131 ChkForS1: cmpb #S1RecType ; found an S1 (code/data) record?
 363 FE51 26E8 bne LookForSOR ; no. false start-of-record character received. go check for another.
 364 FE53 6BFA0078 SaveRecType: stab RecType,pcr ; yes. set the record type to '1'
 365 FE57 15FA0046 jsr GetHexByte,pcr ; get the S-Record length byte.
 366 FE5B 2620 bne BadSRec ; return if there was an error.
 367 FE5D 6B80 stab SRecBytes,sp ; save the total number of S-Record bytes we are to receive.
 368 FE5F 6B81 stab CheckSum,sp ; initialize the checksum calculation with the data byte count
 369 FE61 C003 subb #3 ; subtract the load address & checksum field from the data field count.
 370 FE63 6BFA0069 stab DataBytes,pcr ; save the code/data field size.
 371 FE67 1AFA0066 leax LoadAddr,pcr ; point to the load address/code/data/checksum buffer.
 372 FE6B 15FA0032 RcvData: jsr GetHexByte,pcr ; get an S-Record data byte.
 373 FE6F 260C bne BadSRec ; return if there was an error.
 374 FE71 6B30 stab 1,x+ ; save the byte in the data buffer.
 375 FE73 EB81 addb CheckSum,sp ; add the byte into the checksum.
 376 FE75 6B81 stab CheckSum,sp ; save the result.
 377 FE77 6380 dec SRecBytes,sp ; received all the S-Record bytes?
 378 FE79 26F0 bne RcvData ; no. go get some more.
 379 FE7B 6281 inc CheckSum,sp ; if checksum was ok, the result will be zero.
 380 FE7D 1B82 BadSRec: leas 2,sp
 381 FE7F 3D rts
 382 ;
 383;***
 384 ;
 -- Micro Dialects, Inc. uASM-HC12 Assembler Tue, Mar 18, 1997 3:10 PM -- Page 7

 385 FE80 IsHex: equ *
 386 FE80 C130 cmpb #'0' ; less than ascii hex zero?
 387 FE82 250E blo NotHex ; yes. character is not hex. return a non-zero ccr indication.
 388 FE84 C139 cmpb #'9' ; less than or equal to ascii hex nine?
 389 FE86 2308 bls IsHex1 ; yes. character is hex. return a zero ccr indication.
 390 FE88 C141 cmpb #'A' ; less than ascii hex 'A'?
 391 FE8A 2506 blo NotHex ; yes. character is not hex. return a non-zero ccr indication.
 392 FE8C C146 cmpb #'F' ; less than or equal to ascii hex 'F'?
 393 FE8E 2202 bhi NotHex ; yes. character is hex. return a non-zero ccr indication.
 394 FE90 1404 IsHex1: orcc #$04 ; no. return a zero ccr indication.
 395 FE92 3D NotHex: rts
 396 ;
 397
;***
 398 ;
 399 FE93 getchar: equ *
 400 FE93 4FC420FC brclr SR1,RDRF,* ; loop waiting for the RDRF bit to be set.
 401 FE97 D6C7 ldab DRL ; retrieve the character.
 402 FE99 3D rts ; return.
 403 ;
 404
;***
 405 ;
 406 FE9A putchar: equ *
 407 FE9A 4FC480FC brclr SR1,TDRE,* ; loop waiting for the TDRE bit to be set.
 408 FE9E 5BC7 stab DRL ; send the character.
 409 FEA0 3D rts ; return.
 410 ;
 411
;***
 412 ;
 413 FEA1 GetHexByte: equ *
 414 FEA1 07F0 bsr getchar ; get the upper nybble from the SCI.
 415 FEA3 07DB bsr IsHex ; valid hex character?
 416 FEA5 2701 beq OK1 ; yes. go convert it to binary.
 417 FEA7 3D rts ; no. return with a non-zero ccr indication.
 418 FEA8 0712 OK1: bsr CvtHex ; convert the ascii-hex character to binary.
 419 FEAA 8610 ldaa #16 ; shift it to the upper 4-bits.
 420 FEAC 12 mul
 421 FEAD 37 pshb ; save it on the stack.
 422 FEAE 07E3 bsr getchar ; get the lower nybble from the SCI.
 423 FEB0 07CE bsr IsHex ; valid hex character?
 424 FEB2 2702 beq OK2 ; yes. go convert it to binary.
 425 FEB4 33 pulb ; remove saved upper byte from the stack.
 426 FEB5 3D rts ; no. return with a non-zero ccr indication.
AN1718/D MOTOROLA
19

 427 FEB6 0704 OK2: bsr CvtHex ; convert the ascii-hex character to binary.
 428 FEB8 EBB0 addb 1,sp+ ; add it to the upper nybble.
 429 FEBA 87 clra ; simple way to set the Z ccr bit.
 430 FEBB 3D rts ; return.
 431 ;
 432
;***
 433 ;
 434 FEBC C030 CvtHex: subb #'0' ; subtract ascii '0' from the hex character.
 435 FEBE C109 cmpb #$09 ; was it a decimal digit?
 436 FEC0 2302 bls CvtHexRtn ; yes. ok as is.
 437 FEC2 C007 subb #$07 ; no. it was an ascii hex letter ('A' - 'F').
 438 FEC4 3D CvtHexRtn: rts
 439 ;
 440
;***
 441 ;
 442 FEC5 OutStr: equ * ; send a null terminated string to the display.
 443 FEC5 E630 ldab 1,x+ ; get a character, advance pointer, null?
 444 FEC7 2705 beq OutStrDone ; yes. return.
 445 FEC9 15F9CE jsr putchar,pcr ; no. send it out the SCI.
 446 FECC 20F7 bra OutStr ; go get the next character.
 447 FECE 3D OutStrDone: rts
 448 ;
 -- Micro Dialects, Inc. uASM-HC12 Assembler Tue, Mar 18, 1997 3:10 PM -- Page 8

 449 ;
 450
;***
 451 ;
 452 FECF BootLoadEnd: equ *
 453 ;
 454 ;
 455 ;Global Variable declarations
 456 ;
 457 ;
 458 FECF RecType: ds 1 ; received record type. ascii '0' = S0; ascii '1' = S1; ascii '9' = S9
 459 FED0 DataBytes: ds 1 ; number of data bytes in the S-Record.
 460 FED1 LoadAddr: ds 2 ; load address of the S-Record.
 461 FED3 SRecData: ds 65 ; S-Record data storage. (handle 64-byte S-Records + received checksum)
 462 ;
 463
;***
 464 ;
 465 ;
 466 ;
 467 FFD0 org $ffd0
 468 ;
 469 FFD0 FC24 BDLC: dw JBDLC
 470 FFD2 FC28 ATD: dw JATD
 471 FFD4 FFFF dw $ffff
 472 FFD6 FC2C SCI0: dw JSCI0
 473 FFD8 FC30 SPI: dw JSPI
 474 FFDA FC34 PACCIE: dw JPACCIE
 475 FFDC FC38 PACCOv: dw JPACCOv
 476 FFDE FC3C TimerOv: dw JTimerOv
 477 FFE0 FC40 TimerCh7: dw JTimerCh7
 478 FFE2 FC44 TimerCh6: dw JTimerCh6
 479 FFE4 FC48 TimerCh5: dw JTimerCh5
 480 FFE6 FC4C TimerCh4: dw JTimerCh4
 481 FFE8 FC50 TimerCh3: dw JTimerCh3
 482 FFEA FC54 TimerCh2: dw JTimerCh2
 483 FFEC FC58 TimerCh1: dw JTimerCh1
 484 FFEE FC5C TimerCh0: dw JTimerCh0
 485 FFF0 FC60 RTI: dw JRTI
 486 FFF2 FC64 IRQ: dw JIRQ
 487 FFF4 FC68 XIRQ: dw JXIRQ
 488 FFF6 FC6C SWI: dw JSWI
 489 FFF8 FC70 Illop: dw JIllop
 490 FFFA FC74 COPFail: dw JCOPFail
 491 FFFC FC78 ClockFail: dw JClockFail
 492 FFFE FC00 Reset: dw BootStart
 493 ;
 494 0000 end

 Errors: None
 Labels: 155
 Last Program Address: $FFFF
 Last Storage Address: $FFFF
 Program Bytes: $02FF 767
 Storage Bytes: $004C 76
 MOTOROLA AN1718/D
20

AN1718/D MOTOROLA
21

 MOTOROLA AN1718/D
22

AN1718/D MOTOROLA
23

Motor suitability
of its p s any and
all liab ns can and
do va torola does
not co s intended
for su ld create a
situati l indemnify
and h torney fees
arising torola was
neglig
 MCU is an Equal
Oppo
How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
 P.O. Box 5405, Denver Colorado 80217. 1-800-441-2447, (303) 675-2140
Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609, U.S. and Canada Only 1-800-774-1848
INTERNET: http://Design-NET.com
JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC,
6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
Mfax is a trademark of Motorola Inc

ola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the
roducts for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaim
ility, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specificatio

ry in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Mo
nvey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in system
rgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product cou
on where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shal
old Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable at
 out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Mo
ent regarding the design or manufacture of the part.
init, MCUasm, MCUdebug, and RTEK are trademarks of Motorola, Inc. M O T O R O L A and ! are registered trademarks of Motorola, Inc. Motorola, Inc.
rtunity/Affirmative Action Employer.
AN1718/D

	1 Introduction
	2 Overview of the MC68HC912B32’s Flash EEPROM
	2.1 Erasure of the Flash EEPROM Array
	Figure 1 Simplified Flash Erase Algorithm Flowchar...

	2.2 Flash Array Programming
	Figure 2 Simplified Flash Programming Algorithm Fl...

	3 General Flash Serial Bootloader Requirements
	Table 1 Primary/Secondary Interrupt Vector Address...

	4 Using The S-Record Bootloader
	4.1 Flash Erasure
	4.2 Flash Programming

	5 Bootloader Software
	5.1 Startup Code
	5.2 Bootloader Control Loop
	5.3 Erase Command Code
	Figure 3 FErase Subroutine Flowchart

	5.4 Program Command Code
	Figure 4 Program Command Flowchart

	5.5 GetSRecord Subroutine
	Figure 5 GetSRecord Subroutine Flowchart

	5.6 ProgFBlock Subroutine
	Figure 6 ProgFBlock Subroutine Flowchart

	5.7 Support Routines
	5.8 Secondary Reset/Interrupt Table
	5.9 Stack Space Allocation

	6 Program Listings
	6.1 Listing 1 — Serial Flash Bootloader

