
Order this document
by AN1723/D

Motorola Semiconductor Application Note

AN1723
Interfacing MC68HC05 Microcontrollers
to the IBM AT Keyboard Interface

By Derrick B. Forte
Networking and Communications Operation
Austin, Texas

Introduction

Since the inception of the IBM PC platform, the keyboard has served as
its primary input device and, along with the PC’s keyboard interface,
now serves as part of the PC architecture standard. However, in recent
years, PC hardware engineers have designed peripheral devices that
can be used in place of or in conjunction with the keyboard.

This application note discusses the hardware and software issues
involved in designing applications based on Motorola’s M68HC05
Family of microcontrollers that can interact with an IBM AT computer at
its keyboard interface. It explores using the interface as a power supply
and a low-speed serial data link between an MC68HC05-based
application and an IBM AT-compatible host computer. The major focus
is on applications that are capable of operating while the keyboard is
connected to the host PC.

,

© Motorola, Inc., 1997 AN1723

Application Note
The topics covered in this note are:

• An overview of the PC’s keyboard subsystem’s operation

• An examination of the subsystem’s hardware design through an
explanation of the keyboard-to-keyboard interface connection
and the signals and protocols used in their communications

• A discussion of the interface’s programming model and a method
for using the interface as a power supply and a communications
link with the PC

• An example of a digital thermometer design that is powered and
controlled by an IBM AT computer’s keyboard interface

IBM Keyboard Subsystem Overview

During its lifetime, the IBM PC platform has been supported by three
types of keyboards: the XT keyboard, the AT keyboard, and the
Multifunction II keyboard. Early PC platforms, such as the IBM XT, were
supported by the XT keyboard. These early keyboards are not
compatible with later PC platforms such as the AT and PS/2. Since the
XT platform is now obselete, the XT keyboard will not be discussed in
detail here.

With the advent of the AT platform, a new type of keyboard, the AT
keyboard, was developed to support it. Its design gave the host
computer more control over the keyboard’s operation than was
previously available on the XT. The AT keyboard’s design also is used
for the PS/2 platform. The two keyboards, however, use different cable
connectors and scan code sets.

The third type of keyboard, the Multifunction II (MF II), evolved from the
AT keyboard. The MF II’s enhanced feature set has made it the standard
in most systems today. The MF II keyboard uses the same keyboard
interface as the AT, but it has a number of enhancements such as status
LEDs and 18 to 19 additional keys. The MF II keyboard is available in a
101-key U.S. version and a 102-key European version.
AN1723

2 MOTOROLA

Application Note
IBM Keyboard Subsystem Design
Despite differences in their design and feature sets, all IBM PC keyboard
subsystems consist of two parts:

• The keyboard with its cable

• A keyboard interface that links the keyboard to a host computer

During normal operation, the keyboard continually scans its key matrix
for a keyboard event, either the pressing or releasing of a key by the
user. When an event occurs, the keyboard assigns a unique byte or
sequence of bytes called scan codes to the keystroke. The keyboard
then attempts to transmit the scan code(s) to the PC over its cable. The
PC’s keyboard interface receives each scan code and, after performing
a parity check on the transmission, either requests a retransmission of
the code from the keyboard, if an error occurred, or passes it on to the
PC’s microprocessor. If the microprocessor is occupied at the time that
a scan code is generated, the keyboard interface will signal the keyboard
that the processor is busy. The keyboard will then hold off the
transmission of any more scan codes until the interface signals that the
processor can handle them. While the processor is busy, additional scan
codes that may be generated by user keystrokes are stored in an
internal keyboard buffer.

IBM Keyboard Subsystem Design

As mentioned earlier, the keyboard subsystem can be divided into two
subsystems: the keyboard and the keyboard interface or port.

The keyboard performs these functions:

• Acquires user keystrokes from its key matrix

• Encodes them into scan codes; consult Appendix F for the AT
keyboard scan codes of common alphanumeric characters

• Transmits the codes through its cable to the keyboard interface on
the host.

To implement these functions, the IBM keyboard’s design has always
been centered on a single-chip microcontroller (MCU). Keyboards that
AN1723

MOTOROLA 3

Application Note
supported the IBM XT were designed around the Intel 8048
microcontroller.

AT and MF II keyboards, on the other hand, are designed around a
variety of microcontrollers. The microcontroller scans the key matrix for
a key being pressed or released by the user. On detecting a keyboard
event, the MCU debounces the key and determines its position within
the key matrix. The MCU then encodes the keystroke by assigning it a
scan code from an internal table. Keyboard scan codes are not to be
confused with ASCII codes or any other character code sets that may be
used internally by the host computer. Scan codes are converted to
internal host computer codes after being passed to the host computer’s
main processor by the keyboard interface. On receiving a valid scan
code, the keyboard interface circuitry generates an interrupt to the host’s
processor. If the processor is able to service the interrupt, the host
computer enters its keyboard interrupt routine, which resides in the host
system’s BIOS. It is in the keyboard interrupt routine that scan codes are
mapped to the host’s internal character set.

The keyboard interface, the second component in the keyboard
subsystem, is the keyboard’s link to the host computer. The keyboard
interface serves five functions:

• Supplies power to the keyboard

• Transmits host commands to the keyboard

• Receives the keyboard’s responses to host commands

• Receives scan codes from the keyboard

• Provides an interface to the host computer’s system bus

The keyboard interface’s design integrates all these functions into a
single microcontroller that serves as the interface’s controller. The first
AT keyboard interfaces were designed around the Intel 8042
microcontroller. In newer ATs and PS/2s, the Intel 8741 and Intel 8742
are used.
AN1723

4 MOTOROLA

Application Note
IBM Keyboard Subsystem Design
The keyboard interface’s design, illustrated in Figure 1 , can be divided
into two parts:

• Keyboard communication link

• PC system bus interface

The keyboard interface communication link not only transmits to and
receives data from the keyboard, but it also checks incoming keyboard
data for transmission errors and controls the flow of data from the
keyboard to the host.

Figure 1. Keyboard Interface Design

The PC system bus interface is the point at which the PC’s
microprocessor interacts with the keyboard. The host configures and
monitors the keyboard through the interface by sending keyboard
commands directly to the keyboard or by writing keyboard controller
commands to the interface’s controller.

The keyboard interface consists of an input buffer, an output buffer, and
the keyboard controller’s control and status registers. The input and

KEYBOARD CONTROLLER

8042/8741/8742 MICROCONTROLLER

TO KEYBOARD

INPUT
BUFFER

P

C

S

Y

S

T

E

M

B

U

S

K

E

Y

B

O

A

R

D

C

O

M

M

U

N

 I

C

A

T

I

O

N

S

OUTPUT
 BUFFER

CONTROL
REGISTER

 STATUS
 REGISTER

0X60 READ

0X60 WRITE

0X64 WRITE

0X64 READ

L

I

N

K

AN1723

MOTOROLA 5

Application Note
output buffers are mapped at address 0x60 in the PC’s input/output (I/O)
space. The input buffer is accessed on writes to address 0x60 while
reads to address 0x60 access the output buffer. The host reads the
keyboard’s responses to host commands and scan codes from the
output buffer. The keyboard controller’s control and status registers are
mapped at address 0x64 in the PC’s I/O space. The keyboard status
register is accessed on reads of address 0x64, while the control register
is accessed on writes. The host issues commands to the keyboard
controller by writing to the control register. For controller commands that
require data in addition to the command byte, the host writes the
required data to the input buffer. The host monitors the keyboard
interface’s transmission and reception of data by reading the keyboard
controller status register.

The keyboard and the keyboard interface are physically connected
through the keyboard’s cable. This cable is a 5-wire shielded cable that
has a male 5-pin or 6-pin circular DIN connector at one end. The other
end of the cable is directly attached to the keyboard’s internal circuitry.
There are currently two types of keyboard connectors in use, the circular
5-pin DIN that is used with the AT platform and the 6-pin mini-DIN that
is the PS/2’s standard.

Figure 2 and Figure 3 show the pinouts of the two types of
connectors.

Figure 2. PS/2 Connector

Figure 3. AT Connector

CLOCK

GROUND

DATA

NC

5 V

NC

CLOCK NC

5 V

DATA

GROUND
AN1723

6 MOTOROLA

Application Note
IBM Keyboard Subsystem Design
As shown in the figures, each connector has a 5-V pin and a ground pin.
The keyboard interface powers the keyboard through these two pins. All
keyboard interfaces are capable of supplying a keyboard with 5 V and a
ground. The amount of power that the interface is capable of delivering
can vary from one PC vendor to another. In addition, some PC
motherboard designs fuse the interface’s power signal to prevent a
keyboard malfunction from affecting the host’s power supply. The
connector’s shield ground pin along with a high-frequency filter in the
connector limit the amount of EMI (electromagnetic interference) from
the host that is permitted to travel along the keyboard’s cable.

The keyboard and keyboard interface communicate over the
connector’s two remaining pins, clock, and data using a synchronous
serial data link. The clock and data pins are bidirectional, open-collector
signals that are pulled to 5 V by pullup resistors in the keyboard. This
allows these lines to be pulled low by either the keyboard or the
interface.

The first keyboards designed for the IBM PC/XT allowed only for the
unidirectional transmission of scan codes from the keyboard to the host.
The host exerted a minimal amount of control over the keyboard by
means of a reset signal that was part of the keyboard interface. The
enhanced features of the AT and MF II keyboards, however, required
that the host exercise a greater measure of control over the configuration
and operation of the keyboard. This led to a re-design of the keyboard,
the keyboard interface, and the development of a protocol to govern the
keyboard-to-host data link. The protocol defines a format and one set of
timing specifications for the clock and data signals for keyboard-to-host
data transfers and another for host-to-keyboard transfers.

In addition to these functions, the protocol also defines a set of
commands that the host may send to the keyboard to monitor its status
or change its configuration. The command set provides the host with
commands to reset the keyboard, enable or disable the keyboard, and
in the case of some keyboards change the keyboard’s scan code set.
(Consult the reference PC Keyboard Design for a complete list of the
host-to-keyboard command set.)
AN1723

MOTOROLA 7

Application Note
The protocol also defines a set of codes that the keyboard should
transmit back to the host after receiving a command from it. The protocol
gives host computer-to-keyboard transfers priority over keyboard-to-
host transfers. Therefore, if the keyboard is in the process of transmitting
a scan code or a response to the host and the host wishes to send a
command to the keyboard, the keyboard will relinquish control of the
clock and data lines and allow its internal pullup resistors to pull them
high. Then the host will transmit the command to the keyboard. After the
keyboard has responded to the command, it will re-transmit the data
whose transmission was interrupted. Keyboard-to-host and host-to-
keyboard transfers share the same data format. The format consists of
a start bit, eight data bits, one odd parity bit, and one stop bit. Also, in
both protocols the keyboard generates the rising and falling edges of the
clock signal. Figure 4 illustrates the host-to-keyboard protocol, which is
used by the host to send commands to the keyboard.

Figure 4. Host-to-Keyboard Data Transfer

The host-to-keyboard data transfer is accomplished by using these
steps:

1. The host initiates a host-to-keyboard data transfer by pulling the
clock line low. Approximately 35 microseconds later, the host pulls
the data line low. This sequence of events signals the keyboard
that the host is about to transfer a command. The clock signal is
released and pulled high by the keyboard’s pullup resistor
approximately 125 microseconds after the falling edge of the data
signal.

DATA

CLOCK 1 ms

125 µs 30–50 µs

30–50 µs

PARITYDATA 0 DATA 1–7 STOP ACK

35 µs
AN1723

8 MOTOROLA

Application Note
IBM Keyboard Subsystem Design
2. The transfer of data starts approximately 1 millisecond after the
rising edge of the clock signal. During this time, the data line is
held low. The transfer starts by the keyboard pulling the clock line
low and clocking in the low data line. This serves as the transfer’s
start bit.

3. The keyboard then clocks in eight data bits from the host. The
clock has a 50 percent duty cycle and has a high and low time of
between 30 and 50 microseconds. The host changes the data
during the low period of each cycle. Data from the host is sampled
by the keyboard 5 to 25 microseconds after the rising edge of each
clock.

4. The data bits are followed by a parity bit. The protocol uses odd
parity.

5. The keyboard then clocks in a stop bit, ending the transfer.

6. If the keyboard reads a high stop bit, the keyboard pulls the data
line low in the low period following the falling edge of the clock that
is used to sample the stop bit. This serves as the keyboard’s
acknowledgement signal to the host. The keyboard pulls the data
line high after pulling the clock high.

7. After receiving a byte, the keyboard performs a parity check on the
received data. If a parity error is detected or the data received is
not recognized as a valid command, the keyboard will request a
retransmission of the byte by transmitting a $FE back to the host.

The keyboard-to-host protocol is used by the keyboard to send
responses to host commands and scan codes to the host, as illustrated
in Figure 5 .

Figure 5. Keyboard-to-Host Transfer

DATA

CLOCK

DATA 0 DATA 1 DATA 2 DATA 3 DATA 4 DATA 5 DATA 6 DATA 7 PARITY STOP

30–50 µs

30–50 µs5 –25 µs
AN1723

MOTOROLA 9

Application Note
The keyboard-to-host data transfer is accomplished by using these
steps:

1. The keyboard initiates a keyboard-to-host data transfer by first
allowing both the data and clock lines to be pulled high by its
internal pullup resistors. The keyboard then pulls the data line low.
Five to 25 microseconds later the keyboard pulls the clock line
low. The falling edge of the clock line clocks in the transfer’s start
bit.

2. The keyboard then clocks in eight data bits to the host. The clock
has a 50 percent duty cycle and high and low times of between 30
to 50 microseconds. The keyboard changes the data during the
high period of each clock cycle. The change can occur between 5
microseconds after the rising edge of the clock and 5
microseconds before the falling edge. The keyboard’s data is
latched into the host by the falling edge of the clock.

3. The data bits are followed by an odd parity bit.

4. The keyboard then clocks in a stop bit ending the transfer. The
host will pull the clock signal low from 0 to 50 microseconds after
the falling clock edge that latches in the stop bit. This is a signal to
the keyboard that the host is busy and is not capable of accepting
another keyboard transfer. The host will release the clock line after
it has processed the transfer and is ready to accept another
transmission.

5. At any point during a keyboard-to-host transfer, the host can
interrupt the transfer and transmit a command to the keyboard.
The host signals that it wants to transmit a command by pulling the
data line low while a high is being driven on the data line or pulling
the clock line low during the high period of the clock. Therefore,
the keyboard must sample the data line during the clock’s low
period whenever it outputs a high data bit. Since the keyboard is
the master of the clock, the keyboard must also read the clock line
whenever it outputs a rising edge on the clock line. If the data or
clock signals are low under any one of these two conditions, the
keyboard must relinquish control of the data and clock lines. It
does this by allowing both lines to be pulled high. It then reverts to
the host-to-keyboard transfer mode.
AN1723

10 MOTOROLA

Application Note
The Keyboard Interface Programming Model
The Keyboard Interface Programming Model

The IBM personal computer architecture offers three ways to access the
keyboard interface and through it, the keyboard:

• Operating system calls

• Keyboard access routines

• Reading and writing to the keyboard interface’s input buffer,
output buffer, and status and control registers

The first method involves the use of operating system calls, the highest
level from which the keyboard can be accessed. The DOS operating
system, for example, provides seven functions — 01h, 06h, 07h, 08h,
0Ah, 0Bh, and 3Fh — of DOS interrupt 21h for this purpose. Consult a
good DOS reference for information on the calling parameters and return
values for these functions. The disadvantage with using these functions
is that they do not provide direct access to the keyboard or the keyboard
interface.

At the level below the operating system calls are the keyboard access
routines found in the BIOS. Among these are functions 4Fh and 85h of
BIOS interrupt 15h, which are used by the keyboard hardware interrupt
handler, which also resides in the BIOS, to process scan codes. In
addition to the functions used by the keyboard interrupt handler, the
BIOS interrupt 16h provides eight standalone keyboard access
functions. Since they are close to the keyboard hardware, the functions
provide better keyboard control than do the DOS functions. Consult a
system BIOS reference guide for more information on these functions.

The third method is the one that perhaps the majority of hardware
engineers are most comfortable with. It involves reading from and writing
to the keyboard interface’s input buffer, output buffer, and status and
control registers to provide direct access to the keyboard and the
keyboard interface. Commands can be issued directly to the keyboard
by writing a command byte to the keyboard interface’s input buffer. As
mentioned earlier, this buffer is accessed by writing to address 0x60 in
the host’s I/O memory map. Figure 6 illustrates both the keyboard
interface’s input and output buffers, which can be accessed by reading
AN1723

MOTOROLA 11

Application Note
I/O address 0x60. On completion of a write to address 0x60, the
keyboard controller will take the data from the input buffer and transmit
it to the keyboard using the host-to-keyboard serial protocol. The
keyboard controller sets the input buffer status flag of the keyboard
interface’s status register when the transmission is complete. (See
Figure 6 .) If the command requires a response from the keyboard, the
keyboard will transmit the appropriate response code(s) back to the host
using the keyboard-to-host protocol. On receiving a response from the
the keyboard, the keyboard interface places it into its output buffer and
sets the output buffer status flag in the status register. The flag is also
set on receiving a scan code from the keyboard. Therefore, by polling
this flag, it can be determined when a byte has been received from the
keyboard. The output buffer also is the location where scan codes are
deposited when they are received from the keyboard.

Figure 6. Input and Output Buffer, Address 0x60

Figure 7. Keyboard Interface Status Register, Address 0x64

In addition to the input and output buffer status flags, the status register
contains six error and status flags:

• Parity flag — Set if the last byte received from the keyboard or the
mouse (PS/2 only) generated a parity error; it is clear otherwise

• Timeout flag — Set if a timeout occurs before the keyboard
interface receives an expected response from the keyboard

• Auxiliary device flag — Set if the output buffer holds data from the
mouse and it is cleared if the data is from the keyboard. This flag
is relevant only in PS/2 models

• Keyboard local flag — Set if the keyboard is locked and clear if the
keyboard is free

D7 D6 D5 D4 D3 D2 D1 D0

PARITY TIMEOUT AUXILIARY
DEVICE

KEYBOARD
LOCK

COMMAND
DATA

SYSTEM
FLAG

INPUT
BUFFER
STATUS

OUTPUT
BUFFER
STATUS
AN1723

12 MOTOROLA

Application Note
Using the Keyboard Interface as a Resource
• Command/data flag — Set if a byte is written to the input buffer at
address 0x60. The flag is cleared if the byte was written to the
control reigster at address 0x64

• System flag — Set after the keyboard has passed its reset self test
successfully

Using the Keyboard Interface as a Resource

The keyboard interface’s design allows it to be used by embedded
applications as a power supply and a low-speed bidirectional serial data
link with the PC. The keyboard and an application can be easily supplied
with power from the interface’s 5-V pin.

Interfacing an application to the data link, on the other hand, requires
addressing a number of issues.

The first of these involves the interface’s clock and data pins. Since the
keyboard interface’s clock and data lines are open-drain signals, the
possibility of contention exists on these two signals if both the keyboard
and another device are capable of driving them at the same time. For
example, if the host attempts to transmit data to a device other than the
keyboard, the keyboard will see the activity on the clock and data lines
and will try to respond to it. If the byte sent by the host is a valid keyboard
command, the keyboard will attempt to respond to it with an appropriate
response code. This could lead to a collision on the clock and data lines
if another device connected to the interface attempts to transmit data at
the same time. If the data sent by the host is interpreted by the keyboard
as an invalid command, the keyboard will transmit a resend response
code (0xFE) back to the host. This is another point at which contention
could occur. Given these conditions, the keyboard’s clock and data lines
must be disconnected from those of the host whenever data is being
transferred between another device and the host. Since neither the
keyboard nor the keyboard interface are capable of disconnecting these
two signals, this task must be performed by the other device. Since in
most instances the keyboard will have priority over any other device
connected to the interface, any device used in conjunction with the
keyboard usually will operate as a pass-through device for the keyboard.
AN1723

MOTOROLA 13

Application Note
This will allow for normal keyboard operation until the device is activated
by a signal sent by a program running on the host. This requires that the
host send an activation signal that conforms to the data link protocol and
that can be easily detected by other devices connected to the interface.
Ideally, such a signal would have a minimal effect on the keyboard’s
present state and configuration.

The host-to-keyboard protocol’s echo command is an ideal candidate for
implementing such a signalling mechanism. The echo command (0xEE)
is a part of the host-to-keyboard command set that can be used to test
the integrity of the host-to-keyboard serial link. An echo command is
initiated by the host sending an echo command (0xEE) to the keyboard
through the keyboard interface. The keyboard responds by transmitting
a 0xEE back to the host. This command and response sequence does
not change the configuration of the keyboard in any way and thus fulfills
the requirements for an activation signal. Since one echo command-
response sequence may be sent in the normal course of host-to-
keyboard transfers, a more distinctive signal must be devised to prevent
the device from being inadvertently activated. Toward that end, the
activation signal developed for this application consists of two echo
command-response sequences sent between the keyboard and the host
in rapid sucession. The fact that the activation signal can be sent by the
host at any time requires that the receiving device constantly monitor the
traffic on the data and clock lines. On detecting the signal, the device
disconnects the keyboard’s data and clock signals from those of the host
and assumes sole possession of the keyboard’s end of the data link. The
keyboard’s clock line must then be pulled low. While its clock line is low,
the keyboard will store any scan codes that may be generated while it is
disconnected from the host. Data can be transferred between the device
and the keyboard interface at this point.

In addition to the issues involved with the clock and data signals, the
host-to-keyboard interface protocol also imposes some restrictions on
the data that can be exchanged between a device and the interface. If
the host sends a byte that is a host-to-keyboard command, the host will
expect an appropriate response code from the device. Any transmission
from the device that is not the appropriate response will be regarded as
an invalid response. Therefore, the program running on the host should
only transmit data bytes that are not host-to-keyboard commands.
AN1723

14 MOTOROLA

Application Note
Keyboard Thermometer System Design
The protocol also restricts the bytes that can be sent from a device to the
host. The recommended character set for device-to-host transmissions
is the AT scan code set. By transmitting scan codes, the host will view
the data as user keystrokes which can be parsed and processed by
software running on the host.

 Keyboard Thermometer System Design

The example application developed for this note is a digital
thermometer that interfaces with an IBM AT-compatible host computer
at its keyboard interface. The thermometer consists of two components:

• Keyboard thermometer device

• THERMO.EXE, a DOS application program that resides on the
host computer.

The first component of the keyboard thermometer is the thermometer
device itself. The thermometer has two connectors, one with which it
interfaces to a host computer and the other with an AT keyboard. The
thermometer is powered and controlled by the host at the interface.
When deactivated, the thermometer serves as a passthrough device
between the host and the keyboard, allowing normal keyboard operation
to take place. While operating in this mode, the thermometer passively
monitors the data traffic between the host and its keyboard for a
predetermined activation sequence. On detecting an activation
sequence, the thermometer disconnects the keyboard from the host and
becomes the only device on the interface. The thermometer then takes
a temperature reading, converts the reading into a series of scan codes,
which the host will interpret as keystrokes, and transmits the codes to
the host through its keyboard interface. After transmitting the scan
codes, the thermometer re-connects the keyboard’s clock and data
signals to the host and the keyboard resumes normal operation. The
thermometer then returns to monitoring the clock and data lines for an
activation sequence.

The second component of the thermometer is THERMO.EXE, a DOS
application program resident on the host computer. On being invoked,
AN1723

MOTOROLA 15

Application Note
THERMO.EXE directs the thermometer device to take a temperature
reading. If the attempt was successful, THERMO.EXE displays the data
in a dialog box on the host computer’s screen. From then on,
THERMO.EXE waits for a keystroke from the user. If the user types in a
"q" or "Q" character, the program exits to DOS. Otherwise, a keyboard
thermometer activation sequence is sent through the host’s keyboard
interface. The activation sequence used for this application consists of
two consecutive host-to-keyboard echo command-response sequences.
On sucessfully completing the activation sequence, THERMO.EXE
waits a maximum of two seconds for a response from the thermometer.
The thermometer sends the reading as a string in the form of scan codes
through the keyboard interface. The end of the string is delimited by the
carriage return character. If the string is sucessfully received,
THERMO.EXE displays it in a dialog box on the host’s monitor.
THERMO.EXE was compiled and linked with Borland’s C++ compiler
version 3.1. See Appendix B. THERMO.EXE Flowchart for a complete
flowchart of THERMO.EXE ’s design.

Keyboard Thermometer Hardware Design

The hardware design of the keyboard thermometer can be divided into
two functional blocks:

• Temperature acquisition/conversion circuitry

• Keyboard interface circuitry

Each of these blocks is partially implemented by a Motorola
MC68HC(7)05J1A microcontroller serving as the application’s
processor. Due to the limited amount of on-chip resources available on
the MC68HC(7)05J1A, the Dallas Semiconductor DS1820 One-Wire
Digital Thermometer was selected to implement the temperature
acquisition and conversion block. The DS1820 integrates a temperature
sensor, signal conditioning circuitry, and an A/D converter (analog-to-
digital) into a 3-pin device. The device is capable of sensing its ambient
temperature and converting the analog measurement into a 9-bit digital
word every second. The 9-bit word is a representation of a temperature
between –55 and +125 degrees Celcius in 0.5 degree Celcius
AN1723

16 MOTOROLA

Application Note
Keyboard Thermometer Hardware Design
increments. After the conversion process, the 9-bit word is stored, least
significant byte first, in scratchpad RAM on the DS1820. A
microcontroller can then read the word from the DS1820 using a serial
protocol over the DS1820’s DS pin.

Since the main focus of this note is a discussion of the keyboard
interface circuitry, interfacing the DS1820 to the MC68HC(7)05J1A will
not be examined in detail. For more information on interfacing the
DS1820 to a 68HC05 MCU, consult Adding a Voice User Interface to
M68HC05 Applications, Motorola order number AN1292/D.

The second functional block of the keyboard thermometer consists of
circuitry that interfaces the application to the host PC’s keyboard
interface. In this application, this block is implemented with four of the
MC68HC(7)05J1A’s I/O pins, which are used to emulate the keyboard’s
clock and data signals. To comply with the keyboard-to-host transfer
protocol, the AT keyboard must both drive and read the data and clock
lines while transmitting data to the host. Therefore, the data and clock
signals require two I/O pins each, one configured as an input and the
other an output. The AT keyboard specification also calls for both the
data and clock lines to be open-collector signals so that the host can
interrupt a keyboard-to-host data transfer. Since the
MC68HC(7)05J1A’s I/O pins are actively driven when configured as
outputs, they cannot be directly connected to a host’s keyboard
interface. Therefore, an open-collector buffer device along with an
accompanying pullup resistor must be used as an interface between any
one of the MC68HC(7)05J1A’s I/O pins that is configured as an output
and the host keyboard interface. The device selected to perform this
function is a 7407 hex open-collector buffer. Figure 8 illustrates a
generic circuit that can be used to interface any member of the
MC68HC05 Family of microcontrollers that does not have I/O pins with
open-drain capabilities to an AT keyboard interface. Some members of
the MC68HC05 Family, however, have I/O pins that can be configured
as open-drain outputs. For devices with this feature, only a single pullup
resistor is needed.

As explained earlier, the thermometer must disconnect the keyboard’s
clock and data signals from those of the host before transmitting data
back to the host. If this is not done, the keyboard will detect the activity
AN1723

MOTOROLA 17

Application Note
caused by the thermometer on the common data and clock lines and
attempt to respond to it. This will create contention on both the data and
clock lines.

Therefore, the keyboard’s clock and data lines must be removed from
those of the thermometer and the keyboard interface whenever the
thermometer is transmitting. Since the the data line is bidirectional, a
4066 analog switch was selected to accomplish this task. After being
disconnected from the common data and clock lines, the keyboard’s
clock and data lines are pulled up by its internal resistors.

For more information on the thermometer’s hardware design, consult the
schematic in Appendix A. Keyboard Thermometer Schematics .

Figure 8. Generic MC68HC(7)05 to AT Keyboard Port Interface

PA0

PA1

TO HOST

VCC

4.7 K

PA3

PA4

MC68HC(7)05x

7407 HEX OPEN-COLLECTOR BUFFER

VCC

4.7 K

CLOCK SIGNAL

TO HOST

VCC

4.7 K

DATA SIGNAL

VCC

4.7 K
AN1723

18 MOTOROLA

Application Note
Keyboard Thermometer Firmware Design
Keyboard Thermometer Firmware Design

The keyboard thermometer’s firmware has three main modules:

• Activation signal acquisition module

• Temperature acquisition and conversion module

• Keyboard interface module

The activation signal acquisition module includes routines that monitor
the keyboard’s clock and data lines for the activation sequence from the
host. The main function within this module, contact, searches
transactions between the host and the keyboard for two echo command-
response sequences. Since the protocols for a host-to-keyboard transfer
and a keyboard-to-host transfer are different, contact uses two routines,
read_command and read_response, to detect a host-to-keyboard and
keyboard-to-host transfer respectively.

As can be inferred from its name, the read_command routine monitors
the keyboard lines for a valid host-to-keyboard transfer. As stated
earlier, a host-to-keyboard transfer starts with the clock line being pulled
followed by the data line being pulled low approximately 35
microseconds later. If the routine detects this sequence of events, a
host-to-keyboard transfer is about to occur and the routine proceeds to
read the command being sent to the keyboard. The routine reads a
command by monitoring the rising and falling edges of the clock. The
routine shifts in a bit on the data line 10 microseconds after detecting a
rising edge on the clock line. Since the routine must wait for clock edges
that are produced by the keyboard’s clock signal, it is possible for the
code to hang if an expected edge does not occur. To avoid this problem,
good software design practice dictates that a software timeout loop be
implemented for every instance where the routine waits on an edge. The
routine checks a transfer for a start bit, eight data bits, a parity bit, a stop
bit, and the keyboard’s acknowledgement. Though all the elements of a
transfer are checked, only the data and parity bits are stored. If a timeout
error occurs or a parity error is detected, the routine’s global error flag is
set and exited.
AN1723

MOTOROLA 19

Application Note
The read_response routine is similar in implementation to the
read_command, but is capable of detecting a keyboard-to-host
transfer.

The second module handles all transactions with the DS1820 One-Wire
Digital Thermometer. This module consists of all those functions that
configure, and read data from the DS1820. Included among these are
those functions that convert the 9-bit word received from the DS1820
into a sequence of scan codes for transmission to the host. A full
discussion of these functions is found in Adding a Voice User Interface
to M68HC05 Applications, Motorola order number AN1292/D.

The last module consists of those routines that allow the thermometer
to transmit and receive data from the host’s keyboard interface. After
acquiring a temperature reading, the thermometer converts the 9-bit
word read from the DS1820 into an array of scan codes to be transmitted
to the PC through the keyboard interface. The transmission of the scan
codes is interpreted as a series of user keystrokes by the host. To
support the transmission of scan codes, the thermometer follows the
timing specifications and protocol for keyboard-to-keyboard interface
data transfers. This requires that the thermometer be capable of
transmitting and receiving to and from the keyboard interface. Though
the main function of this block is to transmit data to the PC, the module
must be capable of receiving data from the host in the event that a parity
error occurs during a keyboard-to-host transfer. So in addition to having
a routine to transmit data to the host, the module also contains a routine
to receive data from the keyboard interface. The transmission of data to
the host is accomplished by toggling or "bit banging" two of the
MC68HC(7)05J1A’s I/O pins which have been configured as outputs, in
accordance with the timing specifications for the data and clock lines.
Data is read from the host by toggling the clock line and reading in the
level of the data line 5 to 25 µs after each rising edge of the clock line.
See Appendix C. Keyboard Thermometer Firmware Flowchart for a
complete flowchart of the themometer’s firmware design.
AN1723

20 MOTOROLA

Application Note
Keyboard Thermometer Operating Instructions
Keyboard Thermometer Operating Instructions

Follow these steps to operate the keyboard thermometer:

1. Copy THERMO.EXE to a directory on an IBM AT compatible host
computer.

2. Disconnect the keyboard from the host computer.

3. Connect the keyboard connector to the appropriate connector on
the thermometer.

4. Connect a keyboard extension cable between the keyboard
interface of the host computer and the appropriate connector on
the thermometer.

5. Start THERMO.EXE by typing thermo on the DOS commandline.

6. Follow the instructions given in the dialog box that is displayed.

Summary

The IBM AT platform’s keyboard interface is a resource that can be used
to power and control small MC68HC(7)05-based applications. By
observing the constraints imposed by the PC keyboard’s hardware
design and keyboard-to-host and host-to-keyboard protocols,
M68HC05-based applications can be developed that can operate in
conjunction with the keyboard. A host computer can exert control over
an application by using the host-to-keyboard data transfer protocol and
the host-to-keyboard command set. The application can relay data back
to the PC by sending scan codes which will be interpreted as user
keystrokes. Programs resident on the host can then process the input as
required.
AN1723

MOTOROLA 21

Application Note
Bibliography

MC68HC705J1A Technical Data, Motorola order number
MC68HC708J1A/D

Dallas Semiconductor DS1820 One-Wire Digital Thermometer Data
Sheet

Konzak, Gary J.: PC Keyboard Design, 2nd. ed., Annabooks, San
Diego, CA, 1993

Messmer, Hans-Peter: The Indispensable PC Hardware Book – Your
Questions Answered; 1st. ed., Addison-Wesley Publishing Company,
Reading, MA, 1994
AN1723

22 MOTOROLA

Application Note
Appendix A. Keyboard Thermometer Schematics
 Appendix A. Keyboard Thermometer Schematics

D
a
t
e
:

S
e
p
t
e
m
b
e
r

2
3
,

1
9
9
7
S
h
e
e
t

1

o
f

1

S
i
z
e
D
o
c
u
m
e
n
t

N
u
m
b
e
r

R
E
V

B
1

T
i
t
l
e

K
E
Y
B
O
A
R
D

P
O
R
T

T
H
E
R
M
O
M
E
T
E
R

D
1
L
E
D

V
C
C

R
3
4
7
0

V
C
C

G
N
D

P
O
W
E
R
-
O
N

I
N
D
I
C
A
T
O
R

(
U
4
)

C
4
.
1
u
F

C
L
O
C
K

D
E
C
O
U
P
L
I
N
G

C
A
P
A
C
I
T
O
R
S

(
U
1
)

(
U
2
)

(
U
3
)

C
1
.
1
u
F

C
2
.
1
u
F

C
3
.
1
u
F

5

4

3

U
4
B

4
0
6
6

V
C
C

R
5
1
0
K

1
3

1

2

U
4
A

4
0
6
6

G
N
D

K
C
L
O
C
K

K
D
A
T
A

J
2

6
-
P
I
N

D
I
N

6 4 2

(
P
S
/
2

F
E
M
A
L
E

C
O
N
N
E
C
T
O
R
)

(
F
R
O
N
T

V
I
E
W
)V
C
C

5 3 1

D
A
T
A

1
1

1
0

U
3
E

7
4
0
7

5

6

U
3
C

7
4
0
7

V
C
C

R
1
4
.
7
K

R
1
5

4
.
7
K

V
C
C

J
1

6
-
P
I
N

D
I
N

G
N
D

V
C
C

C
L
O
C
K

D
A
T
A

5 3 1

6 4 2

G
N
D

(
P
S
/
2

M
A
L
E

C
O
N
N
E
C
T
O
R
)

(
F
R
O
N
T

V
I
E
W
)

1

2

U
3
A

7
4
0
7

3

4

U
3
B

7
4
0
7

9

8

U
3
D

7
4
0
7

V
C
C

R
2
4
.
7
K

V
C
C

R
1
4

4
.
7
K

V
C
C

D
A
T
A
_
O
U
T

D
A
T
A
_
I
N

C
L
O
C
K
_
O
U
T

C
L
O
C
K
_
I
N

G
N
D

V
C
C

B
U
S
Y

C
O
N
T
R
O
L

V
D
D

9

V
S
S

1
0

R
E
S
E
T

2
0

I
R
Q

1
9

P
A
7

1
1

P
A
6

1
2

P
A
5

1
3

P
A
4

1
4

P
A
3

1
5

P
A
2

1
6

P
A
1

1
7

P
A
0

1
8

P
B
5

3

P
B
4

4

P
B
3

5

P
B
2

6

P
B
1

7

P
B
0

8

O
S
C
1

1

O
S
C
2

2

U
1

M
6
8
H
C
7
0
5
J
1
A

D
Q

V
D
D

3

D
Q

2

G
N
D

1

U
5

D
S
1
8
2
0

R
6
1
0
K

V
C
C

V
C
C

G
N
D

R
7
1
0
0
K

C
5
1
u
F

*
N
O
T
E
:

S
I
N
C
E

T
H
I
S

D
E
S
I
G
N

W
A
S

P
R
O
T
O
T
Y
P
E
D

O
N

A

W
I
R
E

W
R
A
P

B
O
A
R
D
,

A
N

O
S
C
I
L
L
A
T
O
R

W
A
S

U
S
E
D

I
N
S
T
E
A
D

O
F

A

C
R
Y
S
T
A
L

A
S

T
H
E

S
Y
S
T
E
M

C
L
O
C
K
.

G
N
D

V
C
C

G
N
D

O
S
C

N
C

1

V
C
C

1
4

O
U
T

8

G
N
D

7

Y
1

4

M
H
z

AN1723

MOTOROLA 23

Application Note
Appendix B. THERMO.EXE Flowchart

 YES

YES

 NO

THERMO.EXE SENDS AN
ACTIVATION SEQUENCE
TO THE THERMOMETER.

DID AN ACTIVATION
ERROR OCCUR?

EXIT TO DOS

HAS A TIMEOUT
 OCCURRED?

 NO HAS STRING BEEN
RECEIVED FROM
THERMOMETER?

 DISPLAY THE
TEMPERATURE

READING

 NO

THERMO.EXE WAITS
FOR A KEYSTROKE

FROM THE USER

A

B

DISPLAY AN
ERROR MESSAGE
AN1723

24 MOTOROLA

Application Note
Appendix B. THERMO.EXE Flowchart (Continued)
Appendix B. THERMO.EXE Flowchart (Continued)

 YES

 YES

NO

 YES

WAS A Q OR
q ENTERED

BY THE USER?

EXIT TO DOS

THERMO.EXE SENDS
 AN ACTIVATION

 SEQUENCE TO THE
 THERMOMETER.

DID AN ACTIVATION
ERROR OCCUR?

DISPLAY AN
ERROR MESSAGE.

 NO

HAS A STRING
TIMEOUT

OCCURRED?

 NO

YES

AB

HAS STRING BEEN
RECEIVED FROM
THERMOMETER

?

 DISPLAY THE
TEMPERATURE

READING
AN1723

MOTOROLA 25

Application Note
Appendix C. Keyboard Thermometer Firmware Flowchart

INITIALIZE THE MCU’S
I/O PORTS

 WAIT FOR AN
 ACTIVATION SEQUENCE

 FROM THE HOST
 COMPUTER

DID

 A VALID

 ACTIVATION
 SEQUENCE
 OCCUR?

 NO

 YES

ATTEMPT TO ACQUIRE
 A 9-BIT TEMPERATURE

WORD FROM DS1820

WAS THE
ACQUISITION
SUCCESSFUL

?

 NO

YES

CONVERT 9-BIT
WORD INTO AN ARRAY
OF SCAN CODES TO BE
TRANSMITTED TO HOST

TRANSMIT THE SCAN
CODE ARRAY TO

THE HOST COMPUTER
AN1723

26 MOTOROLA

Application Note
Appendix D. Keyboard Thermometer Firmware Source Code
Appendix D. Keyboard Thermometer Firmware Source Code

DATA RMB 1 ;Storage space holding data that is transmitted or
;received

FLAG RMB 1 ;Function return flag
TX_BUFFER RMB 9 ;Data transmission buffer
TX_BUFFER_PTR RMB 1 ;Transmission buffer pointer
TX_RESEND RMB 1 ;Re-transmission storage space
TEMP RMB 1 ;Temporary storage space
TEMPA RMB 1 ;Temporary storage space for the A register
TEMPX RMB 1 ;Temporary storage space for the X register
TEMP_HI RMB 1 ;Temperature reading high byte
TEMP_LO RMB 1 ;Temperature reading low byte
ODD_MULTIPLE RMB 1 ;Flag indicating that a temperature reading that

;is an odd multiple of .5
QUOTIENT RMB 1 ;Storage space for the result of division

PORTA EQU $00 ;PORT A data register
PORTB EQU $01 ;PORT B data register
DDRA EQU $04 ;PORT A data direction register
DDRB EQU $05 ;PORT B data direction register
TSCR EQU $08 ;Timer status/control register
COMMAND EQU DATA ;Command byte read from the PC
RESPONSE EQU DATA ;Response byte read from the keyboard
RX_BUFFER EQU DATA ;Data receiver buffer
RAW_TEMP EQU TEMP_HI ;Start of buffer holding an acquired

;temperature reading
ECHO EQU $EE ;PC keyboard ECHO command
RESPONSE_BYTE EQU ECHO ;Keyboard's response to an ECHO command
RESEND EQU $FE ;PC keyboard resend command
CLOCK_OUT EQU 2 ;Device keyboard clock output signal
CLOCK_IN EQU 3 ;Device keyboard clock input signal
DATA_OUT EQU 0 ;Device keyboard data output signal
DATA_IN EQU 1 ;Device keyboard data input signal
BUSY EQU 4 ;Keyboard busy
CONTROL EQU 5 ;Keyboard enable/disable control signal
ONE_SECOND EQU $3D ;One second RTI timeout value
RTIFR EQU 2 ;Real-time interrupt flag mask
RTIF EQU 6 ;Real-time interrupt flag mask
SIXTEENMS EQU 1 ;16.4 mS timer delay mask
QUARTERSECOND EQU $0F ;1/4 second timer delay mask
RX_PARITY EQU 0 ;Parity bit in the FLAG variable
PARITY EQU 7 ;Received parity bit in the FLAG variable
DQ EQU 6 ;1820 data signal
DQ_CTRL EQU 6 ;MCU 1820 data signal control pin
SKIPROM EQU $CC ;1820 SKIP ROM COMMAND
CONVERT EQU $44 ;1820 temperature CONVERT command byte
READRAM EQU $BE ;1820 READ RAM command byte
DDRAMASK EQU $F5 ;PORT A data direction register mask
AN1723

MOTOROLA 27

Application Note
DDRBMASK EQU $FF ;PORT B data direction register mask
PORTAMASK EQU DDRAMASK ;PORT A data mask
PORTBMASK EQU DDRBMASK ;PORT B data mask
POSITIVE_SIGN EQU $00 ;MSB of a positive temperature reading
NEGATIVE_SIGN EQU $FF ;MSB of a negative temperature reading
POSITIVE_LIMIT EQU $FA ;The highest valid LSB for a positive

;temperature reading
NEGATIVE_LIMIT EQU $92 ;The lowest valid LSB for a negative

;temperature reading
ERROR EQU 0 ;Error bit in return flag variable
MINUS EQU $4E ;Scan code for the "-" character
ONE EQU $16 ;Scan code for the "1" character
POINT EQU $49 ;Scan code for the "." character
FIVE EQU $2E ;Scan code for the "5" character
ZERO EQU $45 ;Scan code for the "0" character
END EQU $5A ;Delimiter for the end of the TX table

ORG $300

START BSR INITIALIZE ;Initialize MCU I/O ports.
WAIT_4_COMMAND JSR CONTACT ;Wait for the PC to contact the device.

JSR ACQUIRE_TEMP ;If contact is established with the PC
TST FLAG ;acquire a temperature reading from the 1820,
BNE WAIT_4_COMMAND;convert it to a series of PC keyboard scan codes,
JSR FORMAT_TEMP ;and send them to the PC.
JSR SEND_TEMP
BRA WAIT_4_COMMAND

* Function Name: INITIALIZE *
* Function Inputs: None *
* Function Outputs: None *
* *
* Purpose: This function initializes the MC68HC705J1A's I/O ports. *
* *

INITIALIZE LDA #PORTAMASK ;Set bits 1 & 3 of PORT A low
STA PORTA ;Set all other bits high
LDA #DDRAMASK ;Set bits 1 & 3 of PORT A as inputs
STA DDRA ;Set all other bits as outputs
LDA #PORTBMASK ;Set all PORT B bits high
STA PORTB
LDA #DDRBMASK ;Set all PORT B bits as outputs
STA DDRB
RTS
AN1723

28 MOTOROLA

Application Note
Appendix D. Keyboard Thermometer Firmware Source Code
**
* *
* Function Name: CONTACT *
* Function Inputs: None *
* Function Outputs: None *
* *
* Purpose: This function monitors the data traffic on the PC-to-keyboard data *
* and clock signals for two ECHO command-response sequences. If the *
* sequences are found, this is interpreted as an activation signal *
* from the PC. *
* *
**

CONTACT JSR READ_COMMAND ;Monitor the PC-to-keyboard traffic for a
;PC to keyboard command.

TST FLAG ;Check the received byte for transmission
BEQ FIRST_ECHO ;errors or for an $EE byte. If an error
JSR BYTE_DELAY ;has occurred or an $EE was not received,
BRA CONTACT ;delay one character time then branch back.

FIRST_ECHO LDA #ECHO ;Otherwise continue
CMPA COMMAND
BNE CONTACT
JSR READ_RESPONSE ;Read and check the response from
TST FLAG ;the keyboard. If an error occurs
BNE CONTACT ;or an $EE was not sent, search for
LDA RESPONSE ;a new sequence.
CMPA #RESPONSE_BYTE
BNE CONTACT
JSR READ_COMMAND ;Search for another keyboard
TST FLAG ;ECHO command-response sequence.
BNE CONTACT ;If one is sucessfully detected,
LDA #ECHO ;continue. Otherwise branch back and
CMPA COMMAND ;start searching for a new sequence.
BNE CONTACT
JSR READ_RESPONSE
TST FLAG
BNE CONTACT
LDA RESPONSE
CMPA #RESPONSE_BYTE
BNE CONTACT
JSR RESPONSE_DELAY ;Allow time for the data and clock
JSR RESPONSE_DELAY ;lines to be pulled high.
RTS
AN1723

MOTOROLA 29

Application Note

* *
* Function Name: READ_COMMAND *
* Function Inputs: None *
* Function Outputs: 0-If the data transmitted on the PC-keyboard data link is *
* a valid PC-to-keyboard command that does not have any *
* transmission errors. *
* *
* 1-If the data transmitted on the PC-keyboard data link is *
* an invalid PC keyboard command or if a transmission *
* error occurred. *
* *
* Purpose: This function monitors the PC-to-keyboard data link signals for the*
* transmission of a valid host-to-keyboard command. If the trans- *
* mitted data is not a command or if a transmission error occurred, *
* return a zero in the FLAG variable otherwise return a one. *
* *

READ_COMMAND CLR FLAG ;Clear the return flag
;variable.

STA TEMPA ;Store the accumulator
STX TEMPX ;Store the index register
CLR TEMP ;Clear temporary storage

;space.
CLR DATA ;Clear the space that will

;receive the data.
CLC ;Clear the carry bit
LDX #$9

WAIT4COMMAND BRSET DATA_IN,PORTA,WAIT4COMMAND ;Wait for the falling edge
BRSET CLOCK_IN,PORTA,READ_CMD_ERROR;of the data line. If the
LDA #$48 ;clock line is low continue.

WAIT4CLOCKHI BRSET CLOCK_IN,PORTA,STARTBITCLOCK ;Wait for a maximum of 504 µS
DECA ;for the clock line to
BEQ READ_CMD_ERROR ;rise.
BRA WAIT4CLOCKHI

STARTBITCLOCK LDA #$D7 ;Wait a maximum of 1.5 mS
WAIT4STARTING BRCLR CLOCK_IN,PORTA,RISINGCLOCK ;to clock in the start

DECA ;bit.
BEQ READ_CMD_ERROR
BRA WAIT4STARTING

FALLINGCLOCK LDA #$0A
WAIT4FALLING BRCLR CLOCK_IN,PORTA,RISINGCLOCK

DECA
BEQ READ_CMD_ERROR
BRA WAIT4FALLING

RISINGCLOCK LDA #$0A ;Wait a maximum of 70 mS
WAIT4RISING BRSET CLOCK_IN,PORTA,GET_BIT ;for the rising edge of

DECA ;the clock.
BEQ READ_CMD_ERROR
BRA WAIT4RISING
AN1723

30 MOTOROLA

Application Note
Appendix D. Keyboard Thermometer Firmware Source Code
GET_BIT LDA #$3 ;Wait 10US and read a data
GET_BIT_DELAY DECA ;bit from the data line.

BNE GET_BIT_DELAY
BRCLR DATA_IN,PORTA,GET_LOW_BIT ;If the data bit is high
CPX #$1 ;use the bit to calculate
BEQ SET_BIT ;the parity.
INC TEMP

SET_BIT SEC ;Set the carry bit
BRA STORE_BIT

GET_LOW_BIT CLC ;If the data is low clear
;the carry bit.

STORE_BIT ROR DATA ;Roll the carry bit into
DECX ;the DATA variable.
BNE FALLINGCLOCK
ROL DATA ;Adjust the data and parity bits.
BCS PARITY_HI ;Check the parity.
BRCLR 0,TEMP,READ_CMD_ERROR
BRA PARITYLO

PARITY_HI BRSET 0,TEMP,READ_CMD_ERROR
PARITYLO LDA #$0A
WAIT4PARITYLO BRCLR CLOCK_IN,PORTA,STOPHI

DECA
BEQ READ_CMD_ERROR
BRA WAIT4PARITYLO

STOPHI LDA #$0A
WAIT4STOPHI BRSET CLOCK_IN,PORTA,STOP_BIT

DECA
BEQ READ_CMD_ERROR
BRA WAIT4STOPHI

STOP_BIT LDA #$2
STOP_BIT_DELAYDECA

BNE STOP_BIT_DELAY
BRCLR DATA_IN,PORTA,READ_CMD_ERROR ;Check for a stop bit.

;If one is not found, exit
;the function and signal an
;error.

LDA #$0A
ACKNOWLEDGE_LOBRCLR DATA_IN,PORTA,ACKNOWLEDGE_HI ;Check for an acknowledgement

;from the keyboard. If one is
;not found exit the function
;and signal an error.

DECA
BEQ READ_CMD_ERROR
BRA ACKNOWLEDGE_LO

ACKNOWLEDGE_HILDA #$0E
HANDLE_ACK BRSET DATA_IN,PORTA,READ_CMD_EXIT

DECA
BEQ READ_CMD_ERROR
BRA HANDLE_ACK

READ_CMD_ERRORINC FLAG
READ_CMD_EXIT LDA TEMPA ;Restore the accumulator

LDX TEMPX ;Return the index register
RTS ;Return
AN1723

MOTOROLA 31

Application Note
**
* *
* Function Name: READ_RESPONSE *
* Function Inputs: None *
* Function Outputs: 0 — If the data transmitted on the PC-keyboard data link is *
* a valid response to a host-to-keyboard command and has *
* no transmission errors. *
* *
* 1 — If the data transmitted on the PC-keyboard data link is *
* not a valid PC-to-keyboard command or if a transmission *
* error occurred. *
* *
* Purpose: This function monitors the PC-to-keyboard data link signals for a *
* response to the previously sent ECHO host-to-keyboard command. If *
* the transmitted data is not a command or if a transmission error *
* occurred, return a one in the FLAG variable, otherwise return a zero. *
* *
**

READ_RESPONSE CLR FLAG ;Clear function return flag.
STA TEMPA ;Save the accumulator
STX TEMPX ;Save the index register
CLR TEMP ;Clear the temporary variable
CLR DATA ;Clear the DATA variable
CLC ;Clear the carry bit

;Get the data and parity bits.
LDX #$09 ;Initialize the index register
LDA #$90 ;Wait for a maximum of 504 µS

;for a response from the keyboard.
START_LOOP BRCLR DATA_IN,PORTA,CHECK_CLOCK ;Wait for the falling the edge of

DECA ;the data line. If the clock is
BEQ READ_ERR ;line is low, continue. If a
BRA START_LOOP ;response is not received,

;exit the routine.
CHECK_CLOCK BRCLR CLOCK_IN,PORTA,READ_ERR

LDA #$0A
STARTING_EDGE BRCLR CLOCK_IN,PORTA,RISINGEDGE

DECA
BEQ READ_ERR
BRA STARTING_EDGE

RISINGEDGE LDA #$0A
RISING_EDGE BRSET CLOCK_IN,PORTA,FALLING_EDGE ;Wait for a maximum of 70 µS

DECA ;for a rising edge of the clock.
BEQ READ_ERR
BRA RISING_EDGE

FALLING_EDGE LDA #$0A
WAIT4_FALLING BRCLR CLOCK_IN,PORTA,GETBIT ;Wait for a maximum of 70 µS

DECA ;for a falling edge of the clock.
BEQ READ_ERR
BRA WAIT4_FALLING
AN1723

32 MOTOROLA

Application Note
Appendix D. Keyboard Thermometer Firmware Source Code
GETBIT BRCLR DATA_IN,PORTA,GET_LO_BIT ;If the data bit is low branch.
CMPX #$1 ;Otherwise, use the bit
BEQ GET_HI_BIT ;to calculate the parity.
INC TEMP

GET_HI_BIT SEC ;Set the carry bit
BRA STORE_DATA

GET_LO_BIT CLC ;Clear the carry bit.
STORE_DATA ROR DATA ;Store the data bit.

DECX
BNE RISINGEDGE
ROL DATA ;Adjust the data and parity bits.
BCS HI_PARITY_BIT ;Check for a parity error, if one
BRCLR 0,TEMP,READ_ERR ;occurred, exit the function and set
BRA STOPBIT ;the function return FLAG variable.

HI_PARITY_BIT BRSET 0,TEMP,READ_ERR
STOPBIT LDA #$20
WAIT_4_STOP_HIBRSET CLOCK_IN,PORTA,STOP_LO_CLOCK;Wait for the stop bit to be

;clocked in.
DECA
BEQ READ_ERR
BRA WAIT_4_STOP_HI

STOP_LO_CLOCK LDA #$20
WAIT_4_STOP_LOBRCLR CLOCK_IN,PORTA,CHECK_STOP_BIT

DECA
BEQ READ_ERR
BRA WAIT_4_STOP_LO

CHECK_STOP_BITBRSET DATA_IN,PORTA,RESPONSE_EXIT ;Check for the stop bit
READ_ERR INC FLAG
RESPONSE_EXIT LDA TEMPA ;Restore the accumulator

LDX TEMPX ;Restore the index register
RTS ;Return
AN1723

MOTOROLA 33

Application Note
**
* *
* Function Name: SEND_BYTE *
* Function Inputs: None *
* Function Outputs: 0 — If a data byte is successfully transmitted to the PC. *
* *
* 1 - If a data byte failed to be transmitted to the PC. *
* *
* Purpose: This function transmits a data byte to the PC. The function *
* contact with the PC by transmitting a scan code to the PC. The *
* function then waits for a response from the PC. If the PC detects a *
* an error in the transmission, it will send a keyboard resend com- *
* mand (0xFE) back to the thermometer. On receiving a resend command, *
* the thermometer will re-transmit the data byte to the PC. If the *
* re-transmission fails, the function is exited and the function *
* return variable, FLAG, is set. If no transmission error occurs in *
* this function, the function is exited with the return flag cleared. *
* *
**

SEND_BYTE BCLR CONTROL,PORTA ;Disconnect the keyboard from
BCLR BUSY,PORTA ;the PC.
LDA DATA ;Save the data to be transmitted
STA TX_RESEND ;in case a transmission error occurs.
JSR SEND ;Transmit the byte to the PC.
BRCLR ERROR,FLAG,EXIT_SEND_BYTE ;If a transmission error did not
JSR ERROR_DELAY ;occur, exit the function.
JSR RECEIVE ;Otherwise prepare to receive the
BRCLR ERROR,FLAG,CHECK_FOR_$FE ;resend command (0xFE) from the PC.
BRA EXIT_SEND_BYTE

CHECK_FOR_$FE LDA #RESEND ;If a 0xFE is not received, set the
CMP RX_BUFFER ;return flag and exit the function.
BEQ RESEND_BYTE
BRA EXIT_SEND_BYTE ;Otherwise resend the original data.

RESEND_BYTE LDA TX_RESEND ;If the re-transmission failed, set
STA DATA ;the function return flag and exit
JSR ERROR_DELAY ;the function.
JSR SEND
BRCLR ERROR,FLAG,EXIT_SEND_BYTE

SEND_BYTE_ERROR BSET 0,FLAG ;If an error occurred, set the FLAG
;variable to a non zero value.

EXIT_SEND_BYTE BSET BUSY,PORTA ;Reconnect the keyboard to the PC.
BSET CONTROL,PORTA
RTS
AN1723

34 MOTOROLA

Application Note
Appendix D. Keyboard Thermometer Firmware Source Code
**
* *
* Function Name: SEND *
* Function Inputs: None *
* Function Outputs: 0 - If a data byte is sucessfully transmitted to the PC. *
* *
* 1 - If a data byte failed to be transmitted to the PC. *
* *
* Purpose: This function performs the low level I/O pin manipulations needed *
* to transmit a byte to the PC. This involves "bit banging" two I/O *
* pins to generate the clock and data signals. The function will *
* return a zero if the transmission was sucessful. A one will be *
* returned if an error occurred or if the PC wants to transmit a *
* a command while the data was being transmitted. *
* *
**

SEND CLR TEMP ;Clear space to calculate the
;parity.

CLR FLAG ;Clear the return flag.
BSET CLOCK_OUT,PORTA ;Set the clock signal high.
BSET DATA_OUT,PORTA ;Set the data signal high.
LDX #8
BCLR DATA_OUT,PORTA ;Set up and clock in the start bit.
JSR HALF_CLOCK
BCLR CLOCK_OUT,PORTA
JSR FULL_CLOCK ;Clock in eight data bits.
BSET CLOCK_OUT,PORTA ;If the PC pulls the clock line low,
JSR HALF_CLOCK ;while the I/O pin is driven high,
BRCLR CLOCK_IN,PORTA,SEND_ERROR ;set the return flag and exit the

;function.
SEND_BIT ROR DATA

BCS SEND_ONE
BCLR DATA_OUT,PORTA
BRA SEND_DATA

SEND_ONE BSET DATA_OUT,PORTA ;If the data bit being transmitted
BRCLR DATA_IN,PORTA,SEND_ERROR ;is a one and the PC pulls it low,
INC TEMP ;set the return flag and exit

SEND_DATA JSR HALF_CLOCK ;the function.
BCLR CLOCK_OUT,PORTA
JSR FULL_CLOCK
BSET CLOCK_OUT,PORTA
JSR HALF_CLOCK
BRCLR CLOCK_IN,PORTA,SEND_ERROR
DECX
BNE SEND_BIT
ROR TEMP ;Calculate the parity and send
BCC PARITY_ONE ;the parity bit.
BCLR DATA_OUT,PORTA
BRA SEND_PARITY
AN1723

MOTOROLA 35

Application Note
PARITY_ONE BSET DATA_OUT,PORTA
BRCLR DATA_IN,PORTA,SEND_ERROR

SEND_PARITY JSR HALF_CLOCK
BCLR CLOCK_OUT,PORTA
JSR FULL_CLOCK
BSET CLOCK_OUT,PORTA
JSR HALF_CLOCK
BRCLR CLOCK_IN,PORTA,SEND_ERROR
BSET DATA_OUT,PORTA
BRCLR DATA_IN,PORTA,SEND_ERROR
JSR HALF_CLOCK
BCLR CLOCK_OUT,PORTA
JSR FULL_CLOCK
BSET CLOCK_OUT,PORTA
LDX #2

PC_BUSY BRCLR CLOCK_IN,PORTA,STILL_BUSY ;The PC will pull the clock
JSR FULL_CLOCK ;low while it processes the
DECX ;transmitted data.
BEQ SEND_ERROR
BRA PC_BUSY

STILL_BUSY LDX #QUARTERSECOND ;Wait a maximum of 1/4 second
LDA #SIXTEENMS ;for the PC to process the
STA TSCR ;transmitted data. If the PC

RST_TIMEOUT BSET RTIFR,TSCR ;does not release the clock
PC_TIMEOUT BRSET CLOCK_IN,PORTA,CHECK_DATA ;line set the function return

BRCLR RTIF,TSCR,PC_TIMEOUT ;flag and exit.
DECX
BNE RST_TIMEOUT
BRA SEND_ERROR

CHECK_DATA BRSET DATA_IN,PORTA,SEND_EXIT ;The PC will pull the data
SEND_ERROR INC FLAG ;low if a transmission error
SEND_EXIT BSET CLOCK_OUT,PORTA ;set the return flag.

BSET DATA_OUT,PORTA ;Reconnect the keyboard to the PC.
RTS
AN1723

36 MOTOROLA

Application Note
Appendix D. Keyboard Thermometer Firmware Source Code
**
* *
* Function Name: RECEIVE *
* Function Inputs: None *
* Function Outputs: 0 - If a data byte was successfully received from the PC. *
* *
* 1 - If a data byte was unsuccessfully received from the PC. *
* *
* Purpose: This function performs the low level I/O pin manipulations needed *
* to receive a data byte from the PC. *
* *
**
RECEIVE CLR DATA

CLR FLAG
CLR TEMP
BSET DATA_OUT,PORTA ;Pull the clock and data lines
BSET CLOCK_OUT,PORTA ;high.
LDX #$9
BCLR CLOCK_OUT,PORTA ;Clock in the start bit.
JSR FULL_CLOCK

GET_BITS BSET CLOCK_OUT,PORTA
JSR HALF_CLOCK ;Read in 8 data bits and the
BRCLR DATA_IN,PORTA,DATA_LO ;parity bit.
CPX #$01
BEQ HIGH_BIT
INC TEMP

HIGH_BIT SEC
BRA STORE

DATA_LO CLC
STORE ROR DATA

JSR HALF_CLOCK
BCLR CLOCK_OUT,PORTA
JSR FULL_CLOCK
DECX
BNE GET_BITS
ROL DATA
BSET CLOCK_OUT,PORTA
BCC CLR_PARITY
BSET PARITY,TEMP
BRA STOP

CLR_PARIT BCLR PARITY,TEMP
STOP JSR HALF_CLOCK ;Clock in the stop bit.

BRCLR DATA_IN,PORTA,RCV_ERROR
BCLR DATA_OUT,PORTA
JSR HALF_CLOCK
BCLR CLOCK_OUT,PORTA
JSR FULL_CLOCK
BRCLR PARITY,TEMP,TST_PARITY ;Check the parity of the
BRSET RX_PARITY,TEMP,RCV_ERROR ;received data.
BRA RCV_EXIT

TST_PARITY BRSET RX_PARITY,TEMP,RCV_EXIT
RCV_ERROR INC FLAG
RCV_EXIT BSET CLOCK_OUT,PORTA ;Reconnect the keyboard to

BSET DATA_OUT,PORTA ;the PC.
RTS
AN1723

MOTOROLA 37

Application Note
**
* *
* Function Name: ACQUIRE_TEMP *
* Function Inputs: None *
* Function Outputs: 0 - If a temperature reading was sucessfully acquired from *
* the 1820. *
* *
* 1 - If a temperature reading was not acquired from the 1820. *
* *
* Purpose: This function calls the sequence of low level routines that acquire *
* a temperature reading from the 1820. If the acquisition is *
* sucessful, the reading is returned in the TEMP_HI and TEMP_LO *
* variables and function return flag is cleared. If an error occurs *
* while acquiring a reading, the function return flag is set and the *
* function is exited. *
* *
**

ACQUIRE_TEMP JSR RESET_1820 ;Reset the 1820. If the
TST FLAG ;1820 did not reset, set
BNE GET_ERROR ;the function return flag

;and exit the function.
LDA #SKIPROM ;Send the 1820 SKIP PROM
STA TEMP ;command.
JSR WRITE_1820
LDA #CONVERT ;Send the 1820 CONVERT T
STA TEMP ;command.
JSR WRITE_1820

READ_LOOP JSR READ_1820 ;Wait for the 1820 to
LDA TEMP ;execute the CONVERT
CMP #$FF ;command.
BNE READ_LOOP
JSR RESET_1820 ;Reset the 1820. If the
TST FLAG ;1820 did not reset, set
BNE GET_ERROR ;the function return flag

;and exit the function.
LDA #SKIPROM ;Send the 1820 SKIP PROM
STA TEMP ;command.
JSR WRITE_1820
LDA #READRAM ;Send the 1820 READ RAM
STA TEMP ;command.
JSR WRITE_1820
JSR READ_1820 ;Read the temperature from the
LDA TEMP ;1820.
STA TEMP_LO
JSR READ_1820
LDA TEMP
STA TEMP_HI
CMP #POSITIVE_SIGN ;Check for a positive
BEQ CHECK_POSITIVE ;temperature.
CMP #NEGATIVE_SIGN ;Check for a negative
BNE GET_ERROR ;temperature.
LDA TEMP_LO
CMP #NEGATIVE_LIMIT ;Check a negative reading
BLO GET_ERROR ;to see if it is within
BRA GET_EXIT ;proper limits.

CHECK_POSITIVE LDA TEMP_LO ;Check a positive reading
CMP #POSITIVE_LIMIT ;to see if it is within
BLS GET_EXIT ;proper limits.

GET_ERROR INC FLAG
GET_EXIT JSR RESET_1820 ;Reset the 1820.

RTS
AN1723

38 MOTOROLA

Application Note
Appendix D. Keyboard Thermometer Firmware Source Code
**
* *
* Function Name: RESET_1820 *
* Function Inputs: None *
* Function Outputs: 0 - If the 1820 resets *
* *
* 1 - If the 1820 fails to reset. *
* *
* Purpose: This function resets the 1820. After a reset the 1820 should send *
* back an acknowledgement. If an acknowledgement is not sent back set *
* the function return flag and exit the function. Otherwise return a *
* cleared function return flag. *
* *
**

RESET_1820 STA TEMPA ;Save the CPU registers
STX TEMPX
CLR FLAG ;Clear the function return flag.
BSET DQ,PORTA ;Send a reset pulse to the 1820.
BSET DQ_CTRL,DDRA
BCLR DQ,PORTA
JSR DELAY_500µS
BSET DQ,PORTA
BCLR DQ_CTRL,DDRA ;Wait for a response from the
JSR DELAY_100uS ;1820. If a response is not received
BRSET DQ,PORTA,RESET_ERR ;set the function return flag and
JSR DELAY_500µS ;exit the function.
BRSET DQ,PORTA,RESET_EXIT

RESET_ERR INC FLAG
RESET_EXIT BSET DQ,PORTA ;Set the J1A up for the next

BSET DQ_CTRL,DDRA ;transmission.
LDA TEMPA ;Restore the CPU registers.
LDX TEMPX
RTS
AN1723

MOTOROLA 39

Application Note
**
* *
* Function Name: WRITE_1820 *
* Function Inputs: None *
* Function Outputs: None *
* *
* Purpose: This function writes the data stored in the TEMP variable to the *
* 1820. *
* *
**

WRITE_1820 STA TEMPA ;Save the CPU registers.
STX TEMPX
LDX #8

WRITE_SHIFT LSR TEMP ;Shift out the next data bit.
BCS WRITE_ONE

WRITE_ZERO BCLR DQ,PORTA ;Send a zero to the 1820.
JSR DELAY_80µS
BSET DQ,PORTA
BRA DEC_WRITE

WRITE_ONE BCLR DQ,PORTA ;Send a one to the 1820.
NOP
NOP
NOP
BSET DQ,PORTA
JSR DELAY_80µS

DEC_WRITE DECX
BNE WRITE_SHIFT
LDA TEMPA ;Restore the CPU registers.
LDX TEMPX
RTS
AN1723

40 MOTOROLA

Application Note
Appendix D. Keyboard Thermometer Firmware Source Code
**
* *
* Function Name: READ_1820 *
* Function Inputs: None *
* Function Outputs: None *
* *
* Purpose: This function reads the data from the 1820 and stores it in the *
* TEMP variable. *
* *
**

READ_1820 STA TEMPA ;Save the CPU registers
STX TEMPX
LDX #8

READ_BIT BSET DQ,PORTA ;Set up the DQ line for a read
BSET DQ_CTRL,DDRA
BCLR DQ,PORTA
NOP
NOP
NOP
NOP
NOP
BCLR DQ_CTRL,DDRA ;Set the DQ line to receive data
BRSET DQ,PORTA,READ_ONE ;read the data bit.
CLC
BRA READ_SHIFT

READ_ONE SEC
READ_SHIFT ROR TEMP ;Rotate the bit into the TEMP

JSR DELAY_80µS ;variable
DECX
BNE READ_BIT
BSET DQ,PORTA
BSET DQ_CTRL,DDRA
LDA TEMPA ;Restore the CPU registers
LDX TEMPX
RTS
AN1723

MOTOROLA 41

Application Note
**
* *
* Function Name: FORMAT_TEMP *
* Function Inputs: None *
* Function Outputs: None *
* *
* Purpose: This function calls the sequence of low level routines that acquire *
* a temperature reading from the 1820. If the acquisition is *
* sucessful, the reading is returned in the TEMP_HI and TEMP_LO *
* variables and function return flag is cleared. If an error occurs *
* while acquiring a reading, the function return flag is set and the *
* function is exited. *
* *
**

FORMAT_TEMP CLR ODD_MULTIPLE ;Check to see if the temperature reading is an
;odd multiple .5. If it is set the POINT_FLAG
;variable

BRCLR 0,(RAW_TEMP+1) ;NOT_POINT
INC ODD_MULTIPLE

NOT_POINT LDX #TX_BUFFER ;Check to see if the temperature is negative.
LDA RAW_TEMP ;If it is place the scan code for "-" into
BEQ NOT_NEG ;the transmission buffer and convert the
LDA #MINUS ;temperature into its positive equivalent.
STA ,X
INCX
COM (RAW_TEMP+1)
INC (RAW_TEMP+1)

NOT_NEG LSR (RAW_TEMP+1) ;Remove the .5 component of the temperature
;from the temperature reading.

LDA (RAW_TEMP+1) ;Check for the temperature being greater than
CMP #$64 ;100 degrees Celsius.
BLO BELOW_100 ;If the value is greater than 100 degrees
SUB #$64 ;subtract the value for 100 degrees Celsius
STA (RAW_TEMP+1) ;and store the result.
LDA #ONE ;Store the scan code for a "1" in the
STA ,X ;transmission buffer.
INCX

BELOW_100 LDA (RAW_TEMP+1) ;Divide the reading into its tens and ones
CLR QUOTIENT ;components.

DIV10 CMP #$0A
BLO DIV_DONE
INC QUOTIENT
SUB #$0A
BRA DIV10

DIV_DONE STA (RAW_TEMP+1) ;Find the scan code for the multiple of ten
STX TEMP ;and store it in the transmission buffer.
TST QUOTIENT
BEQ NO_TENS
LDX QUOTIENT
LDA SCAN_TABLE,X
AN1723

42 MOTOROLA

Application Note
Appendix D. Keyboard Thermometer Firmware Source Code
LDX TEMP
STA ,X
INCX
STX TEMP ;Find the scan code for the ones component

NO_TENS LDX (RAW_TEMP+1) ;in the scan code table and store it in the
LDA SCAN_TABLE,X ;transmission buffer.
LDX TEMP
STA ,X
INCX
TST ODD_MULTIPLE ;If the temperature reading is an odd multiple
BEQ WHOLE_NUMBER ;of .5 degrees Celsius, store the scan codes for

;the characters ".5" in the transmission buffer.
;Otherwise store the scan codes for the characters
;".0" in the transmission buffer.

LDA #POINT
STA ,X
INCX
LDA #FIVE
STA ,X
BRA FORMAT_END

WHOLE_NUMBER LDA #POINT
STA ,X
INCX
LDA #ZERO
STA ,X

FORMAT_END INCX ;Store the transmission delimiter character in the
LDA #END ;transmission buffer.
STA ,X
INCX
LDA #$FF ;Store the stop transmission character in the
STA ,X ;transmission buffer.
RTS
AN1723

MOTOROLA 43

Application Note
**
* *
* Function Name: SEND_TEMP *
* Function Inputs: None *
* Function Outputs: None *
* *
* Purpose: This function transmits the contents of the transmission buffer to *
* the PC. *
* *
**

SEND_TEMP LDX #TX_BUFFER ;Transmit the contents of the transmission buffer.
SEND_LOOP LDA ,X ;If an error occurs, exit the function.

STX TX_BUFFER_PTR
STA DATA
JSR SEND_BYTE
TST FLAG
BNE SEND_END
LDX TX_BUFFER_PTR
INCX
LDA ,X
CMP #$FF
BEQ SEND_END
LDA #2
STA TEMP
JSR DELAY_500µS

TX_DELAY DEC TEMP
BNE TX_DELAY
BRA SEND_LOOP

SEND_END RTS

**
* *
* SCAN_TABLE *
* *
**

SCAN_TABLE FCB $45 ;SCAN CODE FOR "0"
FCB $16 ;SCAN CODE FOR "1"
FCB $1E ;SCAN CODE FOR "2"
FCB $26 ;SCAN CODE FOR "3"
FCB $25 ;SCAN CODE FOR "4"
FCB $2E ;SCAN CODE FOR "5"
FCB $36 ;SCAN CODE FOR "6"
FCB $3D ;SCAN CODE FOR "7"
FCB $3E ;SCAN CODE FOR "8"
FCB $46 ;SCAN CODE FOR "9"
AN1723

44 MOTOROLA

Application Note
Appendix D. Keyboard Thermometer Firmware Source Code
**
* *
* TIME DELAY ROUTINES *
* *
**

ERROR_DELAY LDA #$40
BRA CLOCK_LOOP

FULL_CLOCK LDA #7
BRA CLOCK_LOOP

HALF_CLOCK LDA #3
CLOCK_LOOP DECA

BNE CLOCK_LOOP
RTS

CMD_DELAY LDA #$D4
BRA CMD_LOOP

CMD_LOOP DECA
NOP
BNE CMD_LOOP
RTS

AFTER_BYTE LDX #$2
AFTER_LOOP JSR FULL_CLOCK

DECX
BNE AFTER_LOOP
RTS

DELAY_80µS LDA #$0C
BRA DELAY_LOOP

DELAY_100µS LDA #$0F
BRA DELAY_LOOP

DELAY_500µS LDA #$52
BRA DELAY_LOOP

DELAY_LOOP NOP
NOP
NOP
DECA
BNE DELAY_LOOP
RTS

BYTE_DELAY LDX #$18
JSR FULL_CLOCK

DELAY_BYTE_LOOP DECX
BNE DELAY_BYTE_LOOP
RTS

RESPONSE_DELAY LDA #$7
STA TSCR

RESPONSE_LOOP BRSET 6,TSCR,DELAY_EXIT
BRA RESPONSE_LOOP

DELAY_EXIT RTS
ORG $07FE
FDB START
AN1723

MOTOROLA 45

Application Note
Appendix E. THERMO.EXE Source Code

#include <conio.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <dos.h>

#define INTR 0x1C //Timer interrupt vector

// Function prototypes
void draw_dialog_box(void); // displays a dialog box
int acquire_temperature(void); // acquires a temperature reading
void print_center(int y, char string[]); // display a string in the center of

// the screen
void interrupt far (*oldhandler) (...); // original PC timer handler
void interrupt far handler(...); // replacement PC timer handler

// Global variables
int counter = 0; // timer counter variable
int error_flag = 0; // global error flag
char buffer[80]; // keystroke buffer

void main(void)
{
int c;

// Turn the cursor off.
_setcursortype(_NOCURSOR);

// Acquire and display the temperature until a "q" or
// "Q" is pressed or an error occurs.
do

{
// Attempt to contact the device and acquire a temperature reading.
// If the attempt failed, display an error message and exit the program.
// Otherwise display the temperature in a dialog box.
if(!acquire_temperature())

 error_flag = 1;
else

 {
 // Display the temperature in a dialog box.
 draw_dialog_box();

 // Wait for the user to enter a key.
 // If the user presses a 'q' or 'Q' quit.
 while(!kbhit())
AN1723

46 MOTOROLA

Application Note
Appendix E. THERMO.EXE Source Code
 ;
 c = getch();
 }

 }while((!error_flag) && (c != 'q') && (c != 'Q'));

 // If an error occurred, display an error message.
 if(error_flag)

printf("Error - Contact was lost with the thermometer.");
 exit(0);
 }

/* draw_dialog_box function
*
* Function input variables: None.
*
* Function outputs: None.
*
* This function draws a dialog box displaying the temperature.
*
*/
void draw_dialog_box(void)
 {
 // Top of message box display character array
 char top_text[2][80] ={

 "***\n",
 "* *\n"};

 // Bottom of message box display character array
 char bottom_text[3][80] ={

 "* *\n",
 "***\n",
 "Press Q to quit or any other key to measure the ambient temperature\n"};

 int i; // generic counter variable
 char temp[80]; // temporary string

 // Clear the screen.
 clrscr();

 // Display the message box.
 for(i=0;i<2;i++)

 print_center(i+9,top_text[i]);
AN1723

MOTOROLA 47

Application Note
 // Size the message string according to the size of the temperature string.
 if((strlen(buffer)) == 5)
 sprintf(temp,"* The current temperature is: %s degrees Celcius *\n",

 buffer);
 else if((strlen(buffer)) == 4)
 sprintf(temp,"* The current temperature is: %s degrees Celcius *\n",

 buffer);
 else
 sprintf(temp,"* The current temperature is: %s degrees Celcius *\n",

 buffer);

 print_center(11,temp);

 for(i=0;i<3;i++)
 print_center(i+12,bottom_text[i]);

 return;
 }

/* acquire_temperature function
*
* Function input variables: None
*
* Function outputs: an integer;
* 0: If the device failed to respond to the PC.
* 1: If the device responded to the PC.
*
* This function attempts to contact the device.
*
*/
int acquire_temperature(void)
 {
 int i; // generic counter variable
 unsigned char c; // generic character variable

 // Send the keyboard echo command ($EE) twice to the device to signal that
 // PC wishes to contact it.

 counter = 0;

 // Replace the default timer handler routine with the one designed for
 // this program.
 oldhandler = getvect(INTR);
 setvect(INTR,handler);

 for(i = 0;i<2;i++)
{
 // Send a $EE to the keyboard.
 outportb(0x60,0xEE);

 // Check to see if a response was received to the echo command.
AN1723

48 MOTOROLA

Application Note
Appendix E. THERMO.EXE Source Code
 // If one was not, clear the function's flag and exit.
 while((!(inportb(0x64) & 0x01)) && (counter < 18))

 ;

 // If a response is not received within one second, re-install the
 // default timer handler routine, exit this function, and return a zero.
 if(counter > 18)
 {
 setvect(INTR,oldhandler);
 return(0);
 }
}

// Initialize the buffer that will hold the temperature reading.
i = 0;
memset(buffer,'\0',79);

// Wait a maximum of two seconds for the temperature string from the
// device. If a timeout occurs, exit the routine and return a zero.
// Otherwise return a one.
do{
 if(kbhit())
 {
 c = getch();
 if(c != '\r')

{
 buffer[i] = c;
 i++;
}

 }
 }while((c != '\r') && (counter < 36));

setvect(INTR,oldhandler);

if(counter < 32)
 return(1);
else
 return(0);

 }

/* print_center function
*
* Function input variables: int y;
* vertical position at the string will be printed.
* char string[];
* string to be centered and printed on the screen.
*

AN1723

MOTOROLA 49

Application Note
* Function outputs: None.
*
* This function prints the character string passed to it in the center of the
* screen.
*
*/
void print_center(int y, char string[])
 {
 // Position the string in the center of the string.
 gotoxy (40 - (strlen(string)/2), y);

 // Print the string to the string.
 printf("%s",string);
 }

void interrupt far handler(...)
 {
 counter++;
 oldhandler();
 }
AN1723

50 MOTOROLA

Application Note
Appendix F. AT Keyboard Scan Codes of Common Alphanumeric Characters
Appendix F. AT Keyboard Scan Codes of Common Alphanumeric
Characters

Table 1. AT Keyboard Scan Codes

Scan Character ASCII Code Scan Character ASCII Code

045F 0 030H 043H i 069H

016H 1 031H 03BH j 06AH

01EH 2 032H 042H k 06BH

026H 3 033H 04BH l 06CH

025H 4 034H 03AH m 06DH

02EH 5 035H 031H n 06EH

036H 6 036H 044H o 06FH

03DH 7 037H 04DH p 070H

03EH 8 038H 015H q 071H

046H 9 039H 02DH r 072H

01CH a 061H 01BH s 073H

032H b 062H 02CH t 074H

021H c 063H 03CH u 075H

023H d 064H 02AH v 076H

024H e 065H 01DH w 077H

02BH f 066H 022H x 078H

034H g 067H 035H y 079H

033H h 068H 01AH z 07AH
AN1723

MOTOROLA 51

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Application Note
AN1723/D

© Motorola, Inc., 1997

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217, 1-800-441-2447 or

1-303-675-2140. Customer Focus Center, 1-800-521-6274
JAPAN: Nippon Motorola Ltd. SPD, Strategic Planning Office 4-32-1, Nishi-Gotanda Shinagawa-ku, Tokyo 141, Japan, 81-3-5487-8488
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong, 852-26629298
Mfax™, Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/;

TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848
HOME PAGE: http://motorola.com/sps/

Mfax is a trademark of Motorola, Inc.

	Introduction
	IBM Keyboard Subsystem Overview
	IBM Keyboard Subsystem Design
	The Keyboard Interface Programming Model
	Using the Keyboard Interface as a Resource
	Keyboard Thermometer System Design
	Keyboard Thermometer Hardware Design
	Keyboard Thermometer Firmware Design
	Keyboard Thermometer Operating Instructions
	Summary
	Bibliography
	Appendix A. Keyboard Thermometer Schematics
	Appendix B. THERMO.EXE Flowchart
	Appendix B. Thermo.EXE Flowchart (Continued)
	Appendix C. Keyboard Thermometer Firmware Flowchar...
	Appendix D. Keyboard Thermometer Firmware Source C...
	Appendix E. thermo.exe Source Code
	Appendix F. AT Keyboard Scan Codes of Common Alpha...

