
 

Order this document
 by  AN1724/D

  

SEMICONDUCTOR

 

MOTOROLA

APPLICATION NOTE

    
Implementing SCI Receive and 
Transmit Buffers in C
by Mark Maiolani, Motorola, East Kilbride

1 Introduction
Several devices in the Motorola M68HC16 and M68300 microcontroller families include asynchronous
serial communications channels. On the MC68331 device, this functionality is included in the serial
communications interface (SCI) part of the queued serial module (QSM).

Although the SCI only buffers a single transmission or reception of eight or  nine bits, typical applications
require data to be transmitted and received in multiple byte ‘packets’, such as text strings. If the main
CPU software directly passes data to and from the SCI, then it may have to wait for SCI transmissions
or reception to complete before it can write the next byte for transmission or read the received byte. This
is not efficient use of the CPU, which could be processing other tasks.

One way to resolve this problem is to implement software buffers for the SCI transmitter and receiver
which service the SCI module via interrupt. To transmit a packet of data, the main program would simply
add the data to the transmit buffer, and continue processing without having to wait for actual transmis-
sion. Similarly, a packet of received data could be read from the receive buffer and processed at a time
convenient for the CPU.

This application note describes one implementation of SCI buffer software with the following character-
istics:

• Configured for CPU32 devices with QSM (including MC68331, MC68332, MC68F333 and
MC68336)

• Written in C language to simplify porting to CPU16 devices with QSM
• Simple user interface
• Circular transmit buffer
• Circular receive buffer
• All SCI maintenance carried out by interrupt
• Buffer sizes easily adjusted
• SCI interrupts can remain enabled during  buffer reads/writes
© MOTOROLA INC,  1997



             
2  The SCI Buffer Software
The SCI buffer software consists of one main source file (SCIBUFF.C), and a single include file of de-
fines for the QSM module (QSM.H). All of the buffer operations are built into six support functions, with
a main() function included only as an example of the initialization sequence and calling conventions for
these functions.

The following support functions are included in the software:

• sciinit (void)
• qinit   (queue_struct *sptr)
• qstat   (queue_struct *sptr)
• rx_byte (byte *b)
• tx_byte (byte)
• sciint (void)

3 SCI Initialization
Sciinit performs initialization of the SCI hardware and unlike the other support functions, does not ac-
cess the main transmit and receive buffers created by the software. Any changes to the SCI baud rate
or other SCI settings can be made by modifying this function. The function is called without any passed
or returned parameters as shown below.

sciinit(); /* Initialize the SCI in the QSM module */

4 Main Library Functions
The functions qinit, qstat, rx_byte, and tx_byte are called by the main user software as library type func-
tions. 

Qinit is used to initialize a specified buffer to its empty state, either as part of the main initialization se-
quence, or later during operation to perform a ‘flush buffer’ function. The buffer is specified by passing
its address to the function, e.g.: 

qinit(&rxbuff); /* Initialize RX buffer */

Qstat returns the number of valid data entries in a specified buffer. An example use of this function is if
the user program is required to process received data in packets of n entries. Qstat would be periodi-
cally called to check if the required n entries are available, before continuing to read and process the
data. The qstat function can also be used to provide an early warning that a buffer is almost full before
it reaches an overrun condition. As with qinit, the buffer is specified by passing its address.

Rx_byte is used to read a byte of data from the SCI receive buffer, and update the buffer pointers. The
function return value should be monitored to confirm that a byte was available and has been success-
fully read. A returned value of zero indicates that no data was read. Typical usage of rx_byte is shown
below.

if (rx_byte(&rxchar))
{ /* Data read into rxchar successfully */ }

else
{ /* Data read unsuccessful */ }

Tx_byte is used to write a byte to the SCI transmit buffer. The function also ensures that the SCI transmit
interrupt is enabled, as the interrupt is automatically disabled by function sciint when all transmit buffer
data has been transmitted. As with rx_byte, a non-zero return value indicates successful operation, with
the passed data byte added to the buffer. The example code below continually re-tries to write data to
the transmit buffer until tx_byte flags a successful operation.

while (!tx_byte(rxchar)); /* Try to transmit until successful */
 MOTOROLA AN1724/D
2



           
5 The SCI Interrupt Handler
Sciint is the SCI interrupt handler for both transmit and receive interrupts and should never be conven-
tionally called from software. The two main SCI interrupt sources for the function are receive data reg-
ister full (RDRF), which indicates that a byte of data has been received and may be read from the SCI,
and transmit data register empty (TDRE), indicating that a new byte of data may be written to the SCI
for transmission. The third interrupt source is the receiver overrun flag (OR), which indicates an error in
that data is being received faster than it can be processed by the interrupt handler.

6 Data Objects
Defines for the data sizes byte, word and lword are used throughout the program when accessing 8-,
16- and 32-bit values. These defines are generally used when accessing data objects such as hardware
registers whose primary characteristic is their size and the use of any C mathematical type is inappro-
priate.

typedef unsigned char byte; /* Define byte, word, and long word types */
typedef unsigned short int word;
typedef unsigned long lword;

The struct type queue_struct is used for both receive and transmit buffers. This struct includes the buffer
itself, together with the pointers and full flag required for buffer maintenance. The structure typedef is
shown below:

/*     Typedef for tx and rx queue structures */
typedef struct {
       word in; /* Queue input/write pointer */
       word full; /* Queue full flag */
       word out; /* Queue output/read pointer */
       byte q[qsize]; /* Queue array */
       } queue_struct;

The byte array q[qsize] forms the actual buffer. As supplied, the code supports 8-bit SCI transfers. If 9-
bit SCI transfers were to be buffered, the q[qsize] array could be defined as a word array, although using
a 16-bit word to store 9-bit data is an inefficient use of data RAM. In the case of using the ninth SCI bit
for parity checking or address selection for received messages, it may be more efficient to decode and
generate the extra bit in the sciint routine, and keep the buffers eight bits wide. 

The two queue pointers are used to determine where buffer data should be written to or read from, and
how much of the buffer space is used or empty. The full flag is required to differentiate between buffer
completely empty and completely full conditions. The functional definitions of these variables are as fol-
lows:

Structure element .in is the pointer to the next free buffer entry which can be written. It is used as an
index to the q[] array.

Element .full is a flag which is used to indicate whether the buffer is completely empty or completely full
whenever the buffer input pointer equals the output. The flag has no meaning whenever the buffer point-
ers are not equal. This is shown in Table 1, along with the two main conditional tests which have to be
evaluated in the software when reading from and writing to the buffers.
AN1724/D MOTOROLA
3



              
Element .out is the pointer to the next valid buffer entry to be read. As with .in it is used to index the q[]
array.

Figure 1 shows the state of the buffer variables in four different conditions, from the buffer being com-
pletely empty through to the buffer being completely full.

Figure 1-A shows the buffer in its empty, initialized state. In this case, none of the q[] array entries hold
valid data, and the in pointer equals the out pointer, with full == zero.

Figure 1-B shows the buffer with a single entry used. This could be the case of a receive buffer after
an SCI byte has been received and before it has been read by the user program, or a transmit buffer
after the user program has added a byte to the buffer and before it has been passed to the SCI for trans-
mission. The in pointer is incremented to point to the next free buffer location, and the out pointer is left
pointing to the valid data in the buffer. As the in pointer does not equal the out pointer, the full variable
has a ‘don’t care’ value.

Figure 1-C shows the buffer filled to the stage where there is only a single free entry remaining. Buffer
data has been added causing the .IN pointer to wrap past the last entry to the start of the buffer, and
increment until there is a single buffer entry left unused.

Figure 1-D shows the buffer completely full, with every buffer entry holding data and no free entries left
to accept new data. The buffer variables are the same for this case as 1-A (buffer empty), except that
the .FULL element is non-zero.

Figure 1 Buffer Use Examples

Table 1 Buffer Conditions

Buffer Variables

Notes

Conditional Tests
Buffer.in == 
Buffer.out

Buffer.full Buffer Data 
Available

Buffer Not Full

0 x Buffer partially used Yes Yes
1 0 Buffer empty No Yes
1 Non-zero Buffer full Yes No

.IN .OUT

.FULL = 0

Q[QSIZE]

.IN

.IN

.IN

.OUT

.OUT

.OUT

.FULL != 0
.FULL = X

.FULL = X

Q[QSIZE] Q[QSIZE]

Q[QSIZE]

Ñ

Ñ

Ñ

VALID DATA n-1

VALID DATA 2

VALID DATA 3

VALID DATA 1

A. Buffer Empty

VALID DATA 1

VALID DATA 2

VALID DATA 1

VALID DATA n

VALID DATA n-1

VALID DATA 3

B. One Buffer Entry Used

C. One Buffer Entry Remaining D. Buffer Full
 MOTOROLA AN1724/D
4



                 
7 Reading Buffer Data
The most complex task performed by the software involves reading data from, and writing data to the
receive and transmit buffers. As identical buffer structures are used for both receive and transmit, the
code sequence to access them is the same in both cases.

Data is read from a buffer when user software reads received data from a buffer using rx_byte, or when
data is read from the transmit buffer and passed to the SCI module by the sciint function in response to
the SCI TDRE interrupt. The task can be described by the following high level pseudo-code.

If (Buffer data is available)
{
Read the byte from Buffer.Q
Update Buffer.OUT and clear Buffer.FULL in an indivisible operation
Return the byte read
}

As can be seen from Table 1, the condition (buffer data is available) can be broken down into ((buffer
partially used) OR (buffer full)). This is coded as:

if ((Buffer.IN!=Buffer.OUT) || Buffer.FULL)

As long as only a single function call is used to read from a particular buffer (e.g. rx_byte for the receive
buffer, and sciint for the transmit buffer), then it can be guaranteed that if the condition is evaluated as
true, it will remain true even if other functions interrupt to write to the buffer.

8 Writing Buffer Data
Data is written to a buffer when user writes data to a transmit buffer using tx_byte, or when SCI receive
data is written to the receive buffer by the sciint function in response to the SCI RDRF interrupt. The
task can be described by the following high level pseudo-code.

 If (Buffer Not Full)
{
Write the byte to the Buffer.Q
If (Buffer now full)

{
Update Buffer.IN and set Buffer.FULL in an indivisible

operation
}

else
{
Update Buffer.IN only
}

}

As can be seen from Table 1, the condition (Buffer Not Full) can be broken down into ((Buffer Partially
Used) OR (Buffer Empty)). This is coded as:

if ((Buffer.IN!=Buffer.OUT) || !Buffer.FULL)

As long as only a single function call is used to write to a particular buffer (e.g. tx_byte for the transmit
buffer, and sciint for the receive buffer), then it can be guaranteed that if the condition is evaluated as
true, it will remain true even if other functions interrupt to read from the buffer.
AN1724/D MOTOROLA
5



             
9 Coherency Requirements
To ensure coherency, certain operations must be implemented as single indivisible CPU32 instructions
so that they cannot be interrupted when partially completed. An example from the read buffer data pseu-
do-code is:

Update Buffer.OUT and clear Buffer.FULL in an indivisible operation

Implementing these indivisible operations requires knowledge of the assembly code and variable as-
signments used by the C compiler. In this SCI buffer software, the buffer structures are defined so that
the buffer variables in, full and out are arranged as consecutive words in memory. The CPU32 core can
then perform a 32-bit access to read or write the two variables in and full, or full and out, in a single
indivisible operation. The following C code shows a write operation to buffer variables full and out.

Buffer_full_out = (lword)rxout; /* prepare for coherent write..*/
*(lword *)(&Buffer.full) = Buffer_full_out;/* of rxqout with rxqfull zero
*/

The resultant assembly code enters with D1 holding rxout and A0 holding the address of Buffer.full.
Register D0 holds the temporary storage variable, Buffer_full_out.

CLR.L D0
MOVE.W D1,D0
LEA.L (2,A5),A0
MOVE.L D0,(A0)

The requirement for indivisible operations can be seen when reading the last available data entry from
a buffer (Figure 1-B). If the operation was divisible and another function interrupted after Buffer.OUT
had been incremented but before Buffer.FULL had been cleared, it would read a condition where ((Buff-
er.OUT == Buffer.IN) AND (Buffer.FULL !=0)). This would indicate that the buffer was completely full
rather than completely empty, and may result in errors such as received data being lost due to an in-
correctly sensed data overrun condition.

In general, the buffer software has been written to allow a buffer write operation to interrupt a buffer read
operation, and vice versa. This allows the SCI interrupts to be assigned any required priority level and
remain enabled at all times. 

The only user restriction is that a read operation should not interrupt another read operation, and a write
operation should not interrupt another write operation. Supporting this operation would require addition-
al code and semaphore flags so that the first routine to access the buffer would ‘lock out’ subsequent
attempted accesses until the first routine completes and releases the buffer. 

No code modifications are required if all user buffer reads (i.e. calling the rx_byte) occur in main level
code or at the same interrupt level, and similarly all buffer writes (i.e. calls to tx_byte) occur in main level
code or at the same interrupt level.

10 Restrictions in Accessing Data Objects
In order to ensure correct operation of the SCIBUFF software under all conditions, the types of access-
es that the various functions can make to the buffer variables have to be fully defined. Access restric-
tions are required to guarantee that if one function which uses buffer accesses interrupts a second
function during its own buffer access, no incorrect operation will occur.
 MOTOROLA AN1724/D
6



         
11 Further Enhancements
The full source code includes detailed comments to allow further user modification. One potential user
addition would be extra support for error conditions. As supplied, the software will detect all overrun con-
ditions (SCI hardware overrun, software receive buffer overrun, and software transmit buffer overrun),
but no recovery action is taken. Any recovery is dependent on the overall application and must therefore
be added by the use.

12 Code Listings

12.1 SCI Buffer Software Listing
/*
   SCIBUFF.C
   Interrupt driven C language routines to implement circular receive and
   transmit buffers for SCI channel of QSM. As 100% C code is used, the rx
   and tx buffers can be easily re-sized, or directly accessed.

   Platform : MC68332 or similar CPU32 + QSM micrcontroller
   Compiler : HiWare CM68K CPU32 C Compiler ver 2.6
   Author   : Mark Maiolani, Motorola EKB, April 96

   Revisions: 13/11/95  - Initial creation from CPLOT.C routines
              04/04/96  - Structs used for rx and tx queues
              05/04/96  - SCI interrupt handler added
              10/04/96  - rx_stat function added, initial test of rx functions
                          queue initialization and status functions generalised
                          to access a specified structure
              11/04/96  - SCI tdre interrupt handler added
                          basic rx and tx functionality tested
              17/04/96  - Comment fixes only
              16/07/96  - SCI receiver OR handlers added
                          Comments updated

*/

/* Typedefs */
typedef unsigned char byte; /* Define byte, word, and lon word types */
typedef unsigned short int word;
typedef unsigned long lword;

/* Include files */
#include "qsm.h"

Table 2 Data Access Types by Function

Data Element

Function

qinit (&rxbuff) rx_byte sciint tx_byte qinit (&txbuff)

rxbuff.in write read read / ++ — —

rxbuff.full write read / clear read / set — —

rxbuff.out write read / ++ read — —

rxbuff.q[] — read write — —

txbuff.in — — read read / ++ write

txbuff.full — — read / clear read / set write

txbuff.out — — read / ++ read write

txbuff.q[] — — read write —
AN1724/D MOTOROLA
7



  
/* Defines */
#define vbr 0x000 /* Vector Base Register value */
#define scivec 0x56 /* SCI receive vector number  */
#define qsize  160 /* Queue size - bytes */

/*      Typedef for tx and rx queue structures */
typedef struct {

word in; /* Queue input/write pointer */
word full; /* Queue full flag */
word out; /* Queue output/read pointer */
byte q[qsize]; /* Queue array */
} queue_struct;

/* Global Variables */
queue_struct rxbuff, txbuff; /* Transmit and receive queue structures */

/* Function prototypes */
void qinit (queue_struct *sptr);/* Initialize a specified buffer */
word qstat (queue_struct *sptr);/* Return the status of a specified buffer */
void sciinit (void); /* SCI module initialization */
void sciint (void); /* SCI interrupt handler (TX and RX) */
char rx_byte (byte *b); /* Read a byte from the RX buffer */
char tx_byte (byte); /* Write a byte to the TX buffer */

/* Main initialization and usage: */
main()
        {

byte rxchar, tempbyte;
word tempw;

qinit(&rxbuff); /* Initialize RX buffer */
qinit(&txbuff); /* Initialize TX buffer */

/* Set up SCI interrupt vectors for SCI exception handler sciint() */
*(long *)((scivec * 4) + vbr) = (long)sciint;

sciinit(); /* Initialize the SCI in the QSM module */

asm{
MOVE.W  #$2500,SR; enable CPU interrupts / level 6+7

}

while (1)
{
if ((qstat(&rxbuff))>(qsize/2)) /* Wait till rx queue 1/2 full */

{
while (rx_byte(&rxchar)) /* Then tx data until rx empty */

{
while (!tx_byte(rxchar));/* then tx until successful */
}

}
}

}

char rx_byte(byte *rxbyte)
{
/* Read a received byte from the RX buffer */
/* Return 0 if no byte available, or non zero if byte read OK */
 MOTOROLA AN1724/D
8



  
lword rxq_full_out;
word rxin, rxfull, rxout;

/* Read rx buffer variables into locals */
rxin   = rxbuff.in;
rxfull = rxbuff.full;
rxout  = rxbuff.out;

if ((rxin!=rxout)||rxfull) /* IF (rx data avaialable) */
{
*rxbyte = rxbuff.q[rxout]; /* read data byte */
rxout++; /* update pointer..*/
if (rxout>(qsize-1)) rxout = 0;/* check for wraparound */
rxq_full_out = (lword)rxout; /* prepare for coherent write..*/
*(lword *)(&rxbuff.full) = rxq_full_out; /* of rxqout with rxqfull zero */
return 1; /* return 1 for successful read */
}

else
{
return 0; /* return 0 as no byte available */
}

}

void qinit (queue_struct *qvar)
/* Initialize specified queue */
{
qvar->in   = 0x0002;  /* Set in=out, and full=0, ie. buffer empty */
qvar->full = 0x0000;
qvar->out  = 0x0002;
}

word qstat (queue_struct *qvar)
/* Return the number of valid bytes in a specified buffer */
{
word qin, qfull, qout;

/* Read q buffer variables into locals */
qin   = qvar->in;
qfull = qvar->full;
qout  = qvar->out;

if (qin>qout)
{
/* Data in buffer, no pointer wrap */
return (qin-qout);
}

if (qin<qout)
{
/* Data in buffer with pointer wrap */
return (qsize-qout+qin);
}

/* qin must be = qout */
if (qfull)

{
/* Buffer full */
return (qsize);
}

/* Buffer empty */
return (0);
}

AN1724/D MOTOROLA
9



  
char tx_byte(byte txbyte)
{
/* Queue a byte into the TX buffer for transmission */
/* Return 0 if buffer already full, or non zero if byte queued OK */

word txin, txfull, txout;
lword txq_in_full;

/* Read rx buffer variables into locals */
txin   = txbuff.in;
txfull = txbuff.full;
txout  = txbuff.out;

if ((txin!=txout)||!txfull) /* IF (tx buffer not full) */

/* Add data to tx buffer as space is available */
{

txbuff.q[txin] = txbyte;
txin++;
if (txin>(qsize-1)) txin = 0; /* check for wraparound */

if (txin==txout)
/* Buffer is now full, need to set FULL flag coherently with update of txin */

/* Also generate warning that buffer is now full */
{
txq_in_full = (((lword)txout)<<16)|1;  /* prepare for coherent write..*/
*(lword *)(&txbuff.in) = txq_in_full;/* of txin with txqfull non-zero */
}

else
{
/* Buffer not full yet, so don't set FULL */
txbuff.in = txin;
}

/* Enable transmitter interrupt (TIE bit set) */
QSM_SCCR1 = 0x00ac;
return (1);
}

else
/* Return error code as no buffer space to queue data */
{
return (0);
}

}

void sciinit()
/* Power-up initialization of SCI */
{
/* IARB=7 supv access only */
QSM_MCR = 0x0087;
/* SCI interrupt at level 6 with vector number (scivec) */
QSM_QILR_QIVR = scivec + 0x0600;
/* Select baud rate using:

Baud rate = system clock / (32 * SCCR0 value) */
/* QSM_SCCR0 = 0x0037; *//* 9600 baud @ 16.778 MHz */
QSM_SCCR0 = 0x0034; /* 9600 baud @ 16. MHz    */

        
/* Enable receiver interrupt (RIE bit set)

This enables interrupts generated by RDRF and/or OR flags */
 MOTOROLA AN1724/D
10



  
QSM_SCCR1 = 0x002c;
}

#pragma TRAP_PROC
/* pragma required as sciint is an exception handler */

void sciint()
/* SCI RX interrupt handler */
/* Note : The SCI interrupt handler will only clear a single

interrupt source each time it is executed, by using an else-if structure.
This ensures that the transmitter routine is not called  unnecessarily
if the SCI transmitter is idle (TDRE set) but with no transmit buffer
data pending, and the interrupt source therefore disabled */

{
word status, qin, qfull, qout;
word scidata;
lword q_long;

/* Read status reg to determine source of exception */
status=QSM_SCSR;

if (status & 0x0040) /* if RDRF (rx data register full) flag set */
{

scidata = QSM_SCDR;/* Read received data (+ clear RDRF) */

if (status & 0x0008)/* if OR (receiver OverRun) flag set */

/* Note : typically RDRF will be set at the same time as OR, in which case
the RDRF handler will clear OR.
OR may be set on its own if an overrun is generated in between QSM_SCSR being
read with RDRF set (normal receive), and RDRF being cleared by reading SCDR.
Because of this possibility, we need an independent OR flag test and
clear mechanism */

{
/* Any additional receiver overrun handling should be added here

and in the separate OR handler. */
}

else
{

/* Note : This s/w flow discards any received data which has caused
a receiver overrun, as it may be regarded as a non-recoverable error.
The s/w could be modofied by removing the previous 'else' statement
so that no data is discarded, although this may result in missing data
from the receive buffer when overrun occurs. */

/* Read rx buffer variables into locals */
qin   = rxbuff.in;
qfull = rxbuff.full;
qout  = rxbuff.out;

if ((qin!=qout)||!qfull)   /* IF (rx buffer not full) */
/* data received, but OK. as space in rx buffer */
{
rxbuff.q[qin] = (byte)scidata;
qin++;
if (qin>(qsize-1)) qin = 0; /* check for wraparound */
AN1724/D MOTOROLA
11



  
if (qin==qout)
/* Buffer now full, so set FULL flag coherently with update of qin */

/* Also generate warning that buffer is now full */
{
q_long = (((lword)qout)<<16)|1;/* prepare for coherent write..*/
*(lword *)(&rxbuff.in) = q_long;/*of qin with rxqfull non-zero*/
}

else
{
/* Buffer not full yet, so don't set FULL */
rxbuff.in = qin;
}

}
else

/* Data received, but buffer full (buffer overrun) so flag error */
/* Any additional handler for buffer overrun should be added here */
{
}

}
}

else if (status & 0x0008) /* if OR (receiver OverRun) flag set */

/* Note : typically RDRF will be set at the same time as OR, in which case
the RDRF handler will clear OR.
OR may be set on its own if an overrun is generated in between QSM_SCSR being
read with RDRF set (normal receive), and RDRF being cleared by reading SCDR.
Because of this possibility, we need an independent OR flag test and
clear mechanism */

{

scidata = QSM_SCDR; /* Read received data to clear OR */

/* Any additional receiver overrun handling should be
added here and in the RDRF + OR handler */

}

else if (status & 0x0100) /* if TDRE (tx data register empty) flag set */
{
qin   = txbuff.in;
qfull = txbuff.full;
qout  = txbuff.out;

if ((qin!=qout)||qfull) /* IF (tx data avaialable) */
{
scidata = txbuff.q[qout]; /* read data byte */
qout++; /* update pointer..*/
if (qout>(qsize-1)) qout = 0;/* check for wraparound */
q_long = (lword)qout; /* prepare for coherent write..*/
*(lword *)(&txbuff.full) = q_long; /* of txqout with txqfull zero */

QSM_SCDR = scidata; /* Write tx data to SCI (+ clear TDRE)*/
}

else /* no more tx data pending.. */
{
/* ..so disable transmitter interrupt (clear TIE bit) */
QSM_SCCR1 = 0x002c;
}

 MOTOROLA AN1724/D
12



    
}

else /* some other interrupt source */

{
sciinit(); /* something is wrong - re-initialize sci */
}

}

12.2 QSM Software Listing
/*************************************************************
**
**   Definitions for Queued Serial Module (QSM)
**   MM EKB
**   5/4/96
**
*************************************************************/

#define QSM_BASE  (0xfffffc00L)   /* QSM Base Address*/
/* Adjust this address to suit device in use. Note that
if the address is at the top of memory, all 32 bits should
be defined, even though the IMB devices do not require all
address bits. Specifying all 32 bits allows the compiler to
use the more efficient word addressing mode if possible */
                                  
                                  
#define QSM_MCR        (* (word *)  (QSM_BASE))
#define QSM_TEST       (* (word *)  (QSM_BASE+0x2))
#define QSM_QILR_QIVR  (* (word *)  (QSM_BASE+0x4))
#define QSM_SCCR0      (* (word *)  (QSM_BASE+0x8))
#define QSM_SCCR1      (* (word *)  (QSM_BASE+0xA))
#define QSM_SCSR       (* (word *)  (QSM_BASE+0xC))
#define QSM_SCDR       (* (word *)  (QSM_BASE+0xE))
#define QSM_PORTQS     (* (byte *)  (QSM_BASE+0x15))
#define QSM_PQSPAR_DDR (* (word *)  (QSM_BASE+0x16))
#define QSM_SRCR0      (* (word *)  (QSM_BASE+0x18))
#define QSM_SPCR1      (* (word *)  (QSM_BASE+0x1A))
#define QSM_SPCR2      (* (word *)  (QSM_BASE+0x1C))
#define QSM_SPCR3_SPSR (* (word *)  (QSM_BASE+0x1E))

#define QSM_RXRAM      (QSM_BASE+0x100))
#define QSM_TXRAM      (QSM_BASE+0x120))
#define QSM_CMDRAM     (QSM_BASE+0x140))
AN1724/D MOTOROLA
13



  
NOTES
 MOTOROLA AN1724/D
14



  
NOTES
AN1724/D MOTOROLA
15



 

M
t
s
a
c
s
t
u
a
a
M

              
otorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
he suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
pecifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
pplications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not
onvey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
ystems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
he Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
nintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
gainst all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
ssociated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
otorola and B are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

M
AN1724/D

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
 P.O. Box 5405, Denver Colorado 80217. 1-800-441-2447, (303) 675-2140
Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609, U.S. and Canada Only 1-800-774-1848
INTERNET: http://Design-NET.com
JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC,  
6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
Mfax is a trademark of Motorola, Inc.


	1 Introduction
	2 The SCI Buffer Software
	3 SCI Initialization
	4 Main Library Functions
	5 The SCI Interrupt Handler
	6 Data Objects
	Table 1 Buffer Conditions
	Figure 1 Buffer Use Examples

	7 Reading Buffer Data
	8 Writing Buffer Data
	9 Coherency Requirements
	10 Restrictions in Accessing Data Objects
	Table 2 Data Access Types by Function

	11 Further Enhancements
	12 Code Listings
	12.1 SCI Buffer Software Listing
	12.2 QSM Software Listing


