# Motorola Semiconductor Application Note

# AN1738

## Instruction Cycle Timing of MC68HC05JJ/JP Series Microcontrollers

By Mark L. Shaw Member, Technical Staff, Sensor Products Division Transportation Systems Group Phoenix, Arizona

#### Introduction

The MC68HC05JJ and MC68HC05JP (JJ/JP) series of microcontrollers has an asynchronous analog interface coupled to the digital CPU. Because of this, events can occur which are not specifically synchronized to the software that is running.

For example, when sampling the outputs of the two voltage comparators, the actual time when the CMP1 or CMP2 bits are read is dependent on bus speed and the instruction being executed. The user can determine the time and bus cycles of an instruction based on the oscillator frequency being used. The timing within an instruction is usually not known, although some assemblers provide the cycles per instruction or the time between instructions.

Normally, such timing for microcontrollers is not published, since this is not a consideration when all their peripherals are digital or have analogto-digital (A/D) convertors which have defined sampling schemes. Also, the user must understand this instruction timing to be able to write software which properly measures the exact timing of the external ramping capacitor when doing A/D conversions in mode 0 or mode 1.



Information in this application note describes the hardware timing of the JJ/JP series and provides a method whereby the user can make individual timing measurements.

This measurement technique also can be applied to other members of the MC68HC05 Family of MCUs.

#### **Typical Read Instruction**

The typical timing diagram for a 3-cycle LDA instruction (direct addressing mode) is shown in **Figure 1**.

The important time for all instructions which read data is the rising edge of the internal bus clock during the read cycle. Even though the location may be enabled before the end of the cycle, it is the next rising edge of the internal bus clock (usually called PH2) where the data is latched into the CPU.

Not all instructions which read data will do so at the end of the instruction cycle in the sequence. For instance, instructions such as BRCLR, BRSET, or any of the read-modify-write instructions will read the data on an earlier cycle so that the data can be used in the later cycles of the instruction.

Also, there may be "dummy" read cycles where the CPU has pointed the address toward the target register, but has not actually accessed its data.

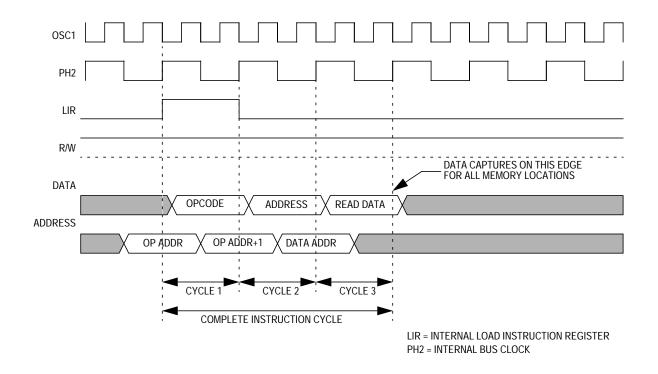
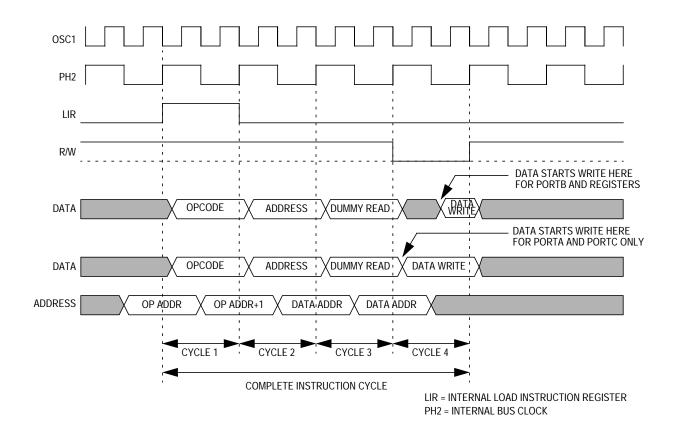




Figure 1. Typical Instruction Timing (LDA, Direct)

#### **Typical Write Instruction**

The typical timing diagram for a 4-cycle STA instruction (direct addressing mode) is shown in **Figure 2**.

The important time for all instructions which write data is the last cycle of the instruction sequence where the data is written into the target location. For most locations, like port B and the internal registers, the data is written at the middle of this last cycle. However, any writes to port A or port C will start at the beginning of the last instruction cycle. Essentially, the port B or internal registers are written about one-half cycle later in the instruction than port A or port C. The data may be presented to the target location for the complete write cycle, but the actual change in the data location will occur as soon as the data is presented to the location.



#### Figure 2. Typical Instruction Timing (STA, Direct)

The actual times at which the data is latched on a read cycle and the data is written on a write cycle may be up to 100 ns before or after the rising and/or falling edges of the internal PH2 bus clock.

This level of timing accuracy is not needed for several reasons:

- The user cannot see the PH2 clock externally.
- The highest bus frequency is 2.1 MHz (period = 476 ns).
- The core timer counts every four bus cycles (period = 1.9 seconds).
- The 16-bit timer counts every four bus cycles (period = 1.9 seconds).
- The fastest software polling loop is five bus cycles (2.4 seconds).

With these timing resolutions, a 100-ns variation is less than approximately 5% of a count. Better accuracy in measuring time is best done by relating the timing of events to the nearest one-half cycle from the first instruction.

Instruction TimingIn Table 1 a summary of the read and write timing is given for theSummaryinstructions most often used to manipulate or poll the registers and ports.

**Table 2** gives similar timing information for the other instructions which can manipulate or read the registers or ports. These other instructions are only given for the direct addressing mode. Using the extended or indexed addressing modes will add one or two additional addressing cycles which will appear before the read or write cycles.

| Opcode                      | Instruction                              | Addressing                   | Total<br>CPU | Dummy<br>read | Timing edge from start<br>of instruction (cycles) |                   |                   |  |
|-----------------------------|------------------------------------------|------------------------------|--------------|---------------|---------------------------------------------------|-------------------|-------------------|--|
| Opcode                      | mode                                     |                              | cycles       | cycle         | Read<br>(note 2)                                  | Write<br>(note 3) | Write<br>(note 4) |  |
| BCLR0:BCLR7<br>BSET0:BSET7  | Bit clear<br>Bit set                     | Bit manipulation<br>(note 1) | 5            | 3             | 4                                                 | 4                 | 4.5               |  |
| BRCLR:BRCLR7<br>BRSET:BRST7 | Branch if bit clear<br>Branch if bit set | Bit test<br>and branch       | 5            | _             | 3                                                 |                   | _                 |  |
|                             |                                          | Direct                       | 3            | —             | 3                                                 | —                 | —                 |  |
|                             | Load                                     | Extended                     | 4            | —             | 4                                                 | —                 | —                 |  |
| LDA                         | accumulator<br>or                        | Index,<br>no offset          | 3            | _             | 3                                                 | _                 | _                 |  |
| LDX                         | Load index                               | Index,<br>8-bit offset       | 4            | _             | 4                                                 |                   | _                 |  |
|                             | register                                 | Index,<br>16-bit offset      | 5            | _             | 5                                                 |                   |                   |  |
|                             |                                          | Direct                       | 4            | 3             | _                                                 | 3                 | 3.5               |  |
|                             | Store                                    | Extended                     | 5            | 4             | _                                                 | 4                 | 4.5               |  |
| STA                         | accumulator<br>or                        | Index,<br>no offset          | 4            | 3             | _                                                 | 3                 | 3.5               |  |
| STX                         | Store index                              | Index,<br>8-bit offset       | 5            | 4             | _                                                 | 4                 | 4.5               |  |
|                             | register                                 | Index,<br>16-bit offset      | 6            | 5             |                                                   | 5                 | 5.5               |  |

| Table 1. Read/Write Timing | for Common Instructions |
|----------------------------|-------------------------|
|----------------------------|-------------------------|

1) BCLR and BSET are read-modify-write instructions.

2) Data read is accessed up until to the end of the read cycle.

3) Data is written at the start of the write cycle for port B and internal registers.

4) Data is written halfway through write cycle for port A and port C only.

| Opcode            | Instruction                                    | Addressing mode | Total<br>CPU | Dummy            | Timing edge from start of instruction (cycles) |                   |     |
|-------------------|------------------------------------------------|-----------------|--------------|------------------|------------------------------------------------|-------------------|-----|
| Opcode            | (note 1) cycles                                |                 | read cycle   | Read<br>(note 2) | Write<br>(note 3)                              | Write<br>(note 4) |     |
| ADC<br>ADD<br>AND | Add with carry<br>Add w/o carry<br>Logical AND | Direct          | 3            | _                | 3                                              | _                 | _   |
| ASL<br>ASR        | Arith. shift left<br>Arith. shift right        | Direct*         | 5            | 3                | 4                                              | 4                 | 4.5 |
| BIH<br>BIL        | Branch, IRQ high<br>Branch, IRQ low            | Relative        | 3            | _                | 2                                              |                   | _   |
| BIT               | Bit test                                       | Direct          | 3            | _                | 2                                              | —                 | —   |
| CLR               | Clear                                          | Direct*         | 5            | 3                | 4                                              | 4                 | 4.5 |
| CMP<br>CPX        | Compare<br>accumulator<br>Compare X-reg        | Direct          | 3            | 3                | 3                                              | _                 | _   |
| СОМ               | Complement                                     | Direct*         | 5            | 3                | 4                                              | 4                 | 4.5 |
| DEC               | Decrement                                      | Direct*         | 5            | 3                | 4                                              | 4                 | 4.5 |
| EOR               | Exclusive OR                                   | Direct          | 3            | _                | 3                                              | —                 | —   |
| INC               | Increment                                      | Direct*         | 5            | 3                | 4                                              | 4                 | 4.5 |
| LSL<br>LSR        | Logic shift left<br>Logic shift right          | Direct*         | 5            | 3                | 4                                              | 4                 | 4.5 |
| NEG               | Negate                                         | Direct*         | 5            | 3                | 4                                              | 4                 | 4.5 |
| ORA               | Inclusive OR                                   | Direct          | 3            | —                | 3                                              | —                 | —   |
| ROL<br>ROR        | Rotate left<br>Rotate right                    | Direct*         | 5            | 3                | 4                                              | 4                 | 4.5 |
| SBC               | Subtract w/carry                               | Direct          | 3            | _                | 3                                              | —                 | —   |
| SUB               | Subtract                                       | Direct          | 3            | —                | 3                                              | —                 | —   |
| TST               | Test for neg/zero                              | Direct          | 4            | _                | 3                                              | _                 | _   |

Table 2. Read/Write Timing for Other Instructions

1) Instructions with asterisk (\*) are read-modify-write instructions.

2) Data read is accessed up until to the end of the read cycle.

3) Data written at start of write cycle for port B and internal registers.

4) Data written halfway through write cycle for ports A and C only.

#### **Application Note**

#### Understanding MMDS05 Timing

The timing given in **Figure 3** shows the relative signals used on the MMDS05 for the instruction decode. The LIR/RW signal from the MCU being used for emulation has a double pulse, but the rising edge of the first E clock generates the proper LIR signal. The start of each instruction opcode is, therefore, the rising edge of PH2 just as the LIR signal rises.

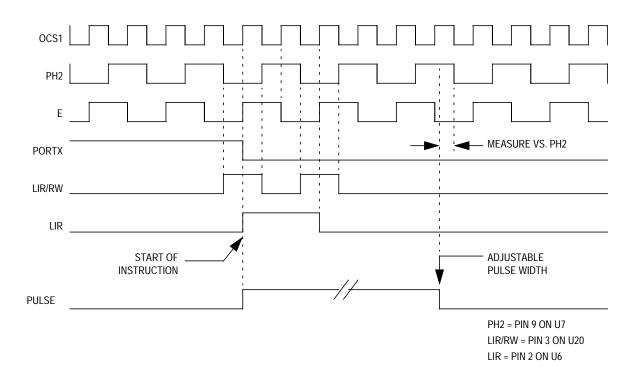



Figure 3. MMDS05 Timing

The actual setup used to measure exact read and write timing is shown in **Figure 4**. The steps are:

- The LIR signal is to drive two 74HC00 NAND gates in series (connected as inverters) from the LIR signal at pin 2 of U6 on the MMDS05 to the trigger input of the pulse generator. This buffers the trigger input which wants to see 50 inputs.
- The output of the pulse generator is then fed through two more 74HC00 NAND gates in series (also connected as inverters) to one input channel of a 4-channel oscilloscope.
- Another input of the oscilloscope is connected to the PH2 signal at pin 9 or U7 on the MMDS05.
- Another channel is connected to the trigger input of the pulse generator.

The software, *timing.asm*, used is given at the end of this application note.

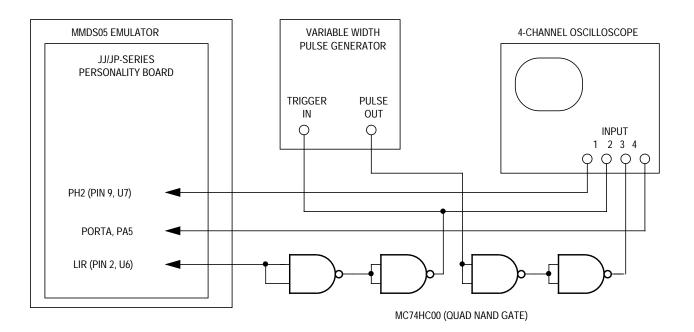
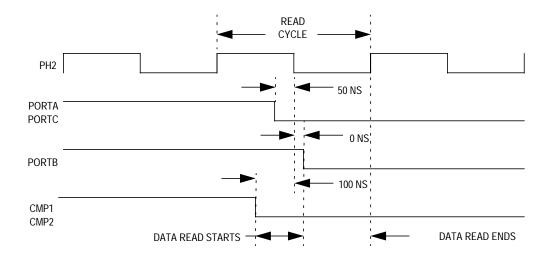



Figure 4. Timing Measurement Setup


For read timing, the software takes a reading on the desired input and then reflects the input state to the PA5 pin as an output. This PA5 output is then fed to another input on the oscilloscope. The pulse duration is adjusted to cause only a random change in the PA3 output during the expected read cycle of the instruction being used. The expected read cycle is counted from the rising edge of PH2 just as the LIR signal goes high (trigger input). The phase timing can be measured between the trigger input and the PH2 signal on pin 9 of U7 on the MMDS05.

The measured read timing for PORTA, PORTB, PORTC, and the comparator outputs is shown in **Figure 5**.

**NOTE:** Even though the data begins to be read about halfway through the cycle, the actual state that is read and latched into the CPU occurs at the end of the read cycle.

For write timing, the software simply toggles the state of the desired output. This output is then fed to another input on the oscilloscope. The change in the output with respect to the PH2 signal is measured during the expected write cycle of the instruction being used. The expected write cycle is counted from the rising edge of PH2 just as the LIR signal goes high (trigger input).

The measured write timing for PORTA, PORTB, PORTC, and the current source to PB0 is shown in **Figure 6**.





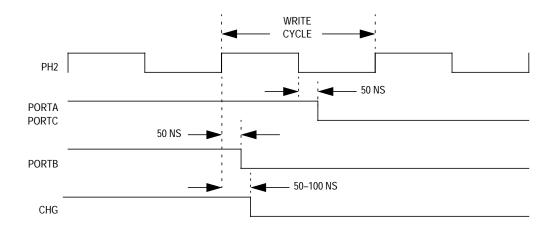



Figure 6. STA Write Timing

Referring to the **Figure 5** and **Figure 6**, the timing for read and write operations is summarized in **Table 3**.

| Operation | Source      | Start vs. PH2<br>rise (ns) | Start vs. PH2<br>fall (ns) | End vs. next<br>PH2 fall (ns) | Equiv. portion<br>of PH2 cycle |
|-----------|-------------|----------------------------|----------------------------|-------------------------------|--------------------------------|
|           | PORTA       | _                          | -50                        | 0                             | 1.0                            |
| READ      | PORTB       | _                          | 0                          | 0                             | 1.0                            |
| READ      | PORTC       |                            | -50                        | 0                             | 1.0                            |
|           | CMP1/CMP2   | _                          | -100                       | 0                             | 1.0                            |
|           |             |                            |                            |                               |                                |
| Operation | Destination | Start vs. PH2<br>rise (ns) | Start vs. PH2<br>fall (ns) | End vs. Next<br>PH2 fall (ns) | Equiv. portion<br>of PH2 cycle |
|           | PORTA       |                            | +50                        | 0                             | 0.5                            |
| WRITE     | PORTB       | +50                        | _                          | 0                             | 0.0                            |
|           | PORTC       |                            | +50                        | 0                             | 0.5                            |
|           | CHG         | +75                        |                            | 0                             | 0.0                            |

#### Table 3. Read/Write Cycle Timing

Using the bus state analyzer in the MMDS05, the actual cycle used for read/write can be measured for all the various instruction types and their addressing modes as given in Table 1 and Table 2.

TimingSimilar timing measurements can be made on other members of theMeasurementsMC68HC05 Family of MCUs by using the technique shown in Figure 4.on OtherThe user can find the appropriate PH2, LIR, and fosc signals on theMC68HC05 MCUsschematics supplied with each emulator personality module for theMMDS05.

| Timing      | The software included here was used to measure the timing of reads and |
|-------------|------------------------------------------------------------------------|
| Measurement | writes on the JJ/JP series and can be adapted for other MCUs, as well. |
| Software    |                                                                        |

### timing.asm – Timing Test Setup Software

| uninglaoin |                             |                                         |                                     |  |  |  |  |
|------------|-----------------------------|-----------------------------------------|-------------------------------------|--|--|--|--|
|            | * * * * * * * * * * * * * * | *************************************** |                                     |  |  |  |  |
|            | * TIMING Inst               | * TIMING Instruction Cycle Time Setup   |                                     |  |  |  |  |
|            | *                           |                                         |                                     |  |  |  |  |
|            | * Designed fo               | * Designed for 28-pin JP6/7.<br>*       |                                     |  |  |  |  |
|            |                             |                                         |                                     |  |  |  |  |
|            | * Original:                 | Mark Shaw                               | 12Aug97                             |  |  |  |  |
|            | * Revised:                  | Mark Shaw                               |                                     |  |  |  |  |
|            |                             |                                         |                                     |  |  |  |  |
|            |                             |                                         |                                     |  |  |  |  |
|            |                             | ; MC68HC705JP7 definitions.             |                                     |  |  |  |  |
|            | ;                           |                                         |                                     |  |  |  |  |
| ADDR CODE  | ; Register ad               |                                         |                                     |  |  |  |  |
| 0000       | PORTA equ                   | \$00                                    | ; port A data register              |  |  |  |  |
| 0001       | PORTB equ                   | \$01                                    | ; port B data register              |  |  |  |  |
| 0002       | PORTC equ                   | \$02                                    | ; port C data register              |  |  |  |  |
| 0003       | AMUX equ                    | \$03                                    | ; Analog Mux register               |  |  |  |  |
| 0004       | DDRA equ                    | \$04                                    | ; port A data direction register    |  |  |  |  |
| 0005       | DDRB equ                    | \$05                                    | ; port B data direction register    |  |  |  |  |
| 0006       | DDRC equ                    | \$06                                    | ; port C data direction register    |  |  |  |  |
| 000D       | ISCR equ                    | \$0d                                    | ; interrupt status/control register |  |  |  |  |
| 0010       | PDRA equ                    | \$10                                    | ; port A & C pull-down register     |  |  |  |  |
| 0011       | PDRB equ                    | \$11                                    | ; port B pull-down register         |  |  |  |  |
| 001D       | ACR equ                     | \$1d                                    | ; analog subsystem control register |  |  |  |  |
| 001E       | ASR equ                     | \$1e                                    | ; analog subsystem status register  |  |  |  |  |
| 0011       | :                           | ·                                       |                                     |  |  |  |  |
|            | ,                           |                                         |                                     |  |  |  |  |
|            | : Rit address               | ; Bit addresses                         |                                     |  |  |  |  |
|            | ; bit address               |                                         |                                     |  |  |  |  |
|            | ,<br>: Port A (POR          | ጥ እ                                     |                                     |  |  |  |  |
| 0005       |                             | _                                       | ; bit 5                             |  |  |  |  |
| 0002       | -                           | 5<br>2                                  | ; bit 2                             |  |  |  |  |
|            | PA2 equ                     |                                         |                                     |  |  |  |  |
| 0000       | PA0 equ                     | 0                                       | ; bit 0                             |  |  |  |  |
|            |                             |                                         |                                     |  |  |  |  |
|            | ; Port C (POR               |                                         |                                     |  |  |  |  |
| 0000       | PC0 equ                     | 0                                       | ; bit 0                             |  |  |  |  |
|            |                             |                                         |                                     |  |  |  |  |
|            |                             |                                         | rol register (ISCR)                 |  |  |  |  |
| 0006       | OM2 equ                     | 6                                       | ; Oscillator mode select 2          |  |  |  |  |
| 0005       | OM1 equ                     | 5                                       | ; Oscillator mode select 1          |  |  |  |  |
|            |                             | ;                                       |                                     |  |  |  |  |
|            | ;                           |                                         |                                     |  |  |  |  |
|            | ;Memory addre               | ;Memory addresses                       |                                     |  |  |  |  |
|            | ;                           |                                         |                                     |  |  |  |  |
| 0020       | RAM equ                     | \$0020                                  | ; lowest RAM address                |  |  |  |  |
|            |                             |                                         |                                     |  |  |  |  |

# **Application Note**

|                    | ;            |            |              |                                                       |
|--------------------|--------------|------------|--------------|-------------------------------------------------------|
| 0800               |              |            | \$0800       |                                                       |
|                    |              | DEVICE     |              |                                                       |
| 0800 9C            | BEGIN        | rsp        |              | ;Redundant reset of stack pointer                     |
| 0801 9B            |              | sei        |              | ;Redundant set of int. mask bit, I                    |
| 0802 A660          | SUl          | lda        | #\$60        | ;OM2 and OM1                                          |
| 0804 B70D          |              | sta        | ISCR         | ;Enable both the LPO and EPO                          |
| 0806 A620          | SU3          |            |              | ;OM1 only                                             |
| 0808 B70D          |              | sta        | ISCR         | ;Switch clock source to the EPO                       |
|                    | ;            |            |              |                                                       |
|                    | ; SETUP<br>; | PORTS      |              |                                                       |
| 080A A6FF          | SU4          | lda        | #\$FF        |                                                       |
| 080C B710          |              | sta        |              | ;Inhibit port A & C pulldowns                         |
| 080E B711          |              | sta        | PDRB         | ;Inhibit port B pulldowns                             |
| 0810 B700          | SU5          | sta        | PORTA        | ;Set all port A pins, LEDs off                        |
| 0812 B702          |              | sta        | PORTC        | ;Set all port C pins, LEDs off                        |
| 0814 B704          | SU6          | sta        | DDRA         | ;Set up port A as outputs                             |
| 0816 3F05          |              | clr        | DDRB         | ;Set up port B as inputs                              |
| 0818 B706          |              | sta        | DDRC         | ;Set up port C as outputs                             |
|                    | ,            |            | TO FIND TI   | MING                                                  |
|                    | ;            |            |              |                                                       |
| 081A CC081D        |              | jmp        | CHECK1       | ;Jump to check of choice<br>;Change CHECK to start of |
|                    |              |            |              | ; of routine desired.                                 |
|                    |              |            |              | ;Test read timing of ACR                              |
| 081D 1A00          | CHECK1       | bset       | PA5,PORTA    | ;Send out pip                                         |
| 081F 1B00          |              | bclr       | PA5,PORTA    |                                                       |
| 0821 A681          |              | lda        | #\$81        | ;Set ICEN and CHG                                     |
| 0823 C7            |              | fcb        | \$C7         |                                                       |
| 0824 00            |              | fcb        | \$00         |                                                       |
| 0825 1D            |              | fcb        | \$1D         |                                                       |
| 0826 A601          |              | lda<br>fab | #\$01        | ;Clear CHG                                            |
| 0828 C7<br>0829 00 |              | fcb<br>fcb | \$C7<br>\$00 |                                                       |
| 0823 00<br>082A 1D |              | fcb        | \$1D         |                                                       |
| 082B 20F0          |              | bra        | CHECK1       |                                                       |
|                    |              |            |              |                                                       |

| 082D A6FF<br>082F B704<br>0831 B705<br>0833 B706                                        | CHECK2  | lda<br>sta<br>sta<br>sta                         | #\$FF<br>DDRA<br>DDRB<br>DDRC    | ;Testing write timing<br>;Set ports as outputs                                                |
|-----------------------------------------------------------------------------------------|---------|--------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------|
| 0835 A6FF<br>0837 B700<br>0839 B701<br>083B B702                                        | LOOP1   | lda<br>sta<br>sta<br>sta                         | #\$FF<br>PORTA<br>PORTB<br>PORTC | ;Set all port pins high                                                                       |
| 083D 4F<br>083E B700<br>0840 B701<br>0842 B702                                          |         | clra<br>sta<br>sta<br>sta                        | PORTA<br>PORTB<br>PORTC          | ;Set all port pins low                                                                        |
| 0844 20EF                                                                               |         | bra                                              | LOOP1                            |                                                                                               |
| 0846 1104<br>0848 1106<br>084A A606<br>084C B71D                                        | CHECK3  | bclr<br>bclr<br>lda<br>sta                       |                                  | ;Test reads of comparator outputs<br>;Set PAO as input<br>;Set PCO as input<br>;Turn on comps |
| 084C B71D<br>084E A681<br>0850 B703                                                     |         | lda<br>sta                                       | #\$81<br>AMUX                    | ;Select PB1                                                                                   |
| 0852 1A00<br>0854 1B00<br>0856 B61E<br>0858 A402<br>085A 2704<br>085C 1400<br>085E 20F2 | LOOP2   | bset<br>bclr<br>lda<br>and<br>beq<br>bset<br>bra | PA5,PORT2<br>ASR<br>#\$02<br>LOW |                                                                                               |
| 0860 1500<br>0862 20EE                                                                  | LOW     | bclr<br>bra                                      | PA2, PORTA<br>LOOP2              | Ą                                                                                             |
|                                                                                         | ;       | RUPT TRA                                         |                                  |                                                                                               |
| 0864 20FE                                                                               | ITRAP   | bra                                              | ITRAP                            |                                                                                               |
| 1FF2                                                                                    | ;       | org                                              | \$1FF2                           |                                                                                               |
|                                                                                         | ; RESEI | AND INT                                          | ERRUPT VECT                      | TORS                                                                                          |
| 1FF2 0864                                                                               |         | fdb                                              | ITRAP                            | ;Analog vector                                                                                |
| 1FF4 0866                                                                               |         | fdb                                              | ITRAP                            | ;Serial vector                                                                                |
| 1FF6 0868                                                                               |         | fdb                                              | ITRAP                            | ;Timer vector                                                                                 |
| 1FF8 086A                                                                               |         | fdb                                              | ITRAP                            | ;Core timer vector                                                                            |
| 1FFA 086C                                                                               |         | fdb                                              | ITRAP                            | ;Ext IRQ vector                                                                               |
| 1FFC 086E                                                                               |         | fdb                                              | ITRAP                            | ;SWI vector                                                                                   |
| 1FFE 0800                                                                               |         | fdb                                              | BEGIN                            | ;Reset vector                                                                                 |
| 2000                                                                                    |         | end                                              |                                  |                                                                                               |

AN1738

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights or ther rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and ( $\widehat{A}$ ) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

#### How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217, 1-800-441-2447 or 1-303-675-2140. Customer Focus Center, 1-800-521-6274

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shinigawa-Ku, Tokyo, Japan. 03-5487-8488 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298 Mfax<sup>™</sup>, Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/;

TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848

HOME PAGE: http://motorola.com/sps/



Mfax is a trademark of Motorola, Inc.

© Motorola, Inc., 1998