Motorola Semi Inductor Application Note

AN1763

Driving LCD Displays Using the MC68HC 705L16 Mic roc ontroller

By Ed Stellini
Transportation Systems Group Design Engineering
Austin, Texas

Introduction

This application note describes how to use the MC68HC705L16 microcontroller (MCU) as an LCD (liquid crystal display) controller/driver. By doing so, all LCD control and drive functions are performed by a single chip, which also provides all of the functionality of a microcontroller.

A description of the voltages and waveforms used to drive and control an LCD panel is included as well as an explanation of how the designer can use the MC68HC705L16 to interface directly to a simple LCD display. Also, the source code for controlling a multiplexed display is included at the end of this application note.

Liquid Crystal Displays

To understand the types of waveforms that drive LCD displays, it is helpful to understand a few fundamentals about LCDs.

For example, liquid crystal displays are composed of a polarizing liquid crystalline material in between two plates of glass. Typically, one plate is called the common or backplane, and the other is called a segment or frontplane. In a reflective LCD panel (one that has no back light), a voltage difference applied across the two electrodes will result in a polarization which will prevent the light from reflecting back to the observer. This will appear as a dark segment and is, therefore, considered ON. A lack of voltage difference will allow the light to reflect back and is considered OFF.

Contrast

Due to the chemical nature of the liquid crystal material, DC voltages cannot be used to drive the segments or else permanent damage can occur to the LCD. To avoid this problem, voltage levels are applied to the electrodes for a short period and then the levels are reversed to the electrodes for an equal period. This AC waveform will produce an RMS voltage across the LCD, yet it has a net DC value of 0 volts. As a result, LCD material has its contrast specified in terms of an RMS voltage. A typical voltage characteristic for a reflective LCD display is shown in Figure 1.

The ON voltage for a segment should be greater than the point where incident light is reduced by 90 percent. The OFF voltage should be less than the point where incident light is reduced by 10 percent. For maximum contrast, the ratio of ON to OFF voltage should be as large as possible. Examples of how to calculate RMS voltages are shown in a later section.

Figure 1. Typical Contrast Characteristic of LCD

Static Mode

Typically, LCD displays are made up of segments or pixels. Segment displays usually have anywhere from 8 to 16 segments for displaying each character, while dot matrix displays typically have arrays of 5×7 pixels for each character.

Each of these segments or pixels needs to be driven independently in order for it to be turned on or off independently. The simplest way to do this is to have a separate frontplane driver for each segment or pixel and have a single backplane driver for the entire display. This is known as direct drive or static mode.

Example waveforms of the frontplane and backplane drivers for static mode are shown in Figure 2. The voltage across a segment is the difference of the backplane waveform and the frontplane waveform. See Figure 3.

For a segment to be OFF, its frontplane waveform and backplane waveform will have the same amplitude and will be completely in phase. This causes the voltage across the segment to be 0 volts.

For a segment to be ON, its frontplane and backplane waveforms will be exactly out of phase. This will produce a difference across the segment equal to the top LCD voltage.

Figure 2. LCD 1/1 Duty and 1/1 Bias Timing Diagram, $\mathrm{V}_{\mathrm{LCD} 1}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{LCD} 2}=\mathrm{V}_{\mathrm{LCD} 3}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}$

Figure 3. Waveform Components for Calculating ON and OFF RMS Voltages

Since static mode has only two voltage levels, the three LCD pins on the L16 must be connected in a specific manner as shown in Figure 4. Here $\mathrm{V}_{\mathrm{LCD} 1}$ is connected to V_{DD}, a resistor is connected between $\mathrm{V}_{\mathrm{LCD} 1}$ and $\mathrm{V}_{\mathrm{LCD} 2}$, and $\mathrm{V}_{\mathrm{LCD} 2}$ and $\mathrm{V}_{\mathrm{LCD} 3}$ are connected directly. A variable resistor can be connected from $\mathrm{V}_{\mathrm{LCD} 3}$ to ground to allow manual contrast control.

Figure 4. External Connections for 1/1, 1/2, and $1 / 3$ Bias

Now the RMS voltages for the static waveform can be calculated from this formula:

$$
\mathrm{V}_{\mathrm{RMS}}=\sqrt{\frac{1}{\mathrm{~T}} \cdot \int \mathrm{f}^{2}(\mathrm{t}) \mathrm{dt}}
$$

The function $f(t)$ here is the waveform, BPX-FPY. Figure 3 shows $f^{2}(t)$ of the ON and OFF voltage waveforms for one frame. This serves as a graphical aid to illustrate the RMS voltages, which are simply the area under these curves. For the OFF segment, the RMS voltage is obviously 0 volts.

For the ON segment:

$$
\mathrm{V}_{\mathrm{RMSON}}=\sqrt{\frac{1}{2} \cdot\left(\mathrm{~V}_{\mathrm{LCD}}{ }^{2}+\mathrm{V}_{\mathrm{LCD}}{ }^{2}\right)}=\mathrm{V}_{\mathrm{LCD}}
$$

where $\mathrm{V}_{\mathrm{LCD}}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}, \mathrm{V}_{\mathrm{LCD}}$. This $\mathrm{V}_{\mathrm{RMSON}}$ voltage, typically, is well above the 90 percent ON threshold, thus producing excellent contrast.

The total number of pins needed for static mode drive is equal to the number of total segments in the display plus one. Unfortunately, as the size of the LCD display increases, the number of required LCD driver pins becomes very large.

As Table 1 shows, for more than a few 8-segment characters, the number of pins required becomes unreasonable. For small displays, though, this type of LCD drive is commonly used since it produces excellent contrast.

Table 1. LCD Driver Pins Versus Multiplexing

Display Type	Total Segments/ Pixels	Number of Driver Pins				
		Static	1/2 Duty	1/3 Duty	1/4 Duty	1/32 Duty
1 16-segment digit	16	17	10	9	8	N/A
4 7-segment digits	32	33	18	14	12	N/A
8 alphanumeric characters	120	121	62	43	34	36
325×8 pixel characters	1280	1281	642	430	324	72
General case	S	S +1	S/2 + 2	S/3+3	S/4+4	S/32+32

Multiplex Modes

To reduce the number of drivers required, the data for each frontplane can be multiplexed to control multiple segments by using multiple backplanes. This is done by multiplexing the driving voltages in time.

For instance:

- If each frontplane controls two segments, two backplanes are needed. This is called duplex mode.
- Triplex mode is where each frontplane driver controls three segments and three backplanes are needed.
- Similarly, quadraplex mode has each frontplane driver controlling four segments and has four backplane drivers.

The waveforms for duplex mode multiplexing are shown in Figure 5. The first thing to notice here is that there are now three voltage levels in each waveform. This is known as $1 / 2$ bias. Connections to the $\mathrm{V}_{\mathrm{LCD}}$ pins for this configuration should be made as shown in Figure 4.

Also obvious from these waveforms is that there are two time cycles in each waveform which make up a frame.

They are:

- When frontplanes connected to segments with backplane 0 are active
- When frontplanes connected to segments with backplane 1 are active

In time cycle one, frontplane X is ON , while in cycle two, it is OFF. Frontplane Y is OFF in both cycles.

Looking at the waveform for BP0-FPX, the ON data produces the maximum voltage swing, $\mathrm{V}_{\mathrm{LCD}}$, during its active time, cycle one. The waveform BP1-FPX has OFF data which produces a 0 voltage swing during its active time, cycle two.

NOTE: Notice that when both of these segments are not active, they have the same voltage swing, $V_{L C D} / 2$, even though one has OFF data when nonactive and the other has ON data when non-active. This is important because the RMS voltages for ON and OFF waveforms should be independent of the data during non-active cycles. Otherwise, there would be multiple ON RMS voltages as well as OFF RMS voltages.

Figure 6 shows the components for calculating the RMS waveforms for duplex mode ON and OFF cases. The ON and OFF RMS voltages are calculated as:

$$
\begin{gathered}
\mathrm{V}_{\mathrm{RMSON}}=\sqrt{\frac{1}{2} \cdot\left[\mathrm{~V}_{\mathrm{LCD}}{ }^{2}+\left(\frac{\mathrm{V}_{\mathrm{LCD}}}{2}\right)^{2}\right]}=0.79 \cdot \mathrm{~V}_{\mathrm{LCD}} \\
\mathrm{~V}_{\mathrm{RMSOFF}}=\sqrt{\frac{1}{2} \cdot\left(\frac{\mathrm{~V}_{\mathrm{LCD}}}{2}\right)^{2}}=0.353 \cdot \mathrm{~V}_{\mathrm{LCD}}
\end{gathered}
$$

For $\mathrm{V}_{\mathrm{LCD}}=5$ volts, $\mathrm{V}_{\mathrm{RMSON}}=3.95$ volts, and $\mathrm{V}_{\mathrm{RMSOFF}}=1.75$ volts

Figure 5. LCD $1 / 2$ Duty and $1 / 2$ Bias Timing Diagram, $\mathrm{V}_{\mathrm{LCD} 1}=\mathrm{V}_{\mathrm{LCD} 2}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}} / 2, \mathrm{~V}_{\mathrm{LCD} 3}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}$

Figure 6. Waveform Components for Calculating ON and OFF RMS Voltages

Triplex multiplexing uses four voltage levels ($1 / 3$ bias) and utilizes three time cycles per frame. See Figure 4 for $V_{\text {LCD }}$ pin connections. Waveforms for triplex ($1 / 3$ duty) are shown in Figure 7. Again, notice that during the active cycle, an ON voltage swing across a segment is $\pm \mathrm{V}_{\mathrm{LCD}}$. The OFF voltage swing is only $\pm \mathrm{V}_{\mathrm{LCD}} / 3$.

The components for calculating the RMS voltages are shown in Figure 8 and are calculated as:

$$
\mathrm{V}_{\mathrm{RMSON}}=\sqrt{\frac{1}{3} \cdot\left[\mathrm{~V}_{\mathrm{LCD}}{ }^{2}+2 \cdot\left(\frac{\mathrm{~V}_{\mathrm{LCD}}}{3}\right)^{2}\right]}=0.638 \cdot \mathrm{~V}_{\mathrm{LCD}}
$$

$$
\mathrm{V}_{\mathrm{RMSOFF}}=\sqrt{\frac{1}{3} \cdot 3 \cdot\left(\frac{\mathrm{~V}_{\mathrm{LCD}}}{3}\right)^{2}}=0.333 \cdot \mathrm{~V}_{\mathrm{LCD}}
$$

Figure 7. LCD 1/3 Duty and 1/3 Bias Timing Diagram, $\mathrm{V}_{\mathrm{LCD} 1}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}} / 3, \mathrm{~V}_{\mathrm{LCD} 2}=\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}_{\mathrm{LCD}} / 3, \mathrm{~V}_{\mathrm{LCD} 3}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}$

Figure 8. Waveform Components for Calculating ON and OFF RMS Voltages

Quadruplex Mode The highest multiplexing capable by the MC68HC705L16 is quadruplex (1/4 duty). Large dot matrix displays require much larger multiplexing. For instance, a 4×40 display (4 rows of 40 pixels) needs $1 / 32$ duty. (See Automatic Contrast Control of LCD Displays Using the 68HC708LN56 Microcontroller, Motorola document order number AN1762/D, for information on driving this type of display.) Waveforms for quadruplex multiplexing are shown in Figure 9. Again, 1/4 bias is used here.

The components for calculating the RMS waveforms for ON and OFF cases of quadruplex muxing are shown in Figure 10.

The voltages are calculated as:

$$
\begin{gathered}
\mathrm{V}_{\mathrm{RMSON}}=\sqrt{\frac{1}{4} \cdot\left[\mathrm{~V}_{\mathrm{LCD}}{ }^{2}+3 \cdot\left(\frac{\mathrm{~V}_{\mathrm{LCD}}}{3}\right)^{2}\right]}=0.577 \cdot \mathrm{~V}_{\mathrm{LCD}} \\
\mathrm{~V}_{\mathrm{RMSOFF}}=\sqrt{\frac{1}{4} \cdot 4 \cdot\left(\frac{\mathrm{~V}_{\mathrm{LCD}}}{3}\right)^{2}}=0.333 \cdot \mathrm{~V}_{\mathrm{LCD}}
\end{gathered}
$$

It should now be obvious that as the amount of multiplexing increases, the RMS voltages decrease. Contrast, measured as the ratio of $\mathrm{V}_{\mathrm{RMSON}} / \mathrm{V}_{\text {RMSOFF }}$, is called the discrimination ratio.

Figure 9. LCD $1 / 4$ Duty and $1 / 3$ Bias Timing Diagram $\mathrm{V}_{\mathrm{LCD} 1}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}} / 3, \mathrm{~V}_{\mathrm{LCD} 2}=\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}_{\mathrm{LCD}} / 3, \mathrm{~V}_{\mathrm{LCD} 3}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{LCD}}$

Figure 10. Waveform Components for Calculating ON and OFF RMS Voltages

To demonstrate how simple it is to use the MC68HC705L16 to drive an LCD panel directly, a simple application is described in which a text message is displayed on an 8 -digit, 15 -segment display (PlanarStandish Model 4228). The display will be driven by $1 / 4$ duty and $1 / 3$ bias.

Figure 11 shows a schematic diagram of the circuit with all connections labelled. A resistor divider from V_{DD} is used to generate the three voltage levels, $\mathrm{V}_{\mathrm{LCD1} 1}, \mathrm{~V}_{\mathrm{LCD2}}$, and $\mathrm{V}_{\mathrm{LCD}}$, for the waveforms. A variable resistor at the bottom of the divider allows manual contrast adjustment. The four backplane pins from the MCU are connected to the four common pins on the LCD panel. Since the $1 / 4$ duty is being used, four segments can be driven by each frontplane driver and, therefore, 32 frontplanes drivers are needed. The first 32 frontplane pins from the MCU are connected to the LCD panel, while the remaining seven are not used.

These connections from the MCU to the LCD panel determine the mapping of the LCD data registers to the segments of the LCD panel. Each digit on the panel is composed of 16 segments, controlled by two consecutive 8-bit LCD data registers. Each LCD data register controls two frontplanes. Therefore, four frontplanes are required to drive each digit of the display. Figure 12 shows the mapping of the register bits to the segments in one of the characters on the display.

For example, the letter G would be represented by the two bytes: $\$ 05 E 4$. The first byte in register LCDR1 would be 00000101. The second byte in register LCDR2 would be 11100100. Together, the lit segments would create the letter G. See Figure 13.

Figure 11. Schematic Diagram of Sample LCD Application

Figure 12. Mapping of LCD Register Bits to Display Segments

Figure 13. Example Display of the Letter G

Figure 14. Main Program Flow

Figure 15. DisplayMsg Subroutine

Figure 16. DisplayChar Subroutine

Figure 17. ASC2OFFSET Subroutine

Application Note

Code Listings

```
* LCD_DISPLAY.ASM
****************************************************************************************
* Ed Stellini, 06/06/98
* CSG Design Engineering
* Motorola SPS
*
* Software written to demonstrate direct drive of LCD display
* using MC68HC705L16 microcontroller.
*
* The LCD used is a Planar-Standish Model 4228 Multiplex
* 15-segment, 8-digit panel. (1/4 duty, 1/3 bias)
*
**************************************************************************************
\$BASE 10T ;Default assembler number base
****************************************************************************************
* Memory Equates
*************************************************************************************
\begin{tabular}{llll} 
RAMSPACE & EQU & \(\$ 0040\) & ; Start of user RAM \\
ROMSPACE & EQU & \(\$ 1000\) & ; Start of user ROM \\
RESETVEC & EQU & \(\$ F F F E\) & ; Reset vector
\end{tabular}
```


* Register Equates

* Registers

MISC	EQU	$\$ 3 \mathrm{E}$;Miscellaneous register
TBCR1	EQU	$\$ 10$;Time base control register 1
LCDCR	EQU	$\$ 20$; LCD control register
LCDDR	EQU	$\$ 21$;First LCD data register location

* Bit locations
LCDE EQU \$07 ;LCD enable bit in LCDCR
SYSO EQU \$02 ;SYSO bit in MISC
SYS1 EQU \$03 ;SYS1 bit in MISC

* LCD Equates

MAXCHARS	EQU	$\$ 08$;Maximum characters per line of LCD
NUMMSGS	EQU	$\$ 05$;Number of message lines to display
QTRSECS	EQU	$\$ 14$;20 quarterseconds $=5$ seconds
EOT	EQU	$\$ 04$;End of string marker (ASCII EOT)

Initial	LDA	\#Msg1	; Load offset of desired string
	STA	MsgIndex	; Setup the message index
	LDA	\#! 1	;
	STA	MsgCount	;

* Main loop
* Display each message from memory in sequential order.

MainLoop	$\begin{aligned} & \text { LDX } \\ & \text { JSR } \\ & \text { JSR } \end{aligned}$	MsgIndex DisplayMsg LongDelay	; Start at current message ; Show current message ;Delay for \#QTRSECS quarterseconds
	LDA	MsgCount	; Get current count
	CMP	\#NUMMSGS	; Check if through all messages
	BEQ	Initial	; Start with Msg1 again
	INC	MsgCount	; Next message
	LDA	MsgIndex	; Get current message index
	ADD	\#MAXCHARS	; Move index to next message
	STA	MsgIndex	; Store new message index
	BRA	MainLoop	; Repeat

Application Note

Application Note

* Lookup table of LCD segment values for ASCII character values * Some characters can not be displayed on 15-segment LCD, so * they are marked as invalid, and will be displayed as a blank space.				
	FDB	\$0000	;'!'	INVALID
	FDB	\$0201	;'"	
	FDB	\$0000	;'\#'	INVALID
	FDB	\$A5A5	;'\$'	
	FDB	\$0000	$;^{\prime} \%$	INVALID
	FDB	\$0000	;'\&'	INVALID
	FDB	\$0001	;''	
	FDB	\$000A	;'('	
	FDB	\$5000	;')'	
	FDB	\$F00F	; '*	
	FDB	\$A005	;'+'	
	FDB	\$0000	;',	INVALID
	FDB	\$2004	;'-'	
	FDB	\$0800	;'.	
	FDB	\$4002	;'/'	
	FDB	\$47E2	;'0'	
	FDB	\$0602	;'1'	
	FDB	\$23C4	;'2'	
	FDB	\$2784	;'3'	
	FDB	\$2624	;'4'	
	FDB	\$21A8	;'5'	
	FDB	\$25E4	;'6'	
	FDB	\$0700	; ${ }^{\prime}$ '	
	FDB	\$27E4	;'8'	
	FDB	\$27A4	;'9'	
	FDB	\$2764	;'A'	
	FDB	\$8785	; 'B'	
	FDB	\$01E0	;'C'	
	FDB	\$8781	;'D'	
	FDB	\$21E4	;'E'	
	FDB	\$2164	$;^{\prime}{ }^{\prime}$	
	FDB	\$05E4	; 'G'	
	FDB	\$2664	; 'H'	
	FDB	\$8181	;'I'	
	FDB	\$06C0	;'J'	
	FDB	\$206A	; 'K'	
	FDB	\$00E0	;'L'	
	FDB	\$1662	; 'M'	
	FDB	\$1668	; 'N'	
	FDB	\$07E0	;'O'	
	FDB	\$2364	; 'P'	
	FDB	\$07E8	; 'Q'	
	FDB	\$236C	; 'R'	
	FDB	\$25A4	;'S'	
	FDB	\$8101	;'T'	

Application Note

	FDB	\$06E0	;'U'
	FDB	\$4062	; V'
	FDB	\$4668	; 'W'
	FDB	\$500A	; ${ }^{\prime}$ '
	FDB	\$9002	;'Y'
	FDB	\$4182	;'Z'
EndTable	EQU	*-Table	; End
* Vector definitions			
	ORG	RESETVEC	; Res
	FDB	Start	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (M) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217, 1-800-441-2447 or 1-303-675-2140. Customer Focus Center, 1-800-521-6274
JAPAN: Nippon Motorola Ltd. SPD, Strategic Planning Office 4-32-1, Nishi-Gotanda Shinagawa-ku, Tokyo 141, Japan, 81-3-5487-8488
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong, 852-26629298
Mfax ${ }^{\text {TM }}$, Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/; TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848
HOME PAGE: http://motorola.com/sps/

