AN1792

Using an MC68HC908MR24 in Place of an MC68HC708MP16

By Bill Lucas and Denise Younger Motorola Microprocessor Division Austin, Texas

Introduction

This application note documents the differences between the MC68HC708MP16 (MP16) and the MC68HC908MR24 (MR24). The information here is intended to help users migrate from the MC68HC708MP16 to the MC68HC908MR24.

The new features of the MR24 and differences between the two are:

- MR24 has a 24-k FLASH memory, replacing MP16's 16-k EPROM.
- MR24's RAM size increased to 768 bytes, starting at \$60, from 512 bytes on the MP16.
- MR24's low-voltage inhibit (LVI) is selectable with 5 percent or 10 percent tolerance.
- MR24's 10-bit A/D (analog-to-digital) converter has an 8-bit truncation mode, allowing compatibility with the MP16's 8-bit A/D converter. Quantization error, however, is affected in the truncation mode. Refer to the *MC68HC908MR24 General Release Specification*, Motorola document order number HC908MR24GRS/D, for more information.

- MR24's 10-bit A/D converter has a finite current draw of 1.6 mA, whereas on the MP16, V_{DDAD}/V_{DDREF} has negligible current draw.
- MP16's 8-bit A/D converter is replaced with a 10-bit module, selectable in 8-bit and 10-bit modes.
- Load OK bit (LDOK) in PWM control register 1 is now read-write, and the manner in which it is used has changed.
- Page zero I/O (input/output) module register addresses have changed.
- An external V_{REFH} pin has been added to the A/D converter.

Background

The MC68HC908MR24 is an improved version of the MC68HC708MP16 and was launched to create a new family of products for motor control applications.

The MR24 is designed to be a mechanical drop-in replacement for the MC68HC708MP16, with one exception: Redefinition of pin 12 on the MP16 from V_{ADCAP} to V_{REFH} on the MR24.

Also, the 2-channel timer A on the MP16 is now named timer B on the MR24. And, the 4-channel timer B on the MP16 is now named timer A on the MR24.

From a software point of view, there are a number of address changes. The address and timer differences between the MP16 and MR24 are summarized in Table 1.

Function	MC68HC708MP16	MC68HC908MR24
Pin 12	V _{ADCAP}	V _{REFH}
Timers	Pins 32–39 Timer A	Pins 32–39 Becomes timer B
I/O	\$0000–\$004f	\$0000–\$005f
RAM	\$0050–\$024f 512 bytes	\$0060–\$035f 768 bytes
A/D	8-bit mode	8- or 10-bit modes
	CONFIG (configuration register)	MOR (mask option register)

Table 1. MP16 and MR24 Address and Timer Differences

From a Hardware Point of View

The physical footprint of the MR24 is the same as the MP16 except for the renaming of timer A and timer B on the MR24 and V_{ADCAP} on the MP16 being changed to V_{REFH} on the MR24.

The V_{ADCAP} to V_{REFH} change (pin 12) requires a printed circuit board change to move from the MP16 to the MR24. Figure 1 shows typical usage of V_{ADCAP} on the MP16. Figure 2 shows typical usage of V_{REFH} on the MR24.

Figure 3 is an example of circuitry with a jumper that will accommodate both the MP16 and MR24.

Figure 1. MC68HC708MP16 A/D Example

Figure 2. MC68HC08MR24 A/D Example

Figure 3. MC68HC708MP16/MC68HC908MR24 A/D Example

From a Software Point of View

A number of control, status, and data registers' addresses have changed from the MP16 to the MR24.

For instance, the I/O register map on the MP16 started at \$0000 and ended at \$004f. Now on the MR24, the I/O register map starts at \$0000 and ends at \$005f. Also, RAM on the MP16 started at \$0050 and ended at \$024f (512 bytes), whereas RAM on the MR24 starts at \$0060 and ends at \$035f (768 bytes).

The CONFIG (configuration register), located at address \$001f on the MP16, has been renamed to MOR (mask option register) on the MR24. However, its address is the same and the control bits within the register remain the same.

The LDOK bit, in PWM control register 1 (PCTL1) located at address \$0020, is used to enable values to be loaded into buffered PWM control and data registers. The intended use of LDOK is to prevent partial reloads of PWM parameters from occurring until all of the PWM parameters have been calculated, stored in the PWM registers, and it is now "OK" to use those values. The registers affected by the LDOK bit are the PWM modulus, PWM prescaler, and PWM value registers. When the LDOK bit is set, the calculated values are loaded into a second set of registers and passed to the PWM generator's registers at the beginning of the next PWM reload cycle. After the values have been loaded into the PWM generator, the LDOK bit is then set to a logic 0 by the PWM hardware.

On the MR24, the LDOK bit is now implemented as a read/write bit. Therefore, it requires an interlocking mechanism to ensure that inadvertent setting of LDOK does not occur when other bits in PCTL1 are written. On the MP16, LDOK was a write-only bit and is always read as a logic 0. To set the LDOK bit on the MR24, LDOK must first be read as a logic 0 before it can be set to a logic 1.

An example of an inadvertent setting of LDOK, without the interlock, would be if you set the LDOK bit in PCTL1 and before the load of the PWM generator occurs some other routine executes this instruction:

bset 5,PCTL1; or any other bit in PCTL1

The bit set (bset) instruction is a read/modify/write instruction and can be broken down into three steps:

- 1. The contents of PCTL1 are read.
- 2. Bit 5 (in this example) is set to a logic 1.
- 3. The original contents of PCTL1 (with bit 5 set to a 1) are written back to PCTL1.

When operation 1 is performed, LDOK was set to a logic 1. Some time after step 1 and before step 3, the PWM hardware performs a reload, thus clearing LDOK in PCTL1. Step 3 is then performed and a logic 1 is rewritten to LDOK, thus re-arming the PWM module for another reload when a reload was not requested. This was not an issue with the MP16, as LDOK is always read as a logic 0, and a write of 0 had no effect on

LDOK. The interlock on the MR24 solves the issue of inadvertent writes to LDOK, as it is required to read LDOK as a logic 0 before it may be set to a logic 1.

Because LDOK is a read/write bit on the MR24, a load operation can be aborted after the LDOK bit is set and before the actual PWM generator load occurs by clearing LDOK when it is set to a logic 1. This permits multiple, asynchronous software routines (for example, a Hall effect commutation ISR and a servo PWM update ISR) to interface properly with the PWM module without corrupting each other's data.

For convenience, I/O include files for the MR24 for both C language and assembler language are included in this application note.

Address Changes

The addresses listed here have changed from the MP16 to the MR24, while the remainder of the I/O addresses stayed the same. The bits within these registers also remain the same.

The new locations for I/O addresses on the MR24 are listed here.

I/O Ports

\$0004 Data Direction Register A (DDRA) \$0005 Data Direction Register B (DDRB) \$0006 Data Direction Register C (DDRC) \$0007 Data Direction Register D (DDRD) \$0008 Port E Data Register (PTE) \$0009 Port F Data Register (PTF) \$0000 Data Direction Register E (DDRE) \$000D Data Direction Register F (DDRF) 4-Channel Timer Interface Module

NOTE: The 4-channel timer on the MR24 is now named timer A.

\$000E Timer A Status and Control Register (TASC) \$000F Timer A Counter Register High (TACNTH) \$0010 Timer A Counter Register Low (TACNTL) \$0011 Timer A Modulo Register High (TAMODH) \$0012 Timer A Modulo Register Low (TAMODL) \$0013 Timer A Channel 0 Status and Control Register (TASCO) \$0014 Timer A Channel 0 Register High (TACH0H) \$0015 Timer A Channel 0 Register Low (TACH0L) \$0016 Timer A Channel 1 Status and Control Register (TASC1) \$0017 Timer A Channel 1 Register High (TACH1H) \$0018 Timer A Channel 1 Register Low (TACH1L) \$0019 Timer A Channel 2 Status and Control Register (TASC2) \$001A Timer A Channel 2 Register High (TACH2H) \$001B Timer A Channel 2 Register Low (TACH2L) \$001C Timer A Channel 3 Status and Control Register (TASC3) \$001D Timer A Channel 3 Register High (TACH3H) \$001E Timer A Channel 3 Register Low (TACH3L)

2-Channel Timer Interface Module

	NOTE:	The 2-channel timer on the MR24 is now named timer B.
		<pre>\$0051 Timer B Status and Control Register (TBSC) \$0052 Timer B Counter Register High (TBCNTH) \$0053 Timer B Counter Register Low (TBCNTL) \$0054 Timer B Modulo Register High (TBMODH) \$0055 Timer B Modulo Register Low (TBMODL) \$0056 Timer B Channel 0 Status and Control Register (TBSCO) \$0057 Timer B Channel 0 Register High (TBCH0H) \$0058 Timer B Channel 0 Register Low (TBCH0L) \$0059 Timer B Channel 1 Status and Control Register (TBSC1) \$005A Timer B Channel 1 Register High (TBCH1H) \$005B Timer B Channel 1 Register Low (TBCH1L)</pre>
IRQ		\$003F IRQ Status and Control Register (ISCR)
ADC		\$0040 ADC Status and control Register (ADSCR)
	NOTE:	The analog-to-digital converter in the MR24 has been changed to a 10-bit module. Changes to the data register and the clock register are discussed later.

SPI		<pre>\$0044 SPI Control Register (SPCR) \$0045 SPI Status and Control Register (SPSCR) \$0046 SPI Data Register (SPDR)</pre>
CGM		<pre>\$005C PLL Control Register (PCTL) \$005D PLL Bandwidth Control Register (PBWC) \$005E PLL Programming Register (PPG)</pre>
	NOTE:	The following registers on the MR24 have changed their addresses and/or had bits within the registers changed. New registers also have been added. Refer to the MR24's general release specification for more detailed information.
ADC		The 8-bit ADR on the MP16 has been replaced with two registers, ADRH and ADRL, to support 8-bit and 10-bit conversions.
		<pre>\$0041 ADC Data Register (ADRH) \$0042 ADC Data Register (ADRL) \$0043 ADC Clock Register (ADCLK)</pre>
		Three bits have been added to the MR24 in bit positions 1–3. MODE1 (bit 3) and MODE0 (bit 2) allow the user to choose the conversion's data results justification of the analog-to-digital converter. Bit 1 will be used in future products.
FLASH		\$FE07 Reserved Test Register (FLTCR)
		FLTCR is used only for production testing. Accessing this register can have unpredictable effects in normal MCU operation.
		\$FE08 Flash Control Register (FLCR)
		FLCR takes the place of the EPROM control register on the MP16.
		\$FF80 Flash Block Protect Register (FLBPR)
		When the BPRX bits are set, a range of addresses is protected from being programmed or erased.

LVI	\$FEOF LVI Status and Control Register (LVISCR)
	Bit 5 is now LVI trip selection (TPRSEL). The user can now select between 5 percent and 10 percent tolerance when monitoring the 5.0 Vdc-V _{CC} power supply. The default is set at 10 percent.
Vector Addresses	The vectors for timer A and timer B in the MP16 have been renamed in the MR24. The rest of the vectors remain the same between the two devices.

C Include Files for the MC68HC908MR24

I/O Definitions for the MR24

These are for use with COSMIC Software, Inc.'s MC68HC08 compiler. The user should be aware that different compilers may require slight syntactical changes.

I/O PC	DRTS				
@tiny	volatile	char	PORTA	@0x00;	/* port A */
@tiny	volatile	char	PORTB	@0x01;	/* port B */
@tiny	volatile	char	PORTC	@0x02;	/* port C */
@tiny	volatile	char	PORTD	@0x03;	/* port D */
@tiny	volatile	char	PORTE	@0x08;	/* port E */
@tiny	volatile	char	PORTF	@0x09;	/* port F */
@tiny		char	DDRA	@0x04;	/* data direction port A */
@tiny		char	DDRB	@0x05;	/* data direction port B */
@tiny		char	DDRC	@0x06;	/* data direction port C */
@tiny		char	DDRD	@0x07;	/* data direction port D */
@tiny		char	DDRE	@0x0c;	/* data direction port E */
@tiny		char	DDRF	@0x0d;	/* data direction port F */
TIMER	А				
@+ i m		abox	T 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	@0 0	(* timen) status (stal resistor */
@tiny	volatile	char	TASC	@UXUE;	/* timer A status/ctri register */
@tiny	volatile	int	TACNT	@UXUI;	/* timer A counter register */
@tiny	volatile	char	TACNTH	@0x01;	/* timer A counter high */
@tiny	volatile	char	TACNTL	@0x10;	/* timer A counter low */
@tiny	volatile	int	TAMOD	@0x11;	/* timer A modulo register */
@tiny	volatile	char	TAMODH	@0x11;	/* timer A modulo high */
@tiny	volatile	char	TAMODL	@0x12;	/* timer A modulo low */
@tiny	volatile	char	TASC0	@0x13;	/* timer A channel 0 status/ctrl */

@tiny	volatile	int	TACH0	@0x14;	/* timer A channel 0 register */
@tiny	volatile	char	TACHOH	@0x14;	/* timer A channel 0 high */
@tiny	volatile	char	TACHOL	@0x15;	/* timer A channel 0 low */
@tiny	volatile	char	TASC1	@0x16;	/* timer A channel 1 status/ctrl */
@tiny	volatile	int	TACH1	@0x17;	/* timer A channel 1 register */
@tiny	volatile	char	TACH1H	@0x17;	/* timer A channel 1 high */
@tiny	volatile	char	TACH1L	@0x18;	/* timer A channel 1 low */
@tiny	volatile	char	TASC2	@0x19;	/* timer A channel 2 status/ctrl */
@tiny	volatile	int	TACH2	@0x1a;	/* timer A channel 2 register */
@tiny	volatile	char	TACH2H	@0x1a;	/* timer A channel 2 high */
@tiny	volatile	char	TACH2L	@0x1b;	/* timer A channel 2 low */
@tiny	volatile	char	TASC3	@0x1c;	/* timer A channel 3 status/ctrl */
@tiny	volatile	int	TACH3	@0x1d;	/* timer A channel 3 register */
@tiny	volatile	char	ТАСНЗН	@0x1d;	/* timer A channel 3 high */
@tiny	volatile	char	TACH3L	@0x1e;	/* timer A channel 3 low */
//	OPTION REC	GISTER			
@tiny		char	MOR	@0x1f;	/* Mask Option Write-Once Register */
//	PWM				
@tiny		char	PCTL1	@0x20;	/* PWM control register 1 */
@tiny		char	PCTL2	@0x21;	/* PWM control register 2 */
@tinv		char	FCR	@0x22;	/* Fault control register */
@tinv	volatile	char	FSR	@0x23;	/* Fault Status register */
@tiny	volatile	char	FTACK	@0x24;	/* Fault acknowledge register */
1			-		
@tiny		char	PWMOUT	@0x25;	/* PWM output control register */
@tiny	volatile	int	PCNT	@0x26;	/* PWM counter register */
@tiny	volatile	char	PCNTH	@0x26;	/* PWM counter register high */
@tiny	volatile	char	PCNTL	@0x27;	/* PWM counter register low */
@tiny	volatile	int	PMOD	@0x28;	/* PWM counter Modulo register */
@tiny	volatile	char	PMODH	@0x28;	/* PWM counter Modulo register high */
@tiny	volatile	char	PMODL	@0x29;	/* PWM counter Modulo register low */
@tiny	volatile	int	PVAL1	@0x2a;	/* PWM 1 value register */
@tiny	volatile	char	PVAL1H	@0x2a;	/* PWM 1 value register high */
@tiny	volatile	char	PVAL1L	@0x2b;	/* PWM 1 value register low */
@tiny	volatile	int	PVAL2	@0x2c;	/* PWM 2 value register */
@tiny	volatile	char	PVAL2H	@0x2c;	/* PWM 2 value register high */
@tiny	volatile	char	PVAL2L	@0x2d;	/* PWM 2 value register low */
@tiny	volatile	int	PVAL3	@0x2e;	/* PWM 3 value register */
@tiny	volatile	char	PVAL3H	@0x2e;	/* PWM 3 value register high */
@tiny	volatile	char	PVAL3L	@0x2f;	/* PWM 3 value register low */
@tiny	volatile	int	PVAL4	@0x30;	/* PWM 4 value register */
@tiny	volatile	char	PVAL4H	@0x30;	/* PWM 4 value register high */
@tiny	volatile	char	PVAL4L	@0x31;	/* PWM 4 value register low */
@tiny	volatile	int	PVAL5	@0x32;	/* PWM 5 value register */
@tiny	volatile	char	PVAL5H	@0x32;	/* PWM 5 value register high */
@tiny	volatile	char	PVAL5L	@0x33;	/* PWM 5 value register low */
@tiny	volatile	int	PVAL6	@0x34;	/* PWM 6 value register */

Application Note

@tiny	volatile	char	PVAL6H	@0x34;	/* PWM 6 value register high */
@tiny	volatile	char	PVAL6L	@0x35;	/* PWM 6 value register low */
@tiny	volatile	char	DEADTM	@0x36;	/* Dead Time Write-once register */
@tiny	volatile	char	DISMAP	@0x37;	/* PWM Disable Mapping Write-once reg.*/
//	SCI sectio	on			
@tiny		char	SCC1	@0x38;	/* SCI control register 1 */
@tiny		char	SCC2	@0x39;	/* SCI control register 2 */
@tiny		char	SCC3	@0x3a;	/* SCI control register 3 */
@tiny	volatile	char	SCS1	@0x3b;	/* SCI status register 1 */
@tiny	volatile	char	SCS2	@0x3c;	/* SCI status register 2 */
@tiny	volatile	char	SCDR	@0x3d;	/* SCI data register */
@tiny		char	SCBR	@0x3e;	/* SCI baud rate */
//	INTERRUPT				
@tiny	volatile	char	ISCR	@0x3F;	/* IRQ control/status register */
//	A/D				
@tiny	volatile	char	ADSCR	@0x40;	/* ADC status and control register */
@tiny	volatile	int	ADR	@0x41;	/* ADC data register */
@tiny	volatile	char	ADRH	@0x41;	/* ADC data register HIGH */
@tiny	volatile	char	ADRL	@0x42;	/* ADC data register LOW */
@tiny		char	ADCLK	@0x43;	/* ADC clock register */
//	SPI				
@tiny		char	SPCR	@0x44;	/* SPI control register */
@tiny	volatile	char	SPSCR	@0x45;	/* SPI control/status register */
@tiny	volatile	char	SPDR	@0x46;	/* SPI data register */
//	TIMER B				
@tiny	volatile	char	TBSC	@0x51;	/* timer B status/ctrl register */
@tiny	volatile	int	TBCNT	@0x52;	/* timer B counter register */
@tiny	volatile	char	TBCNTH	@0x52;	/* timer B counter high */
@tiny	volatile	char	TBCNTL	@0x53;	/* timer B counter low */
@tiny	volatile	int	TBMOD	@0x54;	/* timer B modulo register */
@tiny	volatile	char	TBMODH	@0x54;	/* timer B modulo high */
@tiny	volatile	char	TBMODL	@0x55;	/* timer B modulo low */
@tiny	volatile	char	TBSC0	@0x56;	/* timer B channel 0 status/ctrl */
@tiny	volatile	int	TBCH0	@0x57;	/* timer B channel 0 register */
@tiny	volatile	char	ТВСН0Н	@0x57;	/* timer B channel 0 high */
@tiny	volatile	char	TBCHOL	@0x58;	/* timer B channel 0 low */
@tiny	volatile	char	TBSC1	@0x59;	/* timer B channel 1 status/ctrl */
@tinv	volatile	int	TBCH1	@0x5a;	/* timer B channel 1 register */
@tinv	volatile	char	TBCH1H	@0x5a;	/* timer B channel 1 high */
@tinv	volatile	char	TBCH1L	@0x5b;	/* timer B channel 1 low */
1		· · · · ·			

//	PLL					
@tiny @tiny @tiny	volatile volatile	char char char	PCTL PBWC PPG	@0x5c; @0x5d; @0x5e;	/* /* /*	PLL control register */ PLL bandwidth register */ PLL programming register */
//	SIM					
@near @near @near @near @near	volatile volatile volatile	char char char char char char char	SBSR SRSR SBFCR FLCR LVISCR FLBPR	<pre>@0xfe00; @0xfe01; @0xfe03; @0xfe08; @0xfe0f; @0xff80;</pre>	/* /* /* /* /*	SIM break status register */ SIM reset status register */ SIM break control register */ FLASH control register */ LVI status register and control */ FLASH BLOCK PROTECT register */
@near	volatile	char	COPCTL	@0xffff;	/*	COP control register */

Assembler Include File for the MR24

I/O Definitions for MC68HC908MR24

PORTA	equ	\$00;	;	port	A		
PORTB	equ	\$01;	;	port	В		
PORTC	equ	\$02;	;	port	C		
PORTD	equ	\$03;	;	port	D		
PORTE	equ	\$08;	;	port	E		
PORTF	equ	\$09;	;	port	F		
DDRA	equ	\$04;	;	data	direction	port	A
DDRB	equ	\$05;	;	data	direction	port	В
DDRC	equ	\$06;	;	data	direction	port	С
DDRD	equ	\$07;	;	data	direction	port	D
DDRF	equ	\$0d;	;	data	direction	port	F
; 1	'IMER A						

TASC	equ	\$0e;	;	timer	А	status/ctrl register
TACNT	equ	\$0f;	;	timer	А	counter register
TACNTH	equ	\$0f;	;	timer	А	counter high
TACNTL	equ	\$10;	;	timer	А	counter low
TAMOD	equ	\$11;	;	timer	А	modulo register
TAMODH	equ	\$11;	;	timer	А	modulo high
TAMODL	equ	\$12;	;	timer	А	modulo low
TASC0	equ	\$13;	;	timer	А	channel 0 status/ctrl
TACH0	equ	\$14;	;	timer	А	channel 0 register
TACH0H	equ	\$14;	;	timer	А	channel 0 high
TACH0L	equ	\$15;	;	timer	А	channel 0 low
TASC1	equ	\$16;	;	timer	А	channel 1 status/ctrl
TACH1	equ	\$17;	;	timer	A	channel 1 register
TACH1H	equ	\$17;	;	timer	А	channel 1 high

Application Note

TACH1L	equ	\$18;	; timer A channel 1 low
TASC2	equ	\$19;	; timer A channel 2 status/ctrl
TACH2	equ	\$1a;	; timer A channel 2 register
TACH2H	equ	\$1a;	; timer A channel 2 high
TACH2L	equ	\$1b;	; timer A channel 2 low
TASC3	equ	\$1c;	; timer A channel 3 status/ctrl
TACH3	equ	\$1d;	; timer A channel 3 register
TACH3H	equ	\$1d;	; timer A channel 3 high
TACH3L	equ	\$1e;	; timer A channel 3 low
;	OPTION REGISTER		
MOR	equ	\$1f;	; Mask Option Write-Once Register
;	PWM		
PCTL1	equ	\$20;	; PWM control register 1
PCTL2	equ	\$21;	; PWM control register 2
	-		5
FCR	equ	\$22;	; Fault control register
FSR	equ	\$23;	; Fault Status register
FTACK	equ	\$24;	; Fault acknowledge register
	-		5 5
PWMOUT	equ	\$25 <i>;</i>	; PWM output control register
PCNT	equ	\$26;	; PWM counter register
PCNTH	equ	\$26;	; PWM counter register high
PCNTL	equ	\$27;	; PWM counter register low
PMOD	equ	\$28;	; PWM counter Modulo register
PMODH	equ	\$28;	; PWM counter Modulo register high
PMODL	equ	\$29;	; PWM counter Modulo register low
PVAL1	equ	\$2a;	; PWM 1 value register
PVAL1H	equ	\$2a;	; PWM 1 value register high
PVAL1L	equ	\$2b;	; PWM 1 value register low
PVAL2	equ	\$2c;	; PWM 2 value register
PVAL2H	equ	\$2c;	; PWM 2 value register high
PVAL2L	equ	\$2d;	; PWM 2 value register low
pval3	equ	\$2e;	; PWM 3 value register
pval3h	equ	\$2e;	; PWM 3 value register high
pval3l	equ	\$2f;	; PWM 3 value register low
	equ	\$30;	; PWM 4 value register
PVAL4H	equ	\$30;	; PWM 4 value register high
PVAL4L	equ	\$31;	; PWM 4 value register low
PVAL5	equ	\$32;	; PWM 5 value register
PVAL5H	equ	\$32;	; PWM 5 value register high
PVAL5L	equ	\$33;	; PWM 5 value register low
PVAL6	equ	\$34;	; PWM 6 value register
PVAL6H	equ	\$34;	; PWM 6 value register high
PVAL6L	equ	\$35;	; PWM 6 value register low
	-		-
DEADTM	equ	\$36;	; Dead Time Write-once register
DISMAP	equ	\$37;	; PWM Disable Mapping Write-once reg.

SCC1	equ	\$38;	; SCI control register 1
SCC2	equ	\$39;	; SCI control register 2
SCC3	equ	\$3a;	; SCI control register 3
SCS1	equ	\$3b;	; SCI status register 1
SCS2	equ	\$3c;	; SCI status register 2
SCDR	equ	\$3d;	; SCI data register
SCBR	equ	\$3e;	; SCI baud rate
;	INTERRUPT		
ISCR	equ	\$3f;	; IRQ control/status register
;	A/D		
ADSCR	equ	\$40;	; ADC status and control register
ADR	equ	\$41;	; ADC data register
ADRH	equ	\$41;	; ADC data register HIGH
ADRL	equ	\$42;	; ADC data register LOW
ADCLK	equ	\$43;	; ADC clock register
;	SPI		
SPCR	equ	\$44;	; SPI control register
	equ	\$45;	; SPI control/status register
SPDR	equ	\$46;	; SPI data register
;	TIMER B		
mpca	0.0711	٥ <u>ـ</u> 1.	· timer D status (str] resistor
	equ	\$517 \$517	; timer B status/ctri register
TRONTU	equ	\$527	; timer B counter high
TBCNIII TBCNTI.	equ	\$527	; timer B counter low
	equ	\$557	; timer B modulo register
	equ	\$54:	; timer B modulo high
	equ	\$55:	; timer B modulo low
TBRCO	equ	\$557	; timer B channel O status/ctrl
ТВСНО	equ	\$507	; timer B channel O register
твсион	equ	\$57;	; timer B channel O high
TBCHOL	equ	\$58:	; timer B channel 0 low
TBCHUL TBCC1	equ	\$507	: timer B channel 1 status/ctrl
твси1	equ	\$597 \$5a:	; timer B channel 1 register
твси1и	equ	\$5a;	; timer B channel 1 high
TBCH1L	equ	\$50; \$5b;	; timer B channel 1 low
IDCIIII	૯વૃષ	φ 3 07	/ CIMCI D CHAMICI I IOW
;	PI,I,		
-			
PCTL	eau	\$5c;	; PLL control register
PBWC	eau	\$5d;	; PLL bandwidth register
@ PPG	eau	\$5e;	; PLL programming register
	~ <u>-</u> -~	· · · ·	

AN1792 Rev. 1.0

; SCI section

Application Note

; SIM

SBSR	equ	\$fe00;	;	SIM break status register
SRSR	equ	\$fe01;	;	SIM reset status register
SBFCR	equ	\$fe03;	;	SIM break control register
FLCR	equ	\$fe08;	;	FLASH control register
LVISCR	equ	\$fe0f;	;	LVI status register and control
FLBPR	equ	\$ff80;	;	FLASH BLOCK PROTECT register
COPCTL	equ	\$ffff;	;	COP control register

Conclusion

The MC68HC908MR24 is designed to be used in place of the MC68HC708MP16 with minimal hardware and software changes. The inclusion of the 10-bit analog-to-digital converter and increased memory size over the MP16 make this processor an attractive alternative. The block-protected FLASH memory facilitates easy in-circuit software upgrades.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights or the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death massociated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217. 1-800-441-2447 or 1-303-675-2140. Customer Focus Center, 1-800-521-6274

JAPAN: Motorola Japan Ltd.: SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shinagawa-Ku, Tokyo, Japan, 03-5487-8488 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate,

Tai Po, New Territories, Hong Kong, 852-26629298

Mfax[™], Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/; TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848

HOME PAGE: http://motorola.com/sps/

Mfax is a trademark of Motorola, Inc.

© Motorola, Inc., 2000