
MOTOROLA
Semiconductor Application Note

Order by
AN1808/D

Rev. 0 , 9/99

© Motorola, Inc., 1999

D
S

P
56

30
0

H
I0

8
H

os
t P

or
t

DSP56300 HI08 Host Port
Programming
Duberly Mazuelos

This Application Note contains information about
programming the HI08 Host Port peripheral of the Motorola
DSP56300 digital signal processor family. It supplements the
information found in the user’s manuals.

The audience for this document is not required to have DSP
experience. However, some experience with embedded
applications will help you make trade-offs between available
HI08 options during system integration.

Each section of this document includes the relevant signals
and registers.

Contents
Introduction 2
HI08 Programmer’s Model 2
2.1 Host-side Model 3
2.2 DSP-Side Model 4
Transfer Modes 4
3.1 Multiplexed Transfer Mode............. 5
3.2 Non-Multiplexed Transfer Mode..... 7
3.3 General Purpose I/O (GPIO) 9
Handshaking Protocols................... 9
4.1 Software Polling 10
4.2 Interrupts.. 11
4.3 Core DMA Access......................... 13
4.4 Host Requests 14
Host Commands 16
Endian Modes 17
Boot-up Using the HI08 Host Port 18

2 DSP56300 HI08 Host Port Motorola

Introduction

1 Introduction
The HI08 Host Port is a Motorola DSP56300 family peripheral that provides a byte-wide, full-duplex,
double-buffered, parallel port for communication with a host processor. This slave interface supports
data transfer between a host and the DSP, as well as commands from a host to the DSP. The 8-bit-wide
HI08 data bus supports 8-bit, 16-bit and 24-bit data transfers. Various programmable options provide a
glueless connection between the DSP and several industry-standard processors and microcontrollers
that are commonly used as system hosts.

Alternatively, the HI08 port pins can provide General-Purpose I/O (GPIO), with up to 16 GPIO
connections. Both hardware and software reset configure the HI08 port as input GPIO.

2 HI08 Programmer’s Model
As Figure 1 shows, the HI08 peripheral has two register banks:

• Host-side register bank—accessible only to the host

• DSP-side register bank—accessible only to the DSP core

The separate receive and transmit data paths are double buffered for efficient, high-speed,
asynchronous transfers. Note the naming conventions: the host-side transmit data path (host writes) is
also the DSP-side receive path, while the host-side receive data path (host reads) is also the DSP-side
transmit path.

Figure 1. HI08 Programer’s Model

HTXHCR

RXM RXL

HSR

RXH

HRX

TXM TXLTXHICR CVRISR IVR

HBAR

Host Bus

DSP Core Data Bus

DSP

Side

Host

Side

Receive
and

transmit
data paths

HPCR

HI08 Programmer’s Model

Motorola 3

2.1 Host-side Model
To the host, the HI08 appears as eight byte-wide locations mapped in its external address space. The
host-side registers can be further partitioned into control registers and data registers, as Table 1 and
Table 2 show.

The Receive Data Registers (RXH[M]L) and Transmit Data registers (TXH[M]L) use the same host
address. During host writes to these addresses, data is transferred to the Transmit Data registers, while
reads are performed from the Receive Data registers.

Endian mode refers to the method of addressing the host and the way the HI08 transfers data between
the host-side data registers and the DSP-side data registers. “Endian Modes” on page 17 has more
information on this topic.

Regardless of the Endian mode used, when the host writes to the HI08 port, it must write the byte at
address $7 last, since this causes the transfer of the 24-bit value from the host-side Transmit Data
Registers (TXH[M][L]) to the DSP-side Host Receive Register (HRX). Similarly, when the host reads
from the HI08 port, it must read the byte at host address $7 last, since this causes a pending transfer of
a 24-bit value from the DSP-side Host Transmit register (HTX) to be transferred to the host-side
Receive Data registers (RXH[M][L]).

Table 1. Host-side Control Register

Host
Address

Control Register

$0 Interface Control register - ICR

$1 Command Vector register - CVR

$2 Interrupt Status register - ISR

$3 Interrupt Vector register - IVR

Table 2. Host-side Data Register

Host
Address

Little Endian Mode Big Endian Mode

$4 Unused Unused

$5 Receive/Transmit High - RXH/TXH Receive/Transmit Low - RXL/TXL

$6 Receive/Transmit Middle - RXM/TXM Receive/Transmit Middle - RXM/TXM

$7 Receive/Transmit Low - RXL/TXL Receive/Transmit High - RXH/TXH

4 DSP56300 HI08 Host Port Motorola

Transfer Modes

2.2 DSP-Side Model
To the DSP core, the DSP-side registers appear as six 24-bit registers mapped in internal I/O X
memory space; therefore, standard DSP56300 instructions and addressing modes can address these
registers. Table 3 lists control and data registers. Two additional registers are related to the HI08
peripheral when it is used in GPIO mode.

3 Transfer Modes
The HI08 operates in one of two host transfer modes, multiplexed or non-multiplexed, depending on
the host bus type. Alternatively, the HI08 pins can be used as General Purpose I/O (GPIO). To
accommodate these three modes, each HI08 pin serves multiple purposes, as Table 4, Table 5, and
Table 6 show.

The HI08 port can be programmed to use single or dual read/write strobes (signals). In a single-strobe
bus, the Host Data Stobe pin (HDS) indicates that valid data is present on the bus, while the Host
Read/Write pin (HRW) indicates the type of transaction in process. In dual-strobe mode, the Host
Read (HRD) and the Host Write (HWR) lines each indicate data validity and transaction type.

Table 3. DSP-side Data and Control Registers

Type Register

Control Host Control Register (HCR)
Host Status Register (HSR)
Host Port Control Register (HPCR)
Host base Address Register (HBAR)

Data Host Transmit Register (HTX)
Host Receive Register (HRX)

Table 4. Multiplex, Non-multiplex

Pin Multiplex Mode Non-multiplex Mode GPIO Mode

HAD[7–0] HAD[7–0] H[7–]0 PB[7–0]

HAS/HA0 HAS HA0 PB8

HA8/HA1 HA8 HA1 PB9

HA9/HA2 HA9 HA2 PB10

HCS/HA10 HA10 HCS/HCS PB13

Table 5. Single- and Dual-Strobe Buses

Pin Single-Strobe Bus Dual- Strobe Bus GPIO Mode

HRW/HRD HRW HRD/HRD PB11

HDS/HWR HDS/HDS HWR/HWR PB12

Transfer Modes

Motorola 5

The HI08 can also be programmed to use a single host request line or dual host request lines. Please
refer to “Host Requests” on page 14 for information concerning host requests.

Note that the polarity of the signals can also be programmed to be active high or active low, as
required by the host bus. All the options shown here are set by the Host Port Control Register (HPCR).

3.1 Multiplexed Transfer Mode
In multiplexed mode, the HI08 uses the lower eight address lines (address bits [7–0]) to transfer data
(data bits [7–0]). Figure 2 shows a hardware configuration that supports multiplexed transfer mode.

Figure 2. HI08 Hardware Setup for Multiplex Mode Transfers

Table 6. Single and Dual Host Request Lines

Pin Single Request Dual Request GPIO Mode

HREQ/HTRQ HREQ/HREQ HTRQ/HTRQ PB14

HACK/HRRQ HACK/HACK HRRQ/HRRQ PB15

HAD[7–0]

HA[10–8]

HAS

Address/Data

Address

Address Strobe

HDS Data Strobe

Read/Write StrobeHRW

HI08

HostDSP56300

Port

Host

Bus

Interface

6 DSP56300 HI08 Host Port Motorola

Transfer Modes

Example 1 lists code that initializes the Host Port Control register (HPCR) to use the HI08 in
multiplex mode, as shown in Figure 2.

Example 1. Initializing Multiplex Mode

INIT_HPCR EQU $0e0e
; [15] = HAP = 0 -> Reserved. Write to 0.
; [14] = HRP = 0 -> Reserved. Write to 0.
; [13] = HCSP = 0 -> Reserved. Write to 0.
; [12] = HDDS = 0 -> Single strobe
; [11] = HMUX = 1 -> Multiplex mode
; [10]= HASP = 1 -> HAS active high
; [9] = HDSP = 1 -> HDS active high
; [8] = HROD = 0 -> Reserved. Write to 0.
; [7] = reserved = 0 -> Reserved. Write to 0.
; [6] = HEN = 0 -> Host interface off (GPIO)
; [5] = HAEN = 0 -> Host ack. disabled
; [4] = HREN = 0 -> Host requests disabled
; [3] = HCSEN = 1 -> Enable HA10 in multiplex mode
; [2] = HA9EN = 1 -> Enable HA9 in multiplex mode
; [1] = HA8EN = 1 -> Enable HA8 in multiplex mode
; [0] = HGEN = 0 -> GPIO pins are tri-stated

This example code configures the HI08 port to a single-strobe bus, (HPCR[12] = HDDS = 0), where
HRW=1 signals a read transaction and HRW=0 signals the write. Active high address (HAS) and data
(HDS) strobes are used by setting HPCR[10] = HASP = 1 and HPCR[9] = HDSP = 1, respectively.
The example uses all available address lines (HA8EN=1, HA9EN=1, and HCSEN=1).

Note that the HPCR[HEN] bit is initially cleared, which configures the HI08 port in GPIO mode. To
assure proper operation, the HPCR bits HAP, HRP, HCSP, HDDS, HMUX, HASP, HDSP, HROD,
HAEN, HREN, HCSEN, HA9EN, and HA8EN should not be set when HEN is set or simultaneously
with setting HEN. Similarly, bits HAP, HRP, HCSP, HDDS, HMUX, HASP, HDSP, HROD, HAEN
and HREN should be changed only if HEN is cleared. The code listed in Example 2, which meets
these requirements, initializes and enables the HI08 port from the DSP core side

Example 2. Initializing the HI08 Port from the DSP Core Side

movep #INIT_HPCR,x:M_HPCR ; init HI08 HPCR register
bset #M_HEN,x:M_HPCR ; enable_HI08

The host should initialize the Interface Control register (ICR) to establish the Endian mode and enable
requests, if necessary. (“Endian Modes” on page 17 contains further information.)

Transfer Modes

Motorola 7

In multiplexed mode, two factors determine HI08 port register selection:

• Address on the host bus

• Internal chip select logic, represented in Figure 3.

The DSP compares the Host Base Address Register (HBAR) to address bits [10–3] to define the
address where the HI08 will appear on the host memory map. The DSP core must initialize HBAR
prior to any data transfers. Note that the HI08 port latches only the lower 8 address bits [HAD7–0] so
that these signal lines can then be used to transfer data. For proper device selection, the upper address
bits (HA[10-8]) must remain asserted during the data transaction.

.

Figure 3. Multiplex Mode Self Chip Select

The DSP performs the following steps when it initializes the HI08 port in multiplex mode:

1. Initializes Host Port Control register (HPCR). Make sure HPCR[HEN] = 0.

2. Initialize Host Base Address register (HBAR).

3. Enable the HI08 by setting HPCR[HEN] = 1.

The host should initialize the Interface Control Register (ICR) to indicate the endian mode to be used.

3.2 Non-Multiplexed Transfer Mode
In Non-Multiplexed mode, the HI08 port appears to the host as 8-bit wide SRAM. Thus, the minimum
hardware setup necessary for using the HI08 port in non-multiplexed mode is a chip select, three
address lines to access the eight HI08 eight register locations, eight data lines and one or two
read/write strobes. Figure 4 on page 8 shows a simple hardware setup that supports Non-Multiplex
Transfer mode.

HBAR

Latch

C
om

pa
ra

to
r

Chip select

A[3–7]
HAD[0–7]

HAS

HA[8–10]

8 DSP56300 HI08 Host Port Motorola

Transfer Modes

Figure 4. HI08 Hardware Setup for Non-Multiplex Mode Transfers

The equate listed in Table 3 defines the initial values of the Host Port Control Register (HPCR) that
are necessary to set up the HI08 for the Non-Multiplex mode represented in Figure 4.

Example 3. Initializing the Non-Multiplex Mode

INIT_HPCR EQU $1008
; [15] = HAP = 0 => Reserved. Write to 0.
; [14] = HRP = 0 -> Reserved. Write to 0.
; [13] = HCSP = 0 -> CS active low
; [12] = HDDS = 1 -> Dual strobe
; [11] = HMUX = 0 -> Non-multiplexed mode
; [10] = HASP = 0 -> Reserved. Write to 0 in non-mux
; [9] = HDSP = 0 -> HRD & HWR active low
; [8] = HROD = 0 -> Reserved. Write to 0.
; [7] = reserved = 0
; [6] = HEN = 0 -> Host interface disabled
; [5] = HAEN = 0 -> Host ack. disabled
; [4] = HREN = 0 -> Host request disabled
; [3] = HCSEN = 1 -> CS pin enabled
; [2] = HA9EN = 0 -> Reserved. Write to 0 in non-mux mode
; [1] = HA8EN = 0 -> Reserved. Write to 0 in non-mux mode
; [0] = HGEN = 0 -> Reserved. Write to 0 in non-mux mode

This initialization configures the HI08 port bus transactions to use dual, active low, read (HRD) and
write (HWR) strobes by setting HPCR[12] = HDDS = 1 and HPCR[9] = HDSP = 0. Active low Chip
Select (HCS) is programmed with HPCR[13] = HCSP = 0.

Notice that the HPCR[HEN] bit is initially cleared, which configures the HI08 port in GPIO mode.
The same code that initializes the Multiplex Transfer mode (Example 2 on page 6) can also initialize
and enable the HI08 port.

HD[7–0]

HA[2–0]

HCS

Data

Address

Chip Select

HRD Read Strobe

Write StrobeHWR

HI08

HostDSP56300

Port

Host
Port

Handshaking Protocols

Motorola 9

The following list summarizes the steps to be followed by the DSP to initialize the HI08 port in
non-multiplex mode:

1. Initializes Host Port Control Register (HPCR). Make sure HPCR[HEN] = 0.

2. Enable the HI08 by setting HPCR[HEN] = 1.

The host should initialize the Interface Control register (ICR) to indicate the endian mode to be used.

3.3 General Purpose I/O (GPIO)
The HI08 port can also be programmed to provide GPIO. To use GPIO mode, the Host Enable bit
(HEN) in the HPCR is cleared to deactivate the HI08, and the Host GPIO Port Enable bit (HGEN) bit
is set to enable the pins configured as GPIO.

The Host Data Direction register (HDDR) controls the direction of the data flow for each of the HI08
pins configured as GPIO. The Host Data register (HDR) holds the data values of pins configured as
GPIO. These registers, like the HPCR, are mapped to X memory I/O space and are accessible to the
core using conventional move and bit operations. The host cannot access HDDR and HDR.

Not all pins need to be configured as GPIO to use this feature. Even when the HI08 functions as the
host interface, the unused signals can be configured as GPIO (if, for example, an application is not
using the host request pins). The same ability to configure unused signals for GPIO also applies to
HA10, HA9 and HA8 in multiplex mode.

4 Handshaking Protocols
The HI08 is a slave-only device, which means that the host is the master of all bus transfers. In
host-to-DSP transfers, the host writes data to the Transmit Byte Registers (TXH[M][L]). In
DSP-to-host transfers, the host reads data from the Receive Byte Registers (RXH[M][L]). However,
the DSP side has access only to the Host Receive Data Register (HRX) and the Host Transmit Data
Register (HTX). When available, data automatically moves between the host-side data registers and
the DSP-side data registers. This double-buffered mechanism allows for fast data transfers, but creates
a “pipeline” that can stall communication (if the pipeline is either full or empty) or cause erroneous
data transfers (overwriting new data or reading old data twice). The HI08 port has several handshaking
mechanisms to counter any of these potential buffering problems.

For example, a host writing several pieces of data to the HI08 port should first determine whether any
data previously written to the Transmit Byte Registers (TXH[M][L]) has successfully transferred to
the DSP side. A handshaking protocol makes this possible. If the host-side Transmit Byte Registers
(TXH[M][L]) are empty, the host writes the data to these registers. The transfer to the DSP-side Host
Receive Data Register (HRX) occurs only if HRX is empty (that is, the DSP has read it). The DSP core
then uses an appropriate handshaking protocol to move data from the HRX to the receiving buffer or
register. If the handshaking protocol were not used, the host might overwrite data not yet transferred to
the DSP side, or the DSP might receive stale data.

10 DSP56300 HI08 Host Port Motorola

Handshaking Protocols

A similar situation occurs when the host performs multiple reads from the HI08 port Receive Byte
registers (RXH[M][L]). The DSP side uses an appropriate handshaking protocol to determine whether
any data previously written to the Host Transmit Register (HTX) has been successfully transferred to
the host-side registers. If HTX is empty, the DSP writes the data to this register. Data is transferred to
the host-side Receive Byte Registers (RXH[M][L]) only if they are empty (that is, that host has read
them). The host can then use any of the handshaking protocols available to determine if more data is
available to be read.

The DSP56300 family HI08 port offers the following handshaking protocols for data transfers with the
host:

• Software polling

• Interrupts

• Core DMA access

• Host requests

As the following sections discuss, several factors determine which protocol to use, including:

• The amount of data to be transferred

• The timing requirements for the transfer

• The availability of resources such as processing bandwidth and DMA channels

Recall that the transfers described here occur between the host and the DSP asynchronously. Each
transfers data at its own pace. However, using an appropriate handshaking protocol allows data to be
transferred at optimum rates.

4.1 Software Polling
Software polling is the simplest handshaking protocol, but it demands the most core processing power.
In software polling, the host or the DSP core uses status bits to test the data registers and determine
whether they are empty or full. However, while polling these status bits, the DSP core cannot perform
other processing.

On the DSP-side, two situations are possible. In transfers from the DSP to the host (host reads), the
DSP core must determine if the HTX is empty (and thus available for more data) or full (waiting for
the host to read the data from its side). In this case, the DSP core polls the Host Transmit Data Empty
bit in the Host Status register (HSR[1][HTDE]). If HSR[1][HTDE]=0, data has not been transferred
from HTX to the host-side RXH[M][L] data registers. If HSR[1][HTDE]=1, the HTX is empty and the
DSP core can write more data to it. The DSP56300 assembly code in Example 4 implements the
polling and data transfer from a transmit data buffer in Y memory (to which TBUFF_PTR points) to
the HTX register:

Example 4. Implementing Polling and Data Transfer to HTX

jclr #1,x:M_HSR,* ; loop if HSR[1]:HTDE=0
move y:(TBUFF_PTR)+,x:M_HTX ; move data to HTX

Similarly, in transfers from the host to the DSP (host writes), the DSP side should determine if the
HRX is full (and thus needs to be moved to a memory buffer or a register) or empty (no data available
from the host). The DSP core polls the Host Receive Data Full bit in the Host Status Register

Handshaking Protocols

Motorola 11

(HSR[0][HRDF]). If HSR[0][HRDF]=0, data has not been transferred from the host-side TXH[M][L]
data registers to the DSP-side HRX. If HSR[0][HRDF]=1, the HTX is full and the DSP core can read
data from it. The following DSP56300 assembly code in Example 5 implements the polling and data
transfer from the HRX register to a receive data buffer in Y memory (to which RBUFF_PTR points):

Example 5. Implementing Polling and Data Transfer from HTX

jclr #0,x:M_HSR,* ; loop if HSR[0]:HRDF=0
movep x:M_HRX,y:(RBUFF_PTR)+ ; move data to buffer

A similar mechanism is available on the host side. When data is transferred to the DSP (host writes),
the host can poll the Transmit Data Empty bit in the Interface Status Register (ISR[1][TXDE]). If
ISR[1]=TXDE=1, the host can write data to the TXL:M:H data registers. Otherwise, it must wait until
the data currently in these registers is transferred to the DSP-side data registers. Finally, in transfers
from the DSP to the host (host reads) the host can poll the Receive Data Full bit in the Interface Status
register (ISR[0][RXDF]). When set, ISR[0][RXDF] indicates that data is available in the RXL[M][H]
data registers.

4.1.1 Host Flags
The HI08 control registers have four general-purpose flags for communication between the host and
the DSP:

• DSP side: The HSR Host Flag bits (HCR[4–3]=HF[3–2]) can pass application-specific
information to the host. (The host-side ISR Host Flag bits (ISR[4–3]=HF[3–2]) reflect the
status of HF[3–2].)

• Host side: The ICR Host Flag bits (ICR[4–3]=HF[1–0]) can pass application-specific
information to the DSP. (The DSP-side HSR Host Flag bits (HSR[4–3]=HF[1–0]) reflect the
status of HF[1–0].)

4.2 Interrupts
Software interrupts allow the core to perform other processing tasks while waiting for HI08 resources
to become available. An enabled interrupt automatically occurs when these resources become
available for the data transfer. The interrupt routine then transfers the data between the host and the
DSP.

12 DSP56300 HI08 Host Port Motorola

Handshaking Protocols

Table 7 lists the three HI08 interrupt sources (and their masking bits) in the Host Control Register
(HCR):

 Figure 5 depicts how these bits operate. The DSP uses Receive Data Full and Transmit Data Empty
interrupts to move data to or from the HTX and HRX data registers. The host uses Host Command
interrupts to force execution of a DSP interrupt routine (as “Host Commands” on page 16 explains).

Figure 5. HI08 DSP Core Interrupt Operation

The BSET and BCLR instructions easily enable and disable the HI08 interrupts, as Example 6 shows:

Example 6. Enabling the Host Receive Interrupt

bset #M_HRIE,x:M_HCR; enable host receive interrupt

The DSP56300 family allows two types of interrupts, short and long. Short interrupts are two words
long and fit at the corresponding exception vector location, typically between $02 and $100 in program
memory. The code in Example 7 is a short interrupt service routine to receive data from the HRX data
register and place it in a buffer in Y memory pointed to by r0. Note that this code, like most short
interrupt routines, assumes that the required resources (data register x1 and pointer r0 in this example)
are not used anywhere else in the system.

Table 7. HI08 Core Interrupt Sources and Masking Bits

Interrupt Source Masking Bit

Receive Data Full interrupts Host Receive Interrupt Enable bit
(HCR[0]=HRIE)

Transmit Data Empty interrupts Host Transmit Interrupt Enable bit
(HCR[1]=HTIE)

Host Command interrupts Host Command Interrupt Enable bit
(HCR[2]=HCIE)

HCR: 01

HRIEHTIE

2

HCIE

HSR: 01

HRDFHTDE

2

HCP

Receive Data Full Interrupt

Transmit Data Empty Interrupt

Host Command Interrupt

Handshaking Protocols

Motorola 13

Example 7. Moving Data from Register to Buffer (Interrupt Routine)

org P:$60
movep x:M_HRX,y:(r0)+ ; HI08 Receive Data Full interrupt

Similarly, a short Transmit Data Empty interrupt service routine could look like the code shown in
Example 8. This short interrupt moves data from a transmit buffer pointed to by r5 to the HI08 HTX
register.

Example 8. Moving Data from Buffer to Register (Interrupt Routine)

org P:$62
move y:(r5)+,x:M_HTX; HI08 Transmit Data Empty interrupt

Long interrupts are exceptions. They require more than two instructions to service and are reached by
a jump to subroutine instruction (jsr) at the exception vector location where a short interrupt would be
located. A long interrupt routine can perform more sophisticated functions, such as saving the state of
ALU and AGU registers and disabling other interrupts, if necessary. The exception routine may also
need to determine whether the current data is the last data to be transferred, since this is a good place to
decide when to disable the interrupt.

4.3 Core DMA Access
The DSP56300 family Direct Memory Access (DMA) controller permits transfers between internal or
external memory and I/O without any intervention by the core. A DMA channel can be set up to
transfer data to or from the HTX and HRX data registers. This frees the core to use its processing
power on functions other than polling or interrupt routines for the HI08. This may well be the best
method to use for data transfers, but requires that one of the six DMA channels be available.

Table 8. Two HI08 DMA sources are possible, as Table 9 shows.s

For example, in a DSP-to-host transfer (host reads) using DMA channel 1, the data resides in a
transmit buffer starting at address TBUFF_START and containing TBUFF_SIZE data. Example 9 on
page 14 shows these parameters and the initial values of the channel 1 DMA Control Register (DCR1).

Table 9. DMA Request Sources

Requesting Device DCRx[15–11]=DRS[4–0]

Host Receive Data Full
(HRDF=1)

10011

Host Transmit Data Empty
(HTDE=1)

10100

14 DSP56300 HI08 Host Port Motorola

Handshaking Protocols

Example 9. DCR1: Parameters and Initial Values

TBUFF_START EQU $001000 ; Transmit buffer start address
TBUFF_SIZE EQU $20 ; Transmit buffer contains 32 datums
INIT_DCR1 EQU $88a251 ;Initialization of DCR1

; [23] = DE = 1 -> DMA enabled
; [22] = DIE = 0 -> DMA interrupts disabled
; [21:19] = DTM2:DTM0 = 001 = by request, DE=0 when done, words
; [18:17] = DPR1:DPR0 = 00 -> DMA0 priority level 0
; [16] = DCON = 0 -> continuous mode off
; [15:11] = DRS4:DRS0 = 10100 -> request on HTDE=1
; [10] = D3D = 0 -> non-3D mode
; [9:7] = DAM5:DAM3 = 100 -> dest. is linear access, no update
; [6:4] = DAM2:DAM0 = 101 -> source is linear access, post +1
; [3:2] = DDS1:DDS0 = 00 -> X memory DMA0 destination
; [1:0] = DSS1:DSS0 = 01 -> Y memory DMA0 source

The code in Example 10 makes it easy to program DMA channel 1. Notice that the initial values of
DCR1 set up the DMA request to occur on a Host Transmit Data Empty condition. The DMA transfers
TBUFF_SIZE data from TBUFF_PTR (post-incremented by 1 by the DMA controller) to the HI08
HTX data register.

Example 10. Programming DCR1

bclr #M_D1L0,x:M_IPRC ; disable DMA1 interrupts
bclr #M_D1L1,x:M_IPRC
movep #TBUFF_START,x:M_DSR1 ; DMA1 source is transmit buffer
movep #M_HTX,x:M_DDR1 ; DMA1 destination is HTX
movep #TBUFF_SIZE-1,x:M_DCO1 ; DMA1 count is the full buffer
movep #INIT_DCR1,x:M_DCR1 ; init. DMA1 control register

DMA transfers do not access the host bus. Using an appropriate polling mechanism, the host must
determine when data is available in the host-side receive data registers.

Refer to the DSP56300 Family Manual to learn about DMA access in the Motorola 56300 family.

4.4 Host Requests
The host requests protocol provides a set of signal lines that allow the DSP side to request data
transfers from the host. The request signal lines from the DSP normally connect to the host’s interrupt
request pins (IRQx) and indicate to the host when the DSP HI08 port requires service. The DSP side
can be configured to use either a single request line for both receive and transmit requests, called Host
Request (HREQ), or two signal lines, a Host Transmit Request (HTRQ) and a Host Receive Request
(HRRQ), one for each type of transfer.

Handshaking Protocols

Motorola 15

Host requests must be enabled on both the DSP side and the host side:

• DSP side: Set the HPCR Host Request Enable bit (HPCR[4]=HREN).

• Host side:

— To configure the HI08 to use a single request line (HREQ), clear the ICR Double Host
Request bit (ICR[2]=HDRQ).

— To configure the HI08 to use both transmit and request lines, set the ICR[2]=HDRQ bit.

Further, to enable receive and transmit requests, the ICR Receive Request Enable bit (ICR[0]=RREQ)
and the ICR Transmit Request Enable bit (ICR[1]=TREQ) must be set on the host side.

4.4.1 Host Request Operation
With host requests enabled, the host request pins operate as Figure 6 shows. The host can then test
these ICR bits to determine the interrupt’s source.

Figure 6. HI08 Host Request Operation

Table 10 shows how the HREQ pin operates with a single request line.

Table 10. HREQ Pin Operation In Single Request Mode (ICR[2]=HDRQ=0)

ICR[1]=TREQ ICR[0]=RREQ HREQ Pin

0 0 No interrupts

0 1 RXDF request enabled

1 0 TXDE Request enabled

1 1 RXDF and TXDE request enabled

ISR: 0

RXDFTXDE

ICR: 01

RREQTREQ

HRRQ

HREQ

1

HTRQ

16 DSP56300 HI08 Host Port Motorola

Host Commands

Table 11 shows how the transmit request (HTRQ) and receive request (HRRQ) lines operate with dual
host requests enabled.

To clear the interrupt request, the host must read or write the appropriate HI08 host-side data register.
Two alternative ways to deassert the host request pins are to mask (clear) the host request enable bit or
to reset the DSP.

4.4.2 The Interrupt Vector Register
The IVR is an 8-bit read/write register that typically contains the interrupt vector number used with the
MC680xx host processor to service the DSP. In this case, if the host request signal is asserted to notify
the Motorola MC68000 family host of an HI08 request, the host processor asserts the Host
Acknowledge signal (HACK) as part of its interrupt acknowledge signal. When HREQ and HACK are
simultaneously asserted, the contents of the IVR are placed on the host data bus. The host then uses
this information as the vector for the interrupt service routine.

5 Host Commands
This innovative feature of the HI08 host interface allows the host to issue any of 128 DSP interrupt
routines as command requests for the DSP to execute. For example, the host may issue a host
command that sets up and enables a DMA transfer. The DSP56300 family processors with an HI08
port have reserved interrupt vector addresses for application-specific host command interrupts (in the
DSP56303 these correspond to addresses $64 through $FF). Note that this flexibility is independent of
the data transfer mechanisms in the HI08. It enables the host processor to read or write DSP registers
or memory locations, perform control status or debugging operations and start DMA transfers, among
other functions.

Note that when the DSP enters the Stop mode, it electrically disconnects the HI08 pins, and, thus,
disables the HI08 until the core leaves Stop mode. While the HI08 configuration remains unchanged in
Stop mode, the DSP core cannot be restarted via the HI08 interface. DO NOT issue a STOP via a host
command unless you provide some other mechanism for exiting this mode.

Setting the HCR[2]=HCIE bit on the DSP side enables host command interrupts (refer to “Interrupts”
on page 11). The host then issues host commands via the Command Vector register (CVR). Setting
the Host Command (CVR[7]=HC=1) requests the command interrupt and writing the seven Host
Vector bits (CVR[6–0]=HV6–HV0) selects the vector address. When DSP core recognizes the host

Table 11. HTRQ and HRRQ Pin Operation In Double Request Mode (ICR[2]=HDRQ=1)

ICR[1]=TREQ ICR[0]=RREQ HTRQ Pin HRRQ Pin

0 0 No interrupts No interrupts

0 1 No interrupts RXDF request enabled

1 0 TXDE Request enabled No interrupts

1 1 TXDE Request enabled RXDF request enabled

Endian Modes

Motorola 17

command interrupt, the address of the interrupt taken is 2 x HV. This allows the host to force execution
of any interrupt handler (e.g. SSI, SCI, IRQx, etc.). The host can write the HC and HV bits
simultaneously.

6 Endian Modes
The Host Little Endian bit in the host-side Interface Control Register (ICR[5]=HLEND) allows the
host to access the HI08 data registers in Big Endian or Little Endian mode. In Little Endian mode
(HLEND=1), a host transfer occurs as Figure 7 shows.

Figure 7. HI08 Read and Write Operations in Little Endian Mode

In some cases, a host may transfer data one byte at a time. Thus, to transfer 24 bits of data requires
three store (or load) byte operations. Also, to cause the transfer of data to the DSP-side HRX, the data
byte at host bus address $7 must be written last.

In other cases, the host bus controller may be sophisticated enough to allow the host to transfer all
bytes in a single operation (instruction). For example, in the Power PC MPC860 processor, the General
Purpose Controller Module (GPCM) in the memory controller can be programmed such that the host
can execute a single read (load word, ldw) or write (store word, stw) instruction to HI08 port and cause
four byte transfers to occur on the host bus. For example, the 32-bit data transfer operation shown in
Figure 7 writes byte data xx to HI08 address $4, byte aa to address $5, byte bb to address $6 and byte
cc to address $7 (assuming that the 24 bits of data are contained in the lower 24 bits of the host’s 32-bit
data register, as shown).

A similar operation occurs when the HI08 is initialized in Big Endian mode by clearing the Host Little
Endian bit (ICR[5]=HLEND), as in Figure 8 on page 18 depicts. Note that the HI08 hardware properly
transfers the data between the DSP-side and the host-side data registers.

aa bb cc Low byteHigh byte

Host bus address: $5 $6 $7

aa bb cc

HTX/HRX register: 23 0

DSP side

Host side

aa bb cc

(read/write last!)

xx
Host 32-bit

internal register

18 DSP56300 HI08 Host Port Motorola

Boot-up Using the HI08 Host Port

.

Figure 8. HI08 Read and Write Operations in Big Endian Mode

7 Boot-up Using the HI08 Host Port
The DSP56300 core has eight bootstrap operating modes to start up after reset. As the processor exits
the Reset state, it loads the values at the external mode pins MODA/IRQA, MODB/IRQB,
MODC/IRQC and MODD/IRQD into the Chip Operating Mode bits (MA, MB, MC and MD) of the
Operating Mode register (OMR). These bits determine the bootstrap operating mode. Modes C, D, E
and F use the HI08 host port to bootstrap the application code to the DSP. Table 12 describes these
modes for the DSP56307.

The bootstrap program is factory-programmed into an internal 192-word by 24-bit bootstrap ROM at
locations $FF0000 to $FF00BF of P memory. This program can load program RAM segments from
the HI08 host port.

Table 12. DSP56307 Bootstrap Operating Modes

Mode MODD MODC MODB MODA HI08 Bootstrap Description

C 1 1 0 0 ISA/DSP5630x mode

D 1 1 0 1 HC11 non-multiplexed bus mode

E 1 1 1 0 8051 multiplexed bus mode

F 1 1 1 1 MC68302 bus mode

cc bb aa High byteLow byte

Host bus address: $5 $6 $7

aa bb cc

HTX/HRX bit number: 23 0

DSP side

Host side

cc bb aa

(read/write last!)

xx
Host 32-bit

internal register

Boot-up Using the HI08 Host Port

Motorola 19

When using any of the modes shown in Table 12, the core begins to execute the bootstrap program
and configure the HI08 based on the OMR Mode bits. The bootstrap program then expects the
following data sequence when downloading the user program from the HI08:

1.Three bytes (least significant byte first) indicating the number of 24-bit program words to be loaded

2.Three bytes (least significant byte first) indicating the 24-bit starting address in P memory to load the
user’s program

3.The user’s program (three bytes, least significant byte first, for each program word)

Once the bootstrap program completes loading the specified number of words, it jumps to the specified
starting address and executes the loaded program.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no
warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does
Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims
any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which
may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual
performance may vary over time. All operating parameters, including “Typicals” must be validated for each
customer application by customer’s technical experts. Motorola does not convey any license under its patent rights
nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support life, or for any other
application in which the failure of the Motorola product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application,
Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors
harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or
indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are
registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/Europe/Locations Not Listed:

Motorola Literature Distribution
P.O. Box 5405
Denver, Colorado 80217
1 (800) 441-2447
1 (303) 675-2140

Motorola Fax Back System (Mfax™) :
TOUCHTONE (602) 244-6609
1 (800) 774-1848
RMFAX0@email.sps.mot.com

Asia/Pacific :
Motorola Semiconductors H.K. Ltd.
8B Tai Ping Industrial Park
51 Ting Kok Road
Tai Po, N.T., Hong Kong
852-26629298

Technical Resource Center:
1 (800) 521-6274

DSP Helpline

dsphelp@dsp.sps.mot.com

Japan :
Nippon Motorola Ltd
SPD, Strategic Planning Office141
4-32-1, Nishi-Gotanda
Shinagawa-ku, Japan
81-3-5487-8488

Internet :
http://www.motorola-dsp.com/

OnCE and Mfax are registered trademarks of Motorola, Inc.

