

Order Number: AN1809/D
Rev. 0, 8/1999

Semiconductor Products Sector

This document contains information on a new product under development by
Motorola. Motorola reserves the right to change or discontinue this product without

© Motorola, Inc., 1999. All rights reserved.

ª

Application Note

A Minimal PowerPC

ª

 Boot Sequence for
Executing Compiled C Programs

Becky L. Gill
PowerPC Core Design Technologies/Architecture & Performanc
risc10@email.sps.mot.com

This document describes the procedures necessary to successfully initialize a PowerPC processor and begin
executing programs compiled using the PowerPC embedded application interface (EABI). The items
discussed in this document have been tested for PowerPC 603e, and PowerPC 750 microprocessors. The
methods and source code presented in this document may work unmodiÞed on similar PowerPC platforms
as well.

This document contains the following topics:

¥ Part I, ÒOverview,Ó provides an overview of the conditions and exceptions for the procedures
described in this document.

¥ Part II, ÒPowerPC Processor Initialization,Ó provides information on the general setup of the
processor registers, caches, and MMU.

¥ Part III, ÒPowerPC EABI Compliance,Ó discusses aspects of the EABI that apply directly to
preparing to jump into a compiled C program.

¥ Part IV, ÒSample Boot Sequence,Ó describes the basic operation of the boot sequence and the many
options of conÞguration; explains in detail a sample conÞgurable boot and how the code may be
modiÞed for use in different environments; and discusses the compilation procedure using the
supporting GNU build environment.

¥ Part V, ÒSource Files,Ó contains the complete source code for the Þles ppcinit.S, ppcinit.h, ld.script,
and MakeÞle.

2

A Minimal PowerPC
Boot Sequence for Compiled C Programs

Overview

Part I Overview

This section provides a brief overview of some of the procedures described in this document.

It is useful to be able to run benchmarks or other computationally intensive user programs on a processor
without the overhead or interference of an operating system (OS). Also, there are stages during hardware
development where an OS may not be readily available or convenient.

The procedures discussed in this document perform only the minimum amount of work necessary to execute
a user program. The sample boot sequence is designed to run from system reset. It does not contain
exception handling facilities for other exceptions, although the code is located so that it doesnÕt interfere
with exception space. This allows users who wish to provide exception handling to add exception code
without modifying this source. In addition, this code only handles processor setup. It does not initialize any
peripheral devices since it is designed to be run on Instruction Set Simulators, test cards, or small evaluation
boards. No input/output interface is provided. Results are obtained by looking at data saved in memory via
hardware debuggers or simulator commands.

The sample boot sequence uses the PowerPC memory management unit (MMU) to provide basic access
protection for the ROM and RAM regions of memory via BAT. The more advanced features of the MMU,
which provide support for paging and segmentation, are not utilized.

The sample boot sequence provided should be linked with a user program to create a ROM image. This
image is then loaded into a ROM device located at the default system reset vector. The sample boot sequence
handles the task of relocating the code and data from ROM to RAM where necessary and then allows the
user program to execute. Upon completion, the boot sequence will save timing information for the user code
and branch to the invalid opcode exception vector.

Part II PowerPC Processor Initialization

This section describes the state of the PowerPC processor at power-up, the MMU, the caches, and the EABI
register initialization.

2.1 General Initialization

At power-up, the PowerPC processor will be in a minimal state, with most features, such as caching and
address translation, disabled. External interrupts, the machine check exception, and ßoating-point
exceptions will also be disabled. On most systems, the processor starts up in big-endian mode with the
exception preÞx set to 0xFFF0_0000. This means that upon System Reset (exception vector 0x0100), the
processor will execute code beginning at 0xFFF0_0100. There are some PowerPC conÞgurations where the
exception preÞx is determined by the state of a pin coming in to the processor. For these systems, care must
be taken to locate the boot code so that it is executed upon system reset. For the purposes of this paper, the
default exception preÞx will be assumed to be 0xFFF0_0000.

The code located at the system reset vector must handle system initialization. Reset vectors on the PowerPC
are located at increments of 0x0000_0100 from the vector table start address. Since the initialization code
must Þt between the allocated hard reset exception space between 0xFFF0_0100 and 0xFFF0_01FF (or
0x0000_0100 and 0x0000_01FF, depending on the location of the vector table), it is customary for the reset
code to branch to an address beyond the end of the exception tableÕs allocated space and execute the
instruction sequence located there. Addresses starting at 0xFFF0_0100 (or 0x0000_0100) and ending at
0xFFF0_3000 (or 0x0000_3000) are reserved for the vector table. The sample boot code found at the end
of this document follows this procedure.

A Minimal PowerPC

3

Boot Sequence for Compiled C Programs

PowerPC Processor Initialization

A typical initialization sequence performs any necessary processor setup or hardware-speciÞc initialization,
and then enables exceptions. This includes external interrupts, the machine check exception, and ßoating-
point exceptions. In addition, if the vector table is to be relocated once the hardware setup is complete, the
exception preÞx (IP) bit of the machine state register (MSR) must be changed to reßect the new location of
the vector table.

2.2 Memory Management Unit

A boot program will need to set up the MMU, if memory management is required. Using the MMU to
translate accesses to memory addresses allows the programmer to specify protections and access controls
for individual regions of memory. For a minimal system with four or fewer memory regions, it is sufÞcient
to use block address translation (BAT) to perform a rudimentary mapping. For more complicated systems,
the segment registers and page tables need to be initialized. This document only deals with the minimal
conÞguration using the BAT registers.

The MMU information provided in this document is included for convenience and is not complete. For more
information about using BAT and the MMU, refer to the

PowerPC Microprocessor Family: The
Programming Environments for 32-Bit Microprocessors

.

When using the MMU to provide address translation via the BAT registers, each region of memory in the
system should have an associated BAT mapping. These mappings allow the programmer to specify options
such as whether the speciÞed address range is valid for supervisor or user mode, the memory/cache access
mode, and the protection bits for the block. There are eight BAT array entries. Four of these map data regions
(DBATs), while the remaining four entries specify instruction regions (IBATs). Each entry consists of two
registers, one used to specify the upper 32 bits of the BAT entry and the other the lower 32 bits. The different
Þelds of these registers are shown in Table 1 and Table 2.

Table 1. Upper BAT Register Format

Bits Name Description

0Ð14 BEPI Block effective page indexÑCompared with high-order bits of the
logical address to determine if there is a hit in that BAT array entry

15Ð18 Ñ Reserved

19Ð29 BL Block lengthÑEncoding of the length of the block, ranging from 128
Kbytes to 256 Mbytes. See Table 3 for details.

30 Vs Supervisor mode valid bitÑAlong with MSR[PR], speciÞes whether
this block is valid in supervisor mode

31 Vp User mode valid bitÑAlong with MSR[PR], speciÞes whether this block
is valid in user mode.

Table 2. Lower BAT Register Format

Bits Name Description

0Ð14 BRPN Used with the BL Þeld to determine the high-order bits of the physical
address of the block.

15Ð24 Ñ Reserved

4

A Minimal PowerPC
Boot Sequence for Compiled C Programs

PowerPC Processor Initialization

The procedure for initializing a pair of BAT registers is as follows:

1. Disable the MMU.

2. Initialize the lower portion of the BAT array entry.

3. Initialize the upper portion of the BAT array entry.

4. Execute an

isync

 instruction.

5. Re-enable the MMU once all setup is complete.

Unused BAT registers should be invalidated by clearing the Vs and Vp bits in the upper BAT register.

For each region of memory to be mapped, an appropriate BL and BEPI must be chosen. The BL Þeld is an
encoding of the length of the block to be mapped. The BEPI Þeld corresponds to the upper bits of the logical
address of a region to be mapped onto physical memory. During address translation, addresses are compared
with the BEPI Þeld to determine if a BAT array hit has occurred.

Next, the BRPN must be chosen to indicate the physical memory onto which the logical region speciÞed by
the BEPI is to be mapped. For many minimal systems where the logical and physical addresses are
equivalent, including the sample located at the end of this document, the BEPI and BRPN will be equal.
Note that the values in the BEPI and BRPN Þelds must have at least as many low order zeroes as the BL has
ones. Otherwise, the results are boundedly undeÞned. The possible BL encodings are shown in Table 3.

25-28 WIMG Memory/cache access mode bits.

W = Write-through

I = Cache inhibited

M = Memory coherence

G = Guarded

The W and G bits should not be written to in the IBAT registers: doing
so produces boundedly undeÞned results.

29 Ñ Reserved

30-31 PP Protection bits for blockÑUsed in combination with Vs and Vp in the
upper BAT to determine the protection for the block. See Table 4 for
details.

Table 3. BL Encodings

Block Size BL Encoding

128 Kbytes 000 0000 0000

256 Kbytes 000 0000 0001

512 Kbytes 000 0000 0011

1 Mbyte 000 0000 0111

2 Mbytes 000 0000 1111

4 Mbytes 000 0001 1111

8 Mbytes 000 0011 1111

Table 2. Lower BAT Register Format (Continued)

Bits Name Description

A Minimal PowerPC

5

Boot Sequence for Compiled C Programs

PowerPC Processor Initialization

The Vs and Vp bits in the upper BAT register, along with the PP bits in the lower BATs, specify the access
controls for the memory region. A region may be marked valid for supervisor mode, valid for user mode, or
valid for both modes. Table 4 shows these options.

In addition, the programmer may specify the memory/cache access modes for the mapped region. These
modes are controlled by the WIMG bits in the lower BAT registers.

Setting the W bit for a memory region causes writes to the region to be written through to main memory
every time a cached copy of the region is modiÞed. If the W bit is set to 0, accesses are treated as write-back;
that is, they are not written into memory until the block is ßushed from the cache.

The I bit controls the caching of the region. If the I bit is set to 1, the region becomes cache-inhibited, and
all accesses to the region must take place from main memory. This bit should usually be set for regions that
encompass I/O device memory. Since these devices may dynamically update a memory location, reading a
cached copy can result in accessing old data. Marking the region cache-inhibited prevents this problem.

The M bit speciÞes memory coherency. When it is set to 0, the hardware does not enforce data coherency.
Otherwise, accesses to regions with the M bit set cause the hardware to indicate to the rest of the system that
the access occurred. This bit is useful for systems where multiple processors or other DMA devices can
modify the memory. In a minimal single-processor system with no DMA devices, the M-bit should be set
to 0.

The G bit marks a memory region as guarded when set to 1. The guarded attribute protects an area of
memory from read accesses that are not directly speciÞed by the program. It is especially useful for memory
regions that have holes. Whenever the processor tries to speculatively load a block of data, it may attempt

16 Mbytes 000 0111 1111

32 Mbytes 000 1111 1111

64 Mbytes 001 1111 1111

128 Mbytes 011 1111 1111

256 Mbytes 111 1111 1111

Table 4. Block Access Protection Control

Vs Vp PP Block Type

0 0 xx No BAT match

0 1 00 UserÑno access

1 0 00 Supervisor - no access

0 1 x1 UserÑread only

1 0 x1 Supervisor - read only

0 1 10 UserÑread/write

1 0 10 Supervisor - read/write

1 1 00 Both - no access

1 1 x1 Both - read only

1 1 10 Both - read/write

Table 3. BL Encodings (Continued)

Block Size BL Encoding

6

A Minimal PowerPC
Boot Sequence for Compiled C Programs

PowerPC EABI Compliance

to access memory that does not exist. This can cause a machine check exception. Marking the region as
guarded prevents this from occurring. In addition, the guarded attribute can be used to prevent speculative
load operations to device memory, which can cause unpredictable behavior.

In a complete operating system, MMU setup continues with invalidating TLB entries, initializing the
segment registers, and setting up the page table. Even if only BAT mappings are used for translation, it is
possible that a user program may generate accesses to addresses that are invalid or not mapped by the BAT
registers. In this case, the hardware will attempt to look at the page table to resolve the reference. If the page
table pointer and entries have not been initialized, it is possible that they may contain random data and cause
unintended memory accesses. This document will not describe how to perform these actions. Refer to the

PowerPC Microprocessor Family: The Programming Environments for 32-Bit Microprocessors

 or the
speciÞc reference manual for a particular processor for more information.

Once the MMU setup completes, the MMU may be enabled by setting MSR bits 26 and 27, Instruction
Address Translation (IR) and Data Address Translation (DR). At this point, address translation is active.

2.3 Caches

At power-up, the instruction and data caches are disabled and invalidated. These can be turned on to boost
program performance. For the PowerPC 603, PowerPC 603e, and PowerPC 750, turning on the caches
requires setting bit 16, instruction cache enable (ICE), and bit 17, data cache enable (DCE) in hardware
implementation register 0 (HID0). An

isync

 instruction should be issued before setting the ICE bit to ensure
that the cache is not enabled or disabled during an instruction fetch. Similarly, a

sync

 instruction should be
executed before setting the DCE bit.

Note that simply enabling the caches is not sufÞcient to ensure that the caches will be used. Memory regions
where the user data resides should be mapped as non-cache-inhibited in order to make use of the cache. See
Section 2.2, ÒMemory Management Unit,Ó for more information on mapping memory regions.

2.4 EABI Register Initialization

Before a boot sequence can jump into the user program, the processor registers expected to contain speciÞc
values for the Embedded Application Binary Interface (EABI) must be set up appropriately. The three
registers that the boot sequence must initialize are GPR1, GPR2, and GPR13. In addition, some registers
may be modiÞed during execution of the compiled program. Part III, ÒPowerPC EABI Compliance,Ó
describes these registers in more detail.

Part III PowerPC EABI Compliance

The PowerPC EABI speciÞes the system interface for compiled programs. The EABI is based on the

System
V Application Binary Interface

 and the

PowerPC Processor Supplement

. For general ABI documentation,
refer to these documents, as well as the

PowerPC Embedded Application Binary Interface

. This document
only includes aspects of the EABI that apply directly to preparing to jump into a compiled C program.

For running compiled programs, the EABI-speciÞed register conventions must be followed. The EABI
deÞnes how the processorÕs registers are to be used by a conforming application. Table 5 lists the register
conventions for the PowerPC EABI:

Table 5. PowerPC EABI Registers

Register Contents

GPR1 Stack Frame Pointer

GPR2 _SDA2_BASE

A Minimal PowerPC

7

Boot Sequence for Compiled C Programs

Sample Boot Sequence

The symbols _SDA_BASE and _SDA2_BASE will be deÞned during linking. They specify the locations of
the small data areas. The boot sequence must load these values into GPR13 and GPR2, respectively, before
branching to the user code entry point.

The small data areas contain part of the data of the executable. They hold a number of variables that can be
accessed within a 16-bit signed offset of _SDA_BASE or _SDA2_BASE. References to these variables are
performed through references to GPR13 and GPR2 by the user program. Typically, the small data areas
contain program variables that are less than or equal to 8 bytes in size, although this differs by compiler. The
variables in SDA2 are read-only.

The boot code must also set up the stack pointer in GPR1. This pointer must be 8-byte aligned for the EABI
(as opposed to 16-byte aligned for the PowerPC ABI) and should point to the lowest allocated valid stack
frame. The stack grows toward lower addresses, so its location should be selected so that it does not grow
into data or bss areas.

The remainder of the registers are listed for completeness and are not modiÞed by the minimal boot code.
They may be modiÞed by the user program.

Part IV Sample Boot Sequence

The sample boot sequence in this section completes minimal processor setup and executes a user program.
It performs only processor setup (no peripheral devices), and leaves external interrupts disabled. It is
designed for use with test cards, evaluation boards, or processor simulators where the developer can directly
view the contents of memory to verify correct program execution. This code sequence is designed to take
the place of the traditional crt0 module, as well as to provide hardware initialization normally performed by
the operating system.

The basic operation of the boot sequence is as follows:

1. Invalidate the BAT entries.

2. Set up the BAT registers to provide address translation and protection.

3. Invalidate all TLB entries.

4. Turn on address translation.

GPR13 _SDA_BASE

GPR31 Local variables or environment pointer

GPR0 VolatileÑmay be modiÞed during linkage

GPR3, GPR4 VolatileÑused for parameter passing and return values

GPR5ÐGPR10 Used for parameter passing

GPR11ÐGPR12 VolatileÑmay be modiÞed during linkage

GPR14ÐGPR30 Used for local variables

FPR0 Volatile register

FPR1 VolatileÑused for parameter passing and return values

FPR2ÐFPR8 VolatileÑused for parameter passing

FPR9ÐFPR13 Volatile registers

FPR14ÐFPR31 Used for local variables

Table 5. PowerPC EABI Registers (Continued)

Register Contents

8

A Minimal PowerPC
Boot Sequence for Compiled C Programs

Sample Boot Sequence

5. Relocate the text, data, and bss sections from ROM to RAM.

6. Enable the caches.

7. Set up EABI registers GPR1, GPR2, GPR13.

8. Place user code main entry address in SRR0.

9. Put the MSR value for the user program into SRR1.

10. Save the return address in the link register.

11. Execute

rÞ

.

This will execute the user program by jumping to the address stored in SRR0.

12. Initialize the time base to 0.

13. Save the time base register values into memory (useful for timing benchmarks).

14. Branch to invalid op vector to indicate completion.

This procedure may be modiÞed or conÞgured to match the desired conÞguration.

4.1 ConÞgurable Options

The design of the sample boot sequence allows it to be easily conÞgurable. The many options deÞned in the
header Þles allow the user to choose how the code should execute. These options are summarized in table
Table 6.

Table 6. User-Configurable Program Options

Option
DeÞnition
Location

DeÞnition Default Value

USER_ENTRY ppcinit.h Specify the name of the entry point in the user C
program. Corresponds to main() but isnÕt named
main() due to possible compiler problems.

test_main

ICACHE_ON ppcinit.h Specify whether to turn on the Instruction cache.

1 = icache on

0 = icache off

1

DCACHE_ON ppcinit.h Specify whether to turn on the data cache

1 = dcache on

0 = dcache off

1

STACK_LOC ppcinit.h 32 bits specifying the stack address for the user
program

0x0007_0000

MMU_ON ppcinit.h SpeciÞes whether or not to use the MMU.

1 = MMU on

0 = MMU off

1

PROM_BASE ppcinit.h The start address of the address range
corresponding to the physical address of the
ROM.

0xFFC0_0000

PRAM_BASE ppcinit.h The start address of the address range
corresponding to the physical address of the
RAM.

0x0000_0000

VROM_BASE ppcinit.h The start address of the address range
corresponding to the virtual address of the
ROM.

PROM_BASE

A Minimal PowerPC

9

Boot Sequence for Compiled C Programs

Sample Boot Sequence

y

VRAM_BASE ppcinit.h The start address of the address range
corresponding to the virtual address of the
RAM.

PRAM_BASE

IBATxL_VAL ppcinit.h Specify the 32 bit value for the lower BAT
register for instruction BAT array entry x [x = 0 to
x = 3]

See Table 7

IBATxU_VAL ppcinit.h Specify the 32 bit value for the upper BAT
register for instruction BAT array entry x [x = 0 to
x = 3]

See Table 7

DBATxL_VAL ppcinit.h Specify the 32 bit value for the lower BAT
register for dataBAT array entry x [x = 0 to x = 3]

See Table 7

DBATxU_VAL ppcinit.h Specify the 32 bit value for the upper BAT
register for data BAT array entry x [x = 0 to x = 3]

See Table 7

text, data, bss locations ld.script The locations of the text, data, and bss sections
may be speciÞed by the user in ld.script. These
addresses control the location of the various
sections in the compiled program image, as well
as after the relocation of the image. The user
can use these address to control whether or not
the sections are relocated by specifying an
image address that is equivalent to the post-
relocation address.

See ÒGCC
Compilation and
Linking.Ó

Table 7. Default BAT Register Values

Register Value Description

IBAT0L 0xFFC0_0022 BRPN = 1111 1111 1100 000

WIMG = 0100

PP = 10 (read/write)

IBAT0U 0xFFC0_01FF BEPI = 1111 1111 1100 000

BL = 0000 1111 111 (16 Mbytes)

Vs = 1 (valid for supervisor)

Vp = 1 (valid for user)

IBAT1L 0x0000_0002 BRPN = 0000 0000 0000 000

WIMG = 0000

PP = 10 (read/write)

IBAT1U 0x0000_03FF BEPI = 0000 0000 0000 000

BL = 0001 1111 111 (32 Mbytes)

Vs = 1 (valid for supervisor)

Vp = 1 (valid for user)

IBAT2L 0x0000_0000 BAT_NO_ACCESS

IBAT2U 0x0000_0000 BAT_INVALID

IBAT3L 0x0000_0000 BAT_NO_ACCESS

Table 6. User-Configurable Program Options (Continued)

Option
DeÞnition
Location

DeÞnition Default Value

10

A Minimal PowerPC
Boot Sequence for Compiled C Programs

Sample Boot Sequence

Each of these options can be conÞgured in order to customize the boot sequence for a particular application.
The conÞgurable boot sequence contains #deÞne statements which may be combined to easily create BAT
entry values. For example, the default entry for the upper instruction BAT 1 speciÞes a 32-MByte block size,
valid user mode, valid supervisor mode, with a BEPI of 0x00000000. This entry can be formed using the
header Þle deÞnes as follows: IBAT1U_VAL = (VRAM_BASE | BAT_VALID_USER |
BAT_VALID_SUPERVISOR | BAT_BL_32M). Refer to the source Þle for ppcinit.h at the end of this
document for details.

4.2 General Initialization

Processor initialization in the sample boot sequence follows the steps outlined in Part II, ÒPowerPC
Processor Initialization.Ó One of the most important tasks of the boot code is to set the value of the MSR for
the user program. SpeciÞcally, the MSR is set to enable ßoating point and machine check exceptions. If the
text section relocates from its load location to an address below 0xFFC0_0000, the exception preÞx is
changed to 0x00000000 by setting the MSR[IP] to 0. In addition, data and instruction address translation
may be enabled if the MMU is used. The new MSR value is loaded into machine status save/restore register
1 (SRR1). Upon

rÞ

, this value will be copied from SRR1 into the MSR.

The timebase register is initialized to 0x0000_0000 in order to place it in a known state. Also, the machine
status save/restore register 0 (SRR0) is modiÞed to contain the address of the user entry point,
USER_ENTRY, after the relocation. The address in SRR0 is the address of the instruction to be executed
upon an

rÞ

 instruction.

Additionally, the link register is loaded with an address where execution will resume when the user program
completes. In order to provide timing results for benchmarking, the user program will return to the label

IBAT3U 0x0000_0000 BAT_INVALID

DBAT0L 0xFFC0_0022 BRPN = 1111 1111 1100 000

WIMG = 0100

PP = 10 (read/write)

DBAT0U 0xFFC0_01FF BEPI = 1111 1111 1100 000

BL = 0000 1111 111 (16 Mbytes)

Vs = 1 (valid for supervisor)

Vp = 1 (valid for user)

DBAT1L 0x0000_0002 BRPN = 0000 0000 0000 000

WIMG = 0000

PP = 10 (read/write)

DBAT1U 0x0000_03FF BEPI = 0000 0000 0000 000

BL = 0001 1111 111 (32 Mbytes)

Vs = 1 (valid for supervisor)

Vp = 1 (valid for user)

DBAT2L 0x0000_0000 BAT_NO_ACCESS

DBAT2U 0x0000_0000 BAT_INVALID

DBAT3L 0x0000_0000 BAT_NO_ACCESS

DBAT3U 0x0000_0000 BAT_INVALID

Table 7. Default BAT Register Values (Continued)

Register Value Description

A Minimal PowerPC

11

Boot Sequence for Compiled C Programs

Sample Boot Sequence

save_timebase when complete. The value of the upper and lower time base registers will be stored in
memory for later access. Once this operation completes, the code sequence will branch to 0xFFF0_0700 to
indicate completion. The user should set a watch or breakpoint at this address to determine when the user
program has Þnished.

The caches are invalidated and disabled during the majority of the init sequence. This prevents program data
from being preloaded into the caches, which could unfairly speed up a benchmark. Before branching into
the user program, the boot code enables the caches if ICACHE_ON and DCACHE_ON are set to 1 in
ppcinit.h. If MMU_ON is deÞned as 1, it initializes the BAT registers and enables address address
translation as well.

4.3 EABI Register initialization

In order for a program compiled with an EABI-compliant compiler to execute properly, registers GPR1,
GPR2, and GPR13 must be initialized before branching into the user code as described in Part III, ÒPowerPC
EABI Compliance.Ó Register 1 will be loaded with STACK_LOC, the location of the stack reserved for the
user program deÞned in ppcinit.h. Care should be taken to ensure that the stack size is sufÞcient; it does not
grow down into the text, data, or bss sections of the program during execution.

In the EABI, GPR2 is used to hold the base of the read-only small data area. It is loaded with the value
_SDA2_BASE generated during linking. Similarly, GPR13 holds the small data area base and is loaded with
the symbol _SDA_BASE, also generated by the linker.

4.4 Code Relocation

The code relocation depends on variables that are allocated in the Þle ld.script. The text, data, and bss
sections of the program may be relocated from ROM to RAM using these variables.

The Þrst relocation that takes place is the text relocation. The relocation code looks at the ld.script variables
_img_text_start and _Þnal_text_start to determine if the text must be relocated. If the two variables are
equal, then no text relocation occurs. This typically speeds up execution in a simulated environment, and
when the user program to be run is fairly simple. If the user program is large or performs large numbers of
iterations, execution may be speeded by moving the text from ROM to RAM if ROM accesses are slow.

The start address of the section to be copied is stored in the symbol _img_text_start deÞned in ld.script. The
length of the copy is determined using the symbol _img_text_end also deÞned in ld.script. The program
starts copying at _img_text_start and copies data to _Þnal_text_start until it reaches the address
_img_text_end.

Next, the data and bss sections may be relocated. For standard systems where the boot program exists in a
read-only ROM, these sections must be moved so they can be modiÞed by the user program. If the code is
not initially located in a ROM, or if the ROM is writeable, then these sections do not need to be relocated.
The ROM image location of the data section is stored in the symbol _img_data_start, deÞned in ld.script. It
will be relocated to the address deÞned in _Þnal_data_start. If _img_data_start and _Þnal_data_start are not
equal, the relocation program starts copying from _img_data_start to _Þnal_data_start. When the copy-to
address is equal to _Þnal_data_end, deÞned in ld.script, the copy is complete. If _img_data_start and
_Þnal_data_start are equal, the program skips the data copy.

The bss section is not actually copied since it only holds unitialized data. Instead, the region starting at
_bss_start and ending at _bss_end,both deÞned in ld.script, is initialized to all zeroes. This code may be
commented out for programs which do not depend on zero-Þlled bss.

The user may control the ROM image and relocation addresses of the different sections by modifying the
Þle ld.script, as speciÞed in ÒGCC Compilation and Linking.Ó

12

A Minimal PowerPC
Boot Sequence for Compiled C Programs

Sample Boot Sequence

4.5 GCC Compilation and Linking

The compilation and linking procedure for a standalone bootable program is fairly complex. The compiled
program should not include most standard libraries, and needs to be in a format that can be copied into a
simulated or real ROM device or memory component. Most importantly, the code needs to be located at a
speciÞc absolute start point so that it begins execution on system reset. In addition, the executable needs to
be built so that references to symbols and variables refer to the location of variables after the relocation to
RAM (if any) has occurred. Most of this work is accomplished through the use of a linker script.

Note that this document refers to the target of the build as a ÒROM image.Ó Whether this image is actually
loaded into a ROM component or some other simulated or real memory device is implementation
dependent.

The compilation procedure discussed in this paper uses the GNU cross-compiler which is free and publicly
available from many different sources on the internet. The GNU make utility and the GNU assembler and
linker are also used.

The transition from .S and .c Þles to .o Þles is accomplished using gcc -c :

ppcinit.o: ppcinit.h ppcinit.S
 $(CC) -c ppcinit.S

test.o: test.c
 $(CC) -c test.c

$(CC) must be deÞned as the path to the cross-compiler. (See Part V, ÒSource Files,Ó Section 5.4,
ÒMakeÞle.Ó) Note that the assembly source Þle is named

ppcinit.S as opposed to ppcinit.s. This causes the
preprocessor

to run and strip out the C++ style comments. In the makeÞle, all references to test should be
changed to match the name of the user program to be linked with the boot program. The build command for
test should be changed to specify the appropriate dependencies and build options.

Once all source Þles have been compiled, the resultant object Þles must be linked together into an
executable. For this purpose, the GNU linker will be invoked with a custom linker control script. This linker
script speciÞes the starting address for the program, as well as the post-relocation addresses of the text, data,
and bss sections. In addition, it deÞnes symbols that are used by the relocation portion of the boot sequence
to determine the locations and lengths of the various sections as described in Table 8.

The linker script provides default values for IMAGE_TEXT_START (0xFFF0_0000),
TEXT_START(0x0000_0000), IMAGE_DATA_START, and DATA_START. The data section is located at
the Þrst appropriately aligned address following the text section. To change these defaults, the user may add
deÞnitions for these variables to the makeÞle, which will pass these options to the linker when it is invoked.

Table 8. ld.Script Variables

Variable DeÞnition Value

_img_text_start The location of the start of the text section in the compiled
imageÑThis value is derived from the LOADADDR or the text
section.

IMAGE_TEXT_START

_img_text_end The location of the end of the text section in the ROM imageÑ
Derived from the LOADADDR of the text section and the size of
the text section.

_img_text_start +
SIZEOF(.text)

_Þnal_text_start The address of the start of the text section after relocationÑ
Derived from the ADDR speciÞed for the text section.

TEXT_START

A Minimal PowerPC

13

Boot Sequence for Compiled C Programs

Sample Boot Sequence

The example .text section is located at 0xFFF0_0000 in the compiled image and at 0x0000_0000 after the
relocation. The sample boot code places its Þrst executable instruction at an offset of 0x0100 from the start
address using the

.space assembler directive. This means that this Þrst instruction will be located at the
PowerPC system reset vector, 0xFFF0_0100, and will be executed when system reset occurs.

The text section is composed of the text, read-only data, and global offset table portions from the different
.o Þles. The symbols _img_text_start and _img_text_end are deÞned for use by the relocation code and refer
to the beginning and end addresses of the text section in the compiled image. The address of the text section
after the relocation is saved in _Þnal_text_start:

TEXT_START = DEFINED(TEXT_START)? TEXT_START: 0x00000000;

IMAGE_TEXT_START = DEFINED(IMAGE_TEXT_START)? IMAGE_TEXT_START:
0xFFF00000;

.text TEXT_START: AT (IMAGE_TEXT_START)
{
*(.text)
*(.rodata)
*(.rodata1)
*(.got1);
}

_img_text_start = LOADADDR(.text);
_img_text_end = (LOADADDR(.text) + SIZEOF(.text));

_final_text_start = ADDR(.text);

Note the use of the

LOADADDR()

,

ADDR()

, and

SIZEOF()

 functions. These functions are built in to the
linker and are used to obtain information about the sections.

¥ LOADADDR() returns the absolute load address of the speciÞed section. This address corresponds
to the location of the section in the compiled image.

¥ The ADDR() function returns the location of the named section after relocation.

¥ SIZEOF() is used to determine the length of a section, in bytes.

_img_data_start The location of the start of the data section in the compiled
imageÑ This value is usually equal to the image address of the
start of the text section plus the size of the text section.

IMAGE_DATA_START, if
deÞned in MakeÞle;
(LOADADDR(.text) +
SIZEOF(.text)) by default

_Þnal_data_start The location of the start of the data section after relocationÑ
This value is usually equal to the post-relocation address of the
start of the text section plus the size of the text section.

DATA_START, if deÞned
in MakeÞle;

(ADDR(.text) +
SIZEOF(.text)) by default

_Þnal_data_end The location of the end of the data section after relocationÑThis
value is equal to the start of the data section plus the size of the
data section.

_Þnal_data_start +
SIZEOF(.mdata)

_bss_start The destination start address for the bss sectionÑTypically set
equal to the relocation address for the data section plus the
length of the data section.

ADDR(.mdata) +
SIZEOF(.mdata)

_bss_end The destination end address for the bss section. _bss_start +
SIZEOF(.bss)

Table 8. ld.Script Variables (Continued)

Variable DeÞnition Value

14

A Minimal PowerPC
Boot Sequence for Compiled C Programs

Sample Boot Sequence

In the sample shown above for the .text section, LOADADDR(.text) returns 0xFFF0_0000 and ADDR(.text)
returns 0x0000_0000 for the default case.

The data section of the linker script is a bit more complex since the location of the data section is dependent
upon the location and length of the text section. It contains all initialized, modiÞable data, including the
small data sections. If the data is relocated during the initialization sequence, we must specify its new
location so that references to variables refer to the relocated copy.

In this example, the data section will be located immediately following the text section data both in the
compiled image and after relocation. In order to avoid confusion, the all-inclusive data section is renamed.
This example calls it

.mdata:

DATA_START = DEFINED(DATA_START)? DATA_START: (((ADDR(.text) +
SIZEOF(.text)) & 0xFFFFFFE0) + 0x00000020);

IMAGE_DATA_START = DEFINED(IMAGE_DATA_START)? IMAGE_DATA_START:
(((LOADADDR(.text) + SIZEOF(.text)) & 0xFFFFFFE0) + 0x00000020);

.mdata DATA_START: AT (IMAGE_DATA_START)
{
_final_data_start = .;
*(.data)
*(.data1)
*(.sdata)
*(.sdata2)
*(.got.plt)
*(.got)
*(.dynamic);
_final_data_end = .;
}

/* Now save off the start of the data in the image */
_img_data_start = LOADADDR(.mdata);

The _Þnal_data_start and _Þnal_data_end symbols indicate the post-relocation start and end addresses of
the data section. In addition, the symbol _img_data_start holds the start address of the data section in the
ROM image. This information will be used during the relocation of the data.

The linker script treats the bss section much like the data section. The only difference is that it is not
necessary to know the location of the bss section in the ROM image. The relocation program only needs to
know how big the bss is so it can zero out an appropriate section of memory in RAM for uninitialized data.
For the sample boot program, the bss section will be located directly after the data section, and the symbols
_bss_start and _bss_end are used to determine the length of the bss section:

.bss (ADDR(.mdata) + SIZEOF(.mdata)) :
{
_bss_start = .;
*(.sbss)
*(.scommon)
*(.dynbss)
*(.bss)
*(COMMON);
_bss_end = .;
}

In some cases, it is possible that the address range located at 0xFFF0_0000 is writeable. In this instance, the
user may not wish to relocate the sections from the load address. The easiest way to do this is to specify
equivalent relocation and load addresses for the text section. The sample boot program checks for this before
performing a copy. Since all other section addresses are based on the location of the text, this is the only

A Minimal PowerPC

15
Boot Sequence for Compiled C Programs

Sample Boot Sequence

change needed in order to leave the entire image in ROM space. This change is accomplished by deÞning
identical IMAGE_TEXT_START and TEXT_START variables in the makeÞle.

Finally, some users may wish to relocate only those sections (data and bss) which are modiÞed during
program execution. The easiest way to do this is to specify an absolute relocation address for the data
section, and allow the bss to be located immediately following the data. The locations of the sections in the
compiled image remains the same. To accomplish this, deÞne IMAGE_TEXT_START and TEXT_START
to be identical in the makeÞle. Then deÞne a DATA_START that speciÞes the desired location of the data
section during execution. Using this method, the data section will still follow the text section in the load
image but will be moved to DATA_START before the user program begins execution. The text section will
remain at its load location, reducing the time required for the copy.

The linking phase of the build for the ppcinit program produces a .elf Þle organized as speciÞed in ld.script.
In addition, the -fnobuiltin option has been speciÞed to prevent linking with standard libraries. This .elf Þle
can be loaded and executed. For environments that do not have elf loading capability, the executable may
be translated into Motorola S-Record format using the GNU objcopy utility, specifying the output Þle
format as S-record:

go.srec: go.elf
$(PREFIX)/bin/$(TARGET)Ðobjcopy -O srec go.elf go.srec

This S-record may be loaded into ROM and executed.

4.6 Using the Sample Boot Sequence
Using the sample boot sequence requires setting up the conÞgurable parameters to describe a particular
hardware conÞguration. The following list describes this process:

In ppcinit.h:

1. #deÞne either MPC603e or MPC750 to match the processor type. One of these must be deÞned for
the code to work properly.

2. To use the instruction cache, #deÞne ICACHE_ON to 1. To disable the instruction cache, deÞne it
to 0.

3. To use the data cache, #deÞne DCACHE_ON to 1. To disable the data cache, deÞne it to 0.

4. #deÞne STACK_LOC to the desired location of the stack for the user program.

5. To use the MMU, #deÞne MMU_ON to 1.

6. If MMU_ON is deÞned, the BAT setup macros must be deÞned in order to provide basic address
translation and protection. Fill in the [ID]BATx[UL]_VAL macros with the values for the associated
BAT array entry. Typically, #deÞne a base physical address (like (PROM_BASE and PRAM_BASE
in the sample Þle) and a base virtual address (like VROM_BASE and VRAM_BASE in the sample
Þle) for each memory region. Use these addresses, along with the provided BAT macros, to form an
entry. As an example, to deÞne a data region representing a ROM starting at the physical address
0xFFF0_0000 that is cache inhibited and has read/write access, #deÞne PROM_BASE to
0xFFF0_0000. Then #deÞne DBAT0L_VAL to be PROM_BASE | BAT_CACHE_INHIBITED |
BAT_READ_WRITE. Refer to the ppcinit.h source Þle for a list of available macros.

7. Repeat step 6 until instruction and data BAT entries have been created for all memory regions to be
used by the user program.

8. Fill in entries for the remaining unused BATs with BAT_NO_ACCESS for the lower BAT register,
and BAT_INVALID for the upper BAT register.

9. #deÞne USER_ENTRY to the name of the entry function for the user program. Avoid using main()
as this causes some compilers to try to link in standard crt0 or eabi start code.

16 A Minimal PowerPC
Boot Sequence for Compiled C Programs

Source Files

In makeÞle:

1. To locate the loadable text section at an address other than 0xFFF0_0000, deÞne
IMAGE_TEXT_START to the desired value.

2. To deÞne the execution address of the text section, change the deÞnition for TEXT_START to
match the desired address. This defaults to 0x0000_0000.

3. By default, the data section will be located immediately following the text section in both the load
image and during execution. To change this, deÞne DATA_START and IMAGE_DATA_START to
the appropriate values.

4. List the C source Þles for the user program in the deÞnition for C_SRC.

The code may now be built and executed for the target platform.

4.7 Limitations of the Sample Boot Sequence
The sample boot sequence is intended to be used in a controlled environment and is designed to be as
minimal as possible. As a result, there are some limitations to its design and use.

1. The image should be built to be initially located at either 0xFFF0_0000 or 0x0000_0000.

2. Memory is mapped via the BAT registers. The segment registers and page tables are not used.

3. The segment registers, page table pointer, and page tables are not initialized. Care should be taken
to ensure that programs do not generate references to addresses in ranges not mapped by a BAT
register. Doing so causes the processor to attempt to search the page table (whose location has not
been deÞned and could point anywhere) for a translation. This could possibly result in reading/
writing to random locations in memory.

4. No exception handling code is provided. With the exception of system reset, the exception vector
locations contain the illegal opcode for PowerPC (0x0000_0000).

5. The code only initializes the processor; it does not initialize any peripheral devices and is not
designed to be run in a system with a memory controller such as an MPC106 or MPC105.
Additional code must be added to handle these situations.

6. Programs should avoid making stdio calls such as printf since there is no mechanism for handling
this.

7. The sample sequence only performs setup necessary for standard C compiles. C++ programs and
programs written in other languages may require additional support.

Part V Source Files
The following sections contain the complete source code for the Þles ppcinit.S, ppcinit.h, ld.script, and
makeÞle.

5.1 ppcinit.S
/*
// This file contains generic boot init code designed to be run on
// PowerPC processor simulations that just need minimal setup.
//
// This code has also successfully been used to run processor-intensive
// benchmarks (written in C) on minimal hardware boards such as
// Excimer.
//

A Minimal PowerPC 17
Boot Sequence for Compiled C Programs

Source Files

// This code is designed to be run from Power-up or hard reset; running from
// soft reset may require additional operations such as cache invalidation,
// that are not supplied here.
//
// Once the hw init is complete, this code branches into the
// USER_ENTRY defined in the user code
//
// This code has been tested on the MPC603e and MPC750.
// Architectural differences between processors with respect to cache
// types and sizes, cache management instructions, number of TLB
// entries, etc, may require changes to be made to this code before it may
// be used successfully on other processors.
*/

.file "ppcinit.S"

// NOTE: If you need to define variables, put them at the end! The _start
// symbol needs to be at hreset in order for this code to run automatically
// on hard reset.

#include Òppcinit.hÓ

.text

.global _start

.space (0x0100) // locate at hreset vector

// this should now be located at the reset vector
_start:

b system_reset

.space (0x3000) //space past exception space
// here's the real startup code, located outside the exception vector space

system_reset:
addis. r0,r0,0x0000 //letÕs make sure that r0 is really 0x0

// from reset, the BATs are in an unknown state on most PPCs.
// Invalidate them all to avoid error states
mtspr ibat0u,r0
mtspr ibat1u,r0
mtspr ibat2u,r0
mtspr ibat3u,r0

18 A Minimal PowerPC
Boot Sequence for Compiled C Programs

Source Files

mtspr dbat0u,r0
mtspr dbat1u,r0
mtspr dbat2u,r0
mtspr dbat3u,r0
isync

// Note MSR state at power-up:
// all exceptions disabled, address translation off,
// Exception prefix at 0xFFF00000, FP disabled

#if MMU_ON == 1
// If the code specifies that weÕre going to use the MMU, branch to
// to the setup function that handles setting up the BATs and
// invalidating TLB entries.
//
// NOTE: WeÕve done nothing with the segment registers, so we need to
// be sure that all memory accessed by this code and by the user
// program is represented in the BATs. Otherwise, we might get
// some spurious translations.
bl setup_bats
sync
bl address_translation_on
sync

#endif

// relocate the text, data, and bss sections to RAM
bl relocate_image

// Note: This code is run from reset, so we assume that there is no
// data that needs to be flushed from the cache. This code only
// flash invalidates and enables the caches, it does not flush!
//
// Note: The caches are enabled *after* the relocation in order
// to help avoid cache preloading.
//
// Note: Enabling caching is only useful if you have also specified some
// of your memory to be caching enabled in the BAT setup.

#if DCACHE_ON == 1
// Now turn on and invalidate the internal data cache
bl invalidate_and_enable_L1_dcache

#endif

#if ICACHE_ON == 1
// Now turn on and invalidate the internal instruction cache
bl invalidate_and_enable_L1_icache

#endif

// Get small data area locations as per PPC EABI

A Minimal PowerPC 19
Boot Sequence for Compiled C Programs

Source Files

// See http://www.solutions.motorola.com/lit/manuals/eabispec.html
// for more information.
addis r13,r0,_SDA_BASE_@h
ori r13,r13,_SDA_BASE_@l
addis r2,r0,_SDA2_BASE_@h
ori r2,r2,_SDA2_BASE_@l

// Set up stack pointer for the user application
addis r1,r0,STACK_LOC@h // STACK_LOC defined in ppcinit.h
ori r1,r1,STACK_LOC@l

// make sure the word the stack pointer points to is NULL
addis r4,r0,0x0000
stw r4,0(r1)

This should be surrounded by blank lines and should be indented and tabified to
match the rest of the code.

// get the start address of the main routine of the code we want to run.
addis r3,r0,USER_ENTRY@h
ori r3,r3,USER_ENTRY@l
mtspr srr0,r3

// Set the MSR.
// we just move the value into srr1 - it will get copied into
// the msr upon the rfi.
addis r4,0,0x0000
ori r4,r4,0x3900 //enable fp & machine check exceptions

#if MMU_ON == 1
ori r4,r4,0x0030 //turn on I and D translation

#endif

// See if we relocated the code to an address above 0xFFC00000.
// If so, put the exception prefix at 0xFFF00000. Otherwise,
// Leave it at 0.
addis r5,0,0xFFC0
ori r5,r5,0x0000
cmp 0,0,r5,r3
bgt set_state

ori r4,0x0040 // put exception prefix at 0xFFF00000

set_state:
// letÕs put something in the link register - when the user program
// starts, itÕs going to save the link register, do itÕs thing, then
// restore the link register and blr.
// weÕll put in the address following the rfi so we can save off the
// time base once the user code is complete

20 A Minimal PowerPC
Boot Sequence for Compiled C Programs

Source Files

addis r3,0,save_timebase@h
ori r3,r3,save_timebase@l
mtlr r3

// Put r4 into srr1 so it gets copied into the msr on rfi
mtspr srr1,r4

// go to the C code

// set up the time base register
addis r4,r0,0x0000
mtspr 285,r4
mtspr 284,r4

rfi

save_timebase:

// read time base, checking for rollover
mfspr r3,269
mfspr r4,268
mfspr r5,269
cmpw r5,r3
bne save_timebase

// save vals off
addis r5,0,TBUSAVE@h
ori r5,r5,TBUSAVE@l
stw r3,0(r5)
addis r5,0,TBLSAVE@h
ori r5,r5,TBLSAVE@l
stw r4,0(r5)

// done, go to an arbitrary address

done:
addis r3,FFF0
ori r3,r3,0x0700
mtlr r3
blr

//---
// Function: relocate_image
//
// copy this image and the user code into RAM space.
// Note that the starting locations of text, data, and bss are
// defined in the ld.script. Make sure these definitions,
// as well as the definition for STACK_LOCx in ppcinit.h, give
// ample room for your image.
//--

A Minimal PowerPC 21
Boot Sequence for Compiled C Programs

Source Files

relocate_image:
addis r3,0,_img_text_start@h // load image text start
ori r3,r3,_img_text_start@l
addis r4,0,_final_text_start@h // load final image start
ori r4,r4,_final_text_start@l

// are they the same? No need to relocate if so
cmp 0,0,r3,r4
beq relocate_data

addis r7,0,_img_text_end@h // load r4 with image text end
ori r7,r7,_img_text_end@l

cont:
lwzx r5,0,r3
stwx r5,0,r4
lwzx r8,0,r4
cmp 0,0,r8,r5
bne ram_error

addi r4,r4,4
addi r3,r3,4

cmp 0,0,r3,r7
bne cont

eieio
sync // make sure all previous instructions

//have completed.
relocate_data:

addis r3,0,_final_data_start@h // load data start address
// into r3

ori r3,r3,_final_data_start@l
addis r7,0,_final_data_end@h // load r4 with data end address
ori r7,r7,_final_data_end@l

addis r4,0,_img_data_start@h // load data location in ROM
ori r4,r4,_img_data_start@l

cmp 0,0,r3,r4 // is the data not relocated?
beq clear_bss // if not, go do the bss

cont1:
lwzx r5,0,r4

stwx r5,0,r3
lwzx r8,0,r3
cmp 0,0,r8,r5
bne ram_error

22 A Minimal PowerPC
Boot Sequence for Compiled C Programs

Source Files

addi r4,r4,4
addi r3,r3,4

cmpl 3,0,r3,r7 // have we reached the end yet?
bne cont1 // if not, go on copying

eieio
sync // make sure all previous instructions

// have completed

// This clear_bss code can be removed if youÕre sure you never
// depend on unitialized data being 0.
clear_bss:

addis r4,0,_bss_start@h // load bss start address into r3.
ori r4,r4,_bss_start@l
addis r7,0,_bss_end@h // load r4 with bss end address
ori r7,r7,_bss_end@l

addis r5,0,0x0000
cont2:

stwx r5,0,r4 // zero out word
addi r4,r4,4 // go to next word

cmp 0,0,r4,r7 // have we reached the end yet?
ble cont2 // if not, go on copying
eieio
sync // make sure all previous instructions

// have completed
blr

//---
// Function: setup_bats
//
// Here is the code that handles setting up the BAT registers.
// IBAT0L and such must be defined in the header file
//
// The MMU should be turned off before this code is run and
// re-enabled afterward
//---

setup_bats:
addis r0,r0,0x0000

addis r4,r0,IBAT0L_VAL@h
ori r4,r4,IBAT0L_VAL@l
addis r3,r0,IBAT0U_VAL@h
ori r3,r3,IBAT0U_VAL@l
mtspr ibat0l,r4

A Minimal PowerPC 23
Boot Sequence for Compiled C Programs

Source Files

mtspr ibat0u,r3
isync

addis r4,r0,DBAT0L_VAL@h
ori r4,r4,DBAT0L_VAL@l
addis r3,r0,DBAT0U_VAL@h
ori r3,r3,DBAT0U_VAL@l
mtspr dbat0l,r4
mtspr dbat0u,r3
isync

addis r4,r0,IBAT1L_VAL@h
ori r4,r4,IBAT1L_VAL@l
addis r3,r0,IBAT1U_VAL@h
ori r3,r3,IBAT1U_VAL@l
mtspr ibat1l,r4
mtspr ibat1u,r3
isync

addis r4,r0,DBAT1L_VAL@h
ori r4,r4,DBAT1L_VAL@l
addis r3,r0,DBAT1U_VAL@h
ori r3,r3,DBAT1U_VAL@l
mtspr dbat1l,r4
mtspr dbat1u,r3
isync

addis r4,r0,IBAT2L_VAL@h
ori r4,r4,IBAT2L_VAL@l
addis r3,r0,IBAT2U_VAL@h
ori r3,r3,IBAT2U_VAL@l
mtspr ibat2l,r4
mtspr ibat2u,r3
isync

addis r4,r0,DBAT2L_VAL@h
ori r4,r4,DBAT2L_VAL@l
addis r3,r0,DBAT2U_VAL@h
ori r3,r3,DBAT2U_VAL@l
mtspr dbat2l,r4
mtspr dbat2u,r3
isync

addis r4,r0,IBAT3L_VAL@h
ori r4,r4,IBAT3L_VAL@l
addis r3,r0,IBAT3U_VAL@h
ori r3,r3,IBAT3U_VAL@l
mtspr ibat3l,r4
mtspr ibat3u,r3
isync

24 A Minimal PowerPC
Boot Sequence for Compiled C Programs

Source Files

addis r4,r0,DBAT3L_VAL@h
ori r4,r4,DBAT3L_VAL@l
addis r3,r0,DBAT3U_VAL@h
ori r3,r3,DBAT3U_VAL@l
mtspr dbat3l,r4
mtspr dbat3u,r3
isync

// BATs are now set up, now invalidate tlb entries
addis r3,0,0x0000

#ifdef MPC603e
addis r5,0,0x2 // set up high bound of 0x00020000 for 603e

#endif
#ifdef MPC750

addis r5,0,0x4 // 750 has twice as many tlb entries as 603e
#endif

isync

// Recall that in order to invalidate TLB entries, the value issued to
// tlbie must increase the value in bits 14:19 (750) or 15:19(603e)
// by one each iteration.

tlblp:
tlbie r3
sync
addi r3,r3,0x1000
cmp 0,0,r3,r5 // check if all TLBs invalidated yet
blt tlblp

blr

//---
// Function: invalidate_and_enable_L1_dcache
//
// Flash invalidate and enable the L1 dcache
//---
invalidate_and_enable_L1_dcache:

mfspr r5,hid0
ori r5,r5,0x4400
mtspr hid0,r5
sync

// clear invalidate bit for 603e
#ifdef MPC603e

addis r6,0,0xFFFF
ori r6,r6,0xFBFF

A Minimal PowerPC 25
Boot Sequence for Compiled C Programs

Source Files

and r6,r6,r5
mtspr hid0,r6
sync

#endif
blr

//---
// Function: invalidate_and_enable_L1_icache
//
// Flash invalidate and enable the L1 icache
//---
invalidate_and_enable_L1_icache:

mfspr r5,hid0
ori r5,r5,0x8800
isync
mtspr hid0,r5

#ifdef MPC603e
addis r6,0,0xFFFF
ori r6,r6,0xF7FF
and r6,r6,r5
mtspr hid0,r6

#endif

isync
blr

//---
// Function: address_translation_on
//
// Enable address translation using the MMU
//---
address_translation_on:

mfmsr r5
ori r5,r5,0x0030
mtmsr r5
isync
blr

//---
// Function: ram_error
//
// If an error occurs while weÕre copying from ROM to RAM, we have nowhere
// to go because thereÕs no OS support. Hang.
//---
ram_error:

b ram_error
//--
//

26 A Minimal PowerPC
Boot Sequence for Compiled C Programs

Source Files

//Define space for data items needed by this code
//
//---
.data
/*save time base to use for benchmarking numbers*/
TBUSAVE:
.double 0

TBLSAVE:
.double 0

5.2 ppcinit.h
/*
 set the name of the entry point into the user code.
*/
#define USER_ENTRY test_main

/* define appropriate processor type for your system */
/*#define MPC603e1*/
#define MPC750 1

/* Instruction and data caches on or off? */
#define ICACHE_ON 1
#define DCACHE_ON 1

/* Where should I put the stack? Upper and lower address bits */
/* This number should be 16-byte aligned (PPC ABI) or 8-byte aligned (PPC EABI)
*/
#define STACK_LOC 0x00070000

/* Do we want to use the MMUÕs address translation ability? */
#define MMU_ON 1

/* general BAT defines for bit settings to compose BAT regs */
/* represent all the different block lengths */
/* The BL field is part of the Upper Bat Register */
#define BAT_BL_128K 0x00000000
#define BAT_BL_256K 0x00000004
#define BAT_BL_512K 0x0000000C
#define BAT_BL_1M 0x0000001C
#define BAT_BL_2M 0x0000003C
#define BAT_BL_4M 0x0000007C
#define BAT_BL_8M 0x000000FC
#define BAT_BL_16M 0x000001FC
#define BAT_BL_32M 0x000003FC
#define BAT_BL_64M 0x000007FC
#define BAT_BL_128M 0x00000FFC
#define BAT_BL_256M 0x00001FFC

A Minimal PowerPC 27
Boot Sequence for Compiled C Programs

Source Files

/* supervisor/user valid mode definitions - Upper BAT*/
#define BAT_VALID_SUPERVISOR 0x00000002
#define BAT_VALID_USER 0x00000001
#define BAT_INVALID 0x00000000

/* WIMG bit settings - Lower BAT */
#define BAT_WRITE_THROUGH 0x00000040
#define BAT_CACHE_INHIBITED 0x00000020
#define BAT_COHERENT 0x00000010
#define BAT_GUARDED 0x00000008

/* Protection bits - Lower BAT */
#define BAT_NO_ACCESS 0x00000000
#define BAT_READ_ONLY 0x00000001
#define BAT_READ_WRITE 0x00000002

/*
If weÕre using the MMU, we need to set up the BAT registers.
Since we donÕt have a nice operating system handling page
table entries and the like for us, the BATs provide the
easiest translation mechanism.

The User must define the BAT mappings here. For unused BATs, specify the
BAT as INVALID and having NO_ACCESS as shown for bats 2 and 3 below.

This code maps everything, including the ROM and instruction space as
read-write because weÕre in a simulator and might want to do something
that you wouldnÕt be able to do on real HW. In a real system, ROM and
instruction space is typically mapped Read-only.
*/

/*
first, set address ranges for the devices IÕm mapping with the BATs.
The memory model for my board has ROM at ffc00000 and RAM at 0x00000000.
*/
#define PROM_BASE 0xFFC00000
#define PRAM_BASE 0x00000000

#define VROM_BASE PROM_BASE
#define VRAM_BASE PRAM_BASE

#define IBAT0L_VAL (PROM_BASE | BAT_CACHE_INHIBITED | BAT_READ_WRITE)
#define IBAT0U_VAL (VROM_BASE | BAT_VALID_SUPERVISOR | BAT_VALID_USER

| BAT_BL_16M)

#define DBAT0L_VAL IBAT0L_VAL
#define DBAT0U_VAL IBAT0U_VAL

28 A Minimal PowerPC
Boot Sequence for Compiled C Programs

Source Files

#define IBAT1L_VAL (PRAM_BASE | BAT_READ_WRITE
#define IBAT1U_VAL (VRAM_BASE | BAT_BL_32M | BAT_VALID_SUPERVISOR

| BAT_VALID_USER)

#define DBAT1L_VAL IBAT1L_VAL
#define DBAT1U_VAL IBAT1U_VAL

#define IBAT2L_VAL (BAT_NO_ACCESS)
#define IBAT2U_VAL (BAT_INVALID)
#define DBAT2L_VAL (BAT_NO_ACCESS)
#define DBAT2U_VAL (BAT_INVALID)

#define IBAT3L_VAL (BAT_NO_ACCESS)
#define IBAT3U_VAL (BAT_INVALID)
#define DBAT3L_VAL (BAT_NO_ACCESS)
#define DBAT3U_VAL (BAT_INVALID)

/* define names to make the asm easier to read - some compilers donÕt
 have this built in */
#define r0 0
#define r1 1
#define r2 2
#define r3 3
#define r4 4
#define r5 5
#define r6 6
#define r7 7
#define r8 8
#define r9 9
#define r13 13
#define hid0 1008
#define srr1 27
#define srr0 26
#define ibat0u 528
#define ibat0l 529
#define ibat1u 530
#define ibat1l 531
#define ibat2u 532
#define ibat2l 533
#define ibat3u 534
#define ibat3l 535
#define dbat0u 536
#define dbat0l 537
#define dbat1u 538
#define dbat1l 539
#define dbat2u 540
#define dbat2l 541
#define dbat3u 542
#define dbat3l 543
#define pvr 287

A Minimal PowerPC 29
Boot Sequence for Compiled C Programs

Source Files

5.3 ld.script

SECTIONS
{
 /*
 * check to see if we defined section starts in the makefile - if not,
 * define them here.
 *
 * Align everything to a 16-byte boundary if youÕre specifying the
 * addresses here.
 */
TEXT_START = DEFINED(TEXT_START) ? TEXT_START : 0x00000000;
IMAGE_TEXT_START = DEFINED(IMAGE_TEXT_START) ? IMAGE_TEXT_START : 0xFFF00000;

.text TEXT_START : AT (IMAGE_TEXT_START)
 {
 /*
 WeÕre building a s-record with the .text section located
 at TEXT_START that weÕre going to load into memory at
 IMAGE_TEXT_START. _img_text_start and _img_text_end

indicate the locations of the start and end of the text
segment at the loaded location.

 These values are used by the routine that relocates the text.
 */
 *(.text)
 *(.rodata)
 *(.rodata1)
 *(.got1);
 }

 /* Save text location in image and the final location to be used
 in ppcinit.S */

_img_text_start = LOADADDR(.text);
_img_text_end = (LOADADDR(.text) + SIZEOF(.text));

 _final_text_start = ADDR(.text);

 /*
 * Put the data section right after the text in the load image
 * as well as after the relocation unless else specified
 * If the user specified an address, assume itÕs aligned to a
 * 32-byte boundary (typical cache block size). If weÕre
 * calculating the address, align it to cache block size ourself.
 */

30 A Minimal PowerPC
Boot Sequence for Compiled C Programs

Source Files

DATA_START = DEFINED(DATA_START) ? DATA_START :
(((ADDR(.text) + SIZEOF(.text)) & 0xFFFFFFE0) + 0x00000020);

IMAGE_DATA_START = DEFINED(IMAGE_DATA_START) ? IMAGE_DATA_START :
(((LOADADDR(.text) + SIZEOF(.text)) & 0xFFFFFFE0) + 0x00000020);

 .mdata DATA_START : AT (IMAGE_DATA_START)
 {
 _final_data_start = .;
 *(.data)
 *(.data1)
 *(.sdata)
 *(.sdata2)
 *(.got.plt)
 *(.got)
 *(.dynamic) ;
 _final_data_end = .;
 }

 /* Now save off the start of the data in the image */
 _img_data_start = LOADADDR(.mdata);

 /*
 * Place bss right after the data section.
 *
 * We only define one set of location variables for the BSS because
 * it doesnÕt actually exist in the image. All we do is go the the
 * final location and zero out an appropriate chunk of memory.
 */
 .bss (ADDR(.mdata) + SIZEOF(.mdata)) :
 {
 _bss_start = .;
 *(.sbss)
 *(.scommon)
 *(.dynbss)
 *(.bss)
 *(COMMON) ;
 _bss_end = . ;
 }

 /* These are needed for ELF backends which have not yet been
 converted to the new style linker. */
 .stab 0 : { *(.stab) }
 .stabstr 0 : { *(.stabstr) }

A Minimal PowerPC 31
Boot Sequence for Compiled C Programs

Source Files

 /* DWARF debug sections */
 .debug 0 : {*(.debug)}
 .debug_srcinfo 0 : {*(.debug_srcinfo)}
 .debug_aranges 0 : {*(.debug_aranges)}
 .debug_pubnames 0 : {*(.debug_pubnames)}
 .debug_sfnames 0 : {*(.debug_sfnames)}
 .line 0 : {*(.line)}

}

5.4 MakeÞle
PREFIX = /path/to/your/cross-compiler/gnu-solaris
TARGET = powerpc-eabi

CC = $(PREFIX)/bin/$(TARGET)-gcc
LD = $(PREFIX)/bin/$(TARGET)-gcc
OBJCOPY = $(PREFIX)/bin/$(TARGET)-objcopy
OBJDUMP = $(PREFIX)/bin/$(TARGET)-objdump

#
Define locations for the text and data code sections. The bss
gets tacked on to the end of the data by the linker script,
don't worry about it.
#

define this to move from the default of 0xFFF00000
#IMAGE_TEXT_START = 0xFFC00000

where do you want the text to execute? Define this to move
from 0x00000000
#TEXT_START = 0x00000000

the data section location defaults to the end of the text section,
so define these only if you want it in a specific place
ex. If you're using a real ROM, you need to specify a DATA_START
that is in RAM so you can actually write to the data space.
#
IMAGE_DATA_START = 0xFFF40000
DATA_START = 0x00050000

define options for compilation
add -gdwarf for debug
CFLAGS = -gdwarf

define options for linkage
LDFLAGS = -fnobuiltin -fnostartfiles -T ld.script

32 A Minimal PowerPC
Boot Sequence for Compiled C Programs

Source Files

ifdef IMAGE_TEXT_START
LDFLAGS += -Wl,--defsym,TEXT_START=$(TEXT_START) \

-Wl,--defsym,IMAGE_TEXT_START=$(IMAGE_TEXT_START)
endif

ifdef IMAGE_DATA_START
LDFLAGS += -Wl,--defsym,DATA_START=$(DATA_START) \

-Wl,--defsym,IMAGE_DATA_START=$(IMAGE_DATA_START)
endif

define options for the objdump
DUMPFLAGS = --syms --disassemble-all

list C modules to link with the init code here
C_SRC = test.c
C_OBJS = $(C_SRC:.c=.o)

use variables to refer to init code in case it changes
PPCINIT = ppcinit.o
PPCINIT_DEP = ppcinit.h ppcinit.S

#
define build targets
#
all: go.srec

clean:
rm *.o *.elf *.srec *.dump *.i

build s-record with init code and c files linked together
go.srec: $(C_OBJS) $(PPCINIT)

$(LD) $(LDFLAGS) -o go.elf $(PPCINIT) $(C_OBJS)
$(OBJDUMP) $(DUMPFLAGS) go.elf > go.dump
$(OBJCOPY) -O srec -R .comment go.elf go.srec

compile init code
$(PPCINIT): $(PPCINIT_DEP)

$(CC) $(CFLAGS) -c $*.S

handle compilation of C files
%.o:%.c

$(CC) $(CFLAGS) -c $<

A Minimal PowerPC 33
Boot Sequence for Compiled C Programs

Source Files

Information in this document is provided solely to enable system and software implementers to use PowerPC microprocessors. There are no express
or implied copyright licenses granted hereunder to design or fabricate PowerPC integrated circuits or integrated circuits based on the information in
this document.
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ÒTypicalÓ parameters
can and do vary in different applications. All operating parameters, including ÒTypicalsÓ must be validated for each customer application by customerÕs
technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer
purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers,
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising
out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part.
Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Motorola Literature Distribution Centers:
USA/EUROPE: Motorola Literature Distribution; P.O. Box 5405; Denver, Colorado 80217; Tel.: 1-800-441-2447 or 1-303-675-2140;
World Wide Web Address: http://ldc.nmd.com/
JAPAN: Nippon Motorola Ltd SPD, Strategic Planning Office 4-32-1, Nishi-Gotanda Shinagawa-ku, Tokyo 141, Japan Tel.: 81-3-5487-8488
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd Silicon Harbour Centre 2, Dai King Street Tai Po Industrial Estate Tai Po, New Territories, Hong
Kong

Mfaxª: RMFAX0@email.sps.mot.com; TOUCHTONE 1-602-244-6609; US & Canada ONLY (800) 774-1848;
World Wide Web Address: http://sps.motorola.com/mfax
INTERNET: http://motorola.com/sps

Technical Information: Motorola Inc. SPS Customer Support Center 1-800-521-6274; electronic mail address: crc@wmkmail.sps.mot.com.
Document Comments: FAX (512) 895-2638, Attn: RISC Applications Engineering.
World Wide Web Addresses: http://www.motorola.com/PowerPC
http://www.motorola.com/netcomm
http://www.motorola.com/Coldfire

AN1809/D

Mfax is a trademark of Motorola, Inc.
The PowerPC name, the PowerPC logotype, and PowerPC 603e are trademarks of International Business Machines Corporation used by Motorola
under license from International Business Machines Corporation.

