
Order this document
by AN1827/D

Motorola Semiconductor Application Note

AN1827
Programming and Erasing FLASH Memory
on the MC68HC908AS60
By Kim Keating, Adeela Gill, and Kazue Kikuchi

Body Electronics and Occupant Safety
Matt Rutledge
Non-Volatile Memory Technology Center

Introduction

Motorola has released an innovative type of FLASH non-volatile memory
(NVM) for its 8-bit M68HC08 Family of microcontrollers. This FLASH
technology allows in-circuit reprogrammability over the entire
automotive specification range.

In-circuit reprogrammability offers these advantages:

• In-system code revision

• EPROM (erasable programmable read-only memory)
replacement as a reusable code development platform

• Quick time to market with one chip for code development and
production

• No obsolete inventory as with ROM parts

• Allows for last-minute code changes without waiting for new ROM
code lots
© Motorola, Inc., 1999 AN1827

Application Note
This application note explains how to use the FLASH on the
MC68HC908AS60 and provides example software for program and
erase operations. The reprogramming algorithms are written in both
M68HC08 assembly code and in C code.

This code is available for download from Motorola’s Semiconductor
Product Sector’s Web site at http://mot-sps.com.

The FLASH topics covered in this application note include:

• Features

• Implementation on Motorola’s M68HC08 microcontrollers

• Functional description

• Control and block protect registers

• Charge pump

• Block protection

• Erase operation

• Page program/margin read algorithm

• Frequently asked questions

• Hardware schematic

• Assembly source code

• C source code

Features

The benefits of FLASH on the MC68HC908AS60 include:

• Single VDD power supply is utilized for program/erase.
This feature simplifies program and erase with respect to EPROM
(no high voltage power supply or UV (ultraviolet) oven required),
reduces program and erase cycle time, and enables in-circuit
reprogrammability.
AN1827

2 MOTOROLA

Application Note
Implementation on Motorola’s M68HC08 Microcontrollers
• The FLASH manufacturing process is fully compatible with the
EEPROM (electrically erasable, programmable read-only
memory) process.
This process compatibility allows the functionality of both FLASH
and EEPROM non-volatile memories on the same chip.

• Meets automotive specifications
Unlike many competing microcontrollers with FLASH, this FLASH
can operate and meet reliability requirements for the automotive
space. The FLASH on the MC68HC908AS60 will read, program,
and erase over the –40°C to 125°C temperature range. The
specified program/erase endurance and data retention lifetime are
valid over the entire temperature range.

• Multiple arrays
Multiple arrays on the MC68HC908AS60 allow code execution out
of one array while programming or erasing the other array.

• Smart programming algorithm
Use of the smart programming algorithm ensures minimum
program time while still guaranteeing automotive environment
operation and data retention.

Implementation on Motorola’s M68HC08 Microcontrollers

The specific FLASH technology found on the MC68HC908AS60 is
known as FLASH 2TS, in reference to its 2-transistor source-select bit
cell. FLASH 2TS is commonly found on Motorola’s M68HC08 Family of
microcontrollers, but it is not the exclusive FLASH technology for the
HC08 core. The FLASH 2TS technology discussed in this application
note is referred to generically as FLASH.

This FLASH technology is available in array sizes between 2 Kbytes and
32 Kbytes. For parts requiring more than 32 Kbytes, multiple arrays of
any size between 2 Kbytes and 32 Kbytes, with 2-Kbyte boundaries, can
be placed on a chip. Typically, only one charge pump is used on parts
with multiple arrays. This constrains program or erase operations to one
array at a time, but conserves die area.
AN1827

MOTOROLA 3

Application Note
The FLASH bit cell consists of two transistors in series, referred to as the
select-gate and control-gate transistors. The floating gate is associated
with the control gate transistor and stores charges which represent the
two different data states of the memory. The high threshold condition of
the bit cell is the erased state and the low threshold condition is the
programmed state. The select gate prevents bit cell leakage of
unselected wordlines during read operations when the floating gate is
programmed.

Although the size and shape of the array is mostly transparent to the
user, it does help when determining the "cared addresses" during the
erase algorithm. The term and function of "cared addresses" are
explained in the Erase Operation of this application note. For now, it is
important to know that the cared addresses determine exactly which
block will erase during the erase operation.

More importantly, the size and shape of the memory array may alter the
size of the programming page. The term page refers to the number of
consecutive bytes that are programmed during a page program/margin
read operation. On larger memory arrays, like the two arrays found on
the MC68HC908AS60, one page equals eight bytes. As the array is
scaled down, the page is proportionally scaled to either four, two, or one
byte(s). This will affect the programming algorithm that appears later in
this application note.

The only other obvious difference in implementation of the FLASH array
is the size of the blocks that can be protected against an undesired
program or erase operation. Again, this depends on the size of the
memory on the microcontroller. Check the appropriate documentation
for each specific microcontroller to determine the size of the memory
array, the page program size, and the erase block sizes.
AN1827

4 MOTOROLA

Application Note
Functional Description
Functional Description

The FLASH memory on the MC68HC908AS60 physically consists of two
independent arrays with two bytes of block protection and additional
bytes of user vectors. An erased bit reads as a logic 0 and a
programmed bit reads as a logic 1. Program and erase operations are
facilitated through control bits in memory mapped registers. Details for
these operations appear later in this application note.

Memory in the FLASH array is organized into pages within rows. There
are eight pages of memory per row with eight bytes per page. The
minimum erase block size is a single row, 64 bytes. Programming is
performed on a per-page basis, eight bytes at a time. The address
ranges for the user memory, control registers, block protect registers,
and vectors are listed here.

The FLASH memory map on the MC68HC908AS60 consists of:

• $0450–$05FF, FLASH-2 array, 432 bytes

• $0E00–$7FFF, FLASH-2 array, 29,184 bytes

• $8000–$FDFF, FLASH-1 array, 32,256 bytes

• $FE0B, FLASH-1 control register, FLCR1

• $FE11, FLASH-2 control register, FLCR2

• $FF80, FLASH-1 block protect register, FLBPR1

• $FF81, FLASH-2 block protect register, FLBPR2

• $FFDA–$FFFF, FLASH-1 vector space, 38 bytes

To program the FLASH, each page must be erased before it is
programmed. The erase block sizes are found in Erase Operation.

The four 64-byte row address boundaries for the MC68HC908AS60 are:

• $xx00–$xx3F

• $xx40–$xx7F

• $xx80–$xxBF

• $xxC0–$xxFF
AN1827

MOTOROLA 5

Application Note
When programming the FLASH, exact program time must be used to
program a page. Excessive program time can result in a program disturb
condition, in which case an erased bit on the row being programmed
becomes unintentionally programmed. Program disturb is avoided by
using an iterative program and margin read technique known as the
smart programming algorithm. The smart programming algorithm is
required whenever programming the FLASH. See Page
Program/Margin Read Algorithm.

NOTE: A security feature prevents viewing of the FLASH contents.1

Programming tools are available from Motorola. Contact a local Motorola
representative for more information.

Control and Block Protect Registers

Each FLASH array has two registers that control its operation, the
FLASH control register (FLCR) and the FLASH block protect register
(FLBPR). See Figure 1 and Figure 2.

There are two FLASH control registers, FLCR1 and FLCR2, for
FLASH-1 and FLASH-2 arrays, respectively.

• $FE0B — FLASH-1 control register (FLCR1)

• $FE11 — FLASH-2 control register (FLCR2)

1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or
copying the FLASH difficult for unauthorized users.

Bit 7 6 5 4 3 2 1 Bit 0

Read:
FDIV1 FDIV0 BLK1 BLK0 HVEN MARGIN ERASE PGM

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 1. FLASH Control Register (FLCR)
AN1827

6 MOTOROLA

Application Note
Control and Block Protect Registers
FDIV1 — Frequency Divide Control Bit

This read/write bit together with FDIV0 selects the factor by which
the charge pump clock is divided from the bus clock. See Charge
Pump.

FDIV0 — Frequency Divide Control Bit

This read/write bit together with FDIV1 selects the factor by which
the charge pump clock is divided from the bus clock. See Charge
Pump.

BLK1 — Block Erase Control Bit

This read/write bit together with BLK0 allows erasing of blocks of
varying sizes. See Erase Operation for a description of available
block sizes.

BLK0 — Block Erase Control Bit

This read/write bit together with BLK1 allows erasing of blocks of
varying sizes. See Erase Operation for a description of available
block sizes.

HVEN — High-Voltage Enable Bit

This read/write bit enables the charge pump to drive high voltages
for program and erase operations in the array. HVEN can be set
only if either PGM = 1 or ERASE = 1 and the proper sequence for
erase or page program/margin read is followed.

1 = High voltage enabled to array and charge pump on
0 = High voltage disabled to array and charge pump off

MARGIN — Margin Read Control Bit

This read/write bit configures the memory for the margin read
operation. MARGIN cannot be set if HVEN = 1. MARGIN will
automatically clear (MARGIN = 0) if asserted when HVEN = 1.

1 = Margin read operation selected
0 = Margin read operation unselected
AN1827

MOTOROLA 7

Application Note
ERASE — Erase Control Bit

This read/write bit configures the memory for the erase operation.
ERASE is interlocked with the PGM bit such that both bits cannot
be set at the same time.

1 = Erase operation selected
0 = Erase operation unselected

PGM — Program Control Bit

This read/write bit configures the memory for the program
operation. PGM is interlocked with the ERASE bit such that both
bits cannot be set at the same time.

1 = Program operation selected
0 = Program operation unselected

There are two FLASH block protect registers, FLBPR1 and FLBPR2, for
FLASH-1 and FLASH-2 arrays, respectively.

• $FF80 — FLASH-1 block protect register (FLBPR1)

• $FF81 — FLASH-2 block protect register (FLBPR2)

BPR3 — Block Protect Register Bit 3

This bit protects the memory contents in the address range:
FLASH-1 $C000 to $FFFF or FLASH-2 $4000 to $7FFF.

1 = Address range protected from erase or program
0 = Address range open to erase or program

Bit 7 6 5 4 3 2 1 Bit 0

Read:
DC DC DC DC BPR3 BPR2 BPR1 BPR0

Write:

Reset: NV NV NV NV NV NV NV NV

NV — Non-volatile, 1 if programmed, 0 if erased
DC — Don’t care

Figure 2. FLASH Block Protect Register (FLBPR)
AN1827

8 MOTOROLA

Application Note
Charge Pump
BPR2 — Block Protect Register Bit 2

This bit protects the memory contents in the address range:
FLASH-1 $A000 to $FFFF or FLASH-2 $2000 to $7FFF.

1 = Address range protected from erase or program
0 = Address range open to erase or program

BPR1 — Block Protect Register Bit 1

This bit protects the memory contents in the address range:
FLASH-1 $9000 to $FFFF or FLASH-2 $1000 to $7FFF.

1 = Address range protected from erase or program
0 = Address range open to erase or program

BPR0 — Block Protect Register Bit 0

This bit protects the memory contents in the address range:
FLASH-1 $8000 to $FFFF or FLASH-2 $0450 to $7FFF.

1 = Address range protected from erase or program
0 = Address range open to erase or program

Charge Pump

The internal charge pump is required for program, margin read, and
erase operations of the FLASH.

The charge pump is a dynamic circuit that uses a specific clocking
sequence of capacitors and switches to generate voltages higher in
magnitude than VDD. This charge pump design requires a clock
frequency range between 1.8 MHz and 2.5 MHz to operate the FLASH
correctly. The charge pump clock is derived from the bus clock. The
FDIV1 and FDIV0 bits in the FLASH control register are able to divide
the internal bus clock by 1, 2, or 4 to generate the charge pump clock.
These divide ratios allow enough tolerance for several commonly
available crystal frequencies.

See Table 1 for common divide ratios based upon internal bus
frequency.
AN1827

MOTOROLA 9

Application Note
NOTE: When FLASH memory is programmed/erased with the PLL on or in
monitor mode, bus frequency is not always the same as the external
clock frequency divided by four. Since the charge pump frequency is
derived from the bus frequency, confirm the bus frequency being used.

NOTE: If the charge pump frequency is not between 1.8 MHz and 2.5 MHz,
Motorola does not guarantee the operation, electrical, or reliability
specifications of the FLASH.

The HVEN bit in the FLASH control register enables the charge pump to
generate high voltages for program and erase modes. The charge pump
also generates a regulated voltage for the margin read mode in the
smart programming algorithm. During programming, the HVEN bit
should be asserted only for 1 ms to 1.2 ms at a time. (See Figure 8.)
Asserting HVEN for longer than 1.2 ms at a time risks program disturb,
where an erased bit on the same row becomes unintentionally
programmed. Program disturb is a common soft fault and can be
recovered by erasing the row and reprogramming using the smart
programming algorithm.

Table 1. Bus Frequency Divide Ratios for Charge Pump Clock

fBus (MHz) FDIV1 FDIV0 Division fPump (MHz)

2.000 0 0 1 2.000

2.4576 0 0 1 2.4576

4.000 0 1 2 2.000

4.9152 0 1 2 2.4576

8.000 1 1 4 2.000

8.400 1 1 4 2.100
AN1827

10 MOTOROLA

Application Note
Block Protection
Block Protection

To protect the contents in the FLASH array from being inadvertently
programmed or erased by run-away code in the user application, the
FLASH block protect register option was implemented. This register is
composed of two non-volatile bytes within the FLASH-1 array, with one
byte per FLASH array. Once the block protect bits are set in the FLBPR
registers, the defined address ranges are protected from being
programmed or erased. See Control and Block Protect Registers for
a description of address ranges.

The FLBPR register itself can be erased or programmed only with an
external voltage VHI on the IRQ pin. VHI is defined as a voltage between
VDD + 2 V and VDD + 4 V. Use of the block protect register is an
additional measure to prevent inadvertent programming or erasing of
FLASH contents in an application.

NOTE: To implement in-system program or erase for a protected area of
FLASH, a high voltage signal must be routed to the IRQ pin.

Erase Operation

To erase a FLASH array, follow this 9-step procedure. Figure 3 shows
a flowchart of this procedure.

1. Set ERASE = 1, and set the BLK bits and FDIV bits.

ERASE = 1 configures the FLASH memory for an erase operation.
The BLK bits determine the erase block size: whole array, half
array, 512 bytes or 64 bytes. The FDIV bits determine the charge
pump frequency. The frequency should be selected within the
range between 1.8 MHz and 2.5 MHz. Refer to Charge Pump.

2. Read the FLASH block protect register.

The block protect registers must be read before high voltage can
be enabled. If the desired address set in step 3 is in a protected
block, erase will fail.
AN1827

MOTOROLA 11

Application Note
3. Write to any FLASH address within the block address range
desired.

The "cared" bits for the FLASH address are latched and used to
determine the address range that will be erased. The details are
discussed later in this section.

4. Set HVEN = 1.

a. Internal high voltage is applied for erasing.

5. Wait for a time, tErase.

tErase is the block erase time.

6. Set HVEN = 0.

Internal high voltage is disabled.

7. Wait for a time, tKill.

This allows the high voltage to be discharged completely.

8. Set ERASE = 0.

Disable the erase operation.

9. Wait for a time, tHVD.

After a time, tHVD, the memory can be accessed in normal read
mode.

NOTE: If bulk erase is attempted on a FLASH array where either part or all of
the array is block protected, then none of the FLASH memory in that
array is erased.
AN1827

12 MOTOROLA

Application Note
Erase Operation
Figure 3. FLASH Erase Operation Flowchart

2. READ BLOCK PROTECT
REGISTERS (FLBPR)

1. SET ERASE BIT, BLK BITS
AND FDIV BITS

ERASE FLASH

3. WRITE TO AN ADDRESS IN THE
BLOCK TO ERASE

4. SET HVEN BIT

5. WAIT A TIME, tErase

6. CLEAR HVEN BIT

7. WAIT A TIME, tKill

8. CLEAR ERASE BIT

9. WAIT A TIME, tHVD

ERASE OPERATION
COMPLETE
AN1827

MOTOROLA 13

Application Note
Although the overall procedure is relatively simple, step 3 could use
some clarification. Since the specified address is any address within the
block to erase, the microcontroller must somehow know exactly which
memory range to erase. This is where the "cared address" becomes
important.

In step 2, the size of the block to erase is set by writing to the BLK bits
in the FLCR. Table 2 shows the various block sizes which can be erased
in one erase operation.

When an address is specified in step 3, certain address lines are latched
pertaining to this block size, and they establish the start and end
addresses of the block. The larger the erase block, the smaller the size
of the cared address.

For example, if the BLK bits are set such that the erase block size is a
single row (BLK0 = BLK1 = 1), and the address $9AF0 is specified in
step 3, then bits 15–6 of $9AF0 are the "cared addresses." Therefore,
the values of these address bits are fixed.

Table 2. Erase Block Sizes

BLK1 BLK0 Block Size Cared Addresses

0 0 Full array: 32 Kbytes A15

0 1 One-half array: 16 Kbytes A15–A14

1 0 Eight rows: 512 bytes A15–A9

1 1 Single row: 64 bytes A15–A6

Hex 9 A F 0

Bit No. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Binary 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0

Figure 4. Cared Address Example $9AF0

Cared Addresses
AN1827

14 MOTOROLA

Application Note
Erase Operation
As a result, the beginning address of the block which will be erased is:

The end address of the block which will be erased is:

This results in erasing 64 bytes from address $9AC0 to $9AFF.

NOTE: All memory arrays are shaped differently, so one row may not equal 64
bytes like on the MC68HC908AS60. Refer to the appropriate
documentation for the pertinent device and apply these same principles.

Hex 9 A C 0

Bit No. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Binary 1 0 0 1 1 0 1 0 1 1 0 0 0 0 0 0

Figure 5. Erase Beginning Address for Example

Hex 9 A F F

Bit No. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Binary 1 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1

Figure 6. Erase End Address for Example

Cared Addresses

Cared Addresses
AN1827

MOTOROLA 15

Application Note
Page Program/Margin Read Algorithm

In the MC68HC908AS60, programming of the FLASH memory is done
on a page-by-page basis. A page consists of eight bytes, from
addresses $XXX0 to $XXX7 or from $XXX8 to $XXXF. Therefore, the
addresses of the first byte in a page must be $XXX0 or $XXX8.

This FLASH memory requires the smart programming algorithm. The
smart programming algorithm is defined as an iterative program and
margin read sequence. Every page program operation is followed by a
margin read until the data is programmed successfully. The margin read
step of the smart programming algorithm is used to ensure programmed
bits are programmed to sufficient margin for data retention over the
device’s lifetime.

The smart programming algorithm steps are shown here and in the
Figure 7 flowchart.

1. Initialize attempt counter.

The sequence will be attempted until the count reaches flsPulses.

2. Set PGM = 1 and set FDIV bits.

PGM = 1 configures the FLASH memory for a program operation
and enables the latching of the address and data for
programming. The FDIV bits determine the charge pump
frequency. The frequency should be selected within the range
between 1.8 MHz and 2.5 MHz. Refer to Charge Pump.

3. Read the FLASH block protect register.

The block protect register must be read before high voltage can be
enabled. If the desired address is in a protected block, the
programming will fail.

4. Write data to the page being programmed (typically 8 bytes).

This requires separate write operations for each byte and the
addresses of the page must be $XXX0 to $XXX7, or $XXX8 to
$XXXF.
AN1827

16 MOTOROLA

Application Note
Page Program/Margin Read Algorithm
5. Set HVEN = 1.

Internal high voltage is applied for programming.

6. Wait for a time, tStep.

tStep is the time high voltage is applied for every program pulse.

7. Set HVEN = 0.

Internal high voltage is disabled.

8. Wait for a time, tHVTV.

Wait for programming voltages to dissipate before margin reading.

9. Set MARGIN = 1.

This configures the FLASH memory for margin read operation.

10. Wait for a time, tVTP.

Time to discharge the margin read voltage.

11. Set PGM = 0.

This step disables the programming operation.

12. Wait for a time, tHVD.

After a time, tHVD, the memory can be accessed in normal read
mode.

13. Read programmed data (margin read process).

This requires separate read operations for each byte.

14. Compare margin read data with data written in Step 4.

This requires separate read operations for each byte.

15. Clear the MARGIN bit.

Disable the margin read operation.

16. Increment attempt counter since programming was not
successful.

17. If any byte of programmed data does not match the margin read
data, then there are two options. If the count is less than the
maximum (flsPulses(); return to step 2 to repeat programming of the
same page. If the attempt to program count has reached flsPulses,
the programming operation has failed.
AN1827

MOTOROLA 17

Application Note
Figure 7. FLASH Smart Programming Algorithm Flowchart

2. SET PGM BIT AND FDIV BITS

8. WAIT A TIME, tHVTV

10. WAIT A TIME, tVTP

5. SET HVEN BIT

11. CLEAR PGM BIT

9. SET MARGIN BIT

12. WAIT A TIME, tHVD

16. INCREMENT ATTEMPT COUNTER

YES

NO

YES

NO

PROGRAMMING OPERATION
FAILED

PROGRAMMING OPERATION
COMPLETE

4. WRITE DATA TO SELECTED PAGE

6. WAIT A TIME, tStep

7. CLEAR HVEN BIT

13. MARGIN READ PAGE OF DATA15. CLEAR MARGIN BIT

OF MARGIN READ DATA
EQUAL TO

WRITE DATA
17. ATTEMPT COUNT

EQUAL TO
flsPulses

3. READ FLBPR

CLEAR MARGIN BIT

14. ALL BYTES

1. INITIALIZE ATTEMPT COUNTER TO 0

PROGRAMMING FLASH

Notes:
1) This algorithm is mandatory for

programming the FLASH.
2) This page program algorithm assumes

the page(s) to be programmed are
initially erased.

?

?

AN1827

18 MOTOROLA

A
N

182

M
O

T
O

R
O

LA
19

A
pplication N

ote
P

age P
rogram

/M
argin R

ead A
lgorithm

gramming Algorithm

14 15

.

..

..

ATA

DATA TO WRITE DATA

. IN
TE

R
N

A
L

U
S

E
R

 C
O

N
T

R
O

LLA
B

LE

S
IG

N
A

LS
R

E
G

IS
T

E
R

S

7

Figure 8. Timing Diagram of One Page Program-Margin Read Step in the Smart Pro

PGM

FDIV1

FDIV0

IT12

IAB

IDB

MARGIN

HVEN

IRW

...

... ...

...

... ...

...

...

...

2 3 4 5 6 7 8 9 10 11 12 13

 tStep tHVTV tVTP tHVD

...

...

...

...

...

...

...

...

...

...

...

...

..

.

.

STEP

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

1. INITIALIZE ATTEMPT COUNTER (NOT SHOWN)

SET PGM AND FDIV BITS

READ FLBPR

WRITE DATA TO SELECTED PAGE

SET HVEN BIT

WAIT A TIME, tStep

CLEAR HVEN BIT

WAIT A TIME, tHVTV

SET MARGIN BIT

WAIT A TIME, tVTP

CLEAR PGM BIT

WAIT A TIME, tHVD

MARGIN READ PAGE OF D

COMPARE MARGIN READ

CLEAR MARGIN BIT15.

14.

... ..

— DO NOT CARE DATA

Application Note
The smart programming algorithm ensures programming data retention
and minimum program time and reduces the possibility of program
disturb. The margin read operation imposes a more stringent read
condition on the bit cell so that long-term data retention is ensured. The
operation is the same as the ordinary read operation except the margin
bit is set (MARGIN = 1). However, when the margin read operation is
executed, data is read automatically with seven additional bus cycles per
byte. This additional settling time allows sensing of the lower bit cell
current.

The smart programming algorithm also uses multiple short program
pulses instead of using one long program pulse. Therefore, whenever
the margin read is successful, the page programming is completed even
if the program pulses do not reach the maximum. If the program pulses
reach the maximum, it means that programming operation has failed.

NOTE: When the COP is enabled, the seven additional cycles of the margin
read operation must be considered. Since the COP counter continues to
run during the additional cycles, the additional cycles need to be added
to the COP feed loop.

NOTE: When the block protect bits in the FLASH block protect register are set,
a portion of the memory will be locked so that no further erase or
program operation may be performed. However, when high voltage is
applied on the IRQ pin, the whole FLASH memory is unprotected. The
details are described in the Control and Block Protect Registers.
AN1827

20 MOTOROLA

Application Note
Frequently Asked Questions
Frequently Asked Questions

These questions and answers are designed to help the user with
frequent concerns.

Question 1 I cannot program/erase FLASH memory at all. What should I consider to
make my program/erase code work?

Answer 1 Check the following:

• Did you use the smart programming algorithm in your
programming code?
The smart programming algorithm ensures that the FLASH is
programmed for sufficient data retention and in minimum program
time. Furthermore, not following this algorithm can lead to
overprogramming, which risks program disturb. The use of the
smart programming algorithm is highly recommended. (Refer to
Page Program/Margin Read Algorithm.)

• Is each step of the smart programming algorithm (or erase
algorithm) performed in the right order?
The sequence of the program and erase operations are
interlocked in hardware so only the prescribed order of these
operations can occur. However, other non-FLASH operations may
occur between the steps shown.

• Is the memory block where you want to program/erase
unprotected?
The block protect feature of the FLASH is present to prevent
unintentional programming or erasing. The block protect bits must
be set such that the memory to be erased or programmed is
unprotected. The only way to override the block protect bits is to
apply voltage VHI on IRQ during the erase and program
algorithms. (Refer to Block Protection.)

• Are delay times such as tStep, tErase, tHVD, etc., within the
specification?
Timing is critical to ensure proper FLASH operation. Delay times
that are too long or too short can alter the FLASH performance to
the point where it does not work or is not reliable. Motorola does
AN1827

MOTOROLA 21

Application Note
not guarantee FLASH performance if the wrong delay times are
used.

• Is the correct FLASH register being written to enable erase or
program?
The MC68HC908AS60 has two FLASH arrays with two separate
sets of control and block protect registers. Make sure the
appropriate register is being addressed. Refer to Control and
Block Protect Registers.

• Is the maximum pulse value (flsPulses) set correctly according to
specification?
Usually, the FLASH will program in fewer than the maximum
specified number of program pulses allowed. However, the
specification is chosen to ensure that even the worst-case
(slowest) bits program by allowing enough programming time.
Setting this value lower than the specification may not work all the
time. Refer to the electrical specifications in MC68HC908AS60
Advance Information, Motorola document order number
MC68HC908AS60/D.

• Is the charge pump frequency correct?
The charge pump frequency has to be set between 1.8 MHz and
2.5 MHz. If the bus speed is not between 1.8 MHz and 2.5 MHz,
you must set FDIV bits to generate a suitable charge pump
frequency. Refer to Charge Pump.

• Is the COP enabled?
If the COP is enabled, make sure that the COP bit is cleared
before the COP reset occurs. Remember that in margin read
mode, every byte requires seven additional cycles for sensing.
Refer to the Page Program/Margin Read Algorithm.

Question 2 What is the FLASH charge pump?

Answer 2 The charge pump is a dynamic (clocked) circuit which generates high
voltages internally in the FLASH to program and erase the non-volatile
memory.
AN1827

22 MOTOROLA

Application Note
Frequently Asked Questions
Question 3 The MC68HC908AS60 FLASH programs one page (eight bytes) at a
time. Do I always have to program the entire page?

Answer 3 No, it is not necessary to program the entire page. Addresses which are
not programmed are left as they were before the page programming was
started. If one page includes reserved bytes, these bytes should not be
programmed.

Question 4 Do I have to use the smart programming algorithm?

Answer 4 The use of smart programming algorithm is required. Motorola does not
guarantee the performance of the FLASH if this algorithm is not followed.
Refer to Page Program/Margin Read Algorithm.

Question 5 During a program/erase process, can I execute an interrupt service or
include additional steps?

Answer 5 Unrelated (non-FLASH) steps may be included between steps of the
program/erase algorithms as long as the sequence of the steps remains
consistent. However, interrupt service routines can cause errors in the
program or erase timing and lead to corrupt or missing data in the
FLASH. Motorola does not guarantee performance of the FLASH if
interrupts are not masked during the program or erase operations.

Question 6 I am executing program/erase code out of one of the memory arrays.
Can the same array be programmed/erased?

Answer 6 No.

Question 7 In running the program/erase code in one of the memory arrays, can the
other memory array be programmed/erased?

Answer 7 Yes. The MC68HC908AS60 has two FLASH memory arrays. One array
can be used for executing code while programming/erasing the other.
AN1827

MOTOROLA 23

Application Note
Question 8 Can I program/erase both FLASH arrays at the same time?

Answer 8 No. The charge pump is shared between both arrays to minimize silicon
area and cost. Therefore, only one high voltage FLASH operation (either
program or erase) can occur at a time on the MC68HC908AS60.

Question 9 The FLASH specification states that a maximum of eight page program
cycles can be done per row between erase cycles. What does this
mean?

Answer 9 This specification states that a row (64 bytes of eight pages) should not
be programmed more than eight times before erasing. Programming the
row in excess of eight times risks inadvertent programming of erased
bits. (This type of fault is known as program disturb.) Programming is
done on a per-page basis where eight smart programming cycles are
used typically to program eight pages, programming the entire row of 64
bytes. If further programming is required on a row after eight program
cycles, the row must be erased first before it is programmed again.

Question 10 When writing eight bytes of data to one page of FLASH memory for
programming, does the order of written data matter?

Answer 10 No, as long as the bytes are written within a page, the data is latched for
the programming operation.

Question 11 I cannot program/erase the FLASH block protect register (FLBPR).

Answer 11 To program or erase the FLBPR, you must apply VHi on the IRQ pin.
Refer to Control and Block Protect Registers.

Question 12 Does bus frequency affect the programming time? For example, is
programming time using 8-MHz bus frequency shorter than using 2-MHz
bus frequency?

Answer 12 FLASH program times using an 8-MHz bus verses a 2-MHz bus have
minimal difference.
AN1827

24 MOTOROLA

Application Note
Frequently Asked Questions
Question 13 I’m sending external data serially into the MC68HC908AS60 for
programming. How can I speed up this process?

Answer 13 If you run the MC68HC908AS60 at a higher bus speed, you can improve
the non-FLASH overhead during programming.

Question 14 If I program FLASH with 2-MHz bus frequency, can I read the FLASH
with 8-MHz bus frequency without any problems?

Answer 14 Yes. The FLASH will meet all specifications, including data retention
performance, if the FLASH is programmed/erased and used within
specification limits.

Question 15 Why is the maximum number of program attempts (flsPulses) so high?

Answer 15 This limit is set high to account for the worst case manufacturing process
variations, ensuring that the slowest FLASH bit will still program. On
average, the page program times are much faster than this worst case
limit.

Question 16 The program/erase operation is not successful in the monitor mode.

Answer 16 The FLASH memory is protected in the monitor mode to make it difficult
for unauthorized users to view the memory contents. Before
programming/erasing FLASH, the security feature on the part must be
"broken" to view the FLASH contents. When an attempt to break security
fails, the FLASH is not addressed during reads and invalid data will be
observed. Refer to the monitor ROM section, which describes how to
break security, in the MC68HC908AS60 Advance Information, Motorola
document order number MC68HC908AS60/D.

Question 17 I have failed to break security in monitor mode. Can I execute a bulk
erase?

Answer 17 Yes. Bulk erase is the only FLASH operation to attempt when failing to
break security in monitor mode. Make sure the block protect feature is
not asserted or override it to bulk erase the device.
AN1827

MOTOROLA 25

Application Note
Question 18 In the monitor mode, how I can tell if the break security has been
successful?

Answer 18 If the security check was unsuccessful, memory reads will return the
same data for every byte read instead of the code or data expected.

Question 19 Do I need to confirm the memory contents after programming the
FLASH?

Answer 19 It is recommended that the code used to program the FLASH also
include a verification step to ensure the integrity of the data programmed
into the FLASH. Some sort of error flag should be set if the data in the
FLASH does not agree with what was programmed.

Question 20 A block of memory in the FLASH array is protected by programming the
block protect register. When I execute bulk erase without applying high
voltage on the IRQ pin, will all of the array, except for the protected block,
be erased?

Answer 20 No. If any part of the array being bulk erased is protected, the bulk erase
operation is defeated unless high voltage is placed on IRQ.

Question 21 What is the expected lifetime of FLASH memory?

Answer 21 The minimum program/erase endurance and data retention lifetime of
the FLASH memory for all conditions is found in MC68HC908AS60
Advance Information, Motorola document order number
MC68HC908AS60/D.

Question 22 What steps can I take to prolong the life of the FLASH memory?

Answer 22 The FLASH memory has a finite program/erase and data retention
lifetime. However, the specification shows the minimum lifetime
considering the worst case set of conditions applied to the part. In
general, the FLASH will last longer if it is used at temperatures much
lower than the maximum specified, such as 25°C. The program/erase
endurance and data retention of this FLASH memory is worst at 125°C.
AN1827

26 MOTOROLA

Application Note
Schematic
Question 23 Can I program/erase/read the FLASH at the maximum temperature
limits continuously for the specified lifetime of the part?

Answer 23 Yes.

Question 24 What modes of operation cause the most noise?

Answer 24 Program and erase modes cause a significant amount of EMI
(electromagnetic interference) and power supply noise due to the high
transient current demand of the charge pump. High accuracy ADC
(analog-to-digital) conversions may not be possible while the FLASH is
programming or erasing.

Schematic

Figure 9 shows the hardware schematic for the FLASH 2TS.
AN1827

MOTOROLA 27

A
p

p
lic

a
tio

n N
o

te

28
M

O
T

O
R

O
LA

22, 1999 Sheet 1 of 1

mber REV

elease Level RP 1.0

d Erasing 2TS FLASH Memory

nics Systems Engineering

.1uF
A
N

1827

Figure 9. Hardware Schematic for Programming
and Erasing FLASH 2TS on the MC68HC908AS60

Date: October

Size Document Nu

B R

Title

Programming an

Body Electro

GND

VHI

GND

VDD

5 V +/- 10%8 V +/- 1v

VDD

VDD

RESET
SWITCH

GND

 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46

4
7
4
8
4
9
5
0
5
1

V
D
D
A

5
2

V
S
S
A

1

C
G
M
X
F
C

2

O
S
C
2

3

O
S
C
1

4567

 8IRQ* 9RST* 10
11
12
13
14
15
16
17
18
19
20

2
1

2
2

2
3

V
S
S

2
4

V
D
D

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
4

MC68HC908AS60

0.1uF

10K

0.1uF

VDD VHI

IRQ

0

GND

VOLTAGE
SWITCH

VDD

GND

GND

VDD

GND GND

10K

0.1uF

NC 1VCC 14

OUT 8 GND 7

9.8304MHz

Note: VDD should be applied to IRQ at all times, except when
programming the FLASH block protect registers. When programming
the FLASH block protect registers, high voltage (VHi) must be applied to IRQ.

Application Note
Assembly Source Code
Assembly Source Code

Sample assembly source code for FLASH programming and erasing are
included in this section.

The routines Erase.mrt and Program.mrt are the respective main
routines for erasing and programming. Both disable the COP and
initialize the charge pump clocks. The main routines also set up the
parameters required by the subroutines such as FLASH_addr and the
size of the erase block or the data bytes to be programmed. Erase.mrt
can erase a 64-byte, 512-byte, 16-Kbyte, or a 32-Kbyte block of FLASH.
Program.mrt programs one page (eight bytes) of FLASH with the data
01, 02, 03, 04, 05, 06, 07, 08. Figure 10 and Figure 11 are the
flowcharts for Erase.mrt and Program.mrt.

The subroutine EraseRoutine includes the erasing flowchart and is
called from Erase.mrt. It calls subroutine WriteFLCR to set or clear
various bits in the FLCR register and subroutine Delay to generate the
required delays between steps.

Prog8Bytes is the smart programming algorithm subroutine called
from Program.mrt. It also uses the WriteFLCR and Delay

subroutines. Note that Prog8Bytes can make multiple attempts (up to
the value set in flsPulses) to program one page.

The flowcharts for EraseRoutine, Prog8Bytes, WriteFLCR and
Delay are Figure 12, Figure 13, Figure 14, and Figure 15,
respectively.

NOTE: VDD should be applied to IRQ at all times, except when programming the
FLASH block protect registers. When programming the FLASH block
protect registers, flip the switch such that high voltage is applied to IRQ.
AN1827

MOTOROLA 29

Application Note
Figure 10. Erasing Main Routine Flowchart

DISABLE COP

END

Erase.mrt
/ Er_mrt.c

CALL EraseRoutine
TO ERASE BLOCK

LOAD ANY FLASH
ADDRESS WITHIN THE

BLOCK ADDRESS RANGE
TO BE ERASED INTO

FLASH_addr

WRITE TO FDIV BITS
IN FLCR REGISTERS

TO SET CHARGE PUMP
CLOCK

SET BLK BITS IN THE
FLCR ACCORDING TO

TO THE SIZE OF BLOCK
TO ERASE
AN1827

30 MOTOROLA

Application Note
Assembly Source Code
Figure 11. Programming Main Routine Flowchart

Program.mrt
/ Prog_mrt.c

LOAD DATA BUFFER
WITH 8 BYTES
TO PROGRAM

ERROR OCCURS?

DISABLE COP

CALL Prog8Bytes
TO PROGRAM PAGE

END END

NO

YES

WRITE TO FDIV BITS
IN FLCR REGISTERS TO

SET CHARGE PUMP
CLOCK

LOAD SELECTED
FLASH PAGE

STARTING ADDRESS
INTO FLASH_addr

PROGRAMMING
SUCCESS

PROGRAMMING
FAILURE
AN1827

MOTOROLA 31

Application Note
Figure 12. Subroutine EraseRoutine Flowchart

READ FLASH BLOCK
PROTECT REGISTERS

EraseRoutine
(Prog_er.srt /
Prog_er_srt.c)

SET I BIT TO MASK
INTERRUPTS

CALL Delay TO
WAIT tKill

CALL WriteFLCR TO
CLEAR ERASE BIT

CLEAR I BIT TO
ENABLE INTERRUPTS

RETURN

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

STEP 6

STEP 7

STEP 8

STEP 9

WRITE TO

ANY DATA VALUE

CALL WriteFLCR
TO SET ERASE BIT

CALL Delay TO
WAIT tHVD

CALL WriteFLCR
TO SET HVEN BIT

CALL Delay TO
WAIT tErase

 CALL WriteFLCR
TO CLEAR HVEN BIT

FLASH_addr WITH
AN1827

32 MOTOROLA

Application Note
Assembly Source Code
Figure 13. Subroutine Prog8Bytes Flowchart

READ FLASH BLOCK
PROTECT REGISTERS

CALL WriteFLCR
TO SET HVEN BIT

CALL Delay TO
WAIT tStep

CALL WriteFLCR
TO SET PGM BIT

 CALL WriteFLCR
TO CLEAR HVEN BIT

CALL Delay TO
WAIT tHVTV

CALL WriteFLCR
TO SET MARGIN BIT

CALL WriteFLCR
TO CLEAR PGM BIT

A

B

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

STEP 6

STEP 7

STEP 8

STEP 9

COPY DATA FROM
BUFFER TO SELECTED

FLASH PAGE

CLEAR ATTEMPT
COUNTER

REPROGRAM THE SAME PAGE

STEP 10

STEP 11

SET I BIT TO MASK
INTERRUPTS

Prog8Bytes
(Prog_er.srt /
Prog_er_srt.c)

CALL Delay
TO WAIT tVTP
AN1827

MOTOROLA 33

Application Note
Figure 13. Subroutine Prog8Bytes Flowchart (Continued)

CALL Delay
TO WAIT tHVD

CALL WriteFLCR TO
CLEAR MARGIN BIT

CLEAR I BIT TO
ENABLE INTERRUPTS

CALL WriteFLCR TO
CLEAR MARGIN BIT

B

A

NO

YES

NO

YES

STEP 12

STEPS 13 AND 14
STEP 15

STEP 16

STEP 17

INCREMENT ATTEMPT
COUNTER

REPROGRAM THE SAME PAGE

IS ATTEMPT
COUNTER =

flsPulses?

Note:
ZERO VALUE = PROGRAMMING SUCCESS
NON-ZERO VALUE = PROGRAMMING FAILURE

RETURN
* SEE NOTE *

PROGRAMMING FAILURE

WAS EACH
BYTE PROGRAMMED

CORRECTLY

ACCUMULATOR VALUE (OR RETURNED VALUE) INDICATES THE PROGRAMMING RESULT.

?

AN1827

34 MOTOROLA

Application Note
Assembly Source Code
Figure 14. Subroutine WriteFLCR Flowchart

Figure 15. Subroutine Delay Flowchart

RETURN

IS
FLASH_addr >=

FLASH-1 ($8000)
?

SET OR CLEAR BIT
IN FLCR2

SET OR CLEAR BIT
IN FLCR1

WriteFLCR
(Prog_er.srt /
Prog_er_srt.c)

NO

YES

RETURN

DELAY
(Prog_er.srt /
Prog_er_srt.c)

WRITE FOR A VARIABLE
AMOUNT OF TIME

DEPENDING ON VALUE
OF ACCUMULATOR

(OR FUNCTION PARAMETER)
AN1827

MOTOROLA 35

Application Note
Assembly Source Code

**
**
* *
* Erase FLASH 2TS Memory on the MC68HC908AS60 *
* *
**
* File Name: Erase.mrt Copyright (c) Motorola 1999 *
* *
* Current Revision: 1.0 *
* Current Release Level: RP *
* Current Revision Release Date: 9/6/99 *
* *
* Current Release Written By: Kim Sparks *
* Motorola Systems Engineering - Austin, TX *
* *
* Assembled Under: CASM08 (P&E Micro Inc.) Ver.: 3.06 SLD *
* *
* Project Folder Name: FLASH_2TS *
* *
* Part Family Software Routine Works With: HC08 *
* Part Module(s) Software Routine Works With: fls32k_a01 *
* *
* Routine Size (Bytes): 270 *
* Stack Space Used (Bytes): 6 *
* RAM Used (Bytes): 2 *
* Global Variables Used: FLASH_addr *
* Subroutine Called: EraseRoutine, WriteFLCR *
* *
* Full Functional Description Of Routine Design: *
* Erase.mrt is the main routine that demonstrates how to erase different *
* size blocks of FLASH 2TS memory on the MC68HC908AS60. *
* *
**
* Motorola reserves the right to make changes without further notice to *
* any product herein. Motorola makes no warranty, representation or *
* guarantee regarding the suitability of its products for any particular *
* purpose, nor does Motorola assume any liability arising out of the *
* application or use of any product, circuit, and specifically disclaims *
* any and all liability, including without limitation consequential or *
* incidental damages. "Typical" parameters can and do vary in different *
* applications. All operating parameters, including "Typicals" must be *
* validated for each customer application by customer’s technical experts. *
* Motorola does not convey any license under its patent rights nor the *
* rights of others. Motorola products are not designed, intended, or *
* authorized for use as components in systems intended for surgical *
* implant into the body, or other applications intended to support or *
* sustain life, or for any other application in which the failure of the *
AN1827

36 MOTOROLA

Application Note
Assembly Source Code
* Motorola product could create a situation where personal injury or death *
* may occur. Should Buyer purchase or use Motorola products for any such *
* intended or unauthorized application, Buyer shall indemnify and hold *
* Motorola and its officers, employees, subsidiaries, affiliates, and *
* distributors harmless against all claims, costs, damages, and expenses, *
* and reasonable attorney fees arising out of, directly or indirectly, any *
* claim of personal injury or death associated with such unintended or *
* unauthorized use, even if such claim alleges that Motorola was negligent *
* regarding the design or manufacture of the part. Motorola and the *
* Motorola symbol are registered trademarks of Motorola, Inc. Motorola, *
* Inc. is an Equal Opportunity/Affirmative Action Employer. *
**
**
***** Include Files *****
**
NOLIST
$INCLUDE "H908as60.frk" ;Equates for all registers and bits in

; the MC68HC908AS60

**
***** Program Specific Equates *****
**
eraseallrows. equ %00000000 ;Full array: 32 Kbytes (A15)
erasehalfrows. equ %00010000 ;One-half array: 16 Kbytes

; (A15 & A14)
erase8rows. equ %00100000 ;Eight rows: 512 bytes (A15-A9)
erase1row. equ %00110000 ;Single row: 64 bytes (A15-A6)

**
***** RAM Variable Declarations *****
**

org ram1
$INCLUDE "Prog_er.var" ;RAM variable definitions
LIST

**
***** Erase Main Routine *****
**
* This routine initializes the 908AS60 before calling the erasing routine, *
* EraseRoutine. If a user plans to incorporate EraseRoutine into his/her *
* program, make sure the FLASH control registers and the FLASH_addr are *
* initialized before calling EraseRoutine. *
* *
* After the initialization, EraseRoutine is called to erase a data block *
* of 64 bytes, 512 bytes, 16 Kbytes or 32 bytes depending on the value in *
* the control registers. FLASH_addr is any address within the block that *
* will be erased. This program does not verify that the operation was *
* successful. *
**
AN1827

MOTOROLA 37

Application Note
org flash-1

Start:
mov #$71,config-1 ;Turn off the COP, but leave the LVI on

lda #$00 ;Set up the frequency divide control
sta flcr1 ; bits in flcr1 & flcr2 for an
sta flcr2 ; appropriate charge pump clock

ldhx #$4001 ;Any address within the block that will
; be erased

sthx FLASH_addr ;Set address of erase block

lda #eraseallrows. ;Set BLK1 and BLK0 in appropriate
jsr WriteFLCR ; FLASH control register to specify the

; size of block to erase

jsr EraseRoutine ;Erase the block of FLASH including the
; specified address

bra *

**
***** Subroutine Body Includes Section *****
**
$INCLUDE "prog_er.srt" ;WriteFLCR and Delay subroutines

**
***** Reset Vectors *****
**

org reset
fdb Start

**
**
* *
* Program / Margin Read FLASH 2TS Memory on the MC68HC908AS60 *
* *
**
* File Name: Program.mrt Copyright (c) Motorola 1999 *
* *
* Current Revision: 1.0 *
* Current Release Level: RP *
* Current Revision Release Date: 9/6/99 *
* *
* Current Release Written By: Kim Sparks *
* Motorola Systems Engineering - Austin, TX *
* *
* Assembled Under: CASM08 (P&E Micro Inc.) Ver.: 3.06 SLD *
* *
* Project Folder Name: FLASH_2TS *
* *
AN1827

38 MOTOROLA

Application Note
Assembly Source Code
* Part Family Software Routine Works With: HC08 *
* Part Module(s) Software Routine Works With: fls32k_a01 *
* *
* Routine Size (Bytes): 278 *
* Stack Space Used (Bytes): 5 *
* RAM Used (Bytes): 11 *
* Global Variables Used: FLASH_addr, data, attempt *
* Subroutine Called: Prog8Bytes *
* *
* Full Functional Description Of Routine Design: *
* Program.mrt is the main routine for the programming operation. It *
* demonstrates a smart programming algorithm that minimizes the amount *
* of time needed to program a page of FLASH 2TS memory on the *
* MC68HC908AS60. One page consists of eight consecutive bytes of FLASH *
* memory starting at either address $xxx0 or $xxx8. *
* *
**
***** Include Files *****
**
NOLIST
$INCLUDE "H908as60.frk" ;Equates for all registers and bits in

; the MC68HC908AS60
org ram1

$INCLUDE "Prog_er.var" ;RAM variable definitions
LIST

**
***** Program/Margin Read Main Routine *****
**
* This routine initializes the 908AS60 before calling the programming *
* routine, Prog8Bytes. If a user plans to incorporate Prog8Bytes into *
* his/her program, make sure the FLASH control registers, FLASH_addr and *
* data buffer are initialized before calling Prog8Bytes. *
* *
* After the initialization, Prog8Bytes is called to program 8 data bytes, *
* or one page of FLASH memory. If programming was successful, then the *
* program will jump to the branch always statement in "No_Error." If *
* programming failed, then the program will remain at the branch always *
* statement in "Load." *
**

org flash-2

Start:
mov #$71,config-1 ;Turn off the COP, but leave the LVI on

lda #$00 ;Set up the frequency divide control
sta flcr1 ; bits in flcr1 & 2 for the appropriate
sta flcr2 ; charge pump clock

ldhx #$8000 ;Load FLASH_addr with address of where
sthx FLASH_addr ; the 8 bytes should start being
AN1827

MOTOROLA 39

Application Note
; programmed. Must be XXX0 or XXX8

clrh ;Fill the RAM buffer, data, with values
ldx #8 ; to program into FLASH.

Load: stx data-1,X ; (ie. 01,02,03,04,05,06,07,08)
decx
bne Load

jsr Prog8Bytes ;Program the 8 data bytes

cbeqa #0,No_Error ;Check if a programming error occurred

bra * ; **Programming failed**
; Take appropriate action

No_Error:
bra * ; **Programming successful**

; End of program

**
***** Subroutine Body Includes Section *****
**
$INCLUDE "prog_er.srt" ;Prog8Bytes, WriteFLCR and Delay

; subroutines
**
***** Vectors *****
**

org reset
fdb Start

**
**
* *
* Programming and Erasing FLASH 2TS Memory on the MC68HC908AS60 *
* *
**
* File Name: Prog_er.var Copyright (c) Motorola 1999 *
* *
* Current Revision: 1.0 *
* Current Release Level: RP *
* Current Revision Release Date: 9/6/99 *
* *
* Current Release Written By: Kim Sparks *
* Motorola Systems Engineering - Austin, TX *
* *
* Assembled Under: CASM08 (P&E Micro Inc.) Ver.: 3.06 SLD *
* *
* Project Folder Name: FLASH_2TS *
* *
* Part Family Software Routine Works With: HC08 *
* *
* RAM Used (Bytes): 11 *
* *
AN1827

40 MOTOROLA

Application Note
Assembly Source Code
* Description: *
* RAM variable definitions for Program.mrt and Erase.mrt *
**
***** RAM Variables *****
**
FLASH_addr rmb $2 ;16 bit Address of FLASH memory to

; erase or program
data: rmb $8 ;Eight data bytes that will be

; programmed
attempt: rmb $1 ;Counts number of attempts to program

; a page
**
* *
* Program / Margin Read and Erase FLASH 2TS Memory Subroutines *
* *
**
* File Name: Prog_er.srt Copyright (c) Motorola 1999 *
* *
* Current Revision: 1.0 *
* Current Release Level: RP *
* Current Revision Release Date: 9/6/99 *
* *
* Current Release Written By: Kim Sparks *
* Motorola Systems Engineering - Austin, TX *
* *
* Assembled Under: CASM08 (P&E Micro Inc.) Ver.: 3.06 SLD *
* *
* Project Folder Name: FLASH_2TS *
* *
* Part Family Software Routine Works With: HC08 *
* Part Module(s) Software Routine Works With: fls32k_a01 *
* *
* *
* Module Size (Bytes): EraseRoutine 53 *
* Prog8Bytes 160 *
* WriteFLCR 20 *
* Delay 9 *
* Stack Space Used (Bytes): EraseRoutine 4 *
* Prog8Bytes 3 *
* WriteFLCR 0 *
* Delay 1 *
* RAM Used (Bytes): EraseRoutine 2 *
* Prog8Bytes 11 *
* WriteFLCR 0 *
* Delay 0 *
* Global Variable(s) Used: EraseRoutine FLASH_addr *
* Prog8Bytes FLASH_addr, data, attempt *
* WriteFLCR FLASH_addr *
* Delay None *
* Submodule(s) Called: EraseRoutine WriteFLCR, Delay *
* Prog8Bytes WriteFLCR, Delay *
AN1827

MOTOROLA 41

Application Note
* WriteFLCR None *
* Delay None *
* Calling Sequence: JSR EraseRoutine, JSR Prog8Byte *
* JSR WriteFLCR, JSR Delay *
* Entry Label: EraseRoutine, Prog8Bytes, WriteFLCR *
* Delay *
* Entry Conditions: EraseRoutine 2 bytes address defined at *
* FLASH_addr *
* Prog8Bytes 2 bytes address defined at *
* FLASH_addr *
* 8 programming bytes located *
* at variables data *
* WriteFLCR 2 bytes address defined at *
* FLASH_addr *
* FLCR (FLASH Control *
* Register) bit definition *
* passed in accumulator *
* Delay Delay variable passed in *
* accumulator *
* Number of Exit Points: 4 *
* Exit Label: EraseRoutine Erase990 *
* Prog8Bytes Prog990 *
* WriteFLCR FLCR990 *
* Delay Delay990 *
* Exit Conditions: EraseRoutine None *
* Prog8Bytes pass/fail result in *
* accumulator *
* WriteFLCR None *
* Delay None *
* *
* Full Functional Description Of Subroutine: *
* Prog_er.srt consists of two primary subroutines called EraseRoutine *
* and Prog8Bytes. These demonstrate 2TS flash erasing and programming *
* algorithms, respectively. The routines also call other subroutines *
* WriteFLCR and Delay. *
* *
**
***** FLASH Delay Equates *****
**
* Each delay time related to FLASH 2TS program and erase operations is *
* calculated with bus speed 2.4576 MHz. *
**
tERASE: equ $F6 ;FLASH 2TS block/bulk erase time

; (~102 ms)
tKILL: equ $0A ;FLASH 2TS high-voltage kill time

; (~209 µs)
tHVD: equ $03 ;FLASH 2TS return to read time

; (~66 µs)
tSTEP: equ $31 ;FLASH 2TS page program step size

; (~1 ms)
tHVTV: equ $03 ;FLASH 2TS HVEN low to MARGIN high
AN1827

42 MOTOROLA

Application Note
Assembly Source Code
; time (~66 µs)
tVTP: equ $08 ;FLASH 2TS MARGIN high to PGM low

; time (~168 µs)
flsPULSES: equ $64 ;FLASH 2TS maximum page program pulses

; (100 pulses)
**
***** Erase a Block of FLASH Memory Subroutine *****
**
* This routine erases a block of FLASH of the size specified in the FLASH *
* Control Registers and at the location specified by FLASH_addr. *
* FLASH_addr is any address within the block to be erased. The routine *
* follows the basic 9 step sequence of the FLASH erase operation. *
* *
* Initializations required: *
* Set charge pump clock and block erase size in FLCR1 and FLCR2; *
* FLASH_addr set *
* Values returned: *
* none *
**
EraseRoutine:

sei ;Disable interrupts
ldhx FLASH_addr ;Load the starting address of the block

; to be erased

lda #erase. ;Step 1 - Set the ERASE bit
jsr WriteFLCR

lda flbpr1 ;Step 2 - Read from block protect
lda flbpr2 ; registers

sta ,X ;Step 3 - Write to any FLASH address
; within the block address range to be
; erased with any data value
;(indexed, 16 bit offset=H:X+$00)

lda #hven. ;Step 4 - Set the HVEN bit
jsr WriteFLCR

lda #terase ;Step 5 - Wait for time tERASE
pshx
ldx #$14

Again:
jsr Delay
dbnzx Again
pulx

lda #hven. ;Step 6 - Clear the HVEN bit
jsr WriteFLCR

lda #tkill ;Step 7 - Wait for time tKILL
jsr Delay
AN1827

MOTOROLA 43

Application Note
lda #erase. ;Step 8 - Clear the ERASE bit
jsr WriteFLCR

lda #thvd ;Step 9 - Wait for time tHVD
jsr DELAY

cli ;Enable interrupts

Erase990:
rts

**
***** Program/Margin Read 8 Bytes of FLASH Memory Subroutine *****
**
* This routine programs the 8 bytes of data from the RAM data buffer to *
* the FLASH memory starting at FLASH_addr. The programming is done in *
* ascending order, ie. data[0] -> FLASH_addr[0], data[1] -> FLASH_addr[1], *
* etc. *
* *
* The routine is structured into a loop for smart programming so that the *
* minimum amount of high voltage is applied to the FLASH. Each time *
* through the loop is called a "pulse." Each pulse consists of all 17 *
* steps shown in the application note, with the programming time, tSTEP, *
* equal to approximately 1 ms. *
* *
* If all 8 bytes program correctly in the approximately 1 ms time period, *
* then the routine exits and returns control to the calling program. If *
* the 8 bytes do not program correctly, another attempt(pulse) is made. *
* This continues for the maximum number of pulses (flsPULSES). If the 8 *
* bytes are not programmed successfully after a maximum number of pulses, *
* then the programming error flag is incremented, the routine is exited *
* and the error value (any non-zero value) is returned in the accumulator. *
* *
* Initializations required: *
* Set charge pump clock in FLCR1 and FLCR2; FLASH_addr set; data *
* buffer filled *
* Values returned: *
* A = Program Success/Error Flag *
**
Prog8Bytes:

sei ;No interrupts allowed during
; programming

clr attempt ;Step 1 - Clear attempt counter

NextAttempt:
ldhx FLASH_addr ;Load the address of the page to be

; programmed in the HX register

lda #pgm. ;Step 2 - Set the PGM bit
jsr WriteFLCR
AN1827

44 MOTOROLA

Application Note
Assembly Source Code
lda flbpr1 ;Step 3 - Read from the block protect
lda flbpr2 ; registers

lda data ;Step 4 - Copy the 8 bytes of data
sta ,x ; from the RAM buffer to the
lda data+1 ; appropriate FLASH locations
sta 1,x
lda data+2
sta 2,x
lda data+3
sta 3,x
lda data+4
sta 4,x
lda data+5
sta 5,x
lda data+6
sta 6,x
lda data+7
sta 7,x

lda #hven. ;Step 5 - Set the HVEN bit
jsr WriteFLCR

lda #tSTEP ;Step 6 - Wait for time tSTEP
jsr Delay

lda #hven. ;Step 7 - Clear the HVEN bit
jsr WriteFLCR

lda #tHVTV ;Step 8 - Wait for time tHVTV
jsr Delay

lda #margin. ;Step 9 - Set the MARGIN bit
jsr WriteFLCR

lda #tVTP ;Step 10 - Wait for time tVTP
jsr Delay

lda #pgm. ;Step 11 - Clear the PGM bit
jsr WriteFLCR

lda #tHVD ;Step 12 - Wait for time tHVD
jsr Delay

lda ,x ;Step 13 and 14 - Check to see if the
cmp data ; correct data was programmed in the
bne Repeat ; FLASH page. If not, jump to Repeat to
lda 1,x ; do another attempt. If so, jump to
cmp data+1 ; Complete.
bne Repeat
AN1827

MOTOROLA 45

Application Note
lda 2,x
cmp data+2
bne Repeat
lda 3,x
cmp data+3
bne Repeat
lda 4,x
cmp data+4
bne Repeat
lda 5,x
cmp data+5
bne Repeat
lda 6,x
cmp data+6
bne Repeat
lda 7,x
cmp data+7
bne Repeat
jmp Complete

Repeat:
lda #margin. ; ** Program Failure **
jsr WriteFLCR ;Step 15 - Clear the MARGIN bit
inc attempt ;Step 16 - Increment attempt counter
lda attempt

cbeqa #flsPULSES,Return ;Step 17 - If attempt is less than
jmp NextAttempt ; flsPULSES, go back to NextAttempt

; (Step 2)

Complete: ; ** Program Success **
lda #margin. ;Clear the MARGIN bit
jsr WriteFLCR
clra

Return:
cli ;Clear the interrupt mask bit and

; return

Prog990: ;If programming was unsuccessful in
rts ; flsPULSES, the accumulator has a

; non-zero value
AN1827

46 MOTOROLA

Application Note
Assembly Source Code
**
***** Write to a FLASH Control Register *****
**
* This routine determines whether flcr1 or flcr2 should be written to *
* based on the FLASH address specified by FLASH_addr. *
* *
* *
* Initializations required: *
* H:X = FLASH_addr *
* *
* Values returned: *
* None *
**
WriteFLCR:

cphx #flash-1 ;If FLASH_addr is in FLASH-1 array,
bhs Array1 ; jump to Array1

eor flcr2 ;Write to flcr2 register
sta flcr2
bra FLCR990

Array1:
eor flcr1 ;Write to flcr1 register
sta flcr1

FLCR990:
rts

**
***** Delay Routine *****
**
* This routine delays for a variable amount of time depending on the value *
* passed into the routine by the accumulator (A). *
* Delay = (2 + (2 + 45 + 3) * A + 2 + 4) / Bus Freq *
* *
* Initializations required: *
* A = delay variable *
* Values returned: *
* None *
**
Delay:

 pshx ;2 cyc., Store the lower address of
; FLASH_addr on the stack

Loop: ldx #$0F ;2 cyc., Initialize X for inner loop
 dbnzx * ;3 cyc., 15 * 3 = 45 cycles
 dbnza Loop ;3 cyc., Decrement value passed in by

; accumulator and repeat if necessary
 pulx ;2 cyc., Restore the lower address

Delay990:
 rts ;4 cyc., Return
AN1827

MOTOROLA 47

Application Note
C Source Code

The sample assembly source code contained in the previous section is
written in C language in this section.

In C, the main routines are called Er_mrt.c and Prog_mrt.c. The same
flowcharts apply.

/**/
/**/
/* */
/* Erase FLASH 2TS Memory on the MC68HC908AS60 */
/* */
/**/
/* File Name: Er_mrt.c Copyright (c) Motorola 1999 */
/* */
/* Current Revision: 1.0 */
/* Current Release Level: RP */
/* Current Revision Release Date: 10/02/99 */
/* */
/* Current Release Written By: Adeela Gill */
/* Motorola Systems Engineering */
/* Austin, Texas */
/* */
/* Compiled Under: HiCross HC08 (HiWare) Ver.: 5.0.5 */
/* */
/* Project Folder Name: FLASH_2TS */
/* */
/* Part Family Software Routine Works With: HC08 */
/* Part Module(s) Software Routine Works With: fls32k_a01 */
/* */
/* Routine Size (Bytes): 346 */
/* Stack Space Used (Bytes): 9 */
/* RAM Used (Bytes): 2 */
/* Global Variables Used: FLASH_addr */
/* Subroutine(s) Called: EraseRoutine, WriteFLCR */
/* */
/* Full Functional Description Of Routine Design: */
/* Er_main.c is the main routine that demonstrates how to erase */
/* different size blocks of FLASH 2TS memory on the MC68HC908AS60. */
/* */
/**/
/* Motorola reserves the right to make changes without further notice to */
/* any product herein. Motorola makes no warranty, representation or */
/* guarantee regarding the suitability of its products for any particular */
/* purpose, nor does Motorola assume any liability arising out of the */
/* application or use of any product, circuit, and specifically disclaims */
/* any and all liability, including without limitation consequential or */
AN1827

48 MOTOROLA

Application Note
C Source Code
/* incidental damages. "Typical" parameters can and do vary in different */
/* applications. All operating parameters, including "Typicals" must be */
/* validated for each customer application by customer’s technical */
/* experts. Motorola does not convey any license under its patent rights */
/* nor the rights of others. Motorola products are not designed, */
/* intended, or authorized for use as components in systems intended for */
/* surgical implant into the body, or other applications intended to */
/* support or sustain life, or for any other application in which the */
/* failure of the Motorola product could create a situation where */
/* personal injury or death may occur. Should Buyer purchase or use */
/* Motorola products for any such intended or unauthorized application, */
/* Buyer shall indemnify and hold Motorola and its officers, employees, */
/* subsidiaries, affiliates, and distributors harmless against all */
/* claims, costs, damages, and expenses, and reasonable attorney fees */
/* arising out of, directly or indirectly, any claim of personal injury */
/* or death associated with such unintended or unauthorized use, even if */
/* such claim alleges that Motorola was negligent regarding the design or */
/* manufacture of the part. Motorola and the Motorola symbol are */
/* registered trademarks of Motorola, Inc. */
/**/
/**/
/***** Include Files *****/
/**/
#include <as60_flash_frk.c> /* Equates for the registers and bits */

/* of the HC908AS60 that are used */
#include <prog_er_var.c> /* RAM variable definitions */
/**/
/***** Program-Specific Defines *****/
/**/
#define eraseallrows 0x00 /* full array erase: 32 Kbytes */

/* cared addresses A15 */
#define erasehalfrows 0x10 /* one-half array erase: 16 Kbytes */

/* cared addresses A15-A14 */
#define erase8rows 0x20 /* eight row erase: 512 Bytes */

/* cared addresses A15-A9 */
#define erase1row 0x30 /* single row erase: 64 Bytes */

/* cared addresses A15-A6 */
/**/
/***** Function Definitions *****/
/**/
extern void EraseRoutine (void);
extern void writeFLCR (unsigned char);

/**/
/***** Erase Main Routine *****/
/**/
/* This routine initializes the 908AS60 before calling the erasing */
/* routine, EraseRoutine. If a user plans to incorporate EraseRoutine */
/* into his/her program, make sure the FLASH control registers and the */
/* variable FLASH_addr are initialized before calling EraseRoutine. */
/* After the initialization, EraseRoutine is called to erase a data */
AN1827

MOTOROLA 49

Application Note
/* block of 64 bytes, 512 bytes, 16 Kbytes or 32bytes depending on the */
/* value in the control registers. FLASH_addr is any address within the */
/* block that will be erased. This program does not verify that the */
/* operation was successful. */
/**/
void main ()
{

CONFIG1 = 0x71; /*Turn off the COP, but leave the */
/* LVI on */

FLCR1 = 0x00; /*Set up the frequency divide */
FLCR2 = 0x00; /* control bits in flcr1 & flcr2 */

/* for an appropriate charge pump */
/* clock */

FLASH_addr=(unsigned char *)0x4001;
/*Set address of erase block. This */
/* is any address within the block */
/* that will be erased */

writeFLCR(eraseallrows); /*Set BLK1 and BLK0 in appropriate */
/* FLASH control register to specify */
/* the size of block to erase */

EraseRoutine (); /*Erase the block of FLASH including */
/* the specified address */

 while (1);

}
/**/
/**** Subroutine Body Includes ****/
/**/
#include <prog_er_srt.c> /*Prog8Bytes, WriteFLCR and Delay */

/* Subroutines */
/**/
/**/
/* */
/* Program / Margin Read FLASH 2TS Memory on the MC68HC908AS60 */
/* */
/**/
/* File Name: Prog_mrt.c Copyright (c) Motorola 1999 */
/* */
/* Current Revision: 1.0 */
/* Current Release Level: RP */
/* Current Revision Release Date: 10/02/99 */
/* */
/* Current Release Written By: Adeela Gill */
/* Motorola Systems Engineering */
/* Austin, Texas */
/* */
/* Compiled Under: HiCross HC08 (HiWare) Ver.: 5.0.5 */
/* */
/* Project Folder Name: FLASH_2TS */
/* */
/* Part Family Software Routine Works With: HC08 */
/* Part Module(s) Software Routine Works With: fls32k_a01 */
AN1827

50 MOTOROLA

Application Note
C Source Code
/* */
/* Routine Size (Bytes): 368 */
/* Stack Space Used (Bytes): 12 */
/* RAM Used (Bytes): 11 */
/* Global Variables Used: FLASH_addr, data, attempt */
/* Subroutine(s) Called: Prog8Bytes */
/* */
/* Full Functional Description Of Routine Design: */
/* Prog_mrt.c is the main routine for the programming operation. It */
/* demonstrates a smart programming algorithm that minimizes the */
/* amount of time needed to program a page of 2TS FLASH memory on the */
/* MC68HC908AS60. One page consists of eight consecutive bytes of */
/* FLASH memory starting at either address $xxx0 or $xxx8. */
/* */
/**/
/**/
/***** Include Files *****/
/**/
#include <as60_flash_frk.c> /* Equates for the registers and bits */

/* of the HC908AS60 that are used */
#include <prog_er_var.c> /* RAM variable definitions */
/**/
/***** Function Definitions *****/
/**/
extern void writeFLCR (unsigned char);
extern unsigned char Prog8Bytes (void);
/**/
/***** Program/Margin Read Main Routine *****/
/**/
/* This routine initializes the 908AS60 before calling the programming */
/* routine, Prog8Bytes. If a user plans to incorporate Prog8Bytes into */
/* his/her program, make sure the FLASH control registers, FLASH_addr */
/* and data buffer are initialized before calling Prog8Bytes. */
/* After the initialization, Prog8Bytes is called to program 8 data */
/* bytes, or one page of FLASH memory. If programming was successful, */
/* then the program will jump to the while(1) statement in the "if" */
/* expression. If programming failed, then the program will remain at */
/* the while(1) statement in the "else" expression. */
/**/
void main ()
{

unsigned char count; /* Variable to count down bits */
unsigned char pgmsuccess; /* Return value from Prog8Bytes */

CONFIG1 = 0x71; /*Turn off the COP, but leave the */
/* LVI on */

FLCR1 = 0x00; /*Set up the frequency divide */
FLCR2 = 0x00; /* control bits in flcr1 & 2 for */

/* the appropriate charge pump */
/* clock */
AN1827

MOTOROLA 51

Application Note
FLASH_addr = (unsigned char *)0x8000;
/*Load FLASH_addr with address of */
/* where the 8 bytes should start */
/* being programmed. Must be XXX0 */
/* or XXX8 */

for (count = 8; count != 0; count--)
 data[count-1]=count; /* Fill the RAM array, data, with */

/* values to program into FLASH. */
/* (ie. 01,02,03,04,05,06,07,08) */

pgmsuccess=Prog8Bytes(); /* Program the 8 data bytes */

if (pgmsuccess!=0) /* Check if a programming error */
/* occurred */

while (1); /* -- Programming failed -- */
/* Take appropriate action */

else while (1); /* -- Programming successful -- */
/* End of program */

}
/**/
/***** Subroutine Body Includes Section *****/
/**/
#include <prog_er_srt.c> /* Prog8Bytes, WriteFLCR and Delay */

/* Subroutines */
/**/
/**/
/* */
/* HC908AS60 FLASH Framework */
/* */
/**/
/* File Name: as60_flash_frk.c Copyright (c) Motorola 1999 */
/* */
/* Current Revision: 1.0 */
/* Current Release Level: RP */
/* Current Revision Release Date: 10/02/99 */
/* */
/* Current Release Written By: Adeela Gill */
/* Motorola Systems Engineering */
/* Austin, Texas */
/* */
/* Compiled Under: HiCross HC08 (HiWare) Ver.: 5.0.5 */
/* */
/* Project Folder Name: FLASH_2TS */
/* */
/* Part Family Software Routine Works With: HC08 */
/* Part Module(s) Software Routine Works With: fls32k_a01 */
/* */
/* Framework Description: */
/* This framework was generated using the MC68HC908AT60 General */
/* Release Specification as a reference. */
/**/
AN1827

52 MOTOROLA

Application Note
C Source Code
/**/
/***** Register Equates *****/
/**/
#define CONFIG1 (*((volatile unsigned char *)0x001F))

/* Configuration Register 1 */

#define FLCR1 (*((volatile unsigned char *)0xFE0B))
/* FLASH Control Register 1 */

#define FLCR2 (*((volatile unsigned char *)0xFE11))
/* FLASH Control Register 2 */

#define FLBPR1 (*((volatile unsigned char *)0xFF80))
/* FLASH Block Protect Register 1 */

#define FLBPR2 (*((volatile unsigned char *)0xFF81))
/* FLASH Block Protect Register 2 */

#define FLASH1 (*((volatile unsigned char *)0x8000))
/* Start Address of FLASH Array 1 */

#define FLASH2 (*((volatile unsigned char *)0x0450))
/* Start Address of FLASH Array 2 */

/**/
/***** Bit Equates *****/
/**/
#define HVEN 0x08 /* Bit 3: High-Voltage Enable Bit */
#define MARGIN 0x04 /* Bit 2: Margin Read Control Bit */
#define ERASE 0x02 /* Bit 1: Erase Control Bit */
#define PGM 0x01 /* Bit 0: Program Control Bit */
/**/
/**/
/* */
/* Programming and Erasing FLASH 2TS Memory on the MC68HC908AS60 */
/* */
/**/
/* File Name: Prog_er_var.c Copyright (c) Motorola 1999 */
/* */
/* Current Revision: 1.0 */
/* Current Release Level: RP */
/* Current Revision Release Date: 10/02/99 */
/* */
/* Current Release Written By: Adeela Gill */
/* Motorola Systems Engineering */
/* Austin, Texas */
/* */
/* Compiled Under: HiCross HC08 (HiWare) Ver.: 5.0.5 */
/* */
/* Project Folder Name: FLASH_2TS */
/* */
/* Part Family Software Routine Works With: HC08 */
/* Part Module(s) Software Routine Works With: fls32k_a01 */
/* */
/* RAM Used (Bytes): 11 */
/* */
/* Description: */
AN1827

MOTOROLA 53

Application Note
/* RAM variable definitions for Prog_mrt.c and Er_main.c */
/* */
/**/

/**/
/**** RAM Variables ****/
/**/
unsigned char * FLASH_addr; /* 16 bit address of FLASH memory to */

/* erase or program */
unsigned char data[8]; /* Eight data bytes that will be */

/* programmed */
unsigned char attempt; /* Counts number of attempts to */

/* program a page */
/**/
/**/
/* */
/* Program / Margin Read and Erase FLASH 2TS Memory Subroutines */
/* */
/**/
/* File Name: Prog_er_srt.c Copyright (c) Motorola 1999 */
/* */
/* Current Revision: 1.0 */
/* Current Release Level: RP */
/* Current Revision Release Date: 10/02/99 */
/* */
/* Current Release Written By: Adeela Gill */
/* Motorola Systems Engineering */
/* Austin, Texas */
/* */
/* Compiled Under: HiCross HC08 (HiWare) Ver.: 5.0.5 */
/* */
/* Project Folder Name: FLASH_2TS */
/* */
/* Part Family Software Routine Works With: HC08 */
/* Part Module(s) Software Routine Works With: fls32k_a01 */
/* */
/* Routine Sizes (Bytes): composite with called routines: */
/* Prog8Bytes 187 bytes */
/* EraseRoutine 75 bytes */
/* Delay 24 bytes */
/* WriteFLCR 30 bytes */
/* Stack Space Used (Bytes): composite with called routines: */
/* Prog8Bytes 8 bytes */
/* EraseRoutine 9 bytes */
/* Delay 2 bytes */
/* WriteFLCR 1 bytes */
/* RAM Used (Bytes): composite with called routines: */
/* Prog8Bytes 11 bytes */
/* EraseRoutine 2 bytes */
/* Delay 0 bytes */
/* WriteFLCR 2 bytes */
/* */
/* Global Variable(s) Used: Prog8Bytes FLASH_addr, data, attempt */
AN1827

54 MOTOROLA

Application Note
C Source Code
/* EraseRoutine FLASH_addr */
/* Delay None */
/* WriteFLCR FLASH_addr */
/* */
/* Submodule(s) Called: Prog8Bytes WriteFLCR, Delay */
/* EraseRoutine WriteFLCR, Delay */
/* Delay None */
/* WriteFLCR None */
/* */
/* Calling Sequence: EraseRoutine () */
/* int=Prog8Bytes () */
/* WriteFLCR (unsigned char) */
/* Delay (unsigned char) */
/* */
/* Entry Label: void EraseRoutine(), */
/* unsigned char Prog8Bytes() */
/* void WriteFLCR (unsigned char) */
/* void Delay (unsigned char) */
/* */
/* Entry Conditions: EraseRoutine 2 byte address defined at */
/* FLASH_addr */
/* Prog8Bytes 2 bytes address defined at */
/* FLASH_addr */
/* 8 programming bytes located */
/* at variable data */
/* WriteFLCR 2 bytes address defined at */
/* FLASH_addr */
/* 1 byte FLCR bit definition */
/* passed in */
/* Delay 1 byte delay value passed in */
/* */
/* Number of Exit Points: 4 */
/* Exit Label: EraseRoutine Erase990 */
/* Prog8Bytes Prog990 */
/* WriteFLCR FLCR990 */
/* Delay Delay990 */
/* */
/* Exit Conditions: EraseRoutine None */
/* Prog8Bytes pass/fail result returned */
/* WriteFLCR None */
/* Delay None */
/* */
/* Full Functional Description Of Subroutine: */
/* Prog_er_srt.c consists of two primary subroutines called */
/* EraseRoutine and Prog8Bytes. These demonstrate 2TS flash erasing */
/* and programming algorithms, respectively. The routines also call */
/* other subroutines WriteFLCR and Delay. */
/* */
AN1827

MOTOROLA 55

Application Note
/**/
/**/
/***** FLASH Delay Equates *****/
/**/
/* Each delay time related to FLASH 2TS program and erase operations is */
/* calculated with bus speed 2.4576 MHz. */
/**/
#define tERASE 0xF0 /* FLASH 2TS block/bulk erase time */

/* (~101 ms) */
#define tKILL 0x0A /* FLASH 2TS high-voltage kill time */

/* (~210 µs) */
#define tHVD 0x02 /* FLASH 2TS return to read time */

/* (~51 µs) */
#define tSTEP 0x32 /* FLASH 2TS page program step size */

/* (~1 ms) */
#define tHVTV 0x02 /* FLASH 2TS HVEN low to MARGIN high */

/* time (~51 µs) */
#define tVTP 0x07 /* FLASH 2TS MARGIN high to PGM low */

/* time (~151 µs) */
#define flsPULSES 0x64 /* FLASH 2TS maximum page program */

/* pulses (100 pulses) */
/**/
/***** Necessary Assembly-Level Commands Defines *****/
/**/
#define EnableInterrupts {asm CLI;}
#define DisableInterrupts {asm SEI;}
/**/
/***** Function Initializations *****/
/**/
void EraseRoutine (void);
unsigned char Prog8Bytes (void);
void writeFLCR (unsigned char);
void Delay (unsigned char);
/**/
/**** Erase a Block of FLASH Memory Subroutine *****/
/**/
/* This routine erases a block of FLASH of the size specified in the */
/* FLASH Control Registers and at the location specified by FLASH_addr. */
/* FLASH_addr is any address within the block to be erased. The routine */
/* follows the basic 9 step sequence of the FLASH erase operation. */
/* */
/* Initializations required: */
/* Set charge pump clock and block erase size in FLCR1 and FLCR2; */
/* FLASH_addr set */
/* Values returned: */
/* none */
/**/
void EraseRoutine ()
{

unsigned char Blk_Protect1; /* set up local variables */
unsigned char Blk_Protect2;
unsigned char loop;
AN1827

56 MOTOROLA

Application Note
C Source Code
DisableInterrupts; /* Disable interrupts */

writeFLCR (ERASE); /* Step 1 - Set the ERASE bit */

Blk_Protect1 = FLBPR1; /* Step 2 - Read from the block */
Blk_Protect2 = FLBPR2; /* protect registers */

FLASH_addr = 0xFF; / Step 3 - Write to any FLASH */
/* address within the block address */
/* range with any data value */

writeFLCR (HVEN); /* Step 4 - Set the HVEN bit */

for (loop=0x15; loop !=0; loop--)
 Delay (tERASE); /* Step 5 - Wait for time tERASE */

writeFLCR (HVEN); /* Step 6 - Clear the HVEN bit */

Delay (tKILL); /* Step 7 - Wait for time tKILL */

writeFLCR (ERASE); /* Step 8 - Clear the ERASE bit */

Delay (tHVD); /* Step 9 - Wait for time tHVD */

EnableInterrupts; /* Enable Interrupts */

Erase990:
return;

}
/**/
/**** Program/Margin Read 8 Bytes of FLASH Memory Subroutine *****/
/**/
/* This routine programs the 8 bytes of data from the RAM data array to */
/* the FLASH memory starting at FLASH_addr. The programming is done in */
/* ascending order, ie. data[0] -> FLASH_addr[0], data[1] -> */
/* FLASH_addr[1], etc. */
/* */
/* The routine is structured into a loop for smart programming so that */
/* the minimum amount of high voltage is applied to the FLASH. Each time */
/* through the loop is called a "pulse". Each pulse consists of all 17 */
/* steps shown in the application note, with the programming time, tSTEP, */
/* equal to approximately 1 ms. */
/* */
/* If all 8 bytes program correctly in the approximately 1ms time period, */
/* then the routine exits and returns control to the calling program. If */
/* the 8 bytes do not program correctly, another attempt(pulse) is made. */
/* This continues for the maximum number of pulses (flsPULSES). If the 8 */
/* bytes are not programmed successfully after a maximum number of */
/* pulses, then the programming error flag is incremented, the routine is */
/* exited and the error value (any non-zero value) is returned. */
/* */
AN1827

MOTOROLA 57

Application Note
/* Initializations required: */
/* Set charge pump clock in FLCR1 and FLCR2; FLASH_addr set; data */
/* buffer filled */
/* Values returned: */
/* Program Success/Error Flag */
/**/
unsigned char Prog8Bytes ()
{

unsigned char Blk_Protect1; /* set up local variables */
unsigned char Blk_Protect2;
unsigned char byte,status;

DisableInterrupts; /* No interrupts allowed during */
/* programming */

attempt=0; /* Step 1 - Clear attempt counter */

 do { /* Set up Repeat Loop */

writeFLCR (PGM); /* Step 2 - Set the PGM bit */

Blk_Protect1 = FLBPR1; /* Step 3 - Read from the block */
Blk_Protect2 = FLBPR2; /* protect registers */

/* Step 4 - Copy the 8 bytes of data */
/* from the RAM buffer to the */
/* appropriate FLASH locations */

for (byte=0;byte<8;byte++)
*(FLASH_addr+byte)=data[byte];

writeFLCR (HVEN); /* Step 5 - Set the HVEN bit */

Delay (tSTEP); /* Step 6 - Wait for time tSTEP */

writeFLCR (HVEN); /* Step 7 - Clear the HVEN bit */

Delay (tHVTV); /* Step 8 - Wait for time tHVTV */

status=0;

writeFLCR (MARGIN); /* Step 9 - Set the MARGIN bit */

Delay (tVTP); /* Step 10 - Wait for time tVTP */

writeFLCR (PGM); /* Step 11 - Clear the PGM bit */

Delay (tHVD); /* Step 12 - Wait for time tHVD */
AN1827

58 MOTOROLA

Application Note
C Source Code
for (byte=0; byte<8; byte++)
if (*(FLASH_addr+byte) == data[byte]) status++;

/* Step 13 and 14 - Check to see if */
/* the correct data was programmed */
/* in the FLASH page. If not, */
/* proceed with the bracketed */
/* expressions. If so, skip to next */
/* if statement. */

if (status != 8) {
/* -- Program Failure -- */
/* Step 15 - Clear the MARGIN bit */

writeFLCR (MARGIN);
attempt++; /* Step 16 - Increment attempt */

/* counter */
 }

if (status == 8) /* -- Program Success -- */
writeFLCR (MARGIN);

/* Clear the MARGIN bit */

} while ((status!=8) && (attempt<flsPULSES));
/* Step 17 - If attempt is less than */
/* flsPULSES, go back to step 2 */

EnableInterrupts; /* Clear the interrupt mask bit */

Prog990:
return (8-status); /* If programming was unsuccessful in */

/* flsPULSES, a non-zero value is */
/* returned */

}
/**/
/**** Write to a FLASH Control Register *****/
/**/
/* This routine determines whether flcr1 or flcr2 should be written to */
/* based on the FLASH address specified by FLASH_addr. */
/* */
/* Initializations required: */
/* set FLASH_addr */
/* Values returned: */
/* None */
/**/
void writeFLCR (unsigned char A)
{

/* FLASH-1=$8000, FLASH-2=$0450 */
if (FLASH_addr >= &FLASH1) /*If FLASH_addr is in FLASH-1 array */

FLCR1 = FLCR1 ^ A; /* write to FLCR1 Register */

else
FLCR2 = FLCR2 ^ A; /* else write to FLCR2 Register */

FLCR990:
return;
AN1827

MOTOROLA 59

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Application Note
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217, 1-303-675-2140

or 1-800-441-2447. Customer Focus Center, 1-800-521-6274
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu, Minato-ku, Tokyo, 106-8573 Japan.

81-3-3440-8573
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate,

Tai Po, N.T., Hong Kong. 852-26668334
Mfax™, Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/;

TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848
HOME PAGE: http://motorola.com/sps/

/**/
/**** Delay Routine *****/
/**/
/* This routine delays for a variable amount of time depending on the */
/* value passed into the routine as variable A. */
/* Delay time = (12 + (5 + (11+72+11)*A + 11) + 8) / Bus Freq */
/* This equation includes the bus cycles from calling the delay routine */
/* until hitting the next line of code. This allows the user to */
/* accurately predict the delay between two steps in the code. */
/* */
/* Initializations required: */
/* Pass in variable A = Delay Value */
/* Values returned: */
/* None */
/**/
void Delay (unsigned char A)
{

unsigned char count;

while (A!=0) {
for (count=0x03;count!=0;count--);
A--;

}

Delay990:
return;

}

AN1827/D

© Motorola, Inc., 1999

Mfax is a trademark of Motorola, Inc.

	Introduction
	Features
	Implementation on Motorola’s M68HC08 Microcontrollers
	Functional Description
	Control and Block Protect Registers
	Charge Pump
	Block Protection
	Erase Operation
	Page Program/Margin Read Algorithm
	Frequently Asked Questions
	Schematic
	Assembly Source Code
	Assembly Source Code
	C Source Code

