
R
ee

d-
S

ol
om

on
 D

ec
od

in
g

on
 th

e
S

ta
rC

or
e

P
ro

ce
ss

or

MOTOROLA
Semiconductor Products Sector Application Note

AN1841/D: AN1841/D
Rev. 0, 6/2000

f

lel.

d

Contents
1 Theory ... 2
1.1 Error Correcting Codes.................... 2
1.2 Finite Field Theory 2
1.3 Reed-Solomon Theory..................... 8
2 Implementation 9
2.1 Multiplication Method................... 10
2.2 Reed-Solomon Program 13
3 Conclusion 23
4 References 23
Reed-Solomon Decoding on the
StarCore Processor
By Dana Taipale, Iantha E. Scheiwe, Tina M. Redheendran

An increasingly popular way to speed up signal processors is to
place multiple processor units on a single chip. One challenge in
programming applications for such designs is to make effective
use of the multiple processing units. This application note
discusses how to meet this challenge in an application that
implements a Reed-Solomon decoder on a signal processor with
four data arithmetic units and two address generation units. The
problem posed here is uniquely instructive in that the decoding is
a commonly needed function and requires operations not
typically performed using specialized operation codes. Therefore,
we can focus on the use of multiple processors to accomplish the
task efficiently.

The Reed-Solomon decoder is implemented on the StarCore,
which is the core of Motorola’s new family of DSPs. The use o
StarCore for the Reed-Solomon algorithm yields two main
benefits. First, the multiple data and address processors allow
many of the Reed-Solomon computations to complete in paral
Second, the modulo arithmetic of the address arithmetic units
allows easy log/alog computation using table look-up for finite
fields.

This document presents the theoretical background for the
Reed-Solomon algorithm, including finite fields, irreducible an
primitive polynomials, and a general discussion of error
correcting codes and block codes. The steps required for this
implementation of Reed-Solomon decoding are discussed in
detail and illustrated with code examples.
© Motorola, Inc. 2000

Finite Field Theory
1 Theory
This section presents background information on error
correcting codes, a development of finite fields, and theory on
the functioning of Reed-Solomon codes.

1.1 Error Correcting Codes
Several different error correcting codes are used in
communication systems. Two common code types are
convolutional codes and block codes. Viterbi decoding is the
most popular way to decode convolutional codes. In
convolutional coding, each bit depends on the current bit as
well as on some number of previous bits. Therefore,
convolutional codes have memory. Redundancy in
convolutional codes is added by increasing the memory.
Reed-Solomon decoding is not based on convolutional codes,
but instead is a type of linear block code. In block coding, each
code word block is independent of previous code words.
Redundancy in block codes is achieved by adding redundant
bits to help combat noise. Reed-Solomon codes were
developed through work completed in 1959 and 1960 [1].

1.2 Finite Field Theory
This section covers both simple finite fields and field
extensions.

1.2.1 Simple Finite Fields
For block error correcting codes, the arithmetic is done in
finite fields. These constructs are very similar to the most
widely recognized and used (nonfinite) field, the field of real
numbers. All fields have many common properties, including
addition and multiplication operations, commutativity and
associativity of both operations, a distributive property, and
inverse elements for all elements except a multiplicative
inverse for the additive identity (that is, you cannot divide by
0) [2].

Finite fields differ from the real number field in that they have
only a finite number of elements. They are therefore easier to
understand and manipulate than real numbers, but they may
seem unusual at first. We use finite fields for block codes in
order to work with finite precision yet still guarantee exact
results. There must be a finite number of elements in the field
so that finite precision can represent every possible result
exactly. We want to take as many of the familiar properties as
possible to the new field. We also need to set up and solve

Definitions
Cyclic codes Codes for which cyclic
shifts of elements in a codeword are
codewords.

Error Location Polynomial (ELP) A
polynomial whose roots indicate the
position of errors in the receive vector.

Field A set of elements for which we can
do addition, subtraction, multiplication, and
division without leaving the set.

Finite Field A field with a finite number of
elements.

Galois Field Another term for a finite
field, named in honor of the discoverer of
finite fields.

Generator Polynomial A nonzero code
polynomial of minimum degree that is
unique in a given cyclic code. Multiplying
the message to be encoded with the
generator polynomial creates the code
word to be transmitted.

Irreducible Polynomial (over GF[2]) A
P(x) that cannot be factored into a product
of polynomials of smaller degree with
coefficients from GF[2].

Minimum distance The minimum
number of places in which two distinct
code words differ.

Primitive Polynomial An irreducible
polynomial P(x) of degree m where the
smallest positive integer n for which P(x)
divides Xn+1 is n=2m-1.

Shortened Code A method to reduce
processing requirements while remaining
within a large field. A code is shortened so
that only a portion of the received
codeword has the transmitted message,
and the remainder of the codeword is
padded with zeroes and is not decoded.

Syndrome The result of a parity check
performed on the received codeword to
determine whether it is a valid member of
the codeword set. The syndrome equals
zero only if the received data is a code
word.

Note: For more information on these
terms, consult the References
section at the end of this
application note.
2 Reed-Solomon Decoding on the StarCore Processor

Finite Field Theory

, an

divides
 divide
in a

n factor
y
o of
ainder

 table
divide
factor

n

 N and

after

of the

equations and add, subtract, multiply and divide. We can keep the familiar properties (commutative,
associative, and distributive) for these operations. In general, this might be hard to do (or verify), but it is
possible to create new fields that bring these properties with them by starting with familiar objects.

One back door approach to finite fields is to begin with a different problem. Suppose that for the two
integers 490 and 2142, we want to find the largest common factor. We could use Euclid’s algorithm
example of which appears in Table 1-1.

The largest common factor is 14. It is easy to see why this works. Since the largest common factor
the numbers in the first two columns evenly (this is what largest common factor means), it must also
the remainder evenly. It is not possible to divide both sides of an equality by the same factor to obta
zero remainder for one result and a nonzero remainder for the other. Therefore, the largest commo
evenly divides entries in all columns of the table. After filling in the first line, we take the “small” entr
from column two and the remainder entry from column three and move them to columns one and tw
the second line, respectively. Since the largest common factor divides the “small” entry and the rem
evenly, we can repeat the process. Because remainders are always smaller than their divisors, the
entries must decrease. Eventually, we must get to our desired factor. Once we do, it will of course
evenly, so we can use a zero remainder as the condition to stop the process. The largest common
appears in column three immediately above the zero remainder entry.

Now, let’s consider integers. Integers have nice addition and multiplication properties, but there is a
infinite number of integers. To make a new finite construction, we do addition, subtraction and
multiplication on integers using the customary rules, but we divide all results by one chosen integer
keep only the remainders as results. The resulting construct is called the integers modulo N, or Z mod N,
where Z is understood to be a symbol for the integers.

A concrete example is the integers modulo 5. For this example, the elements (possible remainders
division) are 0, 1, 2, 3, and 4. Therefore, 25=0, 21=1, -1=4, and so on. We need only consider the
remainders. We can multiply, add, and subtract just as we normally would. We take the remainder
result, and everything works out. For multiplication, 2*3=6=1, 4*2=8=3, and 0*2=0. For addition,
2+3=5=0, and 2+4=6=1 and for subtraction 2-3=-1=4, and 4-1=3. Our only problem is dividing. If we
consider a multiplication table for the integers modulo 5, shown in Table 1-2, we see that this is not a
problem either.

Table 1-1. Euclid’s Algorithm, Example

large = small * factor + remainder

2142 490*4 182

490 182*2 126

182 126*1 56

126 56*2 14

56 14*4 0
Reed-Solomon Decoding on the StarCore Processor 3

Finite Field Theory

rithm.
 as

ers, X

ding to

 a

ely
 can

lois
Note: 1*1=1, 2*3=1, and 4*4=1. In particular, each nonzero element has a multiplicative inverse, 2=3-1,
4=4-1, and so on. To do division, we multiply by the multiplicative inverse. Another example that does not
work out as neatly is the element 2 in the integers modulo 6. The multiples of 2 are 0, 2, 4, 0, 2, 4, no 1.
Thus, 2 has no inverse, which means that we cannot divide by 2. This could be a major problem.

To ensure that the new constructs are ones in which division can occur, we start with Euclid’s algo
We can start at the bottom line of the Table 1-1, and work up to express 14 (our largest common factor)
a combination of our original two numbers:

However, the third line of Table 1-1 can express 56 differently:

Of course, we can use line two of the table and repeat this process to get the following:

and finally:

It is not important to remember the process. The main thing to remember is that given any two integ
and Y, we can always find two other integers, A and B, such that AX+BY = LCF(X,Y), that is, their
largest common factor.

Suppose we set Y=5, or whatever we want as a modulus (which is the number by which we are divi
obtain a new field). If X is a number that is relatively prime to Y (no common factors except 1, so
LCF(X,Y) = 1), it is always possible find an A and a B so that AX+B5=1, or AX=1-5B. Since 1-5B is
multiple of 5 with remainder 1, AX=1 in our modulo 5 construct. This means that X-1 = A, and so X has an
inverse. Therefore, to ensure that all numbers (less than 5) have an inverse, they must all be relativ
prime to 5. Since 5 is a prime number, this is true. In general, if the divider (modulus) is a prime, we
always get inverses. The result is called a finite field. A finite field of p elements is also called a Ga
field of p elements, denoted GF[p].

Table 1-2. Integers Modulo

xx
xx

0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

126 56 2×– 14=

126 182 126 1×–[] 2×– 182 2×– 126 3×+ 14= =

182 2×– 490 182 2×–[] 3×+ 490 3× 182 8×– 14= =

490 3 2142 490 4×–[]–× 8× 2142– 8 490 35×+× 14= =
4 Reed-Solomon Decoding on the StarCore Processor

Finite Field Theory
1.2.2 Field Extensions
In almost all coding cases, we want to begin with the field with only two elements in it, namely zero and
one. Arithmetic for this binary field is Z mod 2 arithmetic. The addition and multiplication tables are as
shown in Table 1-3 and Table 1-4.

Now we take the binary field and extend it (instead of starting with plain integers) in a slightly different
way. It is still important to be able to bring along all of the number properties, and in particular to ensure
that division is possible. To extend the binary field, consider the set of all polynomials with binary
coefficients:

where each bi is an element of the binary field. To make the result finite again, we divide and keep only the
remainders. We divide by prime polynomials. A polynomial is prime over the binary field if it cannot be
factored into polynomials of smaller degree with only binary coefficients. Such a polynomial is also called
irreducible. This is the equivalent of dividing by prime numbers when working with integers.

For example, we can create a field with 16 elements by taking all polynomials with binary coefficients, and
keeping their remainders after dividing by a degree four polynomial, which is a polynomial that does not
factor. One such polynomial is P(x)=x4+x+1. Remainders have the form R(x)=b3x3+b2x2+b1x+b0 where
coefficients are again binary. Addition and subtraction are easy. We just use binary field (Z mod 2)
addition on the coefficients of terms with matching exponents for x, keeping the powers of x unchanged.
Addition in this field is easy because it is just an EXCLUSIVE-OR of the arguments. Subtraction, too, is
easy because in the binary field, subtraction is the same as addition. Multiplication is more involved. We
can multiply the polynomials, divide the result by the prime polynomial, and take the remainder to obtain
the result. Alternatively, we can let α be a solution to P(x), α4+α+1=0 (alpha is defined to be a solution to
the equation). We substitute alphas for x’s in all calculations and rearrange the equation for alpha, α4=α+1
to keep the exponents under four. For example,

Table 1-3. Addition Table

+ Zmod2 0 1

0 0 1

1 1 0

Table 1-4. Multiplication Table

X Zmod2 0 1

0 0 0

1 0 1

F x[] bi x⋅ i

i 0=

∞

∑=

α3 α2 α+() α5 α4
+ α α4 α4

+⋅ α α 1+() α 1+()+⋅ α2 α α 1+ + + α2
1.+= = = = =
Reed-Solomon Decoding on the StarCore Processor 5

Finite Field Theory

e
lex

, one

e

sing
at the

itive
 are
than
umber

itive

le,

Probably, you have already been doing this for years. This technique is the only way to extend fields (for
finite dimensional extensions). Consider polynomials with real coefficients, and divide by the polynomial
x2+1. The result is remainders of the form ax+b, where a and b are real. It is customary to replace the
polynomial variable x by a symbol that is defined as the solution to the dividing polynomial (note that the
polynomial is not factorable over the real numbers). Our solution is the square root of -1 (a symbol that
means “the solution to x2+1=0 “) arbitrarily denoted as i, so the remainder is written as ai+b. Again, w
keep the exponents of i down in this case by noting that the square of i is -1. The result is the comp
field, with the complex arithmetic that is probably familiar. Since this is the only way to extend fields
consequence is that it is not possible to extend the complex numbers into a larger field because all
polynomials factor into linear terms. Thus, we see vector spaces and the like, but nothing with a nic
multiplication and division beyond the complex numbers.

Another convenient way to multiply in finite fields is to use a logarithm table. We construct the field u
powers of alpha and again keep the exponents under four (so they look like remainders). Notice th
prime polynomial P(x) has the property that every nonzero element of the field is a power of alpha.
Polynomials with this additional property are called primitive polynomials. We can always find prim
polynomials of any degree over GF[2]. All primitive polynomials are prime. Not all prime polynomials
primitive. In general, polynomials with this property are not easy to identify by any technique other
creating consecutive powers of the alpha defined by the polynomial and determining whether the n
of distinct results corresponds to the number of nonzero field elements. If true, the polynomial is prim
and α is called a primitive element. However, in many cases, the primitive polynomial is already
supplied—for example, by a standards body that specifies the use of the code.

One way to multiply is to perform a table look-up for the exponents, add exponents (for this examp
modulo 15), and then perform a table look-up to undo the log. Table 1-5 shows a log table for the GF[16]
field. The first column shows the exponent of alpha, and the second column represents alpha. This
representation is:

Table 1-5. GF[16] Logarithms

i

αi

Binary
form

Polynomial form

0 0001 1

1 0010 α

2 0100 α2

3 1000 α3

4 0011 α + 1

5 0110 α2 + α

6 1100 α3 + α2

αi
bkαk

k 0=

3

∑=
6 Reed-Solomon Decoding on the StarCore Processor

Finite Field Theory

es
A log table promotes easy multiplication and division. For example, 0011*1001 can be accomplished by
noting that the logs are 4 and 14, respectively. Multiplying, we add the logarithms, so 4+14=18. We notice
that the table starts repeating at 15, so multiples of 15 can be subtracted without changing the result (it is
like dividing by 0001=1). Therefore, a log of 18 is the same as a log of 18-15=3. Taking the alog by finding
the table entry that matches in column one and finding the corresponding entry in column two, we get an
answer of 1000. Addition is the same as subtraction and is an EXCLUSIVE-OR of the component vectors.
Therefore, 0011+1001=1010. We can also use a log notation to represent numbers, that is, 0011=α4 and
1001=α14. We can then rewrite the examples as α4*α14=α3, and α4+α14=α9. Both kinds of representation
are used, depending on convenience. Multiplication is easy using the log notation, and addition is easy
using the alog notation. Division is like multiplication, except that we subtract the logarithms instead of
adding.

We performed a log multiplication in which the logs were added, resulting in an integer that goes beyond
the limits of the log table. However, logs can be reduced because the table begins to repeat. In general, for
a field of size N, logarithm results can be taken modulo N-1.

In summary, by extending the fields as described here, we inherit all of the properties from polynomials
with binary field coefficients [2]. Multiplication and addition have the following properties:

• They are closed (operation results stay in the field they start in).

• They have identity elements (0=0000 for addition and 1=0001 for multiplication).

• They are both commutative and associative.

• The pair of operations has the distributive property.

Since we modulo by a prime, we can also divide by any nonzero field element. All of these properti
allow us to perform arithmetic in this field much as we do for real numbers.

7 1011 α3 + α + 1

8 0101 α2 + 1

9 1010 α3 + α

10 0111 α2 + α + 1

11 1110 α3 + α2 + α

12 1111 α3 + α2 + α + 1

13 1101 α3 + α2 + 1

14 1001 α3 + 1

15 0001 1

Table 1-5. GF[16] Logarithms (Continued)

i

αi

Binary
form

Polynomial form
Reed-Solomon Decoding on the StarCore Processor 7

Reed-Solomon Theory

 is one
nerator

eeded
r creates
ation

der
ial
However, this field can be represented by a finite binary word length. In fact, for extensions of the binary
field such as those developed here, the field elements can be exactly represented by a binary word of
length equal to the degree of the polynomial used to create the field. Each bit of the word is a coefficient of
the remainder representation shown earlier. This convenience is part of what makes binary field extensions
popular for digital processing applications. In addition, the ability to represent all field elements exactly in
a fixed word length is quite useful for applications such as error correction coding, where we do not want
to introduce more errors because of precision problems.

1.3 Reed-Solomon Theory
This section considers the parameters of error-correcting code, the decoding process, and the overall
benefits of the Reed-Solomon algorithm.

1.3.1 Parameters
The following parameters define a t error correcting Reed-Solomon code with symbols from GF[q]:

• Block length: n=q-1

• Number of parity-check digits: n-k=2t

• Minimum distance: dmin=2t+1

q is a prime number to the power of m (q=Primem). In this application note, q=2m. The length of a
Reed-Solomon code is one less than the size of the code symbol alphabet. The minimum distance
greater than the number of parity-check symbols. This application note uses a code for which the ge
polynomial is of the form:

Determining a generator polynomial is not required to decode Reed-Solomon code. However, it is n
as part of the encoder and is therefore useful for debugging a decoder program since the generato
valid codewords. Variations on how a codeword can be formed are beyond the scope of this applic
note. Consult references [4] or [1] for further details.

Codewords can be formed by using the information symbols to create an information polynomial
(partition bits of the input to create elements of the finite field as coefficients of the information
polynomial):

Divide this polynomial by the generator g(x) to find the four remainder symbols. Append the remain
symbols to i(x) to create a codeword of length m+4 field elements or (m+4)log(N) bits. The polynom
form of the generator is not required to implement the Reed-Solomon decoder as described in this
application note. However, this knowledge is useful in creating a test environment for the decoder.

g x() 1 xαi
+()

i 1=

4

∏=

i x() ikx
k 4+

k 0=

q 2 t– 2–

∑=
8 Reed-Solomon Decoding on the StarCore Processor

Reed-Solomon Theory
1.3.2 Decoding Process
Three questions must be answered when a message is decoded using Reed-Solomon decoding:

1. How many errors exist?

2. Where are they located?

3. What are the error values?

Answers to these questions can be used to correct any errors that exist in a received message.

The roots of the generator polynomial (α,α2,...,α2t) are used to calculate syndromes, which is the first step
in Reed-Solomon decoding. Syndrome calculation uses knowledge of the roots of the generator
polynomial to determine whether any errors occurred during a message transmission. If any of the
syndromes are nonzero, then additive errors were introduced into the message and must be corrected. The
equation for calculating syndromes is as follows:

and the syndrome polynomial is:

Every Reed-Solomon codeword has 2t consecutive syndromes that are zero. Any nonzero components in
the syndromes of the received word are solely due to additive errors. Once the syndromes are calculated,
they are used to generate solutions to the equation . Λ is a nonzero polynomial of
the smallest possible degree that satisfies this equation with the constraint that the resulting polynomial Ω
must have degree smaller than Λ. Once Λ is found, the next step is to factor Λ into linear components. The
zero of each component is a power of α, and this exponent is the position of an error. We can then use Ω
and Λ to determine what the error values are and subtract them to correct the codeword.

1.3.3 Reed-Solomon Benefits
Using Reed-Solomon codes, a system designer can exactly specify decoder parameters based on the
number of errors to be corrected. When a two-error correcting Reed-Solomon coder is chosen, the system
designer knows that the decoder can correct two errors or less. Some other types of coders have less
definite error correcting characteristics. This ability to definitively specify the number of errors to be
corrected is one of the benefits of Reed-Solomon codes. Another benefit is that Reed-Solomon codes give
the largest minimum distance for any linear code with the same encoder input and output block lengths [3].
Therefore, Reed-Solomon codes can definitively correct a larger number of errors with the same encoder
input and output lengths than many other linear codes.

2 Implementation
This section discusses implementation decisions made to perform the finite field arithmetic. We consider
the possible implementation methods and the trade-offs of each. We state our chosen method and show
supporting tables.

Sj vi α⋅
i 0=

n 1–

∑
i j 1+()

=

S z() Sjz
j 1–

j 1=

2t

∑=

Λ z() S z()• Ω z()modz
2t

=

Reed-Solomon Decoding on the StarCore Processor 9

Multiplication Method

ated in

result

s if
2.1 Multiplication Method
There are several ways to support arithmetic in finite fields. When a log notation is chosen, multiplication
is easy and addition is difficult. Conversely, when an alog notation is chosen, addition is easy and
multiplication is difficult. These choices are somewhat arbitrary, and both forms appear where convenient
in the code (first shown in Section 2.2). For ease of presentation, this section assumes an alog form.

There are a number of ways to do multiplication. One technique is to treat the alog forms as polynomials
with binary coefficients, perform the polynomial multiplication, and either divide by the prime polynomial
used for this field representation, or use a reduction technique. The advantage of this technique is that it
requires almost no memory. The disadvantage is that it can take multiple processing steps to do the
reduction back to a standard remainder form, as well as to perform the polynomial multiply. Therefore, it
can be slow.

A second approach is to move to the other extreme and create a table indexed by the arguments of the
multiplication whose entries are the product. This solution is very fast, but it can require a large memory.
For example, in industry today, the field size is often 256, which means a look-up table is 2562 = 65,536
entries long. This number of entries is certainly achievable but is impractically large for typical DSP
memories today.

A third approach is to perform a log table look-up to convert from alog to log forms and back. This
approach still demands tables (one for log and one for alog), but each table is only the size of the field. 256
entries per table is an acceptable size for our implementation. This approach is not as fast as table look-up,
since an example multiply would involve looking up log forms for the two arguments, adding the
arguments, reducing the result to fit in the table, and taking the alog of the result. However, it requires far
fewer operations than the first approach, and it is the approach taken for the implementation described in
this document.

Implementation of log table look-up for alog/log conversions has advantages on the StarCore processor,
since some of the work can be parallelized (as discussed later), and some of the computation can occur in
the address generation units, which have a natural modulo capability that is quite useful. If we did this
calculation in a DALU part of the processor, this modulo would require more processing cycles. However,
we can do this part of the calculation in the AGUs of the processor and make use of the fact that address
registers can be configured to do modulo N-1 reduction automatically with no performance penalty. One
problematic area for log multiplication is that field values of zero do not have finite logarithms. On the
StarCore, this problem is handled by creating mask words at the same time that the logarithms are being
found. These masks can be created simultaneously because they are created in the DALU, not the AGU.
An example multiply process proceeds as follows:

1. Data is moved to the address generation unit, and simultaneously an all 1’s or all 0’s mask is cre
a DALU.

2. The address generation unit does a log table look-up.

3. The result is ANDed to another log to multiply, and simultaneously the alog table look-up on the
is performed, with results going to a data register.

4. The result is ANDed with the mask, which is all 1’s if the original values are nonzero, and all 0’
one of the arguments was zero.
10 Reed-Solomon Decoding on the StarCore Processor

Multiplication Method

rime

ltiply.

ask

et

or this
The result of the ANDing is either the product in alog form for nonzero arguments or 0 if one of the
arguments was zero. This is the desired result.

2.1.1 Generating Look-up Tables
Our implementation of the decoder requires three tables to be generated. Two of the tables are related to
performing finite field arithmetic. These are the alog-to-log form table look-up and the log-to-alog table
look-up. The third table is a shortcut way to factor the quadratic polynomials with finite field elements,
which is needed as part of the error correction process.

2.1.1.1 Log and Alog Table Generation

The key to generating log and alog tables is to create a method for multiplying a field element in alog form,
by alpha, and obtaining a result in alog form. The multiplication can then iterate by alpha on the result.
Each iteration generates another line in the alog table (in the correct order) by filling the alog table location
that corresponds to the iteration index (0 to N-2) with the alog result of the multiplication. The log table
can be filled in at the same time by taking the alog result of the iteration as the index of the log table and
writing the iteration number in that location. Conversions can now be done in either direction by taking the
number to be converted as the index into the conversion table and reading the converted number out of the
table as the result.

Multiplication by alpha is relatively simple and need not be optimized since table generation can occur
long before program execution. If the alog form is used, multiplication by alpha is equivalent to a left shift
of the binary coefficients of the alog form. This is not surprising, since this form is a representation of:

If our alog representation is (b3,b2,b1,b0), then moving each coefficient one position to the left is like
multiplying the corresponding α’s in the sum by alpha. The problem is that the leftmost coefficient is
beyond the representation and needs to be reduced. We use the reduction rule obtained from the p
polynomial. For the example α4=α+1, take the binary representation of the right side of the equation
(0011) and exclusive-or it with the shifted result. Then mask off extra leftside bits to complete the mu
Performing the multiply to generate an alog table yields the following:

• Start with 0001 (start with the number 1).

• Left shift to get 0010 (alpha)—no extra 1 off the left side, so we are done.

• Left shift to get 0100 (alpha squared)—no extra 1 off the left side, so we are done.

• Left shift to get 1000 (alpha cubed)—no extra 1 off the left side, so we are done.

• Left shift to get 10000—extra 1 on left, so exclusive-or 10000 with 0011 (right justified) and m
off leading 1 to get 0011 (alpha to the fourth).

• Left shift to get 0110.

• Left shift to get 1100.

• Left shift to get 11000—extra 1 so exclusive or 11000 with 0011 and mask off leading 1 to g
1011 (alpha to the fifth).

These results are identical to the table entries in our table and are a partial listing of the alog table f
field. We can fill in a log table at the same time by switching the iteration number and the result.

αi
bkαk

k 0=

3

∑=
Reed-Solomon Decoding on the StarCore Processor 11

Multiplication Method

ial

e
 it in
o
ize,
 trial

 can
reate a

 result

atic,
nd
ach

+1.
e field
2.1.1.2 Factor Table

While performing the error correction, it is necessary (for correcting two errors) to factor quadratic
polynomials over the finite field. This is a bit more difficult for finite fields than for real numbers because
the quadratic formula breaks down and cannot be used here. Exhaustive search for roots is one approach,
but this application note, which considers only codes that can correct up to two errors, uses a table look-up.

As before, the size of the field is a major consideration in determining whether this technique is practical.
The field size we consider is 256. A straightforward table look-up for roots quadratic polynomials would
require at least 2562 entries, but there is a good strategy for reducing the table.

In general, quadratic polynomials over the field have the form:

where the fi’s are elements of the finite field (not binary). We can easily reduce this a bit for the spec
case of root determination by noting that:

Thus, there are only two parameters instead of three to index the table. In fact, this is the form of th
quadratic that we start with in the routine (the algorithm that determines this polynomial determines
this form for this implementation). However, two parameters of field size still make a table that is to
large. It turns out that we can make a further simplification, reducing the table to a one parameter s
while slightly increasing the computation. This approach still requires far less execution time than a
and error root search. Our strategy is to change variables, substituting x= y/g1 into the equation and
obtaining the following:

This result has only one parameter of field size, h=g2/g1
2. Notice that this substitution fails if g1 is zero,

but results in a special form for the quadratic polynomial that implies a decoding failure. Hence, we
check for this exception and report a decoding failure if necessary. Using this substitution, we can c
field size look-up table, indexed by the parameter h, to list the roots y1, y2 of the polynomial hy2+y+1=0.
Once we have those roots, we determine the corresponding roots x1 and x2 equal to g1/y1 and g1/y2,
respectively.

To create the table, we start with linear polynomials of a special form that, when multiplied together,
in a quadratic of the form hy2+y+1. It is not difficult to determine what this form is. Since the constant
term is 1, we start with linear polynomials of the form (Ay+1), and (By+1). Multiplying to get a quadr
we obtain ABy2 + (A+B)y +1 = hy2+y+1. Equating the terms, we obtain AB = h, and A+B=1. This seco
equality gives us the relation B=A+1. To create the table, we perform the following operations for e
nonzero element A of the field:

1. Determine A+1.

2. Multiply by A to determine A(A+1).

3. Save the values of A and A+1 in the table index corresponding to the log form of A(A+1).

To use the table, we determine h (log form) and use it as an index into the factor table to obtain A and A
In this application note (and most of the prevalent applications of Reed-Solomon coding in use), th
size is 256 or less, so both roots can be stored in a word of size 16.

q x() f2x
2

f1x
1

f0x
0

+ +=

q x() f2x
2

f1x
1

f0+ += 0 f0

f2

f0
----x

2 f1

f0
----x

1
1+ + 

 ⇒ g2x
2

g1x
1

1+ + 0= = =

g2
y
g1
----- 

  2
g1

y
g1
----- 1+ + g2

y
g1
----- 

  2
y 1+ + hy

2
y 1+ + 0= = =
12 Reed-Solomon Decoding on the StarCore Processor

Reed-Solomon Program
Some table entries are not used. In fact, when polynomial parameters corresponding to decoding errors are
excluded, the number of table entries is N/2-1, for a field size of N. Nonvalid entry table entries are filled
with zero values. A zero value corresponds to a decoding error if that table entry is read.

2.2 Reed-Solomon Program
The Reed-Solomon decoder implementation described in this section is defined by the following
parameters:

Block length: 28-1=255; n=64, k=60

Number of parity-check digits: n-k=4

Minimum distance: dmin=5

Generator polynomial: g(x)=(x+α)(x+α2)(x+α3)(x+α4)

Primitive polynomial: P(x)=1+x2+x3+x4+x8

Notice that n does not equal the block length. We are implementing a shortened code in which 64 received
symbols in the block have useful information. The rest of the block is padded with zeros and is not
decoded. This method greatly reduces the computational requirements of the decoder. Since there are four
parity-check digits, t=2, we can correct two or fewer errors. The encoder uses the generator polynomial,
g(x), shown. We use this information when testing the decoder. The primitive polynomial for GF[256],
P(x), generates the log/alog tables used in decoding.

2.2.1 Calculating the Syndromes
To determine whether errors occurred during transmission, the syndromes must be calculated. If the
syndromes equal zero, then no errors are detected and no corrections are needed. However, if the
syndromes do not equal zero, we use them to determine the error location polynomial. In our
implementation, syndrome calculation is the most compute-intensive portion of the code. Cycle count
varies proportionately with the specified codeword size. The generator used by the transmitter encoder is
g(x)=(x+α1)(x+α2)(x+α3)(x+α4). Therefore, we must calculate four syndrome values to determine if any
errors were received. The StarCore AGU allows us to retrieve two pieces of data each cycle, so we
partition the syndrome calculation into two steps. The first step calculates two syndrome values. The
process repeats for the remaining two syndromes. We can thus retrieve values required for each syndrome
at each cycle, while the four available ALUs complete calculations required for each syndrome.

It would be natural to calculate S0 and S1 first, followed by S2 and S3. However, looking ahead to
calculation of the error location polynomial and analyzing register usage, we determine that it is most
efficient to calculate the syndromes in a different order. First, we calculate S0 and S3. In the second
iteration, we calculate S1 and S2. This allows us to leave S1 and S2 in the registers for immediate use by the
error-location polynomial calculations.
Reed-Solomon Decoding on the StarCore Processor 13

Reed-Solomon Program

s
e

rome

ulation.
s
ceive
e

Example 2-1. Code for Calculating Syndromes 0 and 3

move #ALOGTBL1+2,r1 move #ALOGTBL1+14,r3 ;r1&r3->ALOGTBL plus offsets
move #LOGTBL,r2 move #509,m0 ;r2->LOGTBL, r1&r3 mod 255 words
move.l #$00008080,MCTL ;r1,r3 (ALOGTBL ptrs) are mod m0
move #$000,b1 move #$000,b3 ;b1,b3 base address at $0
dosetup3 _SYN03LP
doen3 #CWLENGTH/2-1

move #MASK,r12 move.2w (r8)-,d8:d9 ;d8=v62,d9=v63
move.w #1,d10 move #-LOGTBL,d12
move.4w (r12),d4:d5:d6:d7
tsteq d8 subl d12,d8 ;check if v62=0
sub #1,d7 deceq d4 IFT ;setup 0masks
move d8,r4 move d8,r0
tsteq d9 subl d12,d9 ;check if v63=0
sub #1,d6 deceq d5 IFT ;setup 0masks
move d9,r5 move d9,r6
move.2w (r8)-,d8:d9 neg d7 neg d6 ;d8=v60,d9=v61

The code shown in Example 2-1 begins the Reed-Solomon syndrome calculation and is also the beginning
of the complete decoder code. As discussed in Section 2.1.1, we use log tables to calculate the syndromes.
Therefore, the first line of code in Example 2-1 initializes the pointer to the appropriate offset in the alog
table for the α values. R1 is used in the S0 calculations while r3 is used in the S3 calculations. Each
syndrome uses a different alpha offset and therefore requires a different offset from the beginning of the
alog table.

After setting the alog table offset we initialize r2 to point to the beginning of the log table. We also
initialize registers r1 and r3 to be modulo so that calculations using those registers remain within the
boundaries of the alog table. The base address of the modulo is set at $0, the address of the alog table in
memory. The syndrome calculations require looping, so the loop address and counter are also initialized.

The first step in calculating the syndromes is to set up the loop. The loop length is equal to the codeword
length, 64, divided by two. The length is divided by two because we calculate two iterations of the
equation in a single loop—odd and even iterations of the loop. To make the syndrome inner loop a
efficient as possible, we set some registers prior to entering the loop. The equations to calculate th
syndrome are:

odd: [(...((((v63*α2i)+v61)*α2i+v59)*α2i+v57)*α2i+...)*α2i+v1]αi

even: (...((((v62*α2i)+v60)*α2i+v58)*α2i+v56)*α2i+...)*α2i+v0

where αi is the log table entry at offset i (α2i=α2 for S0 and α2i=α8 for S3) and v63 through v0 are the
received codeword values. The results of these two equations are added together to form the synd
value.

The first thing we do is retrieve v62 and v63, which are used for both S0 and S3. These received values are
placed in registers d8 and d9. They are also copied to r0, r4, r5, and r6 for later use in the loop calc
We calculate the masks as discussed in section Section 2.1. Also, we retrieve the first four log table entrie
and place them in registers d[4-7]. Immediately before entering the loop we retrieve the next two re
data values, v60 and v61, and place them in d8 and d9, respectively. We are now ready to enter th
syndrome loop calculation.

Since we have the received information, v63..v60, and alpha information, α2i, we can begin the calculation
shown in the preceding equation. The syndrome loop calculation is shown in Example 2-2.
14 Reed-Solomon Decoding on the StarCore Processor

Reed-Solomon Program
Example 2-2. Syndrome Inner Loop Calculation

sub d12,d7,d7 sub d12,d6,d6 neg d4 neg d5 move (r4),r4 move (r5),r5
sub d12,d4,d4 sub d12,d5,d5 move (r0),r0 move (r6),r6 ;masks are 0 or $ffff
move (r1+r4),d3 move (r1+r5),d2 ;d3=alog(v62*a2),d2=alog(v63*a2)
and d7,d3 and d6,d2 move (r3+r0),d0 move (r3+r6),d1

;d0=alog(v62*a8),d1=alog(v63*a8)
eor d8,d3 eor d9,d2 and d4,d0 and d5,d1 move.4w (r12),d4:d5:d6:d7

;mask results to 0 if prev term=0
subl d12,d3 subl d12,d2 eor d8,d0 eor d9,d1 move.2w (r8)-,d8:d9

;d3=v62a2+v60,d2=v63a2+v61
;d0=v62a8+v60,d1=v63a8+v61

min d3,d7 min d2,d6 subl d12,d0 subl d12,d1 move d3,r4 move d2,r5
min d0,d4 min d1,d5 neg d7 neg d6 move d0,r0 move d1,r6

;prepare to log result

The sub instructions perform table offset calculations, then the move instructions actually execute the
syndromes. R4 holds v62 coming into the loop, while r5 holds v63. The move instruction then takes the log
of the received value. The second line of code repeats this process by taking the log of v62 and v63 again.
The first log is required for the odd iteration of the loop, while the second log is for the even iteration of the
loop. Next we calculate the alog of v62*α2. α2 is pointed to by r1. Adding in the log domain is the same as
multiplying in the alog domain. Therefore, by adding r1 and r4, we are actually multiplying the values
v62*α2. The move instruction takes the alog of the multiplied value and places it in d3. The same is done
for v63*α2, with the value placed in d2. The next line repeats this process using α8 for the S3 calculation.
The results using α8 are stored in d0 and d1. Now we EXCLUSIVE-OR the multiplied values with the
received value, so d2 then holds (v63*α2)+v61. and d3 holds (v62*α2)+v60. The same is true of d0 and d1,
although they have α2 replaced with α8. We also retrieve the next log table entries and the next two
received data, v59 and v58. The next received data are again placed in d8 and d9. Notice that everything is
done four times; that is two of the multiplies are calculated from the syndrome calculation equation in each
loop iteration. After the loop is complete, these values must be added together to complete the syndrome
calculation. Also, the equation for two syndrome calculations executes in each loop. This process repeats
until the two halves of the entire codeword are computed.

Example 2-3. Syndrome Storage

sub d12,d6,d6 neg d5 move (r5),r5 move #ALOGTBL1,r1 ;r1->ALOGTBL offset for a1
sub d12,d5,d5 move (r6),r6 move #ALOGTBL1+6,r3 ;r3->ALOGTBL offset for a4
add d12,d3,d3 add d12,d0,d0 move #SYNST,r10 ;r10->syndrome storage
lsr d3 lsr d0 move (r1+r5),d2 move (r3+r6),d1 ;d2=a*odd d1=a4*odd
tfr d10,d6 and d6,d2 tfr d10,d5 and d5,d1 ;mask to 0 if prev term=0
eor d3,d2 eor d0,d1 ;d2&d1=odd+even terms
min d2,d6 move d2,r5 min d1,d5 move d1,r6 ;prepare to log result
neg d6 neg d5 ;masks are 0 or $ffff
zxt.w d6,d5 zxt.w d5,d3 move (r2+r5),d4 move (r2+r6),d2 ;log of syndromes
move.2w d4:d5,(r10)+ ;store S0,0mask
move.2w d2:d3,(r10) ;store S3,0mask

Once the loop is complete, we have almost finished calculating the two syndromes, S0 and S3. In Example
2-3, we take the log of the odd portion of the syndrome calculation. We also reset the alog table pointers, r1
and r3. We need to set a pointer to the destination of our syndrome calculation. R10 points to the syndrome
storage area. The fourth line of the move instructions multiplies the odd portion of the syndrome
calculation by αi again, as the equation requires. These moves also take the alog so that the value is back in
the alog domain. Now we perform an EXCLUSIVE-OR to add the even and odd portions of the calculation
together. d1 holds the S3 calculation while d2 holds the S0 calculation. We prepare to log the results before
storing them by setting their mask values. We then take the log of S3, which has been moved to r6, and the
log of S0, which is in r5. These results are stored with their masks at the location to which r10 points.
Reed-Solomon Decoding on the StarCore Processor 15

Reed-Solomon Program
Calculation of S0 and S3 is complete, and we are ready to calculate S1 and S2. The code in Example 2-4 is
almost identical to the previous syndrome calculations. The only changes are due to table offsets for the
syndromes being calculated. Also, after the syndrome loop calculations, there is some code that sets up
registers for the next sections of code.

Example 2-4. Code for Calculating Syndromes 1 and 2

move #ALOGTBL1+6,r1 move #ALOGTBL1+10,r3 ;r1&r3->ALOGTBL plus offsets
move #RECDATA-2,r8 ;reset input ptr
dosetup3 _SYN12LP
doen3 #CWLENGTH/2-1

move.w #1,d10 move.2w (r8)-,d8:d9 ;d8=v62,d9=v63
move.4w (r12),d4:d5:d6:d7
tsteq d8 subl d12,d8 ;check if v62=0
sub #1,d7 deceq d4 IFT ;setup 0masks
move d8,r4 move d8,r0
tsteq d9 subl d12,d9 ;check if v63=0
sub #1,d6 deceq d5 IFT ;setup 0masks
move d9,r5 move d9,r6
neg d7 neg d6 move.2w (r8)-,d8:d9 ;d8=v60,d9=v61

loopstart3
_SYN12LP

sub d12,d7,d7 sub d12,d6,d6 neg d4 neg d5 move (r4),r4 move (r5),r5
sub d12,d4,d4 sub d12,d5,d5 move (r0),r0 move (r6),r6;masks are 0 or $ffff
move (r1+r4),d3 move (r1+r5),d2

;d3=alog(v62*a4),d2=alog(v63*a4)
move (r3+r0),d0 move (r3+r6),d1and d7,d3 and d6,d2 ;d0=alog(v62*a6),d1=alog(v63*a6)
eor d8,d3 eor d9,d2 and d4,d0 and d5,d1 move.4w (r12),d4:d5:d6:d7

;mask results to 0 if prev term=0
subl d12,d3 subl d12,d2 eor d8,d0 eor d9,d1 move.2w (r8)-,d8:d9

;d3=v62a4+v60,d2=v63a4+v61
;d0=v62a6+v60,d1=v63a6+v61

min d3,d7 min d2,d6 subl d12,d0 subl d12,d1 move d3,r4 move d2,r5
min d0,d4 min d1,d5 neg d7 neg d6 move d0,r0 move d1,r6

;prepare to log result
loopend3

sub d12,d6,d6 neg d5 move (r5),r5 move #ALOGTBL1+2,r1
;r1->ALOGTBL offset for a2

sub d12,d5,d5 move (r6),r6 move #ALOGTBL1+4,r3 ;r3->ALOGTBL offset for a3
add d12,d3,d3 add d12,d0,d0 move #SYNST+8,r10 ;reset syndrome ptr
move (r1+r5),d2 move (r3+r6),d1 lsr d3 lsr d0 ;d2=a2*odd, d1=a3*odd
tfr d10,d6 and d6,d2 tfr d10,d5 and d5,d1 ;mask to 0 if prev term=0
eor d3,d2 eor d0,d1 ;d2&d1=odd+even terms
min d2,d6 move d2,r5 min d1,d5 move d1,r6 ;prepare to log result
neg d6 neg d5 ;masks are 0 or $ffff
move (r2+r5),d0 move (r2+r6),d2 zxt.w d6,d5 zxt.w d5,d6 ;log of syndromes
move d0,r4 move d2,r5 tfr d5,d1 tfr d6,d3 ;r4=log(S1),r5=log(S2)
asl d0,d4 asl d2,d1 move.2w d0:d1,(r10)+ ;store S1,0mask
tfra r4,n0 tfra r5,n1 ;n0=log(S1), n1=log(S2)
add #ALOGTBL,d4 add #ALOGTBL,d1 move.2w d2:d3,(r10) move #SYNST,r10

;store S2,0mask
move d1,r3 move d4,r1 ;r2->SYNST, r1=log(S1)+tbl offset

After calculating S1 and S2, we leave them in registers r4 and r5. We also transfer them to registers n0 and
n1 to use as address offsets in the next section of code. Later, for the error-location polynomial calculation,
these values will be required to determine the polynomial coefficients.

2.2.2 Finding the Error Location Polynomial (ELP)
Once the syndromes are found, the next step is to determine the coefficients for the error location
polynomial. For our two-error example, there are several ways to determine the coefficients, including
using the Berlekamp-Massey algorithm, the Modified Sugiyama (Euclid’s) algorithm, or the matrix
techniques of the Peterson-Gorenstein-Zierler (PGZ) decoder [4]. For larger numbers of errors, the first
16 Reed-Solomon Decoding on the StarCore Processor

Reed-Solomon Program

f

ing.
rs
 chose

nator is
, this
ne error,

gins
two techniques require less computation, but for the two-error case, it is actually easier to solve the
equations of the PGZ decode technique. Correcting two errors and assuming the syndromes are S0, S1, S2,
and S3, the equations to solve (for Λ1 and Λ2) are and .

Solving, we get the following two results:

There are six intermediate products to find for these terms. Since there are two address processors to use,
we determine the products in pairs. Noting that S1 and S2 appear in all but one of the six products, we
choose to start with S1 and S2. These two syndromes and their mask values are calculated last in the
previous section, so they are available for immediate use here. Example 2-5 shows the error-location
polynomial code.

First, the alogs of the squares of S1 and S2 are determined using the table look-up. We calculate the two
products, S1S2 and S0S2, after loading S0 into the AGU and its mask value into the DALU. Each product is
calculated using four instructions:

• An adda instruction to compute the log addition (equivalent to a regular multiply)

• A move instruction to take the alog of the added result using the table look-up

• An and instruction to combine the mask values for the two terms that are being added

• Another and instruction to mask the final alog result

The first two instructions require modulo arithmetic, so they execute in the AGU. The and instructions
execute in the DALU concurrently with the first two instructions.

The DALU subtracts S0S2 from S2
1 using an eor instruction to get the complete denominator for both Λs.

Loading S3 into the AGU and its mask value into the DALU, we find the two remaining products, S1S3 and
S0S3, using the same procedure as for the previous two products. The sequence of four instructions
described above repeats four times to calculate all four products, S1S2, S0S2, S1S3, and S0S3. The DALU
calculates the numerators for the Λs using two more eor instructions. Meanwhile, the AGU gets the log o
the denominator and the log of the numerators using move instructions for the table look-up. Finally, both
Λs are calculated using sub instructions to divide the numerators by the denominator.

This process demonstrates one of the challenging aspects of this kind of multiprocessor programm
Determining the order of operations is more often a task of determining a way to keep the processo
loaded with the needed information, rather than figuring out how to do the arithmetic. The order we
for the preceding calculation was determined by data movement considerations.

Before we combine the numerators and the denominator, it is useful to do a few tests. If the denomi
zero, we know that there are not two errors. Since we can correct only error patterns of two or less
condition should assume there is one or zero errors and proceed to that processing. In the case of o
Λ 2=0, Λ1=S1/S0 is absorbed into the error evaluator equation. The code jumps to NOTTWO and be
the error evaluation processing assuming one error.

S2 Λ1S1 Λ2S0+ + 0= S3 Λ1S2 Λ2S1+ + 0=

Λ1

S2S1 S0S3–

S
2

1 S0S2–
----------------------------=

Λ2

S3S1 S
2

2–

S
2

1 S0S2–
-------------------------=
Reed-Solomon Decoding on the StarCore Processor 17

Reed-Solomon Program

e

e in

o errors
can do a
eral
-error
ge table
ation

wo
At this point, it is important to test for decoding failures, which occur when there are more than two errors
in the received code word. These failures manifest themselves in many different ways. Thus, the decoder
tests for failures frequently. If a failure is detected, the code jumps to FAIL, where the program ends and
no errors are corrected. The value in register d0 at FAIL holds a number that describes the decoder failure
mode. If either of the Λ numerators are zero, the corresponding Λ is zero and a decoding failure occurred:

• If the numerator for Λ1 is zero, the value in register d0 is one, indicating that the degree of th
error location polynomial is less that two.

• If the numerator for Λ2 is zero, the value in register d0 is two, indicating that the two errors ar
the same place.

Example 2-5. ELP Calculating Code

move #$000,b4 move #$000,b5 ;r4 and r5 have mod base at $0
addl1a n1,r3 move (r1+n0),d0 ;r3=address alog(S2^2),d0=alog(S1^2)
move.l #$00999080,MCTL ;make r3,r4,r5 modulo m1, r1 mod m0
move (r3),d1 move #ALOGTBL,r1 ;r1->ALOGTBL, d1=alog(S2^2)
move #$ff,m1 ;m1 mod 256
adda r4,r5 tfra r5,r3 ;r5=log(S1*S2), r3=log(S2)
and d5,d0 and d6,d1 tfr d6,d2 move (r10)+,r5 move (r1+r5),d4

;d0=S1^2 masked, d1=S2^2 masked, d2=
;S2 Omask, r5=log(S0),d4=alog(S1*S2)

and d5,d2 adda #8,r8,r8 ;d2=S1*S2 0mask, r8->adjust RECDATA
and d2,d4 moveu.w (r10)+,d2 adda r5,r3 ;d4=S1*S2 masked, d2=S0 0mask

;r3=log(S0*S2)
move (r1+r3),d3 move (r10)+,r3 ;r3=log(S3), d3=alog(S2*S0)
and d2,d6 ;d6=S2*S0 0mask
and d6,d3 moveu.w (r10),d6 adda r3,r4 ;d3=S0*S2 masked, d6=S3 0mask

;r4=log(S3*S1)
eor d3,d0 and d6,d5 and d6,d2 adda r3,r5 move (r1+r4),d6

;d0=S1^2-S0*S2,d5=S3*S1 0mask
;d2=S3*S0 0mask,d6=alog(S3*S1)
;r5=log(S3*S0)

and d5,d6 move (r1+r5),d5 move d0,r5 ;d6=S1*S3, d5=alog(S0*S3), r5=D
and d2,d5 eor d6,d1 ;d5=alog(S0*S3), d1=L2N
eor d5,d4 move d1,r4 ;d4=L1N, r4=L2N
move d4,r3 move (r2+r5),r5 ;r3=L1N, r5=log(D)
tsteq d0 ;see if D=0
tfr d4,d2 move (r2+r4),r4 move (r2+r3),r3;d2=L1N, r4=log(L2N), r3=log(L1N)
jt NOTTWO ;D=0, not 2 errors, go to 1 error
tsteq d1 move #1,d0 move #FACTBL,r6;D!=0,L2N=0->decoding failure
jt FAIL ;D!=0, deg Lambda<2 is fail #1

;d0=error flag
tsteq d4 inc d0 suba r5,r4 suba r5,r3

;tst L1N=0, r4=log(L2),r3=log(L1)
jt FAIL suba r3,r4 ;D!=0, L1N=0 -> common root. Fail #2

2.2.3 Factoring the ELP
The next step in the process is to factor the error-location polynomial. We assume that there are tw
because the one and zero error (and failure) cases are straightforward. For the two-error case, we
Chien search that systematically evaluates the error location polynomial looking for zeros. This gen
algorithm can be used for Reed-Solomon codes designed to find any number of errors. For our two
correcting example, we take a shortcut that enables us do a table look-up without an excessively lar
size. We assume that the field size is 256 or less. In general, doing a table look-up on the error loc
polynomial requires that we have entries for all values of Λ1 and Λ2, which for a field size of
256 means a table size of 2562 = 65,536! We reduce this table to 256 entries by dividing the task into t
steps. The first is to make the substitution:

Λ2x
2 Λ1x 1+ +

y
Λ1
------ x=
18 Reed-Solomon Decoding on the StarCore Processor

Reed-Solomon Program
The modified error location polynomial becomes:

We index the table from the single value:

Assuming we are working with 16-bit words, the table is a list of precomputed logarithms of the two roots
of all possible polynomials, indexed by the value Λ2/Λ2

1. For field sizes of 256 or less, the log of both roots
are stored in the same word, so a table size of 256 words is sufficient. For a nonextended Reed-Solomon
code, there are at most 255*254 possible root values, and taking the normalization by Λ1 into account,
there are 127 possible index values that correspond to valid root combinations.

Our table lists all combinations and places the value 0 in the 129 locations that are nonvalid values. A table
look-up that returns 0 is interpreted as a decoding failure (error pattern with more than two errors). The
code that factors the error location polynomial is shown in Example 2-6. The first three lines compute the
index and perform the table look-up of the roots. The roots are tested to ensure that they do not indicate
decoding failures. If both roots are zero, the error-location polynomial failed to factor into two linear terms
and a decoding failure occurred. The code jumps to FAIL, where the program ends, no errors are corrected
and the value in register d0 is five.

Although this table look-up method makes the factoring problem small in code size and execution time,
there is still an opportunity to use the parallel processing units. The data is partitioned into its separate roots
in one step by assigning one ALU to mask off the upper byte and another ALU to shift the word right by
one byte into another register. Then we adjust the root values by adding the log of Λ1 to both products to
undo our normalization. Again, this is be done in parallel, using multiple processors.

For the shortened code, the results must be compared to the largest codeword symbol index to check for a
pattern with more than two errors masquerading as a two-error pattern with one or both error positions
larger than the transmitted codeword. Both error positions are tested, and if either is greater than 63 (the
length of the codeword), the code jumps to FAIL, where the program ends and no errors are corrected. The
value placed in register d0 is six, indicating that there are two error positions with at least one of them in a
position greater than the codeword length.

Example 2-6. ELP Factoring Code

suba r3,r4 ;r4=log(L2/L1)
suba r3,r4 ;r4=log(L2/L1^2)
move (r6+r4),d1 ;d1=factors
tsteq d1 zxt.w d1,d1 move #5,d0 ;check factors !=0, else fail
jt FAIL ;failure to factor. Fail #5
move #SYNST,r10 asrr #8,d1 zxt.b d1,d2 ;split the factors
move d1,r4 move d2,r5 ;move to address for log arith
move #CWLENGTH-1,r6 ;r6=code length
inc d0 adda r3,r4 adda r3,r5 ;error positions in r4 & r5
cmpgta r6,r4 move r4,d4
jt FAIL ;fail #6. Factor to pos >63
cmpgta r6,r5 move r5,d5
jt FAIL ;same fail, error positions in d4&d5

Λ2

Λ2
1

---------y
2

y 1+ +

Λ2

Λ2
1

Reed-Solomon Decoding on the StarCore Processor 19

Reed-Solomon Program
2.2.4 Evaluating the Errors
Once the error positions are determined, they are passed to the error-evaluation section to determine the
value of the error in each position and to correct for the errors. First, the error-evaluator coefficients, Ωx,
are calculated. The error magnitudes are calculated using the error locations and the error-evaluator
coefficients. The error magnitudes are used to correct the errors in the codeword at the location defined by
the error positions. The error magnitudes contain a one where a bit error is located in the codeword and
zeros elsewhere. Thus, when the error magnitudes are EXCLUSIVE-ORed with the codeword, the
incorrect bits are changed and the correct bits are unchanged.

2.2.4.1 Two-Error Case

For the two-error case, the error-evaluator coefficients are as follows:

The code that corrects the errors for the two-error case is shown in Example 2-7. First, the error-evaluator
terms are calculated. The value of the Λ1 is left in the AGU from the previous calculations. We load the S0
and S1 values into the DALU and subtract Λ1 from both syndromes using suba instructions. We take the
alog of the results, placing the alogs into the DALU. These computations are completed simultaneously,
using the two address processors. Meanwhile, we obtain the alog of S0, which is added to the S1/Λ1 value
to get Ω1. All alog values are masked in the DALU using and instructions.

The error magnitudes are calculated by the following equation, using the roots of the error-location
polynomial for the error positions:

First, we compute the log of Ω1 and a mask value for Ω1. The mask computation requires a min
instruction with register d0 as the source. The min instruction is very restrictive with its register
combinations, and in this case, the destination for the min instruction must be register d4. Thus, the error
location in register d4 is temporarily moved to register d6 while the Ω1 mask is calculated. We subtract
both error positions from Ω1 using suba instructions and take the alog using move instructions for the
table look-up. We add Ω0 using eor instructions to get the final error magnitudes. Both error magnitudes
are calculated simultaneously using the two address processors.

Once the error magnitudes are calculated, the symbols at the locations defined by the two error positions
are retrieved and EXCLUSIVE-ORed with the error magnitudes. The corrected symbol is moved back to
the codeword to give the correct transmitted data words, and the decoding is complete.

Ω1

S1

Λ1
------ S0+=

Ω0

S0

Λ1
------=

Ω1

errorposition
------------------------------------ Ω0+
20 Reed-Solomon Decoding on the StarCore Processor

Reed-Solomon Program
Example 2-7. Two Error Evaluation Code

move.2w (r10),d0:d1 adda #8,r10,r10 ;d0=S0, d1=S0 0mask
move.2w (r10),d2:d3 move d0,r4 ;d2=S1, d3=S1 0mask, r4=S0
move d2,r5 ;r5=S1
move (r1+r4),d0 ;d0=alog(S0)
and d1,d0 suba r3,r5 suba r3,r4 ;d0=S0 masked, r5=S1/L1, r4=S0/L1
move (r1+r4),d2 move (r1+r5),d6 ;d2=alog(S0/L1), d6=alog(S1/L1)
and d1,d2 and d3,d6 move d4,r3 move d5,r6

;0mask alogs, d2=Omega0
eor d6,d0 tfr d4,d6 clr d4 ;d0=Omega1
inc d4 move d0,r4 ;r4=Omega1
min d0,d4
move (r2+r4),r4 move (r2+r4),r5 ;r4=r5=log(Omega1)
neg d4 ;d4=0mask
suba r3,r4 suba r6,r5 ;r4=Omega1/err1,r5=Omega1/err2
zxt.w d4,d1 tfr d6,d4 move (r1+r4),d0 move (r1+r5),d3

;d1=O1 Omask, d4=err1, d0=alog
;(O1/err1),d3=alog(O1/err2)

and d1,d0 and d1,d3 ;mask d0 and d3
eor d2,d0 eor d2,d3 ;d0=Omega1/err1+Omega0

;d3=Omega1/err2+Omega0
move d0,r3 move d3,r4 ;prep to log Omega sums
move d4,r5 move d5,r6 ;r2 & r6 = error positions
move (r2+r3),r3 move (r2+r4),r4 ;r3 & r4 = log(Omega sums)
move (r8+r5),d2 move (r8+r6),d3 ;get errors to correct
move (r1+r3),d0 move (r1+r4),d1 ;d0 & d1 = error values
eor d2,d0 eor d3,d1 ;correct errors
move d0,(r8+r5)
move d1,(r8+r6) ;write corrections
jmp NOERRORS ;well? There aren’t any now!

2.2.4.2 One-Error Case

The code that corrects the errors for the one-error case is shown in Example 2-8. This code is located at
NOTTWO, and we jump to it from the error location polynomial calculation. For the one and zero error
cases, the Λ denominator and both numerators are zero. We know that the denominator is zero at this point
because we jump to NOTTWO based on a zero value for the denominator. Thus, the code first tests both of
the Λ numerators (already calculated during the error location polynomial phase and stored in registers d1
and d4) to ensure that they are both equal to zero. If both numerators are not equal to zero, the code jumps
to FAIL and register d0 is three. Now we must test for any other decoding failures. Table 2-1 shows the
values of the syndromes (0 for zero and x for nonzero) and the numerator values based on these syndromes.
The table also shows which cases are for zero and one errors and which cases are failures. Some of the
syndrome combinations are missing from the table because these combinations are not possible at this
point. Only combinations in which the denominator is zero or S2

1=S0S2 are possible.

We use the fact that the following equation applies for one error to get zero values for the numerators in the
one error case row:

The rows that are gray were already eliminated by the previous test (at least one of the numerators is not
zero). Thus, we need to test only for the two failure rows. The code tests whether both or neither S0 and S3
are equal to zero (using an eor instruction) and jumps to FAIL if the result is false, after placing three in
register d0. The code also tests for the zero error case (when S2 equals zero) and ends the processing if
there are zero errors to correct.

S3

S2

S2

S1

S1

S0
----- Λ1= = =
Reed-Solomon Decoding on the StarCore Processor 21

Reed-Solomon Program
Meanwhile, we calculate the error-evaluator and error location. For the one error case, the error-evaluator
is a constant, Ω0=S0, and the error location is as follows:

We load the S0 and S1 values into the AGU and subtract S1 from S0 to get Λ1. For the shortened code, the
error location must be compared to the largest codeword symbol index to check for a decoding failure. The
error location is tested, and if it is greater than 63 (the length of the codeword), the code jumps to FAIL
where the program ends and no errors are corrected. The value placed in register d0 is four, indicating that
there is one error, but it is in a position greater than the codeword length.

We calculate the error magnitude using the following:

We subtract Λ1 from S0 and take the alog of the result, using a move instruction to get the final error
magnitude. Once the error magnitude is calculated, the symbol at the location defined by the error position
is retrieved and EXCLUSIVE-ORed with the error magnitude. The corrected symbol is moved back to the
codeword to give the correct transmitted data word, and the decoding is complete.

Example 2-8. One Error Evaluation Code

or d1,d4 move #SYNST,r10 ;to check if both are 0
tsteq d4 move #3,d0 ;if D=0 and N1 or N2 !=0, Fail #3
jf FAIL move.2l (r10)+,d0:d1 ;d0=S0+mask, d1=S3+mask
eor d0,d1 zxt.w d0,d0 move.w (r10)+,r5 ;d1=S0+S3, r5=S1
asrw d1,d1 move.w (r10),d2 move d0,r4 ;d2=S2, r4=S0
tsteq d1
move #3,d0 suba r4,r5 ;r5=S1/S0=L1
jf FAIL ;fail #3
tsteq d2 move r5,d1 ;tst for 0 error case, d1=r5=L1

 jt NOERRORS
inc d0 cmpgt.w #CWLENGTH-1,d1 ;if d1<=63, all is well
jt FAIL suba r5,r4 ;fail #4
move (r1+r4),d0 move (r8+r5),d1 ;d0=alog(S0/L1), get error to fix
eor d0,d1 ;correct error
move d1,(r8+r5) ;write correction
jmp NOERRORS ;well? There aren’t any now!

Table 2-1. Syndrome and Numerator Values

S3 S2 S1 S0 Λ1 numerator Λ2 numerator Comment

0 0 0 0 0 0 Zero error case

0 0 0 x 0 0 Failure

0 x 0 0 0 x

0 x x x x x

x 0 0 0 0 0 Failure

x 0 0 x x 0

x x 0 0 0 x

x x x x 0 0 One error case

Λ1

S1

S0
-----=

Ω0

errorposition

S0

Λ1
------=
22 Reed-Solomon Decoding on the StarCore Processor

Reed-Solomon Program
3 Conclusion
The two-error Reed-Solomon decoder described in this application note requires a small number of MIPS
when implemented on the StarCore processor. The cycle count is data dependent because there is a
memory contention issue. The contention issue arises because the table look-ups for finite field logarithms
and antilogarithms are (for this example) in GF(256). Since we use words for each entry in the table, each
table takes 512 bytes. Typically, this is not a problem. While the syndrome determination loop performs a
parallel access to the tables in the same instruction, saving two cycles when compared to code that does not
do the access in parallel, it does so at the cost of a memory access contention stall for some accesses.
Modeling the table look-up addresses as uniformly distributed random variables, this contention stall
occurs with a probability of 1/16 for each relevant access attempt. Consequently, the cycle count for the
code presented here is the sum of a constant and a binomially distributed random variable. Although the
best-case cycle count is 819 and the worst-case count is 1115, the average cycle count is heavily biased
toward the lower number; 99.9 percent of the time, the cycle count is less than 854.

The program is 1178 bytes, the log tables are 1024 bytes, and the factor table is 512 bytes. Therefore, the
total amount of memory used for the program, tables, and received codeword is 2.714 Kbytes.

Memory contention stalls can be avoided simply by creating second copies of the logarithm and
antilogarithm tables with adequately spaced address differences. Creating these copies reduces the cycle
count to 819 and raises the memory use to 3.738 Kbytes.

The study of error correcting codes promotes great flexibility in the type of coding used, the parameters
chosen to implement in a given code, and mathematical strategies to improve coding performance. For
Reed-Solomon codes, this work can be expanded to explore the performance effects of correcting more
than two errors. While this work would create a more powerful decoder, it would aso greatly increase the
complexity and perhaps the cycle count of the decoder. Additionally, this Reed-Solomon decoder could be
compared with convolutional codes of a similar capability to determine performance benefits and
drawbacks for each implementation in a given system.

4 References
[1] Lin, Shu and Costello, Error Control Coding: Fundamentals and Applications, Prentice-Hall:
Englewood Cliffs, NJ, 1983.

[2] Herstein, I.N., Topics in Algebra, Xerox College Publishing: Lexington, MA, 1975.

[3] Sklar, B., Digital Communications Fundamentals and Applications, Prentice-Hall: Englewood Cliffs,
NJ, 1988.

[4] Blahut, R.E., Theory and Practice of Error Control Codes, Addison Wesley: Reading, MA, 1984.
Reed-Solomon Decoding on the StarCore Processor 23

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty,
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including
without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body, or other applications intended to support life, or for
any other application in which the failure of the Motorola product could create a situation where personal injury or death may
occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or
death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

How to reach us:

StareCore is a trademark of Motorola, Inc.

AN1841/D

USA/Europe/Locations Not Listed:

Motorola Literature Distribution
P.O. Box 5405
Denver, Colorado 80217
1 (800) 441-2447
1 (303) 675-2140

Motorola Fax Back System (Mfax™) :
RMFAX0@email.sps.mot.com
TOUCHTONE (602) 244-6609
USA and Canada ONLY:

1-800-774-1848
http://sps.motorola.com/mfax/

Asia/Pacific :
Motorola Semiconductors H.K. Ltd.
8B Tai Ping Industrial Park
51 Ting Kok Road
Tai Po, N.T., Hong Kong
852-26629298

Technical Resource Center:
1 (800) 521-6274

DSP Helpline
dsphelp@dsp.sps.mot.com

Japan :
Nippon Motorola Ltd.
SPD, Strategic Planning Office141
4-32-1, Nishi-Gotanda
3-14-2 Tatsumi Koto-Ku
Shinagawa-ku, Tokyo, Japan
81-3-5487-8488

Customer Focus Center:
1-800-521-6274

Internet :
http://www.mot.com/SPS/DSP/

	1 Theory
	1.1 Error Correcting Codes
	1.2 Finite Field Theory
	1.2.1 Simple Finite Fields
	1.2.2 Field Extensions

	1.3 Reed-Solomon Theory
	1.3.1 Parameters
	1.3.2 Decoding Process
	1.3.3 Reed-Solomon Benefits

	2 Implementation
	2.1 Multiplication Method
	2.1.1 Generating Look-up Tables
	2.1.1.1 Log and Alog Table Generation
	2.1.1.2 Factor Table

	2.2 Reed-Solomon Program
	2.2.1 Calculating the Syndromes
	2.2.2 Finding the Error Location Polynomial (ELP)
	2.2.3 Factoring the ELP
	2.2.4 Evaluating the Errors
	2.2.4.1 Two-Error Case
	2.2.4.2 One-Error Case

	3 Conclusion
	4 References

