

MOTOROLA APR10

Motorola
Digital Signal
Processors

DSP96002 Interface
Techniques and Examples

by R. Robles
Z. Rozenshein
O. Rubinstein
A. Vainberg

Motorola reserves the right to make changes without further notice to any products here-
in. Motorola makes no warranty, representation or guarantee regarding the suitability of
its products for any particular purpose, nor does Motorola assume any liability arising out
of the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation consequential or incidental damages. “Typical” pa-
rameters can and do vary in different applications. All operating parameters, including
“Typicals” must be validated for each customer application by customer’s technical ex-
perts. Motorola does not convey any license under its patent rights nor the rights of oth-
ers. Motorola products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Motorola
product could create a situation where personal injury or death may occur. Should Buyer
purchase or use Motorola products for any such unintended or unauthorized application,
Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affili-
ates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claim alleges
that Motorola was negligent regarding the design or manufacture of the part. Motorola
and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportuni-
ty/Affirmative Action Employer.

Table
of Contents

MOTOROLA

iii

SECTION 1

DSP96002
Data Transfer

Techniques

1.1 Introduction 1-1
1.2 Full Handshake DMA Transfer 1-2

1.2.1 Description 1-2
 1.2.2 Interconnection Model 1-5

1.2.3 Programming Consideration for
Full Handshake DMA Transfer 1-6
1.2.3.1 Master Processor

DMA Programming 1-6
1.2.3.2 Master Processor

Port Programming 1-8
1.2.3.3 Slave Processor Host

Interface Programming 1-8
1.2.3.4 Slave Processor DMA

Channel Programming 1-8
1.2.4 Timing Diagram of Full

Handshake DMA Transfer 1-9
1.3 Partial Handshake DMA Transfer 1-12

1.3.1 Description 1-12
1.3.2 Interconnection Model 1-13
1.3.3 Programming Consideration for

Partial Handshake DMA Transfer 1-15
1.3.3.1 Master Processor

DMA Programming 1-15
1.3.3.2 Master Processor

Port Programming 1-15
1.3.3.3 Slave Processor Host

Interface Programming 1-15

iv

 MOTOROLA

Table
of Contents

1.3.3.4 Slave Processor DMA
Channel Programming 1-15

1.3.4 Timing Diagram of Partial
Handshake DMA Transfer 1-16

1.4 No Handshake DMA Transfer 1-18
1.4.1 Description 1-18
1.4.2 Interconnection Model 1-19
1.4.3 Programming Considerations for

No Handshake DMA Transfer 1-20
1.4.3.1 Master Processor DMA

 Programming 1-20
1.4.3.2 Master Processor Port

Programming 1-20
1.4.3.3 Slave Processor Host

Interface Programming 1-21
1.4.3.4 Slave Processor DMA

Channel Programming 1-21
1.4.3.5 Slave Processor Port

 Programming 1-21
1.4.4 Timing Diagram of No Handshake

DMA Transfer 1-21
1.5 Programming Examples 1-24

1.5.1 Programming Model of the Full
Handshake DMA Transfer 1-24

1.5.2 Programming Model for Partial
Handshake DMA Transfer 1-26

1.5.3 Programming Model for No
Handshake DMA Transfer 1-28

Table
of Contents

MOTOROLA

v

SECTION 2

Connecting the
DSP96002 as
an Attached

Processor to
the ISA Bus

Turns
PC/AT into a

Fast and
Powerful

IEEE
Compatible

Floating Point
Computer

2.1 Introduction 2-1
2.2 ISA (Industry Standard Architecture)

Bus Details 2-2
2.3 DSP96002 Features 2-4
2.4 Application Board Detailed Description 2-7

2.4.1 CPU 2-8
2.4.2 Memory 2-8
2.4.3 Data Bus and Address

Bus Buffers 2-8
2.4.4 Bus Arbitration Logic 2-9

2.5 CPU Sub-Block Detailed Description 2-9
2.6 Memory Sub-Block Detailed Description 2-13
2.7 Data and Address Bus Buffers

Detailed Description 2-17
2.7.1 Bus Arbitration and Control Logic

Detailed Description 2-19
2.7.2 Host Interface Detailed

Description 2-19
2.7.3 Address Decoder Detailed

Description 2-21
2.7.4 Buffer Controller Detailed

Description 2-23
2.8 Bus Arbiter Detailed Description 2-24
2.9 Sample Software Applications 2-28

2.9.1 Sample Application: Download
Through the Host Interface 2-29

2.9.2 Sample Application: Download
Through Common Memory 2-30

vi

 MOTOROLA

Table
of Contents

2.10 Benchmarks 2-31
2.11 Acceleration Factor 2-31

SECTION 3

Connecting the
DSP96002 to
the VMEbus

3.1 Introduction 3-1
3.2 The VMEbus 3-1
3.3 The DSP96002 3-2
3.4 Design Description 3-2
3.5 Signals Between the Interface and

the VMEbus 3-3
3.6 Signals Between the Interface and the

ADS96002 3-4
3.7 Address and Modifier Decoding 3-5

3.7.1 Address Decoder PLD Equations 3-6
3.8 Description—Bus Arbiter 3-6

3.8.1 Bus Arbiter PLD Equations 3-8
3.9 Description—VMEbus Protocol Handler 3-9
3.10 Timing Considerations 3-12

SECTION 4

Interfacing the
DSP96002 Media

Engine

TM

Processor
to 56ADC16

Sigma-Delta A/D
Converters

4.1 Introduction 4-1
4.2 The DSP56ADC16 Analog-to-Digital

Converter 4-2
4.3 The DSP96002 Media Engine

TM

Processor 4-3

4.4 Interface Hardware Description 4-4
4.3.1 Timing 4-7

Table
of Contents

MOTOROLA

vii

SECTION 5

A Non-Intrusive
Cycle Counter

for the
DSP96002 ADS

5.1 Introduction 5-1
5.2 Circuit description 5-1

REFERENCES References-1

Illustrations

MOTOROLA

ix

Figure 1-1

Figure 1-2

Figure 1-3

Figure 1-4

Figure 1-5

Figure 1-6

Figure 1-7

Figure 1-8

Figure 1-9

Figure 1-10

Figure 1-11

Figure 1-12

Figure 1-13

Figure 1-14

Figure 1-15

Figure 1-16

Figure 2-1

Figure 2-2

Figure 2-3

Figure 2-4

Figure 2-5

Figure 2-6

Full Handshake DMA Transfer 1-3

Host Interface Block Diagram 1-4

Full Handshake DMA Interconnection Model 1-5

Timing Diagram of Full Handshake DMA Transfer 1-11

Partial Handshake DMA Transfer 1-13

Partial Handshake DMA Transfer Interconnection Model 1-14

Timing Diagram for Partial Handshake DMA Transfer 1-17

Configuration for No Handshake DMA Transfer 1-18

No Handshake DMA Transfer Interconnection Model 1-20

No Handshake DMA Transfer 1-23

DMA Programming Procedure for the Master Processor
in the Full Handshake 1-24

DMA Programming Procedure for the Slave Processor
in the Full Handshake 1-25

DMA Programming Procedure for the Master Processor
in the Partial handshake 1-26

DMA Programming Procedure for the Slave Processor
in the Partial Handshake 1-27

DMA Programming Procedure for the Master Processor
in the No Handshake Transfer 1-28

DMA Programming Procedure for the Slave Processor
in the No Handshake Transfer 1-29

Block Diagram 2-2

CPU Block Diagram 2-10

RES Generation Timing Diagram 2-11

Memory Detailed Block Diagram 2-13

Data and Address Bus Buffers Detailed Block Diagram 2-18

Host Interface Detailed Block Diagram 2-19

x MOTOROLA

Illustrations

Figure 2-7

Figure 2-8

Figure 2-9

Figure 2-10

Figure 2-11

Figure 2-12

Figure 2-13

Figure 2-14

Figure 2-15

Figure 3-1

Figure 3-2

Figure 3-3

Figure 3-4

Figure 3-5

Figure 3-6

Figure 3-7

Figure 4-1

Figure 4-2

Figure 4-3

Figure 4-4

Figure 5-1

Figure 5-2

Figure 5-3

Host Select Timing Diagram 2-21

Address Decoder Detailed Block Diagram 2-22

Buffer Controller Detailed Block Diagram 2-24

Bus Arbiter Detailed Block Diagram 2-25

Bus Arbitration Timing Diagram 2-27

‘C’ Language Program Listing 2-29

DSP96002 Assembly Language Listing 2-29

‘C’ Language Program Listing 2-30

DSP96002 Assembly Language Listing 2-30

Connection Block Diagram 3-4

Interface Card Block Diagram 3-5

DSP96002 Bus Arbitration 3-7

VMEbus Protocol 3-10

VMEbus Protocol handler PLD Equations 3-11

Write Timing (Master-to-Slave) 3-13

Read Timing (Slave-to-Master) 3-14

Serial Interface Block Diagram 4-4

Serial Interface Timing 4-7

DSP96002 Serial Interface Schematic 4-8

DSP96002 Serial Interface — PLD Definition 4-10

DSP96002ADS Cycle Counter Schematic 5-2

PLD Source for the DSP96002 ADS Cycle Counter 5-3

Sample Program to Test the DSP96002ADS
Cycle Counter 5-4

List of Tables

MOTOROLA

 xi

Table 2-1

Generation of Read and Write Signals 2-16

MOTOROLA 1-1

1.1 Introduction

T

his section presents three high performance inter-
connection techniques with several DSP96002s.
Transfer procedures are designed in such a manner
that minimum DSP96002 CPU intervention is re-
quired. For this purpose, one of the two on-chip
DMA channels is used and CPU intervention is re-
quired only in the initial phase for programming the
DMA channels.

Unidirectional data transfer is assumed for simplici-
ty; however, bidirectional data transfer can be
implemented in the same manner. The model is
composed of two processors, one is the Master Pro-
cessor and the other is the Slave Processor. The
model can be easily expanded for configurations
with more than two processors. The data transfer di-
rection is from Master to Slave. The particular
implementation in this section is based on data
transfer from the Master Processor internal memo-
ry, to Slave Processor internal memory. One of the
Master Processor’s two DMA channels is used to

SECTION 1

DSP96002 Data
Transfer Techniques

by A. Vainberg

“The three
transfer

techniques
presented in this

section are Full
Handshake DMA
transfer..., Partial
Handshake DMA

transfer..., and
 No Handshake
DMA transfer...”

1-2 MOTOROLA

transfer data from Master internal memory to the
Slave Processor’s Host Interface. One of the Slave
Processor DMA channels is used to transfer the re-
ceived data from the Host Interface to internal
memory.

The three transfer techniques presented in this sec-
tion are:

• Full Handshake DMA transfer:
one 4 byte transfer every 4 instruction cycles

• Partial Handshake DMA transfer:
one 4 byte transfer every 2 instruction cycles

• No Handshake DMA transfer:
one 4 byte transfer every 1 instruction cycle

1.2 Full Handshake
DMA Transfer

1.2.1 Description

A full handshake DMA transfer provides data transfer
from the internal memory of the Master Processor to
the internal memory of the Slave Processor. For this
purpose, one DMA channel is allocated to each pro-
cessor. One of the Master Processor DMA channels
is programmed to read data from internal memory and
then to write this data to the Slave Processor Host
Transmit Register. The Slave Processor DMA chan-
nel is programmed to read data from the Host Receive
Register and to write this data in its internal memory.

MOTOROLA 1-3

The Slave Processor DMA channel is programmed
as “Single Block, Word Transfer, Triggered by the
DMA Request” where the DMA request is the Host
Receive Data Full (HRDF=1) flag. After the Slave
Processor DMA channel is enabled, Transmit Data
Register Empty (TXDE) status asserts the HR line
of the Host Interface. The Slave Processor HR line
connects to the Master Processor IRQA line.

The Master Processor DMA channel is programmed
as “Single Block, Word Transfer, Triggered by DMA
Request”, where the DMA request is IRQA. A DMA
request is generated when the Master Processor
DMA channel is enabled and IRQA is asserted. In re-
sponse to this DMA request, the Master Processor
DMA channel reads data from internal memory and
starts a bus write cycle. New data is written into the
Slave Host Interface Transmit Data Register with the
deassertion of TS. The TXDE bit is cleared, the HR
line is deasserted, and a new data transfer to the
HRX register is initiated.

S
 H

os
t

In
te

rf
ac

e
A

/B

S
 D

M
A

S
 M

em
or

y

DSP96002

TS

M
 M

em
or

y

M
 D

M
A

M
 P

or
t A

/B

IRQADSP96002

MASTER SLAVE
HR

TS

Figure 1-1 Full Handshake DMA Transfer

1-4 MOTOROLA

Figure 1-2 Host Interface Block Diagram

A2-A5
TS
HS
HA
R/W
HR

Host Interface
Control Logic

HRX

HSR

Interrupts

Status
Register

Control
Register

32-Bit Buses

HOST PROCESSOR SIDE DSP96002 SIDE

Transmit Data
Register

Receive Data
Register

D
S

P
 G

lo
ba

l D
at

a
B

us
 (

G
D

B
)

D
S

P
 D

M
A

 D
at

a
B

us
 (

D
D

B
)

Data Bus
D0-D31

HTX/
HTXCRX

TX

SEM

IVR

CVR

ICS

Receive
Register
A5-A2=$A

Semaphore
Register
A5-A2=$9

Interrupt
Register
A5-A2=$C

Command
Vector Register
A5-A2=$D

Control/Status
Register
A5-A2=$8

Transmit
Register
A5-A2=$A

HCR

MOTOROLA 1-5

A DMA request is generated after the status of Host
Receive Data Full (HRDF) is updated and data is
transferred to HRX register. This DMA request en-
ables the DMA channel to read the HRX register
and to write the received data into internal memory.
The HRDF status is then cleared and the HR line is
asserted. After the HR line is asserted, a new data
transfer cycle is performed. If the DMA channel in-
terrupt enable line has been set, an interrupt is
generated at the end of DMA transfer.

1.2.2

Interconnection Model

The data bus is common to both processors. The
Master Processor is configured in master mode, i.e.,
Bus Grant (BG) is connected to “0”. Also, Transfer
Acknowledge (TA) is connected to “0” which means
that the Master Processor will always receive an au-
tomatic data acknowledge so that no wait states will
be inserted.

IRQA
bS0-1

bA0-31
DSP96002

bTS

bR/W

bTA

aHR

aHS

aA2-5
aTS
aR/W
aBG

aD0-31

DSP96002

Figure 1-3 Full Handshake DMA Interconnection Model

bD0-31
bBG

SlaveMaster

Slave
Select

Gnd VccGnd

1-6 MOTOROLA

The Master Processor address bus (A5-A31) and
Space Select (S0-S1) lines are decoded to generate
HS to select the Slave Processor Host Interface.
The A2-A5 lines are used to select the Slave Pro-
cessor Host Interface Register. The Master
Processor R/W line is connected to the Slave Pro-
cessor R/W line and is used to signal a Read or
Write transfer. The Master processor Transfer
Strobe (TS) is connected to the Slave Processor TS;
TS is asserted when a bus write or a bus read is tak-
ing place. The Slave Processor Bus Grant (BG)
signal is connected to “1”, placing the Slave Proces-
sor in the Bus Slave mode. A common clock is

 not

necessary in this configuration and no special timing
precautions need to be considered.

1.2.3 Programming Consideration for
Full Handshake DMA Transfer

1.2.3.1 Master Processor DMA Programming

One of the Master Processor’s two DMA channels
is programmed to read data from internal memory
and to write this data to the Slave Processor Host
Interface Transmit Data Register.

The DMA Source Address Register receives the be-
ginning address of the internal memory data block.
The DMA Source Modifier Register and the DMA
Source Offset Register are programmed according to
the data organization.

The DMA Destination Address Register is pro-
grammed with the Slave Processor Host Interface
Transmit Data Register address which is the Slave

MOTOROLA 1-7

Select Address + $28. The DMA Destination Modifier
Register is programmed for linear increment, the DMA
Destination Offset is programmed with “0”, and the
destination pointer is not incremented. The DMA des-
tination counter register is programmed with the data
block length.

The DMA Control Status Register is programmed
as follows:

• DMA Enable is set to start the DMA transfer

• DMA Source Space Control (DSS) is set for
transfer from internal X or Y memory

• DMA Destination Space Control (DDS) will be
set for transfer to external X or Y memory

• If an interrupt is requested at the end of transfer,
the DIE bit should be set and the Interrupt
Priority Register must be initialized to receive
Interrupt Requests from the DMA channel

• The DMA request source is the IRQA line so the
DMA Request Mask bits should be configured
as M1-M6=0 and M0=1

• The DMA Transfer Mode must be programmed
as “Single Block, Word Transfer Triggered by
DMA Request”, where the DMA Request in this
case is the IRQA line

• No special caution needs to be taken regarding
the DMA/Core Priority bit, DMAP

• Also, it is not necessary for this DMA channel to
have a higher priority than the second internal
DMA channel

1-8 MOTOROLA

1.2.3.2 Master Processor Port Programming

The Port Select Register allocates the address
range for each port. The port allocated address
must permit selection of the Slave Processor Host
Interface.

No special precautions need to be considered when
programming the Bus Control Register; however,
introducing wait states slows data transfer.

1.2.3.3 Slave Processor Host Interface
Programming

If the Host Interface is used only for DMA, no spe-
cial programming is necessary after reset. The
Master Processor only needs to write data to the
Host Interface TX register.

1.2.3.4 Slave Processor DMA Channel
Programming

One of the Slave Processor’s two DMA channels is
programmed to read data from the Host Interface
HRX register and to write data to internal memory.

The DMA Source Address Register is programmed
with the Host Interface RX register address. The
DMA Source Modifier Register and the DMA
Source Offset Register are programmed so that the
DMA Source Address Register remains constant,
which means the DMA Source Offset Register is
cleared.

The DMA Destination Address Register receives
the internal memory data block beginning address.
The DMA Destination Modifier Register and the

MOTOROLA 1-9

DMA Destination Offset Register is programmed
according to the data organization. The DMA desti-
nation counter register is programmed with the data
block length.

The DMA Control Status Register is programmed
as follows:

• DMA Enable is set to start the DMA transfer.

• DMA Destination Space Control (DDS) is set for
transfer to internal X or Y memory.

• DMA Source Space Control (DDS) is set for
transfer from the Host Interface HRX register. If
an interrupt is requested at the end of the transfer,
the DIE bit should be set and the Interrupt Priority
Register must be initialized to receive Interrupt
Requests from the DMA channel.

• The DMA request source is the HRDF status so
the DMA Request Mask bits are M0-M6=$8.

• The DMA Transfer Mode needs to be
programmed as “Single Block, Word Transfer,
Triggered by DMA Request”, where DMA
Request, in this case, is the HRDF status.

1.2.4 Timing Diagram of Full Handshake
DMA Transfer

We assume that both DSP96002 processors work
with the same clock although this is not essential.
Each DSP96002 system clock is composed of four
phases, or two clock periods. If the two processors
work with different clocks then, generally, the trans-
fers are longer due to synchronization delays.

1-10 MOTOROLA

The HR line is asserted on phase T1 of the clock

after

the Slave Processor DMA is initialized and HRX is
empty (therefore the Host Interface TX Register is
empty). IRQA, which is connected to HR, is asserted
at the same time.

The DMA request is sampled on T1 and a Master
DMA transfer is then started. The DMA controller
generates a valid DMA address on the first T0 after
IRQA is asserted and new data is read from internal
memory. After four more phases (i.e., on the next
T0), the DMA data bus receives valid data from in-
ternal memory, and starts an external memory write
cycle. The TS line is asserted on phase T1, and
when TS is deasserted, the data is written to the
Slave Processor Host Interface TX register on T3.

The TXDE bit is cleared on the first T0 after the
Slave Processor TX register is written. This deas-
serts the HR signal. On phase T3 of that cycle, the
internal Host Interface signal HldHRX is asserted
for one phase, and data is transferred from the TX
register to the Host Interface HRX register. After
this transfer, the TXDE status is set and HR is as-
serted, initiating the next full handshake transfer.
When HR is asserted, a valid DMA address is writ-
ten to the DMA address bus following T0. During
the next T0, the new data is read from the HRX reg-
ister to the DMA bus. The HRDF Status is cleared
after data is transferred to the DMA data bus from
the HRX. The minimum cycle data transfer length is
8 clocks or 4 instruction cycles.

A listing of the programming model for the full hand-
shake DMA transfer is provided in

SECTION 1.5

.

MOTOROLA 1-11

SourceSource

DestDest

Valid DMA DataValid DMA Data

Valid Data

Valid Data

Source Dest

Valid DMA Data

T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3

CLK

IRQA

XAB

YAB

DMA Data

TS

Data Out

HS

TX Register

HldHRX
TXDE

HRX Register

XAB

DMA Data

HR

Slave Processor

Master Processor

Figure 1-4 Timing Diagram of Full Handshake DMA Transfer

1-12 MOTOROLA

1.3 Partial Handshake
DMA Transfer

1.3.1 Description

The purpose of this implementation is to provide a
faster transfer between two DSP96002 processors.
One of the processors is configured as the Master
and the other one as the Slave, with the data trans-
fer from the Master to the Slave. The advantage of
this implementation is the high transfer rate, one
32-bit transfer every four clocks.

The substantial speed improvement is achieved
through a pipeline-type transfer. The Master Proces-
sor receives a DMA request through IRQA; the DMA
channel is programmed as “Single Block, Word
Transfer, Triggered by DMA request”. The Master
Processor DMA channel initiates a data transfer from
Master Processor internal memory to the Slave Pro-
cessor Host Interface TX register. Data is placed in
the Slave Processor TX register and from there, in
the HRX register. The Slave Processor DMA chan-
nel is programmed as “Single Block, Word Transfer,
Triggered by DMA request”, where the DMA request
is IRQA. Because the Master Processor TS line is
connected to the Slave Processor IRQA line, a DMA
transfer is initiated from the HRX register to internal
memory. Meanwhile, the Master Processor can start
a new DMA transfer cycle. Before new data is placed
in the Slave TX register, the Slave DMA channel
transfers the contents of the HRX register into inter-
nal memory.

MOTOROLA 1-13

1.3.2 Interconnection Model

The data bus is common to both processors. The
Master Processor is configured in the master mode
– i.e., Bus Grant (BG) signal is connected to “0”. Al-
so, Transfer Acknowledge (TA) is connected to “0”
which means that the Master Processor always re-
ceives automatic data acknowledge so that no wait
states are inserted. The Master Processor address
bus (A5-A31) and Space Select (S0-S1) lines are
decoded to generate the HS signal to select the
Slave Processor Host Interface. The A2-A5 lines
are used to select the TX register from Slave Pro-
cessor Host Interface. The Master Processor R/W
line is connected to Slave Processor R/W line and
is used to signal a Read or Write action.

The Master processor Transfer Strobe (TS) is con-

S
 H

os
t

In
te

rf
ac

e
A

/B

S
 D

M
A

S
 M

em
or

y

DSP96002

IRQA

M
 M

em
or

y

M
 D

M
A

M
 P

or
t A

/B

DSP96002

MASTER SLAVE

TS

DMA
RequestIRQA

Figure 1-5 Partial Handshake DMA Transfer

1-14 MOTOROLA

nected to the Slave Processor TS; a bus write or a bus
read takes place when TS is asserted. The Slave Pro-
cessor Bus Grant (BG) signal is connected to “1”,
placing it in the Slave mode. The Master Processor
IRQA is connected to an external DMA request
source which can generate a maximum of one re-
quest every 2 instruction cycles.

The Slave Processor IRQA is connected to TS of
Master Processor.

A common clock

is

 necessary in this configuration,
and no wait states are permitted.

Figure 1-6 Partial Handshake DMA Transfer Interconnection Model

MASTER SLAVE

IRQA

bS0-1

bA0-31

DSP96002

bTS

bTA

bR/WbBG

bD0-31

Gnd

Slave
Select

aBG

aHS

aA2-5

aTS

IRQA

aR/W

aD0-31

Gnd

Vcc

DSP96002

DMA_req

÷ 4
Clk

MOTOROLA 1-15

1.3.3 Programming Consideration for
Partial Handshake DMA Transfer

1.3.3.1 Master Processor DMA Programming

The same rules as for the Full Handshake Program-
ming model must be followed. It is recommended
that this DMA channel be given a higher interrupt
priority level than the core processor.

1.3.3.2 Master Processor Port Programming

The Port Select Register allocates the address
range for each port. The port allocated address
must permit selection of the Slave Processor Host
Interface. No Wait States are permitted for this
configuration.

1.3.3.3 Slave Processor Host Interface
Programming

If the Host Interface is used only for this DMA trans-
fer, no special programming is necessary after
reset. The Master Processor only needs to write
data to the Host Interface TX register.

1.3.3.4 Slave Processor DMA Channel
Programming

The same rules as for the Full Handshake Program-
ming model must be followed.

• The DMA request source is the IRQA line so the
DMA Request Mask bits are M0-M6=1.

• The DMA Transfer Mode must be programmed as
“Single Block, Word Transfer, Triggered by DMA
Request”, where the DMA Request, in this case, is
the IRQA line.

1-16 MOTOROLA

1.3.4 Timing Diagram of Partial
Handshake DMA Transfer

Both DSP96002s have to work with the same clock
for this configuration. After both processors have
been initialized, the Master Processor receives a
DMA request through the IRQA line. The DMA re-
quest is recognized on T1, and a new Master
Processor DMA cycle starts. On the first T0 phase af-
ter the DMA request has been recognized, the DMA
source address is placed on the XAB and the DMA
destination address is placed on the YAB because
the transfer type is from internal memory to external
memory. The new data is read from internal memory,
placed on the DMA data bus, and then transferred to
the Slave Processor (TS deasserted) on the next T3
phase. A new DMA request can be recognized and a
new DMA transfer can be performed on the next T1
after TS is deasserted.

The deassertion of TS writes new data in the Slave
Processor TX register on the Slave Processor side.
The Slave Processor DMA channel is programmed
to transfer data from the HRX register to the X inter-
nal memory. The DMA channel request is
recognized on the first T1 after IRQA deassertion.
On the first T0 after the request, the DMA controller
places the source address on the XAB bus, and the
destination address on the following T0. Data is
transferred from the TX register to the HRX register
on phase T3. Data from the HRX register is then
transferred to the DMA data bus on the next T0.
During this T0, the Slave Processor DMA channel is
also ready for a new transfer.

MOTOROLA 1-17

The minimum cycle data transfer length in this imple-

mentation is 4 clocks. A listing of the programming

model for the partial handshake DMA transfer is

shown in

SECTION 5.2

.

SourceSource

 DMA DataDMA Data

T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3

CLK

IRQA

XAB

YAB

DMA Data

TS

Data Out

TX Register

HldHRX

HRX Register

XAB Slave

DMA Data

Slave Processor

Master Processor

SourceSource

DestDest DestDest

 DMA Data DMA Data

Data Data Data

IRQA

Figure 1-7 Timing Diagram for Partial Handshake DMA Transfer

DataData Data

DataData Data

Src Dest Src SrcDest

DataData

DMA Request Recognized

1-18 MOTOROLA

1.4 No Handshake DMA
Transfer

1.4.1 Description

This technique is a pipelined type of transfer as in
the partial handshake DMA transfer; however, in
this case, both processors are configured in Master
Mode. One processor transmits data and the sec-
ond processor receives the data.

Two DMA channels are used in Figure 1-8, one on
each processor. Both processors are configured as
Bus Masters and the only interconnection between
them is through the data bus. The Data Transmitter
DMA is configured as “Single Block, Word Transfer,
Triggered by DMA request”, with the transfer direc-
tion from internal X memory to external Y memory.

S
 D

M
A

S
 M

em
or

y

DSP96002

M
 M

em
or

y

M
 D

M
A

M
 P

or
t A

/B

DSP96002

Data Transmitter Data Receiver

IRQA

S
 P

or
t A

/B

Figure 1-8 Configuration for No Handshake DMA Transfer

MOTOROLA 1-19

The Data Receiver DMA is also configured as “Sin-

gle Block, Word Transfer, Triggered by DMA

request”, but with the transfer direction from exter-

nal Y memory to internal X memory. Both DMAs

use the same trigger and both interfaces are pro-

grammed with zero wait states.

1.4.2 Interconnection Model

The data bus is common to both processors. The

Master Processor is configured in master mode –

i.e., the Bus Grant (BG) signal is connected to “0”.

Also, the Transfer Acknowledge (TA) signal is con-

nected to “0” which means that the Master

Processor always receives an automatic data ac-

knowledge so that no wait states will be inserted.

The Master Processor and Slave Processor do not

have the address lines, R/W lines, or TS lines con-

nected. The Slave Processor and Master Processor

Bus Grant (BG) lines are connected to “0”.

The Master Processor IRQA is connected to an ex-

ternal DMA request source which can generate a

maximum of one request every instruction cy-

cle.The Slave Processor IRQA is connected to the

same DMA request source.

It is recommended that the Slave Processor DE

line not be asserted to avoid potential data bus

contention.

A common clock

is

 necessary in this configuration

and no wait states are permitted.

1-20 MOTOROLA

1.4.3 Programming Considerations for
No Handshake DMA Transfer

1.4.3.1 Master Processor DMA Programming

The same rules as for the Full Handshake Program-
ming model must be followed. It is recommended
that this DMA channel be given a higher interrupt
priority level than the core processor or the second
on-chip DMA channel.

1.4.3.2 Master Processor Port Programming

The Port Select Register allocates the address range
for each port. The port allocated address must permit
selection of the Slave Processor Host Interface. No
Wait States are permitted for this configuration.

Data Transmitter Data Receiver

IRQA

DSP96002

bTA

bBG

bD0-31

Gnd

aD0-31

Gnd

DSP96002

DMA_req

÷ 2
Clk

Figure 1-9 No Handshake DMA Transfer Interconnection Model

IRQA

Gnd Gnd
aBG

aTA

#2#1

MOTOROLA 1-21

1.4.3.3 Slave Processor Host Interface
Programming

The Slave Processor Host Interface is not used for
this type of transfer.

1.4.3.4 Slave Processor DMA Channel
Programming

The same rules as for Full Handshake Program-
ming model must be followed.

• The Source Address must be external X or Y
memory and the destination address must be Y
or X memory.

• The DMA request source is the IRQA line so the
DMA Request Mask bits are M0-M6=1.

• The DMA Transfer Mode has to be programmed
as “Single Block, Word Transfer, Triggered by
DMA Request”, where DMA Request in this
case is the IRQA line.

1.4.3.5 Slave Processor Port Programming

The Port Select Register allocates the address range
for each port. The port selected allows the DMA
channel to read data from the connected data bus.
No Wait States are permitted for this configuration.

1.4.4 Timing Diagram of No Handshake
DMA Transfer

Both DSP96002s work with the same clock in this
configuration. After the DMA channels of both pro-
cessors have been initialized, a DMA request is

1-22 MOTOROLA

applied simultaneously to all DMA channels. On the
first T1 phase after IRQA is asserted, the DMA re-
quest is recognized and a DMA transfer cycle is
started. On the next T0 phase after IRQA is recog-
nized, the DMA source address is placed on the
XAB internal bus and the DMA destination address
is placed on the YAB internal bus. Data is read from
internal memory and placed on the DMA data bus
on the next T3 phase after the source and destina-
tion addresses are placed on XAB and YAB. The
valid data is written on the output data pins on phase
T2 after data becomes valid. A pipeline type transfer
starts if a new DMA request is placed four phases
after the first request. If the second processor re-
ceives the DMA request with the same timing as the
first processor, the data is transferred to the second
processor. The Slave processor recognizes the
DMA request on the first T1. The source and desti-
nation addresses are placed on XAB and YAB on
the next T0. Subsequently, the appropriate address
is placed on the external address bus on the follow-
ing T0. The data on the data bus is sampled at the
transition from T2 to T3, and the new read data is
valid on the internal DMA data bus beginning on T3.

If the DMA request signals are identical for Proces-
sor #1 and Processor #2, data written by Processor
#1 is valid on the third T2 phase after the DMA re-
quest is recognized. Processor #2 reads valid data
on the third T3 phase after IRQA is recognized.

This pipelined type of transfer offers the possibility
of a transfer every 4 phases (i.e., every two clock
periods or each instruction cycle).

MOTOROLA 1-23

A listing of the programming model for the no hand-
shake DMA transfer is provided in

SECTION 1.5.3.

Master Processor

T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3 T0 T1 T2 T3

CLK

IRQA

XAB

YAB

Address Out

Data Out

Slave Processor

Master Processor

Figure 1-10 No Handshake DMA Transfer

1 2 3 4 5 6 7

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5

1 2 3 4 5

IRQA 1 2 3 4 5 6 7

1 2 3 4 5

1 2 3 4 5

2 3 4 5 61

2 3 4 5 61

2 3 41

Data in on External Bus

Address on External Pins

XAB

YAB

DMA Data Bus

1-24 MOTOROLA

1.5 Programming Examples

1.5.1 Programming Model of the Full
Handshake DMA Transfer

Figure 1-11 DMA Programming Procedure for the Master Processor in the
Full Handshake

IPR equ $ffffffff ; Interrupt Priority Register
BCRB equ $fffffffd ; Bus Control Register port B
PSR equ $fffffffc ; Port Select Register
D1SMR equ $ffffffd7 ; DMA1 Source Modifier Register
D1SAR equ $ffffffd6 ; DMA1 Source Address Register
D1SOR equ $ffffffd5 ; DMA1 Source Offset Register
D1DMR equ $ffffffd3 ; DMA1 Destination Modifier Reg
D1DAR equ $ffffffd2 ; DMA1 Destination Address Reg
D1DOR equ $ffffffd1 ; DMA1 Destination Offset Reg
D1CT equ $ffffffd4 ; DMA1 Counter Register
D1CSR equ $ffffffd0 ; DMA1 Control Status Register
; Address of Slave’s Port A Host Interface Registers
Slave equ $40000000 ; Tx register address on the Slave
TX equ Slave+$28 ; DMA1 Control Status Register
; Init Procedure for Master Processor
movep #$000C0000,X:IPR ; Enable interrupts from DMA1

; The DMA1 channel will generate
; interrupts on level 2 for DMA
; transfer completed, if DIE=1

movep #$00000000,x:BCRB ; Port B Bus has no wait states
movep #$000F0F00,x:PSR ; All X addresses 0…$80000000

; All Y addresses 0…$80000000
; will be through port B

; Initialize the DMA Procedure for the Master Processor
; Program DMA1 source
movep #$1ff,D1SMR ; DMA1 source modifier is

; programmed in linear modulo
; addressing mode

movep #$1,D1SOR ; DMA1 source address offset is 1
movep #0,D1SAR ; DMA1 source address

; internal X memory
movep #0,D1DOR ; DMA1 destination offset is 0
movep #0,D1DMR ; DMA1 destination address inc
movep #TX,D1DAR ; DMA1 destination address

; Slave Processor TX Register.
movep #$100,D1CT ; DMA1 counter
movep #$C400010E,D1CSR ; Load DMA1 control status Reg

; DE=1 DMA1 enable
; DIE=1 end of transfer interrupt
; DTM1,0=10 Single Block,
; Word Transfer Triggered by IRQA
; DSS=001 from internal X Memory
; DDS=110 Destination External Y
; memory

MOTOROLA 1-25

IPR equ $ffffffff ; Interrupt Priority Register
BCRA equ $fffffffe ; Bus Control Register port A
PSR equ $fffffffc ; Port Select Register
D1SMR equ $ffffffd7 ; DMA1 Source Modifier Register
D1SAR equ $ffffffd6 ; DMA1 Source Address Register
D1SOR equ $ffffffd5 ; DMA1 Source Offset Register
D1DMR equ $ffffffd3 ; DMA1 Destination Modifier Reg
D1DAR equ $ffffffd2 ; DMA1 Destination Address Reg
D1DOR equ $ffffffd1 ; DMA1 Destination Offset Reg
D1CT equ $ffffffd4 ; DMA1 Counter
D1CSR equ $ffffffd0 ; DMA1 Control Status Register
; Initialization Procedure for Slave Processor
movep #$000C0000,X:IPR ; Enable interrupts from DMA1

 ; channel
; The channel will generate
; interrupts on level 2
; for DMA transfer completed, if
; DIE = 1

movep #$00000000,x:BCRA ; Port A Bus has no wait states
movep #$00F0F000,x:PSR ; All X addresses 0…$80000000

; All Y addresses 0…$80000000
; will be through port A

; Initialize DMA Procedure for Slave Processor
; Program DMA1 source
movep#-1,D1SMR ; DMA1 source modifier is

; programmed
; in linear addressing

movep #0,D1SOR ; DMA1 source address offset is 0
movep #HRX,D1SAR ; DMA1 source address is Host Rx

; Register
;Program DMA1 destination
movep #$1ff,D1DMR ; DMA1 destination modifier is

; programmed in linear increment
; modulo

movep #1,D1DOR ; DMA1 destination offset is 1
movep #0,D1DAR ; DMA1 destination address
movep #$100,DMA1CT ; DMA1 counter
movep #$C4000819,DMA1CSR; ; Load DMA1 control status Reg

; DE=1 DMA1 enable
; DIE=1 end of transfer interrupt
; DTM1,0=10 Single Block,
; Word Transfer Triggered by HRDF
; DSS=011 from internal HRX Reg
; DDS=001 Destination Internal X
; memory

Figure 1-12 DMA Programming Procedure for the Slave Processor in the
Full Handshake

1-26 MOTOROLA

1.5.2 Programming Model for Partial
Handshake DMA Transfer

IPR equ $ffffffff ; Interrupt Priority Register
BCRB equ $fffffffd ; Bus Control Register port B
PSR equ $fffffffc ; Port Select Register
D1SMR equ $ffffffd7 ; DMA1 Source Modifier Register
D1SAR equ $ffffffd6 ; DMA1 Source Address Register
D1SOR equ $ffffffd5 ; DMA1 Source Offset Register
D1DMR equ $ffffffd3 ; DMA1 Destination Modifier Reg
D1DAR equ $ffffffd2 ; DMA1 Destination Address Reg
D1DOR equ $ffffffd1 ; DMA1 Destination Offset Reg
D1CT equ $ffffffd4 ; DMA1 Counter
D1CSR equ $ffffffd0 ; DMA1 Control Status Register
; Address of Slave’s Port A Host Interface Registers
Slave equ $40000000 ; Slave Processor Host Interface
TX equ Slave+$28 ; Address, TX register
; Initialization Procedure for Master Processor
movep #$000C0000,X:IPR ; Enable interrupts from DMA1

; channel
; The channel will generate
; interrupts on level 2
; for DMA transfer completed,
; if DIE = 1

movep #$00000000,x:BCRB ; Port B Bus has no wait states
movep #$000F0F00,x:PSR ; All X addresses 0…$80000000

; All Y addresses 0…$80000000
; will be through port B

; Initialize the DMA Procedure for the Master Processor
; Program DMA1 source
movep #$1ff,D1SMR ; DMA1 source modifier is

; programmed
; in linear modulo addressing

movep #$1,D1SOR ; DMA1 source address offset is 1
movep #0,D1SAR ; DMA1 source address

; Program DMA1 destination
movep#-1,D1DMR ; DMA1 destination modifier is

; programmed
; in linear increment

movep #0,D1DOR ; DMA1 destination offset is 0
movep #TX,D1DAR ; DMA1 destination address
movep #$100,D1CT ; DMA1 counter
movep #$C4000115,D1CSR ; Load DMA1 control status Reg

; DE=1 DMA1 enable
; DIE=1 for end of transfer
; interrupt
; DTM1,0=10 Single Block, Word
; Transfer Triggered by DMA Req
; M=1 DMA request from IRQA
; DSS=010 for source internal Y
; DDS=101 for external X
; memory destination

Figure 1-13 DMA Programming Procedure for the Master Processor in the
Partial Handshake

MOTOROLA 1-27

IPR equ $ffffffff ; Interrupt Priority Register
BCRA equ $fffffffe ; Bus Control Register port A
PSR equ $fffffffc ; Port Select Register
D1SMR equ $ffffffd7 ; DMA1 Source Modifier Register
D1SAR equ $ffffffd6 ; DMA1 Source Address Register
D1SOR equ $ffffffd5 ; DMA1 Source Offset Register
D1DMR equ $ffffffd3 ; DMA1 Destination Modifier Reg
D1DAR equ $ffffffd2 ; DMA1 Destination Address Reg
D1DOR equ $ffffffd1 ; DMA1 Destination Offset Reg
D1CT equ $ffffffd4 ; DMA1 Counter
D1CSR equ $ffffffd0 ; DMA1 Control Status Register
; Initialization Procedure for Slave Processor
movep #$000C0000,X:IPR ; Enable interrupts from DMA1

; channel
; The channel will generate
; interrupts on level 2
; for DMA transfer completed,
; if DIE = 1

movep #$00000000,x:BCRA ; Port A Bus has no wait states
movep #$00F0F000,x:PSR ; All X addresses 0…$80000000

; All Y addresses 0…$80000000
; will be through port A

; Initialize the DMA Procedure for Slave Processor
; Program DMA1 source
movep #-1,D1SMR ; DMA1 source modifier is

; programmed in linear addressing
movep #0,D1SOR ; DMA1 source address offset is 0
movep #HRX,D1SAR ; DMA1 source address is Host Rx
;Program DMA1 destination
movep #$1ff,D1DMR ; DMA1 destination modifier is

; programmed in linear modulo
; increment

movep #1,D1DOR ; DMA1 destination offset is 1
movep #0,D1DAR ; DMA1 destination address
movep #$100,D1CT ; DMA1 counter
movep #$C4000119,D1CSR ; Load DMA1 control status Reg

; DE=1 DMA1 enable
; DIE=1 for end of transfer
; interrupt
; DTM1,0=10 Single Block, Word
; Transfer Triggered by DMA Req
; by DMA request
; M=1 DMA request from IRQA
; DSS=010 for internal HRX Reg
; DDS=001 Destination Internal X
; memory

Figure 1-14 DMA Programming Procedure for the Slave Processor in the
Partial Handshake

1-28 MOTOROLA

1.5.3 Programming Model for No
Handshake DMA Transfer

IPR equ $ffffffff ; Interrupt Priority Register
BCRB equ $fffffffd ; Bus Control Register port B
PSR equ $fffffffc ; Port Select Register
D1SMR equ $ffffffd7 ; DMA1 Source Modifier Register
D1SAR equ $ffffffd6 ; DMA1 Source Address Register
D1SOR equ $ffffffd5 ; DMA1 Source Offset Register
D1DMR equ $ffffffd3 ; DMA1 Destination Modifier Reg
D1DAR equ $ffffffd2 ; DMA1 Destination Address Reg
D1DOR equ $ffffffd1 ; DMA1 Destination Offset Reg
D1CT equ $ffffffd4 ; DMA1 Counter
D1CSR equ $ffffffd0 ; DMA1 Control Status Register
; Address of Slave’s Port A Host Interface Registers
Slave equ $40000000 ; Slave Processor
; Initialization Procedure for Master Processor
movep #$000C0000,X:IPR ; Enable interrupts from DMA1

; channel
; The channel will generate
; interrupts on level 2
; for DMA transfer completed,
; if DIE = 1

movep #$00000000,x:BCRB ; Port B Bus has no wait states
movep #$000F0F00,x:PSR ; All X addresses 0…$80000000

; All Y addresses 0…$80000000
; will be through port B

; Initialize the DMA Procedure for the Master Processor
; Program DMA1 source

movep #$1ff,D1SMR ; DMA1 source modifier is
; programmed
; in linear modulo addressing

movep #$1,D1SOR ; DMA1 source address offset is 1
movep #0,D1SAR ; DMA1 source address
;Program DMA1 destination
movep #-1,D1DMR ; DMA1 destination modifier is

; programmed
; in linear increment

movep #0,D1DOR ; DMA1 destination offset is 0
movep #Slave,D1DAR ; DMA1 destination address
movep #$100,D1CT ; DMA1 counter
movep #$C4000115,D1CSR; ; Load DMA1 control status Reg

; DE=1 DMA1 enable
; DIE=1 for end of transfer
; interrupt
; DTM1,0=10 Single Block, Word
; Transfer Triggered by DMA Req
; M=1 DMA request from IRQA
; DSS=010 for source internal Y
; DDS=101 to external X
; memory destination

Figure 1-15 DMA Programming Procedure for the Master Processor in the
No Handshake Transfer

MOTOROLA 1-29

IPR equ $ffffffff ; Interrupt Priority Register
BCRA equ $fffffffe ; Bus Control Register port A
PSR equ $fffffffc ; Port Select Register
D1SMR equ $ffffffd7 ; DMA1 Source Modifier Register
D1SAR equ $ffffffd6 ; DMA1 Source Address Register
D1SOR equ $ffffffd5 ; DMA1 Source Offset Register
D1DMR equ $ffffffd3 ; DMA1 Destination Modifier Reg
D1DAR equ $ffffffd2 ; DMA1 Destination Address Reg
D1DOR equ $ffffffd1 ; DMA1 Destination Offset Reg
D1CT equ $ffffffd4 ; DMA1 Counter
D1CSR equ $ffffffd0 ; DMA1 Control Status Register
; Initialization Procedure for Slave Processor
movep #$000C0000,X:IPR ; Enable interrupts from DMA1

; channel
; The channel will generate
; interrupts on level 2
; for DMA transfer completed,
; if DIE = 1

movep #$00000000,x:BCRA ; Port A Bus has no wait states
movep #$00F0F000,x:PSR ; All X addresses 0…$80000000

; All Y addresses 0…$80000000
; will be through port A

; Initialize the DMA Procedure for Slave Processor
; Program DMA1 source
movep #-1,D1SMR ; DMA1 source modifier is

; programmed in linear addressing
movep #0,D1SOR ; DMA1 source address offset is 0
movep #Master,D1SAR ; DMA1 source address is external

; Master Processor.
; Data is read from the Master
; Processor as from an external
; memory.

;Program DMA1 destination
movep #$1ff,D1DMR ; DMA1 destination modifier is

; programmed in linear modulo
; increment

movep #1,D1DOR ; DMA1 destination offset is 1
movep #0,D1DAR ; DMA1 destination address
movep #$100,D1CT ; DMA1 counter
movep #$C4000131,D1CSR ; Load DMA1 control status Reg

; DE=1 DMA1 enable
; DIE=1 for end of transfer
; interrupt
; DTM1,0=10 Single Block, Word
; Transfer Triggered by DMA Req
; by DMA request
; M=1 DMA request from IRQA
; DSS=110 for external Y memory
; DDS=001 Destination Internal X
; memory

Figure 1-16 DMA Programming Procedure for the Slave Processor in the
No Handshake Transfer

MOTOROLA 2-1

SECTION 2

By Z. Rozenshein

2.1 Introduction
This section describes how to attach the Motorola
DSP96002 to the IBM PC/AT bus (ISA BUS) so that
the PC can use the DSP96002 as an IEEE floating-
point numeric accelerator. A newly designed adapter
board equipped with the DSP96002 chip and addi-
tional hardware achieves this goal. Numeric tasks
that need massive IEEE floating point calculations
can be transferred to the DSP96002 and calculated
there much faster than with a standard co-processor.
This board was assembled and several benchmarks
were run to evaluate the performance enhancement

Connecting the
DSP96002 as an
Attached Processor to
the ISA Bus Turns PC/
AT into a Fast and
Powerful IEEE
Compatible Floating
Point Computer

“Compared to
the 80386 +

80387 (20 MHz)
PC, the

DSP96002 (40.0
MHz) runs 48
times faster.”

2-2 MOTOROLA

factor achieved by using the DSP96002 as a nu-
meric accelerator.

2.2 ISA (Industry Standard
Architecture) Bus Details

The ISA Bus has eight I/O slots with the following I/O
support functions:

• I/O address space for user defined hardware

• 24-bit memory addresses (16MB)

• Selection of data access size (bytes or words)

• I/O and memory wait-state generation

Data Bus
Buffers

Bus Arbitration

and

Address Bus
Buffers

Control Logic

E
na

bl
e

Static RAM

Array

4 x 32k x 8

Control Bus

Address Bus

Data Bus

PC

PC

PC

E
na

bl
e

Port A Data Bus

DSP96002

Port A
Control
Pins

Free
Port B
Pins

Port A Address Bus

SD(0:15)

D
ire

ct
io

n

For Future
Memory and
I/O Expansion

Address
Bus

SA(2:16)

Data
Bus

Control
Bus

Figure 2-1 Block Diagram

MOTOROLA 2-3

Adapter boards plug into one of the slots and re-
ceive the I/O channel signals.The application board
uses the following I/O channel signals:

 BALE This is the ‘Buffered Address Latch
Enable’ signal that indicates a valid
microprocessor or DMA address.

 SA(0:19) Address lines 0…19 are used to
address memory and I/O within the
system. These signals are latched
in the PC’s mother-board on the
falling edge of BALE.

 LA(17:23) Address lines 17…23 provide the
system with the ability to address up
to 16M bytes of memory. These
signals are not latched on the PC’s
mother-board and are valid when
BALE is high.

 RESET_DRV This signal is used to reset or
initialize the system at power-up.

 SD(0:15) These signals compose the PC’s
16-bit system data bus.

 I/O_CH_RDY This signal should be pulled low
(not ready) by a slow memory or I/O
device in order to lengthen I/O or
memory cycles.

 IOR This is the ‘I/O Read’ signal that
indicates that the ISA’s CPU is
performing an I/O read cycle.

 IOW This is the ‘I/O Write’ signal that
indicates that the ISA’s CPU is
performing an I/O write cycle.

 SMEMR This is the ‘system memory read’
signal that indicates that the ISA’s
CPU is performing a memory read
cycle from only the low 1M of memory
space.

2-4 MOTOROLA

 SMEMW This is the ‘system memory write’
signal that indicates that the ISA’s
CPU is performing a memory write
cycle to only the low 1M of memory
space.

 AEN This ‘Address Enable’ signal is
active (high) when the system’s
DMA controller has control of the
channel’s address bus, data bus,
read command lines, and write
command lines.

 SBHE The ‘System Bus High Enable’
signal indicates that the ISA’s CPU
is executing a data transfer on the
upper byte of the data bus,
SD(8:15).

 MEMCS16 This ‘memory 16-bit chip select’
input signal indicates that the
current cycle is a 16-bit memory
cycle.

 IOCS16 This ‘I/O 16-bit chip select’ input
signal indicates that the current
cycle is a 16-bit I/O cycle.

For a more complete description of the I/O chan-
nel’s signals, see IBM’s ‘Technical Reference for
the Personal Computer AT’.

2.3 DSP96002 Features
The DSP96002 is the first member of Motorola’s
family of dual-port IEEE floating point programmable
CMOS processors. The DSP96002’s main features
include the support of IEEE 754 Single Precision and
Single Extended Precision Floating-Point with 32-bit
signed and unsigned fixed point arithmetic, and two
identical external memory expansion ports.

MOTOROLA 2-5

DSP96002 features are:

• IEEE 754 Standard SP and SEP Arithmetic
• 20.0 Million Instructions per Second (MIPS) with

a 40.0 MHz clock
• 60 Million Floating Point Instructions per Second

(MFLOPS) peak with a 40.0 MHz clock
• Single-Cycle 32 x 32-bit Parallel Multiplier
• Highly Parallel Instruction Set with Unique DSP

Addressing Modes
• Nested Hardware Do Loops
• Fast Auto-Return Interrupts
• 2 Independent On-Chip 512 x 32-bit Data RAMs
• 2 Independent On-Chip 1024 x 32-bit Data ROMs
• Off-Chip Expansion to 2 x 232 32-bit Words of

Data Memory
• On-Chip 1024 x 32-bit Program RAM
• On-Chip 64 x 32-bit Bootstrap ROM
• Off-Chip Expansion to 232 32-Bit Words of

Program Memory
• Two Identical External Memory Expansion Ports
• Two 32-Bit Parallel Host MPU/DMA Slave

Interfaces
• On-Chip Two-Channel DMA controller
• On-Chip Emulator (OnCETM) 1

The application board uses the following
DSP96002 signals:

 RESET Assertion of this signal places the
DSP96002 in the reset state.

 MODA/IRQA Mode Select A/External Interrupt
Request A. This signal selects the
initial DSP96002 operating mode
during hardware reset and
becomes a maskable interrupt
request input during normal
instruction processing.

1. OnCE is a trademark of Motorola, Inc.

2-6 MOTOROLA

 MODB/IRQB Mode Select B/External Interrupt
Request B. This signal selects the
initial DSP96002 operating mode
during hardware reset and becomes
a maskable interrupt request input
during normal instruction processing.

 MODC/IRQC Mode Select C/External Interrupt
Request C. This signal selects the
initial DSP96002 operating mode
during hardware reset and becomes
a maskable interrupt request input
during normal instruction processing.

 DR Debug Request. This input
provides a means of entering the
debug mode of operation from the
external command converter.

 DSCK/OS1 Debug Serial Clock/Chip Status 1.
When this pin is configured as an
input, it provides serial clock to the
OnCETM. When an output, this pin
provides chip status information.

 DSI/OS0 Debug Serial Input/Chip Status 0.
This pin can be configured as an
input, providing serial data or
commands to the OnCETM. When
an output, this pin provides
information about the chip status.

 DSO Debug Serial Output. This pin
provides the data contained in the
OnCETM registers to the external
command converter

 aA(0:31) These signals are the 32 Port A
address lines.

 aD(0:31) These signals are the 32 Port A
data lines.

 aR/W Read/Write input for Port A. This
signal is high for the read cycle and
low for the write cycle.

MOTOROLA 2-7

 aTS Transfer Strobe input for Port A.
This signal is asserted to indicate
that the address and Port A control
lines are stable and that a bus read
or write is taking place.

 aHS Host Select input for Port A. This
signal is asserted to enable
selection of the Host Interface
functions.

 aHA Host Acknowledge input for Port A.
This signal is used to acknowledge
a request to the Host Interface.

 aBG Bus Grant input for Port A. This
signal is asserted by an external
bus arbiter when the DSP96002
may become the next bus master.

 aBA Bus Acknowledge output for Port A.
This signal is asserted when the
DSP96002 has taken the bus and is
the bus master.

For a more complete description of the DSP96002
and its signals see Motorola’s DSP96002 IEEE Float-
ing-Point Dual-Port Processor User’s Manual.

2.4 Application Board
Detailed Description

The application board’s main functions are:

• 128K Bytes of RAM, shared by the PC and the
DSP96002

• DSP96002 is a host processor to the ISA’s CPU

• Unused DSP port for future I/O and memory
expansion (Port B)

2-8 MOTOROLA

The card achieves these functions when it contains
the following sub-blocks:

2.4.1 CPU
This sub-block contains the DSP96002 using only
its Port A pins, leaving Port B pins in their non-ac-
tive states and available for future expansion. The
block also contains the clock generator that pro-
vides a clock signal running at 40.0 MHz to the
DSP96002.

Finally, extra logic in this sub-block generates the
RESET signal to the DSP96002 during the PCs
power-up and upon OnCETM or the PC’s software
requests. This extra logic also generates the mode
signals to the DSP96002 in order to program the
DSP’s power-up mode and to provide it with exter-
nal interrupt request capability.

2.4.2 Memory
This sub-block contains 4 RAM chips of 32K bytes
each forming a memory array of 32K, 32-bit words.
This sub-block also contains control logic providing
the memory array with read and write strobes and dis-
tinguishing between PC and DSP96002 accesses.

2.4.3 Data Bus and Address Bus Buffers
These sub-blocks contain bus buffers to form inter-
nal common data buses and address buses which
are shared between the DSP96002 and PC. The
buffers are activated when the PC accesses the
memory array or the DSP96002’s host port. The di-
rection of the data bus buffers is determined by

MOTOROLA 2-9

whether the access is a read or a write. When the
DSP96002 is the master of this internal bus, the bus
buffers are three-stated.

2.4.4 Bus Arbitration Logic

This sub-block contains control logic to generate all
control signals required to maintain a bus-sharing
mechanism, allowing either the DSP96002 or the
PC access to internal common bus resources
(memory and host port). This logic generates the
DSP96002’s aBG by telling the DSP96002 when it
can be the bus master, and the PC’s IO_CH_RDY
by telling the PC to lengthen its bus cycle until the
DSP96002 releases the bus. The following para-
graphs describe the operation of these sub-blocks.

2.5 CPU Sub-Block
Detailed Description

The DSP96002 is driven by a 40.0 MHz clock pro-
duced by a clock generator.

The OnCETM port connector allows an external com-
mand converter to be connected to the DSP96002
for purposes of debugging the DSP96002 software
and on-board hardware. This connector provides
access to DSI, DSO, DSCK, and DR which control
the OnCETM port, and RESOUT which can assert
RESET on the DSP96002.

The RESET signal drives the DSP96002’s RESET
pin and can be asserted by one of three sources:

2-10 MOTOROLA

• The RESET_DRV signal indicates a power-up
sequence in the PC

• The RESOUT signal is generated by the
external command converter

• A write operation from the PC to the PLD,
serving as an output port for the PC

PLD1 collects the three sources and drives the
RESET signal accordingly.

The following equations in the PLD generate RESET:

Figure 2-2 CPU Block Diagram

40.0 MHz
Generator

OnCETM Connector

CLK

DSP96002

DSO, DSI/OSO, DSCK/OS1, DR

INT 1, INT 2, INT 3

PC’s Data Bus

WRITE_STOBE

RESET_DRV

RESOUT

PLD1

RESET

RES

MODA/IRQA

MODB/IRQB

MODC/IRQC

MA, MB & MC

RSTF = RESET_DRV;

!RES := WRITE_STROBE • SD0 + !WRITE_STROBE • !RES;

RESET = !RES • RESOUT;

MOTOROLA 2-11

The RES signal is an internal signal generated by the
PLD which causes the PLD to appear to the ISA’s
CPU as a write-only latch. The WRITE_STROBE
signal is generated by the control logic on the board
and is a result of decoding the PC address and con-
trol buses. It is generated when the PC writes to this
one-bit output port.

When the PC writes to the port, bit SD0 of the PC’s
data-bus is written to the PLD and changes the RES
signal accordingly. The RES signal is cleared by the
RESET_DRV signal which is the signal indicating a
power-up sequence in the PC.

Figure 2-3 RES Generation Timing Diagram

RESET_DRV

WRITE_STROBE

SD0

RESOUT

RES

RESET

2-12 MOTOROLA

Finally, the RESET signal is the logical AND be-
tween RES (which indicates a reset request from
the PC), and RESOUT (which indicates a reset re-
quest from the external command converter).

The DSP96002 has three interrupt inputs which
have two functions:

• When RESET is asserted, the interrupt inputs
behave as mode programing inputs which
determine which operation mode the DSP96002
will enter after RESET is deasserted.

• After the RESET signal is deasserted, these
pins behave as interrupt request inputs.

The PC programs the DSP96002’s operation mode
by writing to a second section of PLD1 which ap-
pears to be a three-bit output port in the PC’s
address space. The following additional equations
in PLD1 generate MODA/IRQA, MODB/IRQB, and
MODC/IRQC:

The signals MA, MB, and MC appear as a three-bit
output latch to the PC and determine the mode of op-
eration that the DSP96002 will enter when RESET is
deasserted.

The PC’s software can change the state of MA, MB,

MA := WRITE_STROBE • SD2 + !WRITE_STROBE • MA;

MB := WRITE_STROBE • SD3 + !WRITE_STROBE • MB;

MC := WRITE_STROBE • SD4 + !WRITE_STROBE • MC;

MODA/IRQA = MA • !RESET + INT1 • RESET ;

MODB/IRQB = MB • !RESET + INT2 • RESET ;

MODC/IRQC = MC • !RESET + INT3 • RESET ;

MOTOROLA 2-13

and MC by writing to this output port and asserting
the WRITE_STROBE signal.

The last three equations describe a simple multiplex-
er that routes to the MODA/IRQA, MODB/IRQB, and
MODC/IRQC input pins either the MA, MB, and MC
signals (when RESET is asserted to program the
DSP96002’s mode), or the INT1, INT2, and INT3
external signals that serve as external interrupt
requests.

2.6 Memory Sub-Block
Detailed Description

Two CPUs can read or write to/from the memory ar-
ray — one is the ISA’s CPU, and the other is the
DSP96002. The DSP96002 accesses 32-bit words
while the ISA’s CPU accesses 8-bit bytes or 16-bit
words.

PLD2

32K x 8
SRAM

PC Signals

DSP Signals

MODE Signals

Figure 2-4 Memory Detailed Block Diagram

R
E

A
D

W
R

0

32K x 8
SRAM

32K x 8
SRAM

32K x 8
SRAM

AA(0:14)

AD(0:31)

R
E

A
D

R
E

A
D

R
E

A
D

W
R

1

W
R

2

W
R

3

2-14 MOTOROLA

Shared RAM between the PC and the DSP96002 is
achieved by using four byte-wide RAM chips, each
holding 32K bytes.Thus, a memory array is created
that is accessible as 32K words by the DSP96002,
while the same memory array is accessed as 128K
bytes by the PC.

Another PLD is responsible for generating the READ
strobe that controls all RAM chips, and the four write
strobes (WR0, WR1, WR2, and WR3) that control
the write operation to each of the RAM chips.

The bus labeled ‘PC signals’ in Figure 2-4 contains
the following control signals:

 MEMORY an internal on-board signal that is a
result of decoding the PC’s
address bus and latching it with the
PC’s BALE signal

 LAEN an internal on-board signal that is
the PC’s AEN signal latched with
the PC’s BALE signal. Valid PC
accesses are those when LAEN is
deasserted

 SBHE
 SA0
 SA1
 SMEMR
 SMEMW

The bus ‘DSP signals’ contains the following
DSP96002 control signals: aA31, aTS, aR/W, and
aBA.

The bus labeled ‘MODE signals’ in Figure 2-4 con-

 ISA bus signals.

MOTOROLA 2-15

tains the following on-board internal signals:

 OFF_RAM a signal that disables the PC from
accessing the RAM array

 ADD_EN a signal that disables the
DSP96002 from accessing the
RAM array

The following equations in PLD2 generates the
PLD’s outputs:

The above equations reveal two states:

• DSP96002 access, when ADD_EN is
deasserted and aBA is asserted

• PC access, when ADD_EN is asserted and aBA

READ = ADD_EN • aBA • aR/W • aTS
+!ADD_EN • aBA • !OFF_RAM • MEMORY • !LAEN • !SMEMR ;

WR0 = ADD_EN • aBA • aR/W • aTS

+ !ADD_EN • aBA • !OFF_RAM • MEMORY • !LAEN • !SMEMW •
!SA1 • !SA0;

WR1 = ADD_EN • aBA • aR/W • aTS

+ !ADD_EN • aBA • !OFF_RAM • MEMORY • !LAEN • !SMEMW •
!SA1 • !SBHE;

WR2 = ADD_EN • aBA • aR/W • aTS

+ !ADD_EN • aBA • !OFF_RAM • MEMORY • !LAEN • !SMEMW •
SA1 • !SA0;

WR3 = ADD_EN • aBA • aR/W • aTS

+ !ADD_EN • aBA • !OFF_RAM • MEMORY • !LAEN • !SMEMW •
SA1 • !SBHE;

2-16 MOTOROLA

is deasserted

Table 2-1 summarizes the conditions that generate
the read and write signals.

While the DSP96002 accesses 32-bit words, the PC
can only access 8-bit bytes or 16-bit words (see Ta-
ble 2-1). When the PC reads data from memory, all
memory chips receive a read signal although the PC
accesses only one or two of the memory chips. How-
ever, the Bus ARBITRATION logic enables only the
appropriate data-bus buffers, putting 8- or 16-bit data
on the bus. When the PC writes data to the memory,

Table 2-1 Generation of Read and Write Signals

DSP96002 Access PC Access

READ when:
aTS = 0 & aR/W = 1;

READ when:
MEMORY = 1 & LAEN = 0 &
OFF_RAM = 0 & SMEMW = 0 ;

WRITE when:
aTS = 0 & aR/W = 0 ;

WRITE when:
MEMORY = 1 & LAEN = 0 &
OFF_RAM = 0 & SMEMW = 0

All chips receive the same write strobe. and to the 1st chip when:
SA1 = 0 & SA0 = 0 ;

to the 2nd chip when:
SA1 = 0 & SBHE = 0 ;

to the 3rd chip when:
SA1 = 1 & SBHE = 0 ;

to the 4th chip when:
SA1 = 1 & SBHE = 0 ;

MOTOROLA 2-17

only the memory chips that should be written receive
the write strobe. This prevents data from being writ-
ten to the wrong memory cells and allows the PC to
pack more than one byte into a DSP96002 word.

The OFF_RAM signal is used primarily during PC
power-up to disable the PC from accessing memory.
The OFF_RAM signal is set by circuitry on the card
during PC power-up, thus preventing the PC’s oper-
ating system software from recognizing this memory
as part of the system’s free memory.

The LAEN signal, which also disables the PC from
accessing the DSP96002 memory, indicates that
the PC is performing DMA transfers so that the
DSP96002 memory cannot be accessed by the PC
using its own DMA.

2.7 Data and Address Bus
Buffers Detailed
Description

This sub-block is responsible for connecting the PC
data and address buses to the internal common
bus, allowing data to be transferred between these
two memory spaces. Since the PC’s data bus is 16
bits wide and the DSP96002’s internal bus is 32 bits
wide, the PC can transfer data onto either the low
portion (bits 0-15) or the high portion (bits 16-31) of
the DSP96002’s internal data bus in any one ac-
cess. If the PC transfers data on the byte wide bus,
it can put the low byte (bits SD0-SD7) or the high

2-18 MOTOROLA

byte (bits SD8-SD15) of its 16-bit word on the data
bus. Therefore, the data bus buffer is organized as
four parts, each handles one byte of the internal 32-
bit data bus. Each part of the buffer is controlled by
a separate enable signal i.e., DEN0, DEN1, DEN2,
and DEN3. The direction of the buffer is controlled
by the BUF_DIR signal depending on the kind of
transfer – read or write.

The address bus buffer drives the DSP96002’s ad-
dress bus, creating an internal address bus that is
shared between the PC and the DSP96002. The buff-
er is controlled by the ADD_EN signal which is
asserted when the PC wants to access the internal bus
resources and the DSP96002 is not the bus master.
Note that PC addresses SA(2:16) drive DSP’s ad-
dresses AA(0:14) while PC addresses SA(0:1) are
used in the control logic to detect the nature of the PC
access.

MOTOROLA 2-19

2.7.1 Bus Arbitration and Control
Logic Detailed Description

This sub-block has 4 functions:

 Host Interface Between the PC and the
DSP96002’s host port.

 Address Decoder Decodes the PC’s
address lines to identify
PC accesses.

 Buffers Control Controls the buffers that
connect the PC and
DSP buses.

 Bus Arbiter Arbitrates between the
PC and the DSP96002
buses.

Figure 2-5 Data and Address Bus Buffers Detailed Block Diagram

Address

Buffer

BUF 0

BUF 1

BUF 2

BUF 3

AA(0:14)SA(2:16)

ADD_EN

BUF_DIR

DEN 3

AD(24:31)

DEN 2

AD(16:23)

AD(8:15)

DEN 1

DEN 0

AD(0:7)SD(0:7)

SD(8:15)

2-20 MOTOROLA

2.7.2 Host Interface Detailed
Description

PLD3 generates some control signals for the
DSP96002 when the PC is accessing the DSP host
port. PLD3 also generates the WRITE_STROBE
signal when the PC accesses some output ports
e.g., the 3-bit port used to program the mode bits
MA, MB, and MC. The CLK signal is the same clock
signal that the DSP96002 uses.

The following are the equations of PLD3:

The first three equations indicate that aR/W, aTS,

Figure 2-6 Host Interface Detailed Block Diagram

CLK

aBA

IOR

IOW

SA2

SA3

LAEN

IOSEL

PLD3

aHS
aR/W
WRITE_STOBE
aTS
aHA

A

B

aR/W.TRST = aBA ;
aTS.TRST = aBA ;
aHA.TRST = aBA ;
WRITE_STROBE = !LAEN • IOSEL • !SIOW • SA3 • !SA2 ;
!aHS = aBA • (!SIOR + !SIOW) • !SA3 • !SA2 • !LAEN • IOSEL ;
aR/W = !SIOR • !LAEN • IOSEL ;
!aHA = aBA • (!SIOR + !SIOW) • !SA3 • SA2 • IOSEL • !LAEN ;
A := aBA • (!SIOR + !SIOW) • !SA3 • !SA2 • IOSEL • !LAEN ;
B := A ;
!aTS = aBA • (!SIOR + !SIOW) • !SA3 • !SA2 • IOSEL • !LAEN ;

MOTOROLA 2-21

and aHA are three-stated when the aBA is assert-
ed. This happens if the DSP96002 is the Bus
Master and generates those signals.

The IOSEL signal, which is an input to the PLD gen-
erated in another section of the control logic, is a
product of decoding the PC’s address bus. It is gen-
erated when the PC is accessing addresses in the
range $F100 - $F1EF.

In this range of addresses, the PC has the following
I/O ports on board:

 SA3=1 & SA2=0 generating WRITE_STROBE for
some output ports in the card

 SA3=0 & SA2=0 generating aHS and aTS when
selecting the DSP96002’s host
port

 SA3=0 & SA2=1 generating aHA when selecting
the DSP96002’s host port

The signals A and B are used to delay the genera-
tion of aTS to satisfy the DSP96002 timing
requirements.

2-22 MOTOROLA

2.7.3 Address Decoder Detailed
Description

PLD4 in Figure 2-8 decodes the addresses coming
from the PC for some of the common bus resources
e.g. one of the memory locations or the
DSP96002’s host port.

The PLD generates two signals:
MEMSEL, which corresponds to memory selection,
and IOSEL, which corresponds to I/O selection.

Figure 2-7 Host Select Timing Diagram

CLK

IOR

aBA

SA(2:3)

IOSEL

LAEN

aHS

aR/W

A

B

aTS

Three State-Pulled Up

SA2=0 & SA3=0

Three State-Pulled Up

MOTOROLA 2-23

The following equations describe PLD4:

As mentioned in previous sections, the PC can ac-
cess I/O addresses in the range of $F100 - $F1EF.

The permitted memory access range is $80000 -
$9FFFF which is a total of 128K bytes.

The signals MEMSEL and AEN are latched by
BALE and enable generation of the MEMORY sig-
nal used by the static RAM array.

IOSEL = (SA(15:8) == $F1) • !SA7

+ (SA(15:8) == $F1) • !SA6
+ (SA(15:8) == $F1) • !SA5

+ (SA(15:8) == $F1) • !SA4;

MEMSEL = LA(23:17) == $04;

Figure 2-8 Address Decoder Detailed Block Diagram

PLD4

LATCH

BALE

AEN

LA(17:23)

SA(4:16)

From PC

MEMSEL

IOSEL

LAEN

MEMORY

2-24 MOTOROLA

2.7.4 Buffer Controller Detailed
Description

PLD5 supplies control signals to the data bus buff-
ers. The signals DEN0, DEN1, DEN2, and DEN3
enable the data bus buffers when the PC accesses
the internal common bus and the DSP96002 is no
longer the bus master.

The BUF_DIR signal controls the data bus buffer di-
rection and relies upon the nature of the PC access
i.e., read or write.

The following equations describe PLD5:

The ACC signal is generated by another section of
the control logic and indicates that the PC is in the
middle of an access while the DSP96002 is no long-
er the bus master.

The data bus buffer direction is controlled by
BUF_DIR which is asserted when both SMEMR
and SIOR are deasserted i.e., the PC executes a
write cycle. In this case, the data bus buffers are di-
rected to route data from the PC to the DSP96002.

!DEN0 = !LAEN • ACC • !SA1 • !SA0;
!DEN1 = !LAEN • ACC • !SA1 • !SBHE;
!DEN2 = !LAEN • ACC • SA1 • !SA0;
!DEN3 = !LAEN • ACC • SA1 • !SBHE;

BUF_DIR = SMEMR • SIOR ;

MOTOROLA 2-25

2.8 Bus Arbiter Detailed
Description

This sub-block has six functions:

• To assert the ACC signal when the PC executes
an access to the common bus while the
DSP96002 is not the bus master

• To assert the ADD_EN signal when the PC
accesses the common bus and the address bus
can be driven by the PC

• To pull the MEMCS16 signal low, telling the PC
that it accessed a 16-bit wide memory port

• To pull the IOCS16 signal low, telling the PC that
it accessed a 16-bit wide I/O port

• To pull the I/O_CH_RDY signal low when the
PC accesses the common bus while the
DSP96002 is still the bus master

• To assert the aBG signal when the PC does not
access the common bus, or deassert aBG when
the PC tries to access the common bus

SA0

SA1

ACC

SBHE

SMEMR

SIOR

LAEN

PLD5

DEN0

DEN1

DEN2

DEN3

BUF_DIR

Figure 2-9 Buffer Controller Detailed Block Diagram

2-26 MOTOROLA

The ISA bus signals MEMCS16, IOCS16, and
I/O_CH_RDY are driven by three-state buffers in
order to let other ISA bus boards drive these signals
if needed.

The PLD clock is the inverted DSP96002 clock
which ensures both the setup and hold-time re-
quirements for aBG.

Figure 2-10 Bus Arbiter Detailed Block Diagram

MEMCS16

IOCS16

I/O_CH_RDY

RDY_TRST

“0”

MEMSEL

IOSEL

CLKCLK

aBA

SMEMR

SMEMW

IOR

IOW

IOSEL

MEMORY

LAEN

T1

T2
PLD6

aBG

ACC

ADD_EN

MOTOROLA 2-27

The Bus Arbiter PLD equations are:

The first equation is a macro (not an output defini-
tion) that defines the state when the PC accesses the
internal common bus resources. When LAEN is low,
a valid address bus value driven by the ISA’s CPU is
indicated. When memory is high, the PC is access-
ing the on-board memory, or when ‘IOSEL * (SIOR +
SIOW) is high the PC is accessing the on-board I/O
space.

The ADD_EN signal is used by the address bus
buffers and is asserted when aBA, aBG, and
PC_ACC are high. This state indicates that the
DSP96002 is no longer the bus master and the PC
is in the middle of a transfer cycle to the on-board
common resources.

The RDY_TRST signal, when asserted, pulls the
ISA bus I/O_CH_RDY pin low, thus indicating to
the PC that the present cycle should be lengthened
by extra CPU cycles until the DSP96002 releases
the bus. The signal is high as long as PC_ACC and
ADD_EN are both high. During a PC access, when

PC_ACC = !LAEN • MEMORY + !LAEN • IOSEL • (!SIOR + !SIOW)

ADD_EN = !(aBA • aBG • PC_ACC)

RDY_TRST = PC_ACC • ADD_EN

T1 := PC_ACC • (!T1 • !T2 • !aBG) + PC_ACC • (T1 • !T2 • !aBG)

+ PC_ACC • (T1 • T2 • !aBG) + PC_ACC • (T1 • T2 • aBG)

T2 := T1

aBG := T2

ACC = PC_ACC • !ADD_EN

2-28 MOTOROLA

the DSP96002 releases the bus, the ADD_EN sig-
nal is asserted causing RDY_TRST to be
deasserted and causing the PC to end its transfer
cycle.

Signals T1 and T2 are used to synchronize genera-
tion of aBG which is a DSP96002 input signal that
must be synchronized with the DSP96002 clock input.

The purpose of this three-stage shift register (T1,
T2, aBG) is to deassert aBG when the PC tries to
access the common bus while the DSP96002 is the
bus master. First, the T1 signal goes high if and only
if aBG, T1, and T2 are low. If one of these signals is
still high from a previous PC transfer, then T1 is as-
serted only when all three stages are cleared.

CLK

MEMORY

LAEN

T1

T2

aBG

aBA

RDY_TRST

ADD_EN

ACC

Figure 2-11 Bus Arbitration Timing Diagram

MOTOROLA 2-29

After 2 clocks, aBG is deasserted, causing the
DSP96002 to release the bus, thus allowing the PC
to gain bus control and accomplish its transfer.

Finally, the ACC signal is generated by this PLD
when PC_ACC and ADD_EN are asserted to indi-
cate to other parts of the board’s control logic that
the PC is in the middle of a board access and that it
is the bus master.

2.9 Sample Software
Applications

Two very simple software applications are present-
ed here to show the simple yet powerful interface
achieved by the application board.

The first example is a data download program
where the PC transfers data to the DSP96002’s in-
ternal data RAM by using the Host Interface.

The second example is also a data download pro-
gram where the PC transfers data to the
DSP96002’s internal data RAM, but by using some
of the shared memory cells as semaphore and
data registers.

2-30 MOTOROLA

2.9.1 Sample Application: Download
Through the Host Interface

#define HA_ICS 0x00F180 /*port A Host ICS register */
#define HA_RTX 0x00F1A0 /*port A Host RX/TX register */
main()
{
int i;

for (i=0;i<0x200;i++)

/*this loop will transfer 0x200 16-bit words to the DSP96002
through it’s Host port.*/

{
/*first the PC waits until the transmit data register is empty
by checking the TXDE bit in ICS. It will be empty when the
DSP96002 reads it’s receive data register (HRX),
thus asserting TXDE. */

 while ((inport(HA_ICS) & 0x0002) == 0);

/*now the PC will transfer the data to the transmit data register */
outport(HA_RTX,i);
}

Figure 2-12 ‘C’ Language Program Listing

 opt mu,cre,cex,mex
 page 132,66,0,3,1

HCRA equ $FFFFFFEC ;HCRA register
HSRA equ $FFFFFFED ;HSRA register
HRXA equ $FFFFFFEF ;HRXA register

org P:0

start movep #$00000000,x:$fffffffe ;bcra programming for 0 wait states

move #$0000ffff,d2.l ;set mask
move #0,r0 ;init pointer
bclr #5,x:HCRA ;clear HRES bit in HCRA
do #$100,endloop ;read 0x100 words from the Host

loop1 jclr #0,x:HSRA,loop1 ;wait until HRDF bit is set
movep x:HRXA,d0.l ;read Receive Data Register

loop2 jclr #0,x:HSRA,loop2 ;wait until HRDF bit is set
movep x:HRXA,d1.l ;read Receive Data Register
asl #16,d1 ;the 2nd word holds the 16 MSBs.
and d2,d0 ;get only 16 LSBs
or d0,d1 ;get the complete word
move d1.l,x:(r0)+ ;store in memory

endloop nop ;end of transfer
nop
nop

endp jmp endp

Figure 2-13 DSP96002 Assembly Language Listing

MOTOROLA 2-31

2.9.2 Sample Application: Download
Through Common Memory

#define READY 0x80000800 /*status handshake word */
#define DATA 0x80000820 /*data handshake word */

main()
{
unsigned far *i,*j;
int n;

i = READY ;
j = DATA;

for (n=0;n<0x200;n++)
/*this loop will transfer 0x200 16-bit words to the DSP96002’s internal memory
through the board’s common memory.*/
 {
/*first the PC waits until the DSP96002 is ready to receive a new word by checking
the READY word in the common memory.*/

while (*i != 0);

/*now the PC will transfer the data to common memory */
*j = n;

/*now the PC signals the 96002 that the transfer is READY*/

 *i = 0xFFFFFFFF;

Figure 2-14 ‘C’ Language Program Listing

 opt mu,cre,cex,mex
 page 132,66,0,3,1

READY equ $200 ;READY handshake word
DATA equ $208 ;DATA handshake word

org P:0

start movep #$00000000,x:$fffffff ;bcra programming for 0 wait states

move #$0000ffff,d2.l ;set mask
move #0,r0 ;init pointer
move r0,r7
move #READY,r3 ;init pointer
do #$100,endloop ;read 0x100 words from the Host
move r7,x:(r3) ;clear READY flag

loop1 jclr #0,x:(r3),loop1 ;wait until READY is set
move x:DATA,d0.l ;read Data handshake word
move r7,x:(r3) ;clear READY flag

loop2 jclr #0,x:(r3),loop2 ;wait until READY is set
movex:DATA,d1.l;read Data handshake word

Figure 2-15 DSP96002 Assembly Language Listing

2.10 Benchmarks
A FRACTAL program, based on one of Dr. Benoit
Mandelbrot’s functions, was written to calculate the
acceleration factor by using the DSP96002 as an
attached processor.

First, the program was written in ‘C’ language and
was run on the IBM PC/AT (8 MHz). The PC need-
ed approximately 4 hours to finish calculating and
drawing the picture.

The same program was then run on a PC (80386 +
80387) running at 20 MHz. The PC finished the job
in about 4.8 minutes.

The program was then re-written in DSP96002 as-
sembler code and was run on the application board
(DSP96002 running at 40.0 MHz), transferring data
to the IBM PC’s video RAM. The DSP96002 com-
pleted the job in about 6 seconds!

2.11 Acceleration Factor
Compared to the 80286 (8 MHz) AT, the DSP96002
(40.0 MHz) runs 2400 times faster.

Compared to the 80386 + 80387 (20 MHz) PC, the
DSP96002 (40.0 MHz) runs 48 times faster. ■

MOTOROLA 3-1

SECTION 3

By O. Rubinstein

3.1 Introduction
This section provides design guidelines for interfac-
ing the DSP96002 to the VMEbus. The design is
complete for the specific case of the ADS96002 act-
ing as a VMEbus slave, including such considerations
as bus arbitration for the DSP96002, VMEbus proto-
col, and timing.

3.2 The VMEbus
VMEbus, also known as IEC 821 BUS or IEEE
P1014/D1.2, is an asynchronous bus using the Euro-
card format. References to the VMEbus are made
throughout the design description, based on the as-
sumption that the user is familiar with the bus
operation. A description of VMEbus protocol can be
found in the IEEE Standard for a Versatile Back-
plane Bus: VMEbus, ANSI/IEEE Std 1014-1987.

Connecting the
DSP96002 to the
VMEbus

“The VMEbus
has the ability to

issue host
commands to

the DSP96002, to
initiate data
exchange in

both directions,
or to be

asynchronously
interrupted by

the DSP96002.”

3-2 MOTOROLA

3.3 The DSP96002
The DSP96002 is a dual-port IEEE floating point
processor capable of acting both as an independent/
main processor and as a slave processor through its
Host MPU/DMA Interfaces (one on each port).

The VMEbus, described in the following section,
communicates with the DSP96002 through the
Port B Host Interface. The VMEbus has the ability to
issue host commands to the DSP96002, to initiate
data exchange in both directions, or to be asynchro-
nously interrupted by the DSP96002. Support for
local DSP96002 Port B memory is also provided.

References to the DSP96002 operation and timing
are made throughout the design description, and
user familiarity with the DSP96002 is assumed. A
description of the DSP96002 can be found in the
DSP96002 User’s Manual and timing information
can be found in the DSP96002 Data Sheet.

3.4 Design Description
This interface is connected to the ADS96002 (see
Figure 3-1) on one side (referenced in the design as
the “J” connector) and to the VMEbus on the other
side (referenced as the “P” connector). The
DSP96002 is mapped in the VMEbus memory
space starting at hex address 80000000 and occu-
pies sixteen 32-bit words. VMEbus address bits A5-
A2 are mapped to the corresponding DSP96002
bits (bA5-bA2). The DSP96002 responds to data
accesses in the address range AM5-AM0 = 001x01.

MOTOROLA 3-3

The DSP96002 can interrupt the VMEbus master on
IRQ6 if a “1” is written to the RREQ/TREQ bit in the
ICS register (which enables assertion of HR when the
RXDF/TXDE bit is asserted) and if the internal
DSP96002 DMA is programmed to transfer data auto-
matically (on HTDE/HRDF asserted). Unattended data
transfer is then allowed through the on-chip DMA.

This design provides local memory on DSP96002
Port B. Whenever the VMEbus master is not access-
ing the DSP96002, the bus arbitration portion of the
interface assigns the local bus to the DSP96002.
However, the VMEbus master has higher priority
than the DSP96002, allowing for fast response.

NOTE: Two different symbols for inversion are used in this
application report. An overbar is used for signals that are
low true (e.g. IRQ6). An exclamation is used for an inver-
sion that occurs in a PLD (e.g.!A11).

3.5 Signals Between the
Interface and the
VMEbus

D31-D0 = data bus
A31-A1 = address bus

AM5-AM0 = address modifier
AS, DS0, DS1 = address & data strobes

LWORD = 32-bit transfer indication
WRITE = transfer direction
DTACK = transfer acknowledge

IACK, IACKIN, IACKOUT, IRQ6 = interrupt handling
SYSRESET = reset

3-4 MOTOROLA

3.6 Signals Between the
Interface and the
ADS96002

Figure 3-1 Connection Block Diagram

Interface CardVMEbus
Backplane

ADS96000
Card

P2 J2

P1 J1

bD31-bD0 = data bus
bA5-bA2 = address

bTS, bHS, bHA, bRW = selection signals
bBG, bBB, bBA = arbitration signals

CLK_IO = DSP96002 clock

MOTOROLA 3-5

3.7 Address and Modifier
Decoding

The decoder signals the following conditions:

address = $80000000 - $8000003C;

address modifier = 001x01; A1 = 0;

LWORD = 0.

DTACK, IRQ6, DSO, DS1, WRITE

IACKOUT, IACK, IACKIN, AS

DSP96002 Local
Bus Arbitration

VMEbus Protocol
Handler

Data Bus Buffers
(Bidirectional)

bTS, bBB, bHR

bBG, BBA

bHS, bHA

bA5-bA2, bR/W

bD31-bD0

A5-A2A31-A1

D31-D0

LWORD

AM5-AM0
A31-A6

VMEbus ADS96002

Address,

Width Decoder

Modifier and

Figure 3-2 Interface Card Block Diagram

Address & Control
Signals Buffer

3-6 MOTOROLA

3.7.1 Address Decoder PLD Equations

3.8 Description—
Bus Arbiter

The DSP96002 is parked on the local bus (idle state)
unless the VMEbus master accesses the DSP96002
or the DSP96002 local memory (see Figure 3-3).

If the VMEbus master is servicing an interrupt other
than from the DSP96002 (i.e., the IR signal is deas-
serted because the DSP96002 did not issue an
interrupt) or the master is servicing an interrupt re-
quest other than IRQ6, the interface acts as a
participating interrupter and passes IACKIN to
IACKOUT.

If the VMEbus master is accessing the DSP96002,
either in a regular data transfer bus (DTB) access or
in a STATUS/ID read cycle, then the bus ownership
is taken from the DSP96002 (bBG synchronously
deasserted).

A regular DTB access, indicating a data read/write
cycle, is identified by IACK = 1 with the correct ad-
dress, address modifier, and AS = 0. A STATUS/ID
read cycle indicating the start of interrupt service is
identified by IACKIN = 0, A3 = 1, A2 = 1, A1 = 0,
LWORD = 0, IR = 0, and AS = 0.

O1 = ([A31..A12]==^H80000);
A = !B1 & !A11 & !A10 & !A9 & !A8 & !A7 & !A6 & !AM5 & !AM4 & !AM3 &

 !AM1 & AM0;
I = !A1 &!LWORD;

MOTOROLA 3-7

3-8 MOTOROLA

Figure 3-3 DSP96002 Bus Arbitration

IV Wait
bBG = 0
bHS = 1
bHA = 0

IACKOUT = 1

DTB Cycle
bBG = 1
bHS = 0
bHA = 1

IACKOUT = 1

IV Read
bBG = 1
bHS = 1
bHA = 0

IACKOUT = 1

IDLE
bBG = 0
bHS = 1
bHA = 1

IACKOUT = 1

Participating

bBG = 0
bHS = 1
bHA = 1

IACKOUT = 0

INT

Need Bus
bBG = 1
bHS = 1
bHA = 1

IACKOUT = 1

My address or

Not my
interrupt

bBB = 1bBB = 1

bBB = 0 bBB = 0

bBA = 1, IACKIN = 0 bBA = 1, IACK = 1

interrupt

DTB Wait
bBG = 0
bHS = 0
bHA = 1

IACKOUT = 1

MOTOROLA 3-9

3.9 Description—VMEbus

As soon as the DSP96002 acknowledges the ac-
cess (bBA deasserted), the interface asserts either
the bHS signal (for a regular DTB cycle) or the bHA
signal (for STATUS/ID read).

As soon as the VMEbus protocol handler receives
the bus (signal bBB asserted), the interface asserts
the bBG signal. When the VMEbus access is done
and the protocol handler deasserts the bBB signal,
the DSP96002 is enabled to take bus ownership im-
mediately and the bus arbiter consequently returns
to the idle state.

The INIT signal, which is asserted either if SYSRE-
SET is asserted or on interface power up, always
resets the arbiter to the idle state.

3.8.1 Bus Arbiter PLD Equations

 lACKOUT = !INIT # !(!BG & HS & HA & !IACKIN & !AS &

!(A3 & A2 & I & !IR)) & (IACKIN # lACKOUT);

BG := INIT & BB & (BG # IACK & A & !AS & DTCK & BB #

 !IACKIN & A3 & A2 & I & !IR & !AS & DTCK & BB);

HS = !INIT # !((BG # !BB) & BA & IACK) & (HS # BB);

HA = !INIT # !((BG # !BB) & BA & !IACKIN) & (HA # BB);

3-10 MOTOROLA

Protocol Handler
When the VMEbus master is not accessing the
DSP96002, the VMEbus protocol handler state ma-
chine is in the idle state (see Figure 3-4). Only in this
state is the bRW signal changed according to the
WRITE signal and the IR signal is changed accord-
ing to the bHR signal if interrupts are not disabled.

When the VMEbus master accesses the DSP96002
(either bHS or bHA is asserted by the bus arbiter),
the protocol handler asserts bBB which opens the
address and bRW buffer.

As soon as both data strobes DS0 and DS1 are as-
serted, the protocol handler opens the data bus
buffer in the correct direction (either BUFR or
BUFW) and asserts the bTS signal, thus initiating
the data transfer with the DSP96002 (see Figure 3-
5 and Figure 3-5).

The bTS signal is then deasserted after one clock
cycle, which also latches the data in the buffer. This
is necessary when transferring data from the
DSP96002 to the VMEbus master (read cycles) be-
cause the hold time of the DSP96002 is 2 ns,
insufficient for the VMEbus which is typically much
slower than the DSP96002. Although it is not re-
quired, data is also latched during write cycles for
reasons of symmetry and simplicity.

The DTACK signal is asserted after one more clock
which signals to the VMEbus master that the ac-
cess has been completed. If the access is a write
cycle, the buffers are also closed at this point.

MOTOROLA 3-11

3-12 MOTOROLA

Figure 3-4 VMEbus Protocol

Read 1

Write CycleRead Cycle

IDLE
DTACK = 1

bBB = 1
 BUFR = 1
BUFW = 1

Have Bus

Write 1

DTACK = 1
bBB = 0

 BUFR = 1
BUFW = 1

DTACK = 1
bBB = 0

 BUFR = 0
BUFW = 1

DTACK = 1
bBB = 0

 BUFR = 1
BUFW = 0

DTACK = 1
bBB = 0

 BUFR = 1
BUFW = 0

DTACK = 1
bBB = 0

 BUFR = 0
BUFW = 1

DS0 & DS1 DS0 & DS1

DS0 # DS1

1 clock

1 clock1 clock

1 clock

(DS0 # DS1)
RW

(DS0 # DS1)
RW

(HS & HA)
(DS0 # DS1)

RW

(HS & HA)
(DS0 # DS1)

RW

(HS & HA)

Read DTACK
DTACK = 0

bBB = 0
 BUFR = 0
BUFW = 1

Write DTACK
DTACK = 0

bBB = 1
 BUFR = 1
BUFW = 1

MOTOROLA 3-13

After another clock (if the data strobes DS0 and
DS1 are deasserted), the state machine returns to
the idle state. At this point, the buffers are closed if

disable = !INIT + ((reg==RD_DTCK) & !HA) + (disable & !HR) ;
IR = !((reg==IDLE) & !disable & !HR) & IR + (reg==IDLE) & (disable + HR) ;
RW = !((reg==IDLE) & !WRITE) & RW + (reg==IDLE) & WRITE ;

reg = [DTCK,BB,BUFR,BUFW,TS] ;

“The following is a list of the state machine states. The TS output is
“deasserted on output in order to have an IDLE state of all ones.
IDLE = ^B11111 ;
HAVE_BUS = ^B10111 ;
RD_CYC = ^B10010 ;
WR_CYC = ^B10100 ;
RD_1 = ^B10011 ;
WR_1 = ^B10101 ;
RD_DTCK = ^B00011 ;
WR_DTCK = ^B01111 ;

State IDLE: if !(HS & HA) & (DS0 # DS1) then HAVE_BUS
else if !(HS & HA) & !(DS0 # DS1) & !RW then WR_CYC
else if !(HS & HA) & !(DS0 # DS1) & RW then RD_CYC
else IDLE ;

State HAVE_BUS: if !(DS0 # DS1) & !RW then WR_CYC
else if !(DS0 # DS1) & RW then RD_CYC
else if !INIT then IDLE
else HAVE_BUS ;

State WR_CYC: if !INIT then IDLE else WR_1 ;

State RD_CYC: if !INIT then IDLE else RD_1 ;

State WR_1: if !INIT then IDLE else WR_DTCK ;

State RD_1: if !INIT then IDLE else RD_DTCK ;

State WR_DTCK: if DS0 & DS1 then IDLE
else if !INIT then IDLE
else WR_DTCK ;

State RD_DTCK: if DS0 & DS1 then IDLE
else if !INIT then IDLE
else RD_DTCK ;

Figure 3-5 VMEbus Protocol handler PLD Equations

3-14 MOTOROLA

it is a read cycle.

The interrupts are locally disabled if the cycle is a
STATUS/ID read (interrupt service). From this mo-
ment, the interface will not interrupt the VMEbus
master until the interrupts are re-enabled. Re-en-
abling of the interrupts occurs when the bHR signal
is deasserted. This is necessary because the
DSP96002 deasserts the bHR signal only after the
VMEbus master reads/writes to the Host receive/
transmit register and the VMEbus specifications re-
quire that the IRQ6 signal be deasserted within 500
ns of the STATUS/ID read cycle.

3.10 Timing Considerations
Signal bBG must be synchronous to the DSP96002
clock (IO_CLK).

The maximum delay for the 74F08 is 5.6 ns. Using a
GAL20V8A12 (12 ns delay) leaves 6.4 ns setup time
for 40 MHz operation which is more than the setup
time required for the DSP96002. Not meeting the
setup time requirement results in an extra clock peri-
od before bBA deassertion. This extra delay may
occur anyway if bBG is deasserted before the first
clock of an external DSP96002 Port B data access.

The setup and hold times for the 74F373 latches
are critical. Latching should occur on the trail-
ing edge of TS. The maximum delay for the leading
edge of bTS is 4.7 ns for the 74F240. Since the
74F373 requires a setup time of 2 ns, this leaves
18.3 ns for a 25 ns clock (40 MHz operation) which

3-15 MOTOROLA

is more than the delay from bTS assertion to data
valid.

The minimum delay from the trailing edge of TS to
the trailing edge of bTS is 1.5 ns which, together
with the 2 ns DSP96002 hold time, results in a min-
imum of 3.5 ns total hold time. This hold time is
greater than the 3.0 ns hold time required for the 74F373.

NOTE: The timing data reference is from the

Figure 3-5 Write Timing (Master-to-Slave)

IO_CLK

CLK

AS, DSn

bBG

bBA

bHS

bBB, BUFW

TS

bTS

DTACK

ADDRESS, DATA, WRITE, valid

3-16 MOTOROLA

“MOTOROLA FAST AND LS TTL DATA”
catalog.

ADDRESS, WRITE, valid

DATA

IO_CLK

CLK

AS, DSn

bBG

bBA

bHS, bHA

bBB, BUFW

TS

bTS

DTACK

Figure 3-6 Read Timing (Slave-to-Master)

MOTOROLA 4-1

“Double buffering
allows the

DSP96002 to read
the data anytime

during the
transmission of
the subsequent

data word.”

SECTION 4

Interfacing the
DSP96002 Media
EngineTM Processor
to 56ADC16
Sigma-Delta A/D
Converters

by R. Robles

4.1 Introduction
The DSP96002 is a powerful DSP engine with appli-
cation potential in many varied areas. A number of
these applications require the digitization of analog
signals. The following example demonstrates a sim-
ple method for connecting the DSP96002 to a pair of
high performance Analog-to-Digital Converters with
serial I/O ports.

The circuit described enables the user to interface a
pair of DSP56ADC16 16-bit Sigma-Delta Analog-to-
Digital Converters to the external Port A of the
DSP96002, thereby providing a stereo input to the

4-2 MOTOROLA

processor. In addition to the converters themselves,
the interface circuitry consists of only five other de-
vices — four MC74HC595A serial-to-parallel
latches and one 22V10-10 PLD

4.2 The DSP56ADC16
Analog-to-Digital
Converter

This device is a high performance Analog-to-Digital
Converter based on sigma-delta conversion tech-
nology. With the internal FIR filter enabled, the
DSP56ADC16 achieves 16-bit accuracy at output
data rates up to 100 kHz with 96 dB of dynamic
range and a 90 dB signal-to-noise ratio. 12-bit accu-
racy is delivered for output rates as high as 400 kHz
by taking the output of the first (comb) filter stage.

The converter requires an input clock frequency
128 times the output sample rate. For a 48 kHz out-
put sample rate, the input clock should be 6.144
MHz. A 44.1 kHz output rate requires a 5.6448 MHz
clock.

Data samples are transmitted serially over a syn-
chronous interface to the target processor. This
very simple interface scheme requires only three
signal lines: a clock, frame sync, and a data stream.
For more detailed information on this A/D Convert-
er, please refer to the Motorola Data Sheet
DSP56ADC16/D.

MOTOROLA 4-3

4.3 The DSP96002 Media
EngineTM Processor

The DSP96002 is the first member of Motorola’s

family of single-chip, dual port, IEEE-754 compliant

Digital Signal Processors. The DSP96002 delivers

60 MFLOPs (million floating point operations per

second) and 200 MOPS (million operations per sec-

ond) when operating from a 40 MHz clock. The

architecture of the DSP96002 permits a number of

concurrent operations during each instruction cycle.

The data ALU, the Address Generation Unit, and

the program controller operate in parallel within the

CPU which permits each instruction cycle to

accomplish:

• an instruction prefetch

• up to three floating point operations (a multiply,
an add and a subtract)

• three data moves

• four address pointer updates

The speed, the parallelism of the architecture, and

the mathematical precision inherent in the use of

the IEEE-754 floating point standard combine to

form a processor which is especially well suited to

the mixture of tasks typical with multi-media appli-

cations. Please refer to the DSP96002 User’s

Manual and the DSP96002 Data Sheet for detailed

information on this processor.

4-4 MOTOROLA

4.4 Interface Hardware
Description

Figure 4-1 depicts the system in block diagram
form. Briefly, the two DSP56ADC16 A/D Converters
run synchronously to each other, transmitting sepa-
rate serial bit streams to their associated serial shift
registers where the data is converted to parallel.
When the least significant bit of a word arrives, the
parallel word is latched into a three-state buffer.

Figure 4-1 Serial Interface Block Diagram

P
A
R
A
L
L
E
L

L
A
T
C
H

5
6
A
D
C
1
6

D
S
P

P
A
R
A
L
L
E
L

L
A
T
C
H

R
E
G
I
S
T
E
R

S
H
I
F
T

16 16
Analog
Input

Bit Clock

Analog
Input

FSO

SCO

5
6
A
D
C
1
6

D
S
P

FSO

SCO

FSI

FSI

16

Data to
DSP96002

Interrupt

16

R
E
G
I
S
T
E
R

S
H
I
F
T

PAL22V10

MOTOROLA 4-5

“Double buffering” allows the DSP96002 to read the
data anytime during the transmission of the subse-
quent data word. A 44.1 kHz word rate allows 22.7
µs for the DSP96002 to retrieve the data in the buff-
er before the next word arrives or 453 instruction
cycles (40 MHz clock).

The PLD (PAL22V10) used in this interface pro-
vides three functions:

• a 7-bit synchronous counter for generating
Frame Sync Input to the two converters

• address decoding which enables the DSP96002
to read the three-state buffers

• interrupt Request (three-state) to the processor

The counter generates a common Frame Sync In-
put (FSI) to the two DSP56ADC16s from its most
significant bit (msb). This technique maintains syn-
chronism between the two converter data streams
and initiates subsequent transmissions at the earli-
est possible point in the system timing. The
converters start transmitting serial data on the
eighth clock after the rising edge of FSI. This sub-
ject will be covered in better detail in the timing
section.

The address decoder in this example utilizes only
the five most significant address bits (aA31-27) to
map the serial data buffers into the DSP96002
memory space. When reading from the address
range which is reserved for these buffers, the least
significant address bit (aA00) determines whether
the left or the right channel buffer will be placed onto
the bus. This design assigns a unique address to
the two buffers, placing the msb of each converter
(the sign bit) onto the msb of the data bus.

4-6 MOTOROLA

Left/Right channel is distinguished by the read ad-

dress. The PLD equations shown in Figure 4-4 map

the two buffers into the following areas of

DSP96002 memory:

• Y:$F8xx xxx0 — Right Channel Data

• Y:$F8xx xxx1 — Left Channel Data

Variations of this theme can be easily implemented

in the form of changes to the PLD equations and/or

the hardwiring of the address/data lines. For exam-

ple, an alternate technique would be to map both

buffers at the same address, placing one channel on

the upper 16-bits of the bus and the second channel

buffer onto the lower 16-bits of the bus. This method

was not chosen due to the increased complexity of

parsing the 32-bit data word, but some applications

may find this approach advantageous.

The Frame Sync Output (FSO) from the convert-

ers strobes the serial shift register data into the

parallel buffers. FSO occurs 8 clock cycles after

the counter has rolled over to zero. The PLD as-

serts the IRQ line during the 10th clock cycle after

FSO, assuring that adequate set-up time has

been provided to the latches. IRQ is not three-

stated. The interrupt request is conditioned with

the processor RESET line in order to guarantee

that the line is high during processor reset, regard-

less of the activity of the converters. Should the

user’s design call fort MODA to be low during the

reset sequence, a simple change to the PLD equa-

tions can satisfy this requirement.

MOTOROLA 4-7

4.4.1 Timing

The DSP56ADC16 supports two serial timing struc-
tures (see Figure 4-2 and Figure 4-3). The example
circuit utilizes mode 0 which is selected by placing a
logic zero on the Format Select (FSEL) pin of the de-
vice. In this mode, Frame Sync Output (FSO) is low
for the entire period during which the 16 data bits are
present on the SDO (serial data output) pin. This
mode offers a rising edge on the Serial Clock Output
(SCO) pin during the middle of each bit’s cell time.

The circuit is clocked from a free running oscillator
which operates at 128 times the desired word rate
from the DSP56ADC16. In this example, a 5.6448
MHz clock is used to generate data at 44.1 kHz, the
data rate used in common CD players. As the
counter passes from a count of 63 to a count of 64,
the msb of the counter, Q6, is asserted. Q6 is con-
nected to the Frame Sync Input (FSI) pin of both
DSP56ADC16 Converters. This rising edge on FSI

Figure 4-2 Serial Interface Timing

CLKIN

SCO

FSI (Q6)

FSO

SDO

IRQA

D15 D14Zero (After Previous D0)

Low For D15-D0

FSI sampled on falling edge of CLKIN

D1 D0

4-8 MOTOROLA

initiates a serial word transfer out of both converters.
After 8 clock cycles elapse, the msb of each data
stream appears on the SDO pin and remains
present for 4 clock cycles, or 1 SCO cycle.

Figure 4-3 DSP96002 Serial Interface Schematic

15
1
2
3
4
5
6
7

15
1
2
3
4
5
6
7

aD31
aD30
aD29
aD28
aD27
aD26
aD25
aD24

aD23
aD22
aD21
aD20
aD19
aD18
aD17
aD16

J3-B7
J3-B6
J3-B5
J3-B4
J3-B3
J3-B2
J3-B1
J3-A30

J3-A29
J3-A28
J3-A27
J3-A26
J3-A25
J3-A24
J3-A23
J3-A22

aR/W
aTS
aS1
aS0
aA31
aA30
aA29
aA28
aA27
aA00

RESET

J3-C23
J3-C27
J3-C24
J3-C25
J3-B8
J3-B9
J3-B10
J3-B11
J3-B12
J3-C12
J4-B30

1
2
3
4
5
6
7
8
9

10
11
13

M
C

74
H

C
59

5A
M

C
74

H
C

59
5A

P
A

L
22

V
10

-1
0

J4-B27MODA/IRQA to DSP96002

14

9

14
11

10

12
13

11

12
13

ANALOG INPUT

Latch

OE

Reset

Latch
OE

14

15

16
17

+5V

FSO
SCO

FSI

11

SDO

10Reset

+5V

DSP56ADC16

6
12
13
14
15
16
17

19
20

2

3

7

4

5

10
9

+

+5V

100 mF
+

4.7K

+5V

100 mF
+

100 mF

2.2K

2.2K

1K

1K

5.614 MHz
Osc.

To Right Channel

DSP56ADC16

Left Channel

FSI to Right Channel DSP56ADC16

OE to Right Channel MC74HC595As

NOTE:

is Identical to Left Channel

Right Channel Circuit

Vin-

Vin+
SFMT

REFout

REFin
FSEL
DOE

DGND

TP2
TP1

TP0

TP3

CLKIN

CLK

CLK

MOTOROLA 4-9

SCO from the converter presents a rising edge dur-
ing the center of each bit-wide time cell. This clock
is used by the MC74HC595A’s to advance the seri-
al data through their shift registers. Subsequent
data bits progress out of the converter until, finally,
the 16th bit, bit 0, is on the SDO pin.

After bit 0 has been presented to the serial bus for
1 SCO cycle, SDO is driven to zero and the convert-
er signals the end of the data stream by bringing
FSO high. FSO is connected to the MC74HC595A’s
parallel latch strobe. This rising edge causes the
data in the shift registers to be copied into the par-
allel buffers of the MC74HC595A’s where it remains
until the next rising edge of FSO. Effectively, this
double buffering permits the processor to retrieve
the data anytime during the next word’s transmis-
sion period without losing data.

When FSO latches the data into the parallel buffers,
the PLD drives IRQ low for one input clock period,
assuming that the DSP96002 is configured for
edge-sensitive interrupt sensing. This interrupt in-
forms the processor that there is new data present
in both the left channel buffer and the right channel
buffer. Since the circuit provides unique addressing
for each channel, there is no ambiguity regarding
the origin of the data, simplifying the task of the
software.

After the final bit is transmitted, another 64 clock cy-
cles are required before another FSI can be sent to
the converters; the PLD counter generates the suc-
cessive FSI rising edge after these 64 clocks elapse.

4-10 MOTOROLA

0001 |module ssi96c
0002 |title ‘DSP96002 SSI-type Interface Ver.4
0003 |AUTHOR: Roman Robles
0004 |COMPANY: MOTOROLA INC.
0005 |DATE: 30 January 1991’
0006 |
0007 | SSI96C device ‘P22V10’;
0008 |
0009 |”INPUTS
0010 | CLK pin 1; “Bit-Rate Clock”
0011 | RWn pin 2; “Read/Write*”
0012 | TSn pin 3; “Transfer Strobe”
0013 | S1,S0 pin 4,5; “Address Selectors”
0014 | A31,A30,A29,A28,A27,A00 pin 6,7,8,9,10,11;
0015 | RST pin 13; “Reset* input”
0016 |
0017 |
0018 | Q6,Q5,Q4,Q3,Q2,Q1,Q0 pin 17,18,19,20,21,22,23;
0019 | Q6,Q5,Q4,Q3,Q2,Q1,Q0 ISTYPE ‘invert’;
0020 | SSI_Lf_Rd pin 16 ISTYPE ‘com,invert’;
0021 |SSI_Rt_Rd pin 15 ISTYPE ‘com,invert’;
0022 | IRQn pin 14; “SSI Interrupt Request - 3 state”
0023 |
0024 | High,Low = 1,0;
0025 | H,L,C,K,X,Z = 1,0,.C.,.K.,.X.,.Z.;
0026 |
0027 | Address = [RWn,TSn,S1,S0,A31,A30,A29,A28,A27,A00];
0028 | BitCount = [Q6,Q5,Q4,Q3,Q2,Q1,Q0];
0029 |
0030 | count = ^h0B;
0031 | inc macro (a) {@const ?a=?a+1;};
0032 |
0033 |equations
0034 | “ the machine is a simple, 7-bit counter (synchronous)”
0035 | “ it is clocked by Pin 1, CLK - the same clock used by the ADC16’s”
0036 |
0037 | Q6.OE = 1; Q5.OE = 1; Q4.OE = 1;
0038 | Q3.OE = 1; Q2.OE = 1; Q1.OE = 1; Q0.OE = 1;
0039 |
0040 | BitCount := (BitCount + 1);
0041 | BitCount.C = CLK;
0042 |
0043 | “ ----- ADDRESS DECODER -----”
0044 | SSI_Rt_Rd = !(Address == ^h26E); “Y:$F8xx xxx0 READ Rt SSI data”
0045 | SSI_Lf_Rd = !(Address == ^h26F); “Y:$F8xx xxx1 READ Lt SSI data”
0046 |
0047 | “ Generate the interrupt request at count = 10 “
0048 | “ on the negative-going edge of the bit-clock”
0049 |
0050 | IRQn.OE = 1;
0051 | IRQn = !((BitCount == 10) & !CLK & RST);
0052 |
0053 |

Figure 4-4 DSP96002 Serial Interface — PLD Definition (sheet 1 of 2)

MOTOROLA 4-11

0054 |”---------------------- TEST VECTORS for SSI96C ----------------”
0055 |Test_vectors “check the address decode”
0056 | ([Address] -> [SSI_Rt_Rd,SSI_Lf_Rd])
0057 | [^h26E] -> [0,1];
0058 | [^h26F] -> [1,0];
0059 | [^h06F] -> [1,1];
0060 |
0061 |Test_vectors “check the counter & IRQ”
0062 | ([CLK,RST] -> [BitCount,IRQn])
0063 | [C, 1] -> [^h00,1];
0064 | [C, 1] -> [^h01,1];
0065 | [C, 1] -> [^h02,1];
0066 | [C, 1] -> [^h03,1];
0067 | [C, 1] -> [^h04,1];
0068 | [C, 1] -> [^h05,1];
0069 | [C, 1] -> [^h06,1];
0070 | [C, 1] -> [^h07,1];
0071 | [C, 1] -> [^h08,1];
0072 | [C, 1] -> [^h09,0];
0073 | [C, 1] -> [^h0A,1];
0074 |
0075 | @repeat 116 {
0076 | [C,1] -> [count,1];
0077 | inc(count);}
0078 |
0079 |Test_vectors
0080 | ([CLK,RST] -> [BitCount,IRQn])
0081 | [C, 1] -> [^h7F, 1];
0082 | [C, 1] -> [^h00, 1];
0083 | [C, 1] -> [^h01, 1];
0084 | [C, 1] -> [^h02, 1];
0085 |
0086 |END ssi96c
0087 |

Figure 4-4 DSP96002 Serial Interface — PLD Definition (sheet 2 of 2)

MOTOROLA 5-1

ABEL i t d k f th DATA I/O C ti

SECTION 5

by R. Robles

5.1 Introduction
A common question which arises during algorithm
development concerns the number of machine cycles
that the algorithm will require. Iterative algorithms and
lengthy code sections with multiple branch paths can
complicate the task of determining the execution speed
of a section of code. One simple solution to this prob-
lem is a hardware cycle counter. Figure 5-1 depicts a
simple counter which can be connected to the
DSP96002 Application Development System (ADS).

5.2 Circuit description
This circuit consists of four 8-bit counters constructed
from 22V10-10 PLDs. The ABELTM1 source file for these
counters is shown in Figure 5-2. These counters are
simple synchronous counters with DSP96002 address
decoding and three-state outputs. In this example, the
counters respond to any address in the DSP96002’s Y:
address space between Y:$FC00 0000 and Y$FFFF
FFFF. Writing any value to this address range resets the

1. ABEL is a trademark of the DATA I/O Corporation

A Non-Intrusive Cycle
Counter for the
DSP96002 ADS

“The counter for
this example is
located on the

processor’s Port
A. Simple

changes to the
connector pin-
out can move
the counter to

Port B if
required.”

5-2 MOTOROLA

counter. Reading any address in this range yields the
number of clock cycles which have elapsed since the
last reset. The counter for this example is located on
the processor’s Port A. Simple changes to the con-
nector pin-out can move the counter to Port B if
required. Figure 5-3 shows a sample program which
tests the circuit. ■

MOTOROLA 5-3

5-4 MOTOROLA

22
21
20
19
18

23

17
16
15

D8
D9
D10
D11
D12
D13
D14
D15

13

U
02

PA
L

22
V

10
-1

0

Clock
aR/W

aA26

aTS
aS0
aS1

aA31
aA30
aA29
aA28
aA27

22
21
20
19
18

23

17
16
15
13

U
02

PA
L

22
V

10
-1

0

D24
D25
D26
D27
D28
D29
D30
D31

D16
D17
D18
D19
D20
D21
D22
D23

22
21
20
19
18

23

17
16
15
13

U
02

PA
L

22
V

10
-1

0

22
21
20
19
18

23

17
16
15
13

U
02

PA
L

22
V

10
-1

0

D0
D1
D2
D3
D4
D5
D6
D7

1
2
3
4
5
6
7
8
9

10
11

1
2
3
4
5
6
7
8
9

10
11

1
2
3
4
5
6
7
8
9

10
11

1
2
3
4
5
6
7
8
9

10
11

P1-C30
P1-C23
P1-C27
P1-C25
P1-C24

P1-B8
P1-B9

P1-B10
P1-B11
P1-B12
P1-B13

Clock
R/W

A26

TS
S0
S1
A31
A30
A29
A28
A27

P1-A1
P1-A2
P1-A3
P1-A4
P1-A5
P1-A6
P1-A7
P1-A8

P1-A10
P1-A12
P1-A13
P1-A14
P1-A16
P1-A18
P1-A20
P1-A21

P1-A22
P1-A23
P1-A24
P1-A25
P1-A26
P1-A27
P1-A28
P1-A29

P1-A30
P1-B1
P1-B2
P1-B3
P1-B4
P1-B5
P1-B6
P1-B7

Figure 5-1 DSP96002ADS Cycle Counter Schematic

Connector is P1 of
DSP96002 ADS

+5v

MOTOROLA 5-5

MOTOROLA 5-6

0001 | module adm96cnt
0002 | title ‘ADS96K Cycle Counter PLD U01 Ver.1
0003 | MOTOROLA INC. 14 February 1991’
0004 |
0005 | ADM96CNT device ‘P22V10’;
0006 |
0007 | ”INPUTS
0008 | CLK pin 1; “DSP96002 Clock “
0009 | RWn,TSn,S1,S0 pin 2,3,4,5; “Read/Write*”
0010 | A31,A30,A29,A28 pin 6,7,8,9; “Address 31-28”
0011 | A27,A26 pin 10,11; “Address 27,26”
0012 | CarryIn pin 13; “Look-Ahead Carry input”
0013 |
0014 | ”OUTPUTS”
0015 | CarryOut pin 23 ISTYPE ‘buffer’;
0016 | Q7,Q6,Q5,Q4 pin 22,21,20,19 ISTYPE ‘reg_d,buffer’;
0017 | Q3,Q2,Q1,Q0 pin 18,17,16,15 ISTYPE ‘reg_d,buffer’;
0018 |
0019 | High,Low,Z = 1,0,.Z.;
0020 | H,L,C,K,X = 1,0,.C.,.K.,.X.;
0021 |
0022 | BitCount = [Q7..Q0];
0023 | Address = [RWn,TSn,S1,S0,A31..A26]; “RT SSAA AAAA”
0024 |
0025 | count = 4;
0026 | inc macro (a) {@const ?a=?a+1;};
0027 |
0028 | equations
0029 | “ the state machine is a simple, 8-bit counter (synchronous)”
0030 | “ it is clocked by Pin 1, CLK and it is reset whenever the”
0031 | “ Host READS from the Reset address.”
0032 |
0033 | CarryOut = (Q7.fb & Q6.fb & Q5.fb & Q4.fb & Q3.fb & Q2.fb & Q1.fb & Q0.fb & CarryIn);
0034 | CarryOut.oe = 1;
0035 | BitCount.clk = CLK;
0036 | BitCount.ar = A31 & A30 & A29 & A28 & A27 & A26 & !RWn & !TSn & !S1 & !S0;
0037 | BitCount.oe = A31 & A30 & A29 & A28 & A27 & A26 & RWn & !TSn & !S1 & !S0;
0038 | WHEN (CarryIn == 1) THEN BitCount.d := BitCount.fb + 1;
0039 | ELSE BitCount.d := BitCount.fb;
0040 |
0041 | Test_vectors
0042 | ([CLK,Address,CarryIn] -> [BitCount,CarryOut])
0043 | [C,^h023F,0] -> [0,0]; “CarryIn = 0, hold count”
0044 | [C,^h023F,0] -> [0,0];
0045 | [C,^h023F,1] -> [1,0];

Figure 5-2 PLD Source for the DSP96002 ADS Cycle Counter (sheet 1 of 2)

MOTOROLA 5-7

0046 | [C,^h023F,1] -> [2,0];
0047 | [C,^h023F,1] -> [3,0];
0048 | [C,^h023F,1] -> [4,0];
0049 | [C,^h003F,1] -> [Z,0]; “clear the counter”
0050 | [C,^h023F,0] -> [0,0]; “CarryIn = 0, hold count”
0051 | [C,^h023F,1] -> [1,0];
0052 | [C,^h023F,1] -> [2,0];
0053 | [C,^h023F,0] -> [2,0]; “hold it, again”
0054 | [C,^h023F,1] -> [3,0];
0055 | “I’m NOT typing another 250 lines!”
0056 | @repeat 250 {
0057 | [C,^h023F,1] -> [count,0];
0058 | inc(count);}
0059 |
0060 | [C,^h023F,1] -> [254,0];
0061 | [C,^h023F,1] -> [255,1]; “set CarryOut”
0062 | [C,^h023F,1] -> [0,0];“count rolls over”
0063 | [C,^h023F,1] -> [1,0];
0064 |
0065 | END adm96cnt

Figure 5-3 PLD Source for the DSP96002 ADS Cycle Counter (sheet 2 of 2)

MOTOROLA 5-8

Figure 5-4 Sample Program to Test the DSP96002ADS Cycle Counter

Motorola DSP96000 Assembler Version 1.1.2 91-03-26 13:49:29 96cnt.asm Page 1

1 page 132,66,3,3
2;--
3; 96cnt.asm - quickie for initializing and testing the ADM96K Cycle
4; counter H/W
5;--
6 FFFFFFFE aBCR equ $FFFFFFFE ;Port A Bus Control Register
7 FFFFFFFC PSR equ $FFFFFFFC ;Port Select Register
8 FFFFFFF0 CYC equ $FFFFFFF0 ;address of cycle counter(s)
9
10 P:00000000 org p:$0
11 P:00000000 389D3088 clr d0.l #$12345678,d1.l;load repeat count in D1.L
 12345678

12 P:00000002 007101FE movep d0.l,x:aBCR ;zero wait states on Port A
13 P:00000003 007101FC movep d0.l,x:PSR ;locate all memory on Port A
14 P:00000004 007103F0 movep d0.l,y:CYC ;reset timer/counter
15 loop
16 P:00000005 01E00089 rep d1.l ;verify the counter
17 P:00000006 00000000 nop
18 P:00000007 007102F0 movep y:CYC,d0.l ;read timer (s/b $2468ACF8)
19 P:00000008 007103F0 movep d0.l,y:CYC ;reset timer
20 P:00000009 007202F0 movep y:CYC,d0.m ;read timer (s/b $00000004)
21 P:0000000A 03803F85 jmp loop
22
23 END

MOTOROLA Reference-1

REFERENCES

1. Motorola DSP96002 IEEE Floating-Point Dual-Port
Processor User’s Manual, DSP96002UM/AD

2. Motorola DSP96002 56-Bit General Purpose IEEE
Floating-Point Dual Port Processor, Advance
Information, DSP96002/D, Rev. 1

3. Motorola DSP56ADC16 16-Bit Sigma-Delta Analog-
to-Digital Converter, Advance Information,
DSP56ADC16/D

4. Motorola High-Speed CMOS Logic Data, DL129,
Rev.4

5. PAL Device Handbook, Advanced Micro Devices /
Monolithic Memories Inc., 1988

6. PAL Devices Databook, Advanced Micro Devices,1990
■

	SECTION 1
	SECTION 2
	SECTION 3
	SECTION 4
	SECTION 5
	REFERENCES

