

MOTOROLA APR11

by
Roman Robles
Digital Signal Processor Operation

Motorola
Digital Signal
Processors

DSP56001 Interface
Techniques and Examples

Motorola reserves the right to make changes without further notice to any products here-
in. Motorola makes no warranty, representation or guarantee regarding the suitability of
its products for any particular purpose, nor does Motorola assume any liability arising out
of the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation consequential or incidental damages. “Typical” pa-
rameters can and do vary in different applications. All operating parameters, including
“Typicals” must be validated for each customer application by customer’s technical ex-
perts. Motorola does not convey any license under its patent rights nor the rights of oth-
ers. Motorola products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Motorola
product could create a situation where personal injury or death may occur. Should Buyer
purchase or use Motorola products for any such unintended or unauthorized application,
Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affili-
ates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claim alleges
that Motorola was negligent regarding the design or manufacture of the part. Motorola
and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportuni-
ty/Affirmative Action Employer.

Table
of Contents

MOTOROLA iii

 SECTION 1

Interfacing
Motorola’s

DSP56001 to
Pseudo Static RAM

1.1 DSP56001 Memory I/O Basics 1-4
1.2 Memory Subsystem Overview 1-5
1.3 Circuit Description 1-8
1.4 Summary 1-11

SECTION 2

A Simple Dynamic
RAM Interface for

the DSP56001

2.1 Circuit Overview 2-6
2.2 Circuit Description 2-9
2.3 Summary 2-12

SECTION 3

A Simple ISA Bus
Interface for the

DSP56001

3.1 Interface Circuit Overview 3-1
3.2 Detailed Circuit Description 3-3
3.3 Timing 3-4

SECTION 4

Communicate with
the DSP56000 Host

Interface Using
C Language

4.1 Introduction 4-1
4.2 Example Program 4-1

Index-1
Reference-1

INDEX
REFERENCES

Illustrations

MOTOROLA

Figure 1-1

Figure 1-2

Figure 1-3

Figure 1-4

Figure 1-5

Figure 1-6

Figure 2-1

Figure 2-2

Figure 2-3

Figure 2-4

Figure 2-5

Figure 2-6

Figure 2-7

Figure 3-1

Figure 3-2

Figure 3-3

Figure 4-1

Pseudo Static RAM Auto Refresh Timing 1-3

DSP56001-to-PSRAM Schematic 1-6

PSRAM Interface State Diagram 1-9

DSP56001-to-PSRAM Timing 1-10

DSP56001-to-PSRAM PLD Definition 1-13

PSRAM Interface Initialization Code 1-14

DRAM Memory Address Multiplexing 2-3

DRAM Refresh Modes 2-4

DSP56001-to-DRAM Timing 2-5

DSP56001-to-DRAM Schematic 2-8

DRAM Interface State Diagram 2-10

PLD Design File -DRAM Interface 2-13

DRAM Interface Initialization Code 2-15

DSP56001-to-ISA Bus Interface Schematic 3-2

PLD Definition for the ISA Bus Interface 3-6

DSP56001-to-ISA Bus Interface Timing 3-8

Example Program of DSP56000 Host Interface
Using C Language 4-4

MOTOROLA 1-1

“

PSRAM

combines the

economies of

DRAM with the

straightforward

interface of fully

Static RAM to

provide 128K

bytes in a 32-pin

DIP

.”

SECTION 1

W

hen the design definition of a DSP subsystem calls
for a large memory space, the cost of populating this
space with static RAM (SRAM) can be prohibitive. Al-
though SRAM offers the advantages of high speed and
a very simple interface, the complex structure of the
SRAM storage cell results in SRAM price/density ratios
which are inferior to those of dynamic RAM. Pseudo
Static RAM (PSRAM) presents one possible compro-
mise between the contradictory requirements of high
density, low cost, high speed and interface simplicity.

This section presents a simple implementation of a
PSRAM interface to the DSP56001. Using an array of
three 128K x 8 PSRAMs, the circuit provides access
to 128K 24-bit words of data space. With the
DSP56001 operating from a 33MHz clock, this mem-
ory subsystem will operate with 2 wait states for non-
consecutive accesses.

Interfacing
Motorola’s DSP56001
to Pseudo Static RAM

1-2 MOTOROLA

PSRAM combines the economies of DRAM with the straightforward interface of fully

Static RAM to provide 128K bytes in a 32-pin DIP. Internally, the device contains a dy-

namic RAM array with on-board address multiplexing, an internal refresh row counter,

and an internal refresh timer. The memory array is divided into eight sections, each con-

sisting of a of 512 (row) x 256 (column) matrix of storage cells, forming a byte-wide

memory which is 128K locations deep.

The device is pin compatible with the 128Kx8 SRAM JEDEC pinout with the exception

of pin 1 (on standard SRAMs, this pin would be a no-connect; on PSRAM, it is the re-

fresh strobe F). These features enable the PSRAM to replace fully static RAM in many

applications with a minimum amount of “glue”.

PSRAM has two complementary enable lines, E1 and E2. During read and write opera-

tions, these enable lines must strobe the address into the device. This is another difference

between PSRAM and fully static RAM.

Since the PSRAM is based on DRAM storage elements, it requires a precharge delay

between successive accesses and a periodic refresh. PSRAM supports three different re-

fresh modes; CE-only refresh, auto refresh and self refresh.

• CE-only refresh requires external hardware or software to provide periodic

addressing of each of the 512 rows. Use of this method would add a

considerable amount of interface hardware or would cause significant

degradation to software performance.

• Self refresh can be entered after 8 ms in standby mode. In this mode the on-

board refresh timer and refresh counter are used to provide the refresh

sequencing. A delay slightly greater than one access cycle is required when

leaving this mode before data read/write operations can proceed. This mode

is useful for long standby periods, but is not suitable for device refresh during

periods of normal DSP activity due to the unique timing requirements. To use

this mode during idle periods would require mode selection logic as well as

the circuitry associated with one of the other “active access” modes.

Pseudo-Static RAM

MOTOROLA 1-3

• Auto refresh occurs when the PSRAM is disabled by either of the

device select inputs going false followed by the refresh pin F going

active. For each transition of F, one row of each section is refreshed and

the refresh row counter is advanced in preparation for the next refresh

cycle. The example presented in this note uses this mode because it

requires the least amount of external logic and impacts the normal DSP

software only when a data transfer contends with a refresh cycle.

Figure 1-1 depicts an auto refresh cycle in which two rows are refreshed in suc-

cession. Note that either E1 or E2 can disable the device. Refer to the data sheets

specific to the PSRAMs selected for any particular application.

E1

E2

E1

E2

-or-

F

Figure 1-1 Pseudo Static RAM Auto Refresh Timing in which 2 rows are re-
freshed in succession. Note that either E1 or E2 can disable the
device. Please refer to the data sheets specific to the PSRAMs
selected for any particular application.

1-4 MOTOROLA

1.1 DSP56001
Memory I/O Basics

Memory interface to the DSP56001 occurs over Port A
of the processor. Port A consists of 24 bi-directional
data lines (D0-D23), 16 address lines (A0-A15), three
memory reference lines (PS,DS, X/Y) and two data
strobes (RD, WR). Additionally, a pair of bus access
control signals, Bus Request/Bus Grant (BR/BG), can
be used to synchronize access requests between the
processor and another device attempting to gain
mastership of the bus. The bus access pins have al-
ternate functions, Bus Strobe /Wait (BS/WT), which
allow external circuitry to insert additional wait states
in external bus cycles. To minimize power consump-
tion, the address lines remain stable until the
beginning of the next external access. The memory
reference signals (PS, DS and X/Y) are deasserted
during periods when the external bus is idle, but are

not

 deasserted during successive accesses to the
same external memory space.

Setting bit 7 of the processor’s Operating Mode Reg-
ister (OMR) causes the bus access control bits to
assume the Bus Strobe/Wait (BS/WT) mode. In this
mode, the BS pin is asserted at the beginning of every
external access and is released during T3 of each ex-
ternal cycle. Assertion of the WT pin during T2

while
BS is asserted

 adds wait states to the bus cycle.

Wait states will continue to be inserted until two falling
edges of EXTAL occur in succession with the release of
WT. WT should never be asserted when BS is inactive.

MOTOROLA 1-5

When the DSP56001 is reading data from the bus, the
data must be stable for the specified setup and hold
periods before and after (respectively) the rising edge
of the read strobe RD. During processor write opera-
tions to the external bus, the data is valid for a
specified time before and after the rising edge of the
write strobe WR.

These relationships in are shown in the simplified
PSRAM timing diagram of Figure 1-4. (For DRAM tim-
ing see Figure 2-3.) For more detailed information,
refer to the

DSP56001 User’s Manual

 and the

DSP56001 Data Sheet.

1.2 Memory Subsystem
Overview

The circuit in Figure 1-2 is designed to serve as an ex-
tension of the Motorola DSP56000 ADS Application
Development Module (ADM). The Static RAM on the
ADM should be configured to reside solely within the
DSP56001 program space. The PSRAMs and their
interface circuitry are attached to the DSP56001’s
Data and Address Buses via ADM connector J3.

The PSRAM bank consists of three devices. Each device
provides 128K storage cells for each of 8 data bits, form-
ing an array of 128K 24-bit words. The DSP56001 can
address 64K 24-bit words in each of its two data spaces,
X:memory and Y: memory. Therefore, this PSRAM array
fully populates both of the processor’s data spaces.

1-6 MOTOROLA

MOTOROLA 1-7

A0
A1
A2
A3
A4
A5
A6
A7
A8

A10
A9

G
W

13 14 15 17 13 14 15 17 13 14 15 17

20 2118 19 20 21 18 19 20 21 18 19

WR

D
01

D

02

D
03

D
04

D

05

D
06

D
08

D

09

D
10

D
07

D
11

D
12

D

13

D
14

D

15

D
16

D

17

D
18

D

19

D
20

D

21

D
22

D

23

12
11
10
9

29

8
7
6
5

27

24

26
23

RD

D
00

A

24

A
23

A

22

A
21

A
20

A

19

A
18

A

17

A
16

A

15

A
14

A
13

A
12

A

11

A
10

A

09

A
08

A

07

A
06

A

05

A
04

A

03

A
02

A

01

B24
B25

AD00
AD01
AD02
AD03
AD04
AD05
AD06
AD07
AD08
AD09
AD10
AD11
AD12
AD13
AD14
AD15

DS

BS

WT

X/Y C01
C02
C03
C04
C05
C06
C07
C08
C09
C10
C11
C12
C13
C14
C15
C16

B26

B28

B29

B30

B05

C23

D

CK
CLR

Q

Q

PRE
D

CK
CLR

Q

Q

PRE

+5v

+5v

1

4

2 15

13

3

18

19

11

1

2

4

6
8

9

10

11

12

13

5

3 4

MC74AC04

MC74AC74

P
A

L1
6R

4-
7

M
E

M
O

R
Y

 B
U

S
Y

B
U

S
Y

-C
LR

B
A

A11
A12
A13
A14
A15
A16

25
4

28
3

31
2

+5v

3

E1
F

SCLK

22
1

30
E2

+5v

3 - 128K x 8
PSEUDO STATIC

(80 ns)

D
04

D
05

D
06

D
07

D
04

D
05

D
06

D
07

D
04

D
05

D
06

D
07

D
00

D
01

D
02

D
03

D
00

D
01

D
02

D
03

D
00

D
01

D
02

D
03

NOTE:
CONNECTOR is J3 of DSP56000 ADM

CLOCK

REFRESH REQUEST
REFRESH CYCLE STROBE

15K

OE*

RAM

Figure 1-2 DSP56001-to-PSRAM Schematic provides two functions:
it controls the refresh cycles and it generates precharge delays.
This is a schematic depiction of the interface circuit.

1-8 MOTOROLA

In order to minimize the component count, the re-

fresh request timing is supplied by the processor’s

Serial Control Interface (SCI) clock, SCLK. Initial-

ization software configures this clock to provide a

pulse train with a 15

µ

s period. Once initialized, the

generation of this signal is completely transparent

to any code executing on the processor. Figure 1-6

is a listing of the initialization code and a short

“pass/fail” memory test routine. The value loaded

into the SCI Clock Control Register (SCCR) at

X:$FFF2 will vary as a function of the system clock

frequency. For a 33 MHz clock, a value of $107F

will yield the desired refresh rate of 15.6

µ

s per row.

A second task of the initialization software is the se-

lection of the BS/WT mode of operation. This mode

allows an external source to insert wait states into

bus cycles, and is employed by the interface when

precharge and refresh delays are needed.

The interface operates from the same clock which

drives the processor. In systems operating from an

external clock source, this should be easy to provide.

In this example, the DSP56001 clock is buffered by a

CMOS inverter which subsequently drives the inter-

face circuitry. It is essential that the device used to

buffer this clock has a very high input impedance.

The oscillator on the DSP56001

cannot

 drive a TTL

input load.

MOTOROLA 1-9

1.3 Circuit Description

Figure 1-2 is a schematic depiction of the interface
circuit. Basically, the interface provides two functions:
it controls the refresh cycles and it generates pre-
charge delays.

Section “B” of the MC74AC74 generates a refresh re-
quest on the rising edge of SCLK and holds the
request until the PAL16R4-7 controller executes a re-
fresh cycle and resets the Flip-Flop. As shown in
Figure 1-3, the controller defers a refresh cycle until
any access currently in progress completes. If the
subsequent DSP56001 instruction cycle does not ac-
cess this PSRAM array, this refresh is transparent. If
the subsequent cycle does access this area of mem-
ory, then wait states are inserted until the refresh
completes.

Section “A” of the MC74AC74 is clocked by the rising
edge of BS, which occurs at the end of each external
bus cycle. In the event that the bus cycle which has
just ended was an active cycle for the PSRAM array,
the PSRAM address decode (DS in this example) will
be latched into Flip-Flop “A”. The PLD will receive
MEMORY BUSY status, indicating that a pre-charge
cycle is in progress. The PLD will hold off further
PSRAM activity until sufficient precharge delay has
elapsed. Note that no extra delay is seen by the
DSP56001 if the subsequent cycle does not access
this particular PSRAM. If multiple banks of PSRAM
are used, bank interleaving strategies can result in
most (or all) of the precharge cycles being hidden

1-10 MOTOROLA

behind activity in complementary memory banks.
Similarly, if the DSP56001 is executing code out of an
external SRAM in another bank, the precharge activ-
ity would be transparent.

The ABEL

TM

1

 design file for the PAL16R4-7 is a very
simple Mealy type state machine (see Figure 1-5). It
controls the chip enabling of the PSRAM as well as
the assertion of WT, which goes to the DSP56001 to
hold off bus activity. In addition, the machine provides
resets for the external latches. The function of the
PLD is shown in the state diagram of Figure 1-3.

1. ABEL is a trademark of the data I/O Corporation

Pre1

Pre2

RF3

RF4

RF5

RF6

FIM

IDLE

!Refresh Req

Refresh Req

!Refresh Req &!BUSY

Figure 1-3 PSRAM Interface State Diagram implemented in a single PAL

MOTOROLA 1-11

1-12 MOTOROLA

The timing diagram in Figure 1-4 shows the operation

T0 T1 T2 Tw Tw Tw Tw TwTwTw Tw Tw TwT0 T1 T2T3 T3 T0

ADDR

BS

RD

WR

D0-23

D0-23

WT

DATA to PSRAM DATA to PSRAM

to DSP to DSP

EXTAL

E

BUSY

STATE IDLE IDLE IDLEIDLE Pre1 Pre2 FIM IDLE IDLE

Figure 1-4 DSP56001-to-PSRAM Timing shows the operation of the controller
as it progresses through a pair of successive memory accesses.

MOTOROLA 1-13

1-14 MOTOROLA

0001 |module pseudo
0002 |title’Pseudo-Static RAM Timing Controller Ver.1
0003 | MOTOROLA INC. 17 July 1990’
0004 |
0005 | U01 device’P16R4’;
0006 |
0007 |“INPUTS
0008 | CLK pin 1; “DSP56001 Clock “
0009 | CSin pin 2; “EXT:RAM Address decode”
0010 | Busy pin 3; “BUSY F/F”
0011 | Rreq pin 4; “latched request for refresh cycle”
0012 |
0013 | OE pin 11; “OE*”
0014 |
0015 |“OUTPUTS” “----REGISTERED OUTPUTS----”
0016 | Q0 pin 17; “State bit 0"
0017 | Q1 pin 16; “State bit 1"
0018 | Q2 pin 15; “State bit 2 & Busy_clr”
0019 | Q3 pin 14; “State bit 3 (not used)”
0020 |
0021 | “----COMBINATORIAL OUTPUTS----”
0022 | WTn pin 19; “Bus Wait*”
0023 | Fn pin 18; “Clear refresh cycle request F/F”
0024 | CSout pin 13; “Chip Select for EXT:RAM”
0025 |
0026 | High,Low = 1,0;
0027 | H,L,C,K,X = 1,0,.C.,.K.,.X.;
0028 |
0029 | Qstate = [Q2,Q1,Q0];
0030 | Idle = [1,1,1];
0031 | Pr1 = [1,1,0];
0032 | Pr2 = [1,0,0];
0033 | RF3 = [1,0,1];
0034 | RF4 = [0,0,1];
0035 | RF5 = [0,0,0];
0036 | RF6 = [0,1,0];
0037 | FIM = [0,1,1];
0038 |
0039 |
0040 |state_diagram Qstate
0041 | State Idle: Fn= 1; CSout = CSin; WTn = 1;
0042 | if (!Busy & !Rreq) THEN Idle
0043 | ELSE Pr1;
0044 | State Pr1: Fn= 1; CSout = 1 ; WTn = CSin; goto Pr2;
0045 | State Pr2: Fn= 1; CSout = 1 ; WTn = CSin;
0046 | if (!Rreq) THEN FIM
0047 | ELSE RF3;
0048 | State RF3: Fn= 0; CSout = 1 ; WTn = CSin; goto RF4;
0049 | State RF4: Fn= 0; CSout = 1 ; WTn = CSin; goto RF5;
0050 | State RF5: Fn= 1; CSout = 1 ; WTn = CSin; goto RF6;
0051 | State RF6: Fn= 1; CSout = 1 ; WTn = CSin; goto FIM;
0052 | State FIM: Fn= 1; CSout = CSin ; WTn = 1; goto Idle;
0053 |
0054 | END

Figure 1-5 DSP56001-to-PSRAM PLD Definition for the ABELTM design
package which implements the state diagram in Figure 1-3.

MOTOROLA 1-15

Figure 1-6 PSRAM Interface Initialization Code used to initialize and run a
simple functionality test. (sheet 1 of 2)

Motorola DSP56000 Macro Cross Assembler Version 3.02 90-09-06 15:06:48 psram_ex.asm
Page 1

1 page 255,66,3,3,5
2 ;***
3 ; Motorola Austin DSP Operation July 17,1990
4 ;
5 ; COPYRIGHT (C) BY MOTOROLA INC, ALL RIGHTS RESERVED
6 ;
7 ;* ALTHOUGH THE INFORMATION CONTAINED HEREIN, *
8 ;* AS WELL AS ANY INFORMATION PROVIDED RELATIVE *
9 ;* THERETO, HAS BEEN CAREFULLY REVIEWED AND IS *
10 ;* BELIEVED ACCURATE, MOTOROLA ASSUMES NO *
11 ;* LIABILITY ARISING OUT OF ITS APPLICATION OR *
12 ;* USE, NEITHER DOES IT CONVEY ANY LICENSE UNDER *
13 ;* ITS PATENT RIGHTS NOR THE RIGHTS OF OTHERS. *
14 ;*
15 ;
16 ;psram_ex.asm pseudo-static ram exerciser
17 ; --- quick-and-dirty test of P-SRAM prototype board ---
18 ;
19 ;This code configures the SCI SCLK output to generate the P-SRAM
20 ;refresh timing. An incrementing pattern is written to the device
21 ;at X:$1000 and Y:$1000 and then these locations are read and compared
22 ;with the expected data. If an error is detected, an error counter
23 ;is incremented. X:0000 holds the count of errors found while accessing
24 ;X: memory and Y:0000 holds the Y:memory error count.
25 ;
26 ;This quickie only tests the interface for data transfer and refresh
27 ;interference. It does NOT exercise the refresh logic functionality.
28 ;
29 ;At the end of each pass (i.e., when the 24-bit pattern rolls over to 0)
30 ;a pass counter is incremented. This counter is at Y:0001.
31 ;
32 ;The pass counter and the error logs are located in on-chip RAM in order
33 ;to allow (limited) error analysis after any type of “crash”. These
34 ;locations should be cleared before starting the test. Subsequent
35 ;restarts can continue the logging without initializing these locations.
36 ;
37 P:0100 org P:$100
38
39 P:0100 08F4BE movep #$2200,X:$FFFE ;2 wait states in X:, Y:002200
40 P:0102 08F4B0 movep #$0002,X:$FFF0 ;10-bit async mode00002
41 P:0104 08F4B2 movep #$107F,X:$FFF2 ;SCI internal CLK pinconfigured:00107F
42 ;TCM=RCM=0, internal clock
43 ;SCLK output, prescale = 1:1
44 ;divide fosc by 4 * (127+1)
45 P:0106 08F4A1 movep #$0004,X:$FFE1 ;SCLK/PC2 selected as SCLK000004
46 P:0108 08F4A3 movep #$0004,X:$FFE3 ;SCLK pin configured as output 000004
47 P:010A 60F400 move #>$1000,r0 ;r0 points to the two addresses 001000
48 P:010C 0AFA67 bset #7,OMR ;BS*/WT* selected
49 P:010D 221400 move r0,r4 ;pointer reg. for Y: moves
50 P:010E 45F41B clr b#>$000001,x1 ;constant for increment

1-16 MOTOROLA

Motorola DSP56000 Macro Cross Assembler Version 3.02 90-09-06 15:06:48 psram_ex.asm
Page 2

000001
51
52 P:0110 8A0000 loop1 move a,X:(r0)a,Y:(r4);store the data in X: & Y:
53 P:0111 C08068 add x1,b X:(r0),x0Y:(r4),y0;retrieve data and
54 ;...form the next data pattern
55 P:0112 200045 cmp x0,a ;if X: data not correct...
56 P:0113 0BF0A2 jsne X_ERR ;...bump error count

00011D
57 P:0115 200055 cmp y0,a ;now, check Y: data
58 P:0116 0BF0A2 jsne Y_ERR ;...and log differences 000122
59 P:0118 21AE00 move b1,a ;this allows data to roll-over
60 P:0119 200003 tst a ;check for start of new loop
61 P:011A 0BF0AA jseq COUNT ;.and increment count if yes 000127
62 P:011C 0C0110 jmp loop1
63
64
;**
65 X_ERR ;** error handler for X:memory
66 P:011D 638000 move X:(0),r3 ;get last count from storage
67 P:011E 000000 nop ;...can’t use it yet...
68 P:011F 205B00 move (r3)+ ;bump count...
69 P:0120 630000 move r3,X:(0) ;save new count
70 P:0121 00000C rts ;back to the salt mine....
71
72
;**
73 Y_ERR ;** error handler for Y:memory
74 P:0122 6B8000 move Y:(0),r3
75 P:0123 000000 nop
76 P:0124 205B00 move (r3)+
77 P:0125 6B0000 move r3,Y:(0)
78 P:0126 00000C rts
79
80
;**
81 COUNT ;pass counter
82 P:0127 6B8100 move Y:(1),r3
83 P:0128 000000 nop
84 P:0129 205B00 move (r3)+

85 P:012A 6B0100 move r3,Y:(1)
86 P:012B 00000C rts
87
88 END
0 Errors
0 Warnings

Figure 1-6 PSRAM Interface Initialization Code (sheet 2 of 2)

1-18 MOTOROLA

MOTOROLA 2-1

M

any DSP applications, such as audio special ef-
fects, require large amounts of memory. If the system
throughput can tolerate a slight reduction in memory
access speed, significant cost reductions can be real-
ized by using dynamic RAM (DRAM) in place of static
RAM (SRAM). This section presents a simple imple-
mentation of a DRAM interface to the DSP56001.
Using an array of six MCM514256A-P70 (256K x 4)
DRAMs, the circuit provides access to 256K 24-bit
words of data space. With the DSP56001 operating
from a 33MHz clock, this interface can run with 2 wait
states for non-consecutive accesses. For purposes of cir-
cuit simplicity, the device’s fast page mode is not utilized in
the following example.

“The high
density of DRAM
results from the
simplicity of the

storage cells;
each cell

consists of a
single transistor

and a single
capacitor.”

A Simple Dynamic
RAM Interface for the
DSP56001

SECTION 2

2-2 MOTOROLA

DRAM Basics

The MCM514256A DRAM is a 1 megabit part, organized as 4 sections of

256Kbits each. Each of the 4 sections is subdivided into a 512 x 512 matrix of

storage cells, with each storage cell containing one bit of information. The mem-

ory cells are uniquely identified by their associated row and column numbers

(“address”).

In order to reduce the package size, the row addresses and the column addresses

of the DRAM cells are multiplexed onto the same pins. Latches on the device

are loaded with the column and row portions of the address by the signals Col-

umn Address Strobe (CAS) and Row Address Strobe (RAS), respectively.

During a normal memory access, the cell’s row number is placed on the address

lines and RAS is asserted. After the specified row address hold time, the cell’s

column number is placed on the same address lines and CAS is asserted. This

sequence is illustrated in Figure 2-1.

The high density of DRAM results from the simplicity of the storage cells;

each cell consists of a single transistor and a single capacitor. During write op-

erations, the capacitor is either charged to the “one” state or discharged to the

“zero” state. The charge stored by the capacitor is quite small; typical capaci-

tor values are on the order of 35-125 fF (fF = 1 x 10

-15

 farads). Due to leakage,

the capacitor’s charge must be periodically “refreshed” in order to retain the

stored information. The DRAM circuitry will refresh all of the cells within a

row whenever the row is addressed. Thus, by cycling through all 512 possible

row address combinations, the entire array is refreshed. On the

MCM514256A, no more than 8 ms is allowed to elapse between subsequent

refreshes of any particular row. This can be accomplished by refreshing suc-

cessive rows at 15.6 ms intervals (512 x 15.6ms = 8 ms).

The MCM514256A supports three refresh modes: RAS only refresh,

CAS-before-RAS refresh and Hidden Refresh (Figure 2-2). RAS only

refresh requires the processor to place successive row addresses on the address

2-3 MOTOROLA

2-4 MOTOROLA

lines, which would require either more complex interface circuitry or determin-

istic software action (i.e., interrupts could not be allowed to delay the refresh

cycle). The Hidden Refresh mode has the disadvantage of maintaining output

data on the DRAM data lines, prohibiting any bus activity during the refresh cy-

cle. CAS-before-RAS refresh utilizes an on-chip refresh row counter and three-

states the device bus during the refresh cycle. The CAS-before-RAS mode is

employed in this example because it requires very little external circuitry and

provides for bus activity concurrent with the refresh cycle.

A requirement related to refresh is “pre-charge”. During read operations, some

of the charge on the cell’s capacitor is lost and the memory device must re-write

the information back into the cell. The DRAM automatically performs this

“write back” operation after every read, but external access must be delayed until

the pre-charge is complete.

ROW
ADDRESS

COLUMN
ADDRESS

RAS

CAS

A0-A8

Figure 2-1 DRAM Memory Address Multiplexing

 - to reduce the pack-
age size, the row addresses and the column addresses of the
DRAM cells are multiplexed onto the same pins. Latches on
the device are loaded with the column and row portions of the
address by the signals Column

Address Strobe (CAS) and
Row Address Strobe (RAS).

MOTOROLA 2-5

Many DRAMs available today offer special access modes which can yield im-

proved performance in specific situations. The MCM514256A DRAM supports

a fast page mode in which successive accesses to cells in the same row can be

read/written much faster than in normal random access situations. Although this

feature would yield improved memory bandwidth in many DSP applications,

the need for external address latches and comparators would add significant

complexity to the circuit. Since the design goal of this example is minimum

parts count (and, therefore, minimum expense), the fast page mode of the

MCM514256A is not utilized.

For more detailed information on the MCM41256A, refer to the Motorola
Memory Data Book, DL113, Rev.5, pp.2-84 through 2-98

ROW
ADDRESS

RAS

CAS

A0-A8

RAS

CAS

RAS

CAS

DATA
OUT HIGH Z

DATA
OUT VALID DATA OUT

MEMORY CYCLE REFRESH CYCLE

RAS Only

CAS-Before-RAS

Hidden

Figure 2-2 DRAM Refresh Modes are available but the CAS before RAS
mode has clear advantages for DSP applications.

2-6 MOTOROLA

NOTE:

Figure 2-3 shows the timing relationship be-
tween the DSP56001 Port A and a DRAM
module. The Port A interface is described in

Section 1.2 DSP56001 Memory I/0 Basics.

T0 T1 T2 Tw Tw Tw Tw Tw Tw TwTwTw Tw Tw TwT0 T1 T2T3 T3 T0

ADDR

BS

RAS

CMux

CAS

A0-8

RD

WR

D0-23

D0-23

WT

ROW ROWCOLUMN COLUMN

DATA to DRAM DATA to DRAM

to DSP to DSP

STATE Idle RTime CTime2CTime1 Pre1 Pre2 IDLE RTIME CTime2CTime1 Pre1 Pre2

EXTAL

Figure 2-3 DSP56001-to-DRAM Timing shows two back to back write operations.

MOTOROLA 2-7

2.1 Circuit Overview

The circuit in Figure 2-4 is designed to serve as an
extension of the MOTOROLA DSP56000ADS Ap-
plication Development Module (ADM). The SRAM
on the ADM should be configured to appear only in
the DSP56001 P: memory space. All data memory
(X: memory and Y: memory) is provided by the
DRAMs on the prototype board. The DRAMs and
their interface circuitry are attached to the DSP56001’s
Data and Address Buses via ADM connector J3.

In order to minimize the component count, the re-
fresh request timing is supplied by the SCI clock,
SCLK. Initialization software configures this clock to
provide a pulse train with a 15

µ

s period. Once initial-
ized, the generation of this signal is completely
transparent to any code executing on the DSP56001.
Figure 2-7 is a listing of the initialization code and a
short “pass/fail” memory test routine. The value load-
ed into the SCI Clock Control Register (SCCR) at
X:$FFF2 will vary as a function of the system clock
frequency. For a 33 MHz clock, a value of $107F
yields the desired refresh rate of 15.6

µ

s per row. A
second task of the initialization software is the selec-
tion of the BS/WT mode of operation, which allows
an external source to insert wait states into bus cy-
cles. The interface uses this feature when pre-charge
and refresh delays are needed.

The memory bank consists of six MCM514256A de-
vices. Since each device provides 256K storage cells
for each of the 4 data bits, an array of 256K 24-bit

2-8 MOTOROLA

words is formed. The DSP56001 can address 64K
24-bit words in each of its two data spaces, X: mem-
ory and Y: memory. This DRAM array can fully
populate two of these data spaces. To utilize this po-
tential, a bit from the DSP56001’s Port B is used as a
bank selector. The configuration of this I/O bit is also
handled by the initialization software.

Note of caution:

 accesses to the DSP56001’s in-
ternal peripherals and internal data RAM do not
generate external memory cycles and as such, are not
subject to control by the bank selection logic.

The interface requires complementary phases of the
same clock which drives the DSP56001. In systems
operating from an external clock source, this should
be easy to provide. In this example, the DSP56001
clock was buffered by a CMOS inverter which was
subsequently used to drive the interface circuitry. It
is essential that the device used to buffer this clock
has a very high input impedance. The oscillator on
the DSP56001

cannot

 drive a TTL input load.

Note that the Vcc and Gnd pins of the 256Kx4 DRAM
do not follow the usual polarity conventions. Consult
the MCM514256A data sheet for pinout information.

MOTOROLA 2-9

2-10 MOTOROLA

A0
A1
A2
A3
A4
A5
A6
A7
A8

RAS
CAS

G
W

1 2 1 2 1 2 1 2 1 2 1 2

18 1918 19 18 19 18 19 18 19 18 19

W
R

D
01

D

02

D
03

D

04

D
05

D

06

D
08

D

09

D
10

D
07

D
11

D
12

D

13

D
14

D

15

D
16

D

17

D
18

D

19

D
20

D

21

D
22

D

23

6
7
8
9

3

11
12
13
14
15

16

17
4

R
D

D
00

A

24

A
23

A

22

A
21

A

20

A
19

A

18

A
17

A

16

A
15

A

14

 A
13

A
12

A

11

A
10

A

09

A
08

A

07

A
06

A

05

A
04

A

03

A
02

A

01

B
24

B

25

1

2

3

4

5

6

7

9

10

11

12

13

14

15

1

2

3

4
5

6

9

10

11
12

13

14

15

AD00
AD01
AD02
AD03

AD04
AD05
AD06
AD07

AD08
AD09
AD10
AD11

AD12
AD13
AD14
AD15

DS

BS
WT

X/Y
BANK0

C01
C02
C03
C04

C05
C06
C07
C08

C09
C10
C11
C12

C13
C14
C15
C16

B26

B28
B29
B30

A25

B05

C23

D

CK

CLR

Q

Q
PRE

D

CK

CLR

Q

Q
PRE

7

+5v

+5v

+5v

1

4

6

7

8

9

14

12

15

18

19

11

3

1

2

3

4

6 8

9

10

11

12

13

5

1 2 3 4

MC74AC04

M
C

74
A

C
15

7
M

C
74

A
C

15
7

MC74AC74

P
A

L1
6R

4-
7

ADR-MUX-SELECT

R
E

F
R

E
S

H
 R

E
Q

U
E

S
T

R
E

F-
R

E
Q

-R
S

T

R
A

S
*

C
A

S
*

BA

NOTE:
CONNECTOR is J3 of DSP56000 ADM

D
02

D
03

D
02

D
03

D
02

D
03

D
02

D
03

D
02

D
03

D
02

D
03

D
00

D
01

D
00

D
01

D
00

D
01

D
00

D
01

D
00

D
01

D
00

D
03

MCM514256-P70
DYNAMIC RAM

(SIX)

All Series Resistors 22 OHMS

SCLK

CLOCK

+5v

20

10

22W

Figure 2-4 DSP56001-to-DRAM Schematic provides 256k words of
expansion memory to the DSP56000 Application Development
System.

MOTOROLA 2-11

2.2 Circuit Description

The DRAM interface example provides three dis-
tinct functions:

• Memory Address Multiplexing

• Refresh Generation

• General Timing and Control

As stated earlier, DRAMs require input addresses
to be subdivided into two groups — “row addresses”
and “column addresses”. Referring to the schematic
in Figure 2-4, two MC74AC157’s multiplex 16 bits of
input address onto 8 of the DRAM’s 9 address input
pins. The PAL16R4-7 multiplexes the Bank Select
bit and X/Y onto the 9th DRAM address input pin.
Together, these 18 bits delineate two complete
banks of data memory, each containing 64K 24-bit
words of X: memory and 64K 24-bit words of Y:
memory. In this example, bit-0 of Port B drives the
bank select signal, BANK0.

Flip-Flop “A” of the MC74AC74 generates a refresh
request on the rising edge of SCLK and holds the
request until the PAL16R4-7 controller executes a
refresh cycle and then resets the Flip-Flop. As
shown in Figure 2-5, the controller defers a refresh
cycle until any access currently in progress com-
pletes. If the subsequent DSP56001 instruction
cycle does not access this DRAM array, this refresh
is transparent. If the subsequent cycle does access
these DRAMs, then wait states are inserted until the
refresh completes. The refresh cycle is very similar
to a normal access cycle with the exception of CAS
being asserted before RAS. The states of RD,WR
and the address lines are irrelevant.

2-12 MOTOROLA

By asserting CAS before the assertion of RAS, a re-
fresh cycle is initiated. At the completion of the
refresh cycle, the refresh row counter aboard the
DRAMs advances in preparation for the next re-
fresh cycle. The interface circuit described here
refreshes one row every 15

µ

s so that all 512 rows
are refreshed within the 8 ms required by the
DRAMs. In order to reduce the reflected energy on
the address lines, they are terminated with 22 ohm
series resistors placed as close to the drivers as is
practical.

Flip-Flop “B” of the MC74AC74 is clocked from the
complementary phase of EXTAL and generates the
multiplexer steering control signal
ADR_MUX_SELECT. This signal places the “row”
portion of the address on the DRAM address lines
at the beginning of a memory cycle and later selects
the “column” portion of the address at the appropri-
ate point in the cycle.

Figure 2-5 DRAM Interface State Diagram implemented in a single PAL.

(CS # BS) & Rreq

CTime2RF3

REFRESH CYCLE MEMORY ACCESS CYCLE

!Rreq

(!CS # !BS & Rreq)

RTIME CTime1

RF1RF2

RP1 RP2

Pre2 Pre1

IDLE

MOTOROLA 2-13

The PAL16R4-7 PLD performs the timing/control
tasks required by the DRAM. The ABEL

definition
of this PLD appears in Figure 2-6. The part is pro-
grammed as a Mealy-type state machine and
simply advances through a sequence which selects
the appropriate address portion (i.e., row or column
address), generates CAS and RAS which the
DRAMs require, and generates memory pre-charge
delays by forcing the DSP56001 to insert wait
states in any bus cycle which occurs immediately
after a cycle to same DRAM array.

This pre-charge time is transparent when subse-
quent memory cycles do not access the same
memory devices. For this reason, if more than one
DRAM array is present, interleaving the arrays may
yield significant improvement in the performance of
the memory subsystem.

The timing diagram in Figure 2-3 shows the
operation of the controller as it progresses through
a pair of successive memory accesses. The
diagram illustrates the case where the DRAM array
was not accessed during the instruction cycle
immediately preceding the start of the diagram.
When operating with EXTAL at 33 MHz, the length
of each T-period is 15.1

µ

s. The four Tw-periods in
the first access cycle are the result of the
DSP56001’s Bus Control Register (BCR) being
programmed to insert 2 wait states in cycles to this
portion of its memory map. During the second
cycle, the controller has inserted another 2 wait
states (four Tw-periods) in order to allow the DRAM

2-14 MOTOROLA

0001 |module dram6
0002 |title ’Dynamic RAM Timing Controller Ver.2
0003 | MOTOROLA INC. 06 September 1990’
0004 |
0005 | U01 device ’P16R4’;
0006 |
0007 | “INPUTS
0008 | CLK pin 1; “DSP56001 Clock “
0009 |
0010 | BS pin 3; “BUS Strobe from DSP56001”
0011 | Rreq pin 4; “latched request for refresh cycle”
0012 |
0013 | C_Mux pin 6; “H = Column Mux Select”
0014 | Bank0 pin 7; “H = Select Bank 0"
0015 | Xsel pin 8; “H = Select X:ram”
0016 | CSin pin 9; “EXT:RAM Address decode”
0017 | OE pin 11; “OE*”
0018 |
0019 |“OUTPUTS” “----REGISTERED OUTPUTS----”
0020 | Q0 pin 17; “State bit 0"
0021 | Q1 pin 16; “State bit 1"
0022 | RASn pin 15; “State bit 2 also RASn”
0023 | Rrst pin 14; “Refresh Request Reset”
0024 | “----COMBINATORIAL OUTPUTS----”
0025 | WTn pin 19; “Bus Wait*”
0026 | CASn pin 18; “Column Address Strobe for DRAM”
0027 | A09 pin 12; “DRAM address bit 9"
0028 |
0029 | High,Low = 1,0;
0030 | H,L,C,K,X = 1,0,.C.,.K.,.X.;
0031 |
0032 | Qstate = [Rrst,RASn,Q1,Q0];
0033 | Idle = [1,1,0,0];
0034 | Rtime = [1,0,0,0];
0035 | Ctime1 = [1,0,1,0];
0036 | Ctime2 = [1,0,1,1];
0037 | Pre1 = [1,1,1,1];
0038 | Pre2 = [1,1,1,0];
0039 |
0040 | RF1 = [0,1,0,0];
0041 | RF2 = [0,0,0,0];
0042 | RF3 = [0,0,1,0];
0043 | RF4 = [0,0,1,1];
0044 | RF5 = [0,0,0,1];
0045 | RP1 = [0,1,0,1];
0046 | RP2 = [1,1,0,1];
0047 |
0048 | XX1 = [0,1,1,0];"just in case it wakes up lost..."
0049 | XX2 = [0,1,1,1];
0050 | XX3 = [1,0,0,1];

Figure 2-6 PLD Design File -generated by ABELTM for the DRAM Interface
(sheet 1 of 2)

MOTOROLA 2-15

0051 |
0052 |
0053 |state_diagram Qstate
0054 |State Idle: CASn = 1;WTn = !(!CSin & !BS);
0055 | if ((CSin # BS) & Rreq) THEN Idle
0056 | if (!CSin & !BS & Rreq) THEN Rtime
0057 | if (!Rreq) THEN RF1;
0058 |State Rtime: CASn = 1;WTn = !(!CSin & !BS);goto Ctime1;
0059 |State Ctime1: CASn = 0;WTn = 1; goto Ctime2;
0060 |State Ctime2: CASn = 0;WTn = 1; goto Pre1;
0061 |State Pre1: CASn = 1;WTn = !(!CSin & !BS);goto Pre2;
0062 |State Pre2: CASn = 1;WTn = !(!CSin & !BS);goto Idle;
0063 |
0064 | " --- Refresh States --- "
0065 |State RF1: CASn = 0; WTn = !(!CSin & !BS); goto RF2;
0066 |State RF2: CASn = 0; WTn = !(!CSin & !BS); goto RF3;
0067 |State RF3: CASn = 0; WTn = !(!CSin & !BS); goto RF4;
0068 |State RF4: CASn = 1; WTn = !(!CSin & !BS); goto RF5;
0069 |State RF5: CASn = 1; WTn = !(!CSin & !BS); goto RP1;
0070 |State RP1: CASn = 1; WTn = !(!CSin & !BS); goto RP2;
0071 |State RP2: CASn = 1; WTn = !(!CSin & !BS); goto Idle;
0072 |
0073 |State XX1: goto Idle; "if lost, go home PAL..."
0074 |State XX2: goto Idle;
0075 |State XX3: goto Idle;
0076 |
0077 |equations
0078 | A09 = (Bank0 & C_Mux) # (Xsel & !C_Mux);
0079 |
0080 |END

Figure 2-6 PLD Design File -generated by ABELTM for the DRAM Interface
(sheet 2 of 2)

2-16 MOTOROLA

Motorola DSP56000 Macro Cross Assembler Version 3.02 90-09-06 10:54:50 dram_ex.asm

1 page 255,66,3,3,5
2 ;***
3 ; Motorola Austin DSP Operation August 15,1990
4 ;
5 ; COPYRIGHT (C) BY MOTOROLA INC, ALL RIGHTS RESERVED
6 ;
7 ;* ALTHOUGH THE INFORMATION CONTAINED HEREIN, *
8 ;* AS WELL AS ANY INFORMATION PROVIDED RELATIVE *
9 ;* THERETO, HAS BEEN CAREFULLY REVIEWED AND IS *
10 ;* BELIEVED ACCURATE, MOTOROLA ASSUMES NO *
11 ;* LIABILITY ARISING OUT OF ITS APPLICATION OR *
12 ;* USE, NEITHER DOES IT CONVEY ANY LICENSE UNDER *
13 ;* ITS PATENT RIGHTS NOR THE RIGHTS OF OTHERS. *
14 ;*
15 ;
16 ; dram_ex.asm dynamic ram exerciser
17 ; ---- quick-and-dirty test of DRAM prototype board ----
18 ;
19 ;This code configures the SCI SCLK output to generate the P-SRAM
20 ;refresh timing. An incrementing pattern is written to the device
21 ;at X:$1000 and Y:$1000 and then these locations are read and
22 ;compared with the expected data. If an error is detected, an
23 ;error counter is incremented. X:0000 holds the count of errors
24 ;found while accessing X: memory and Y:0000 holds the Y:memory
25 ;error count.
26 ;This quickie only tests the interface for data transfer and
27 ;refresh interference. It does NOT exercise the refresh logic
28 ;functionality. Bit 0 of PORT B is used to select between two
29 ;banks of 64k x 24 X 2,but this is not used in this exercise.
30 ;At the end of each pass (i.e., when the 24-bit pattern rolls over
31 ;to 0) a pass counter is incremented. This counter is at Y:0001.
32 ;The pass counter and the error logs are located in on-chip RAM
33 ;in order to allow (limited) error analysis after any type of
34 ;"crash". These locations should be cleared before starting the
35 ;test. Subsequent restarts can continue the logging without
36 ;initializing these locations.
37 ;
38 P:0100 org P:$100
39 P:0100 08F4BE movep #$2200,X:$FFFE ;2 wait states in X:, Y:002200
40 P:0102 08F4A2 movep #1,X:$FFE2 ;Port B, Bit 0 is output000001
41 P:0104 08F4A4 movep #0,X:$FFE4 ;Port B data is all 0’s000000
42 P:0106 08F4A0 movep #0,X:$FFE0 ;Port is G.P I/O 000000
43 P:0108 08F4B0 movep #$0002,X:$FFF ;10-bit async mode 000002
44 P:010A 08F4B2 movep #$107F,X:$FFF2;SCI internal CLK pin configured 00107F
45 ;TCM=RCM=0, internal clock

Figure 2-7 DRAM Interface Initialization Code provides both the
initialization of the DRAM interface and a simple test of the DRAM.
(Sheet 1 of 2)

MOTOROLA 2-17

Figure 2-7 DRAM Interface Initialization Code (Sheet 2 of 2)

45 ;TCM=RCM=0, internal clock
46 ;SCLK output, prescale = 1:1
47 ;divide fosc by 4x(127+1)
48 P:010C 08F4A1 movep #$0004,X:$FFE1 ;SCLK/PC2 selected as SCLK000004
49 P:010E 60F400 move #>$1000,r0 ;r0 points to the two addresses 001000
51 P:0110 0AFA67 bset #7,OMR ;BS*/WT* selected
52 P:0111 221400 mover 0,r4 ;pointer reg. for Y: moves
53 P:0112 45F41B clrb #>$000001,x1 ;constant for increment000001
54
55 P:0114 8A0000 loop1 move a,X:(r0)a,Y:(r4) ;store the data in X: & Y:
56 P:0115 C08068 add x1,bX:(r0),x0Y:(r4),y0 ;retrieve data and
57 ;...form the next data pattern
58 P:0116 200045 cmp x0,a ;if X: data not correct...
59 P:0117 0BF0A2 jsne X_ERR ;...bump error count000121
60 P:0119 200055 cmp y0,a ;now, check Y: data
61 P:011A 0BF0A2 jsne Y_ERR ;...and log differences000126
62 P:011C 21AE00 move b1,a ;this allows data to roll-over
63 P:011D 200003 tst a ;check for start of new loop
64 P:011E 0BF0AA jseq COUNT ;...and increment count if yes00012B
65 P:0120 0C0114 jmp loop1
66
67 ;********************************
68 X_ERR ;** error handler for X:memory **
69 P:0121 638000move X:(0),r3 ;get last count from storage
70 P:0122 000000nop ;...can’t use it yet...
71 P:0123 205B00move (r3)+ ;bump count...
72 P:0124 630000move r3,X:(0) ;save new count
73 P:0125 00000Crts ;back to the salt mine....
74
75 ;********************************
76 Y_ERR ;** error handler for Y:memory **
77 P:0126 6B8000move Y:(0),r3
78 P:0127 000000nop
79 P:0128 205B00move (r3)+ ; refer to X-ERR for comments
80 P:0129 6B0000move r3,Y:(0)
81 P:012A 00000Crts
82
83 ;********************************
84 COUNT ;pass counter
85 P:012B 6B8100move Y:(1),r3
86 P:012C 000000nop
87 P:012D 205B00move (r3)+ ; refer to X-ERR for comments
88 P:012E 6B0100move r3,Y:(1)
89 P:012F 00000Crts
90
91 END
0 Errors

MOTOROLA 3-1

“The 8 registers
which comprise

the DSP56001
Host Interface

are mapped into
the ISA bus I/O

space. . .

Communications
with the

DSP56001,
including
program

bootstrapping,
are

accomplished
via I/O reads

and I/O writes to
the appropriate

register.”

SECTION 3

T

he Host Port of the DSP56001 provides much of
the logic necessary for interfacing this device to an-
other processor. With very little external logic, this
port can be used to interconnect the DSP56001 and
an ISA Bus host processor (i.e., a PC-Clone). This
brief note describes one implementation of such an
interface using only two external parts.

3.1 Interface Circuit Overview

The interface consists of a single PAL22V10 and one
MC74ACT245 octal data transceiver. The PLD gener-
ates the control signals required by the Host Interface
of the DSP56001 (HEN, HR/W) as well as the boot
mode selection during reset. The schematic of the in-
terface appears in Figure 3-1. The PLD definition is
shown in Figure 3-2.

The MC74ACT245 buffers the data lines between the
Host Interface and the ISA Bus. The Host Interface
address lines are not buffered in this example be-
cause the DSP56001 load to these lines is equivalent
to that of a typical CMOS buffer. In some cases, add-
ing a buffer to these lines might be desirable.

A Simple ISA Bus
Interface for the
DSP56001

3-2 MOTOROLA

HA0

HA1

HA2

HEN

HR/W
MODA/IRQA
MODB/IRQB

RESET

D23

BR

HREQ

HACK

B11

D01
D02
D03
D04
D05
D06

A02
A01
A00

D07

A10

A11

B5

A4

A9

A521

23 L13

B1013

B4

D00 A09
A08
A07
A06
A05
A04
A03
A02

A29
A30
A31

1

5

14

2

6 16

228

4

17

7

3

9

OSC
A04
A05
A06
A07
A08
A09
A14 A17

A22
A23
A24
A25
A26
A27
B30

M
C

74
A

C
T

24
5

P
A

L2
2V

10

NOTE:
CONNECTOR is J1 of ISA BUS

H7

H6

H5

H4

H3

H2

H1

H0

All Series Resistors15K OHMS

+5v

10

11

AEN
IOR
IOW B13

B14
A11

15

DSP56001

A12

B12

A13

B13

C12

C13

D12

9

8

6

7

5

4

3

2

B8

A8

A7

11

12

14

13

15

16

17

18

19
1

OE DIR

IRQB

IRQA

Figure 3-1 DSP56001-to-ISA Bus Interface Schematic illustrates how
simple the circuitry is to connect to the ISA bus.

MOTOROLA 3-3

3.2 Detailed Circuit
Description

The ISA bus delineates two types of bus accesses
— memory and I/O. The distinction is made by the
use of separate read and write strobes for each type
of access. The interface in this example is mapped
into the ISA Bus processor’s I/O space in the ad-
dress range $340-$34F.

In order to provide a facility for bootstrap initiation,
the RESET pin of the DSP56001 is driven by a latch
which is mapped into the host I/O space. Writes to
any I/O address in the range $348-$34F will assert
RESET to the DSP56001. A write to any address
within the range $340-$347 will deassert the RE-
SET latch.

The 8 registers which comprise the DSP56001
Host Interface are mapped into the ISA bus I/O
space between address $340-$347 (inclusive).
Communications with the DSP56001, including
program bootstrapping, are accomplished via I/O
reads and I/O writes to the appropriate register.
Please refer to the DSP56001 User’s Manual, es-
pecially chapter 10, for a detailed description of the
Host Interface and its usage.

The bootstrap mode on the DSP56001 is select-
ed via the processor’s MODA and MODB inputs.
The PLD provides the proper logic levels on these
lines during reset. After reset, the MODA and

3-4 MOTOROLA

MODB inputs reflect the state of the interrupt re-
quest inputs IRQA and IRQB, thus permitting the
normal use of the external interrupt structure of the
DSP56001 without forcing constraints on the be-
havior of the interrupt lines during reset.

During a transfer cycle to/from the Host Interface
Registers, the PLD functions as a simple state ma-
chine which sequences the control signals for the
bus transceiver and the data strobe. Because the
ISA bus I/O cycles have relatively long periods,
slower PLD’s often prove adequate. When attach-
ing this interface to 33 MHz machines, a 15 ns PLD
is recommended.

3.3 Timing
Figure 3-3 depicts the timing relationships present
during ISA Bus I/O Read cycles and I/O Write cy-
cles. The duty cycle of the processor clock has a 2:1
ratio of low period to high period and a frequency of
one-third that of the master oscillator. During an I/O
cycle either IOW or IOR will be asserted.

The most critical aspect of this interface is the rela-
tionship between Host Enable (HEN) and the other
interface signals. The Host address lines, HA0-2
and Host Read/Write (HR/W) must remain stable
during the period in which HEN is asserted. The
propagation delays associated with the
MC74ACT245 transceiver have been considered

MOTOROLA 3-5

and the complications typical of asynchronous in-
terfaces have been avoided by running the PLD
clock from the system oscillator which operates at
3x the processor clock. During successive cycles
of the oscillator, the transceiver’s direction is estab-
lished, the transceiver is enabled, and HEN is
strobed. The ISA bus indicates the completion of
the data transfer by releasing IOR or IOW (as ap-
propriate to the direction of transfer) and the PLD
deasserts HEN on the following oscillator cycle.
The MC74ACT245 is disabled on the device en-
able. Successive oscillator cycles

Please refer to the DSP56001 User’s Manual, Mo-
torola Document DSP56001/D, for a complete
description of the operation of the DSP56001. ■

3-6 MOTOROLA

Figure 3-2 PLD Definition for the ISA Bus Interface for the PAL22V10
shown in Figure 3-1 (Sheet 1 of 2)

0001e| module pcio2
0002e| title ‘ISA (IBM-PC) Interface Ver.2
0003e| MOTOROLA INC. 14 February 1991’
0004e|
0005e| U01 device ‘P22V10’;
0006e|
0007e|”INPUTS”
0008e| CLK pin 1; “ISA-Bus Clock “
0009e| AEN pin 9; “Address Enable -- NOT DMA cycle”
0010e| A14,A9,A8 pin 8,7,6; “ADDRESS Bits14, 09-08”
0011e| A7,A6,A5,A4 pin 5,4,3,2; “ADDRESS Bits 07-04”
0012e| IOR,IOW pin 10,11; “I/O Read*,I/O Write*”
0013e| IRQA,IRQB pin 13,23;
0014e|
0015e|”OUTPUTS”
0016e| MODA,MODB pin 14,22;
0017e| RESET pin 21; “Reset* latched”
0018e| Q2,Q1,Q0 pin 20,19,18;
0019e| HEN pin 17; “HOST ENABLE*”
0020e| HRw pin 16; “HOST R/W*”
0021e| Ben pin 15; “Buffer Enable for 74AC245”
0022e|
0023e| RESET ISTYPE ‘reg_D,Buffer’;
0024e| Q2,Q1,Q0 ISTYPE ‘reg_D,Buffer’;
0025e| HRw ISTYPE ‘reg_D,Buffer’;
0026e|
0027e| High,Low = 1,0;
0028e| H,L,C,K,X = 1,0,.C.,.K.,.X.;
0029e|
0030e| StateReset = [RESET];
0031e| Normal = [1];
0032e| SetReset = [0];
0033e|
0034e| StateDir = [HRw];“Host Read/WRITE*, buffer direction”
0035e| ReadDir = [1];
0036e| WritDir = [0];
0037e|
0038e| StateNo = [Q2..Q0];
0039e| Idle = [0,0,0];
0040e| S1 = [0,0,1];
0041e| S2 = [0,1,0];
0042e| S3 = [0,1,1];
0043e| S4 = [1,0,0];
0044e| S5 = [1,0,1];
0045e| S6 = [1,1,0];
0046e| S7 = [1,1,1];
0047e|
0048e| Rcyc = !AEN & A9 & A8 & !A7 & A6 & !A5 & !A4 & !IOR;
0049e| Wcyc = !AEN & A9 & A8 & !A7 & A6 & !A5 & !A4 & !IOW;
0050e| Addr = [AEN,A14,A9,A8,A7,A6,A5,A4];
0051e|
0052e|state_diagram StateReset
0053e| state Normal: if (Wcyc & A14) THEN SetReset
0054e| ELSE Normal;

MOTOROLA 3-7

0055e| state SetReset: if (Wcyc & !A14) THEN Normal
0056e| ELSE SetReset;
0057e|
0058e|state_diagram StateDir
0059e| state ReadDir: if (!IOW) THEN WritDir
0060e| ELSE ReadDir;
0061e| state WritDir: if (!IOR) THEN ReadDir
0062e| ELSE WritDir;
0063e|
0064e|state_diagram StateNo
0065e| State Idle: HEN = 1; Ben = 1;
0066e| if (!Rcyc & !Wcyc) THEN Idle “stay put if not for me...”
0067e| ELSE S1;
0068e|State S1: HEN = 1; Ben = 1; goto S2;“allow time to select 74AC245 direction”
0069e| State S2: HEN = 1; Ben = 0;goto S3; “Now, enable the 74AC245 output”
0070e| State S3: HEN = 0;Ben = 0; “assert HEN*”
0071e| if (Rcyc # Wcyc) THEN S3 “...adn loop until the end of the I/O cycle”
0072e| ELSE S4;
0073e| State S4: HEN = 1; Ben = 0; goto Idle; “deassert HEN*, and quit”
0074e| State S5: goto Idle; “these are dummies, just in case..”
0075e| State S6: goto Idle;
0076e| State S7: goto Idle;
0077e|equations
0078e| [Q2,Q1,Q0].ck = CLK;
0079e| RESET.ck = CLK;
0080e| HRw.ck = CLK;
0081e|
0082e| MODA = !(RESET.Q & !IRQA);
0083e| MODB = RESET.Q & IRQB;
0084e|Test_vectors
0085e| ([CLK,Addr,IOW,IOR,IRQA,IRQB] -> [HRw,RESET,MODA,MODB])
0086e| [C,^h34,0,1,0,1] -> [0,1,0,1];“write to port, sets write dir.”
0087e| [C,^h74,0,1,0,1] -> [0,0,1,0];“write to reset address, asserts reset”
0088e| [C,^h34,1,0,0,1] -> [1,0,1,0];“read from normal address, reset ”
0089e| [C,^h34,0,1,0,1] -> [0,1,0,1];“write to normal address, deasserts reset”
0090e| [C,^h34,1,1,0,1] -> [0,1,0,1];
0091e| [C,^h34,1,1,1,1] -> [0,1,1,1];
0092e|Test_vectors
0093e| ([CLK,Addr,IOW,IOR] -> [HEN,Ben,HRw])
0094e| [C,^h24,0,1] -> [1,1,0]; “this is NOT for me...., wrong addr”
0095e| [C,^h34,1,1] -> [1,1,0]; “cycle starts, addresses valid... “
0096e| [C,^h34,1,1] -> [1,1,0];
0097e| [C,^h34,1,0] -> [1,1,1]; “read cycle identified by IOR* “
0098e| [C,^h34,1,0] -> [1,0,1];
0099e| [C,^h34,1,0] -> [0,0,1];
0100e| [C,^h34,1,0] -> [0,0,1];
0101e| [C,^h34,1,0] -> [0,0,1];
0102e| [C,^h34,1,1] -> [1,0,1];
0103e| [C,^h34,1,1] -> [1,1,1];
0104e| [C,^h34,0,1] -> [1,1,0];
0105e|
0106e|END pcio2

Figure 3-2 PLD Definition for the ISA Bus Interface (Sheet 2 of 2)

3-8 MOTOROLA

Figure 3-3 DSP56001-to-ISA Bus Interface Timing shows the timing for
both a read and a write operation.

PROCESSOR
CLOCK

A0-A15

IOR or IOW

ISA BUS

D0-D7 (Read)

D0-D7 (Write)

HEN

HR/W (Write)

HR/W (Read)

T1 T2 T3 Tw T4

Osc.

Buffer
Enable

MOTOROLA 4-1

SECTION 4

Communicate with
the DSP56000 Host
Interface Using C
Language

4.1 Introduction
Interfacing a DSP56000/1/2 target system to an ISA-
bus is only partially complete when the hardware is in
place. Download software is the other element re-
quired before debugging begins. The specific target
hardware determines the types of tasks relegated to
the download software. We assume that the user has
a target system similar to the DSP-to-ISA interface
described in Figure 3-1.

4.2 Example Program
The following example uses the DSP56002. The
download task can be subdivided into four steps:

• reset the DSP

• verify that the DSP is present (at the expected location)

• transfer code into the DSP’s internal P:RAM terminate
the boot

• execute the loaded application

Assume that the DSP56002’s target host interface
(HI) registers have been mapped by the interface

“The C language
source code and

the source for
the PLD used in

the hardware
interface are

both available on
Motorola’s Dr.

BuB BBS.”

4-2 MOTOROLA

hardware into the ISA-bus I/O address space from
0x340 through 0x347. Refer to the DSP56002 Us-
er’s Manual, SECTION 5 for a description of the HI
register set visible to the host processor. Addition-
ally, the target hardware has a latch attached to the
DSP56002 RESET* which can be set (RESET* as-
serted) by ISA-bus writes to 0x350 (the data is
ignored) and cleared by ISA-bus reads from the
same address.

The C language program which appears in Figure 4-1
performs all of the download tasks listed above. After
some initialization of the screen, the code jumps to
the download routine “RESET56.” This routine re-
sets the DSP and waits for a short delay to assure
that the device receives a reset pulse of adequate
duration. Following this, the reset is released and
another delay is invoked simply to provide time for
the target system to recognize the release of reset
and to start executing the routine in its internal boot-
strap ROM. This routine will:

• sample the mode selection lines (MODA/IRQA,
MODB/IRQB, MODC/NMI) to determine the type of
boot desired (from a target processor via the HI in this
case)

• branch to the ROM code which will initialize the
DSP56002 as required (for booting from the HI)

• start receiving code from the selected bootstrap
peripheral (the HI)

• jump to the start of the newly downloaded code upon
completion of the boot.

After the reset sequence, the download routine which
is running on the ISA-bus host will check for the pres-

MOTOROLA 4-3

ence of a functional DSP56002 host interface by
reading four of the HI registers and by checking for
presence of the default values. This is a good check
of the DSP56002 reset sequence (if it does not re-
set properly and detect the desired boot mode, the
HI will not be enabled) and of the interface hard-
ware’s ability to read the HI. If the proper default
values are not sensed, the program exits and re-
turns to the command line prompt.

If a DSP56002 is found at the expected address,
the ISA download program proceeds to load the ini-
tial target code into the DSP’s internal P:RAM at
addresses P:$0000-01FF. Recall that this process
occurs while the DSP56002 on-chip PLL is set to
multiply the external oscillator frequency by one, so
it can be a (relatively) slow process if the DSP is be-
ing run from a slow external clock. To save time
when loading DSP routines which do not require the
entire on-chip P:RAM space, the boot can be termi-
nated early by setting HOST FLAG bit 0 (as is
shown in the listing in Figure 4-1). For brevity, the
actual code to be downloaded is present in the ex-
ample as a statically declared buffer. The user may
prefer to write a function to place.LOD or.CLD for-
matted disk data into a buffer which is passed to the
download function.

This example should serve as a beginning for a host
download capability through the DSP56000/1/2
Host Interface. The C language source code and the
source for the PLD used in the hardware interface
are both available on Motorola’s Dr. BuB BBS. ■

4-4 MOTOROLA

MOTOROLA 4-5

/* hostio.c - host I/F test */
/* compiled with Tubro-C version 2.01 */
/* 20 May 1992 */

#include <stdio.h>
#include <dos.h>
#include <process.h>

#define RSTADDR 0x0350 /* ISA-bus address of RESET latch */
#define BASE 0x0340 /* ISA-bus address of Host Interface*/
#define ICR BASE
#define CVR BASE+1
#define ISR BASE+2
#define IVR BASE+3
#define RXH BASE+5
#define RXM BASE+6
#define RXL BASE+7
#define TXH BASE+5
#define TXM BASE+6
#define TXL BASE+7

#define DELAY 10000
#define BOOTSIZE1 7
#define BOOTSIZE2 9

int reset56 (int, unsigned char *);

/**/
/* simple code to send an incrementing pattern of bytes to host */
/**/

/* org p:$0 */
 /* begin */

unsigned char BOOT1[] =
 { 0x08,0xF4,0xA0, /* movep#$0001,x:$FFE0 */

0x00,0x00,0x01, /* */
0x08,0xC8,0x2B, /* movep A0,x:$FFEB */
0x00,0x00,0x08, /* inc A */
0x0A,0xA9,0x81, /* jclr #1,x:$FFE9,* */
0x00,0x00,0x04, /* */
0x0C,0x00,0x00}; /* jmp <begin */

void main()
{

unsigned char i,j;
int k;

system(“cls”);

/**/
/* boot the 56002 with the patterns-to-host routine */
/**/
 printf(“\n BOOTING 56002-Incrementing Patterns to Host”);
 if (reset56(BOOTSIZE1,BOOT1) == -1)
 exit(-1);

Figure 4-1 Example Program of DSP56000 Host Interface Using C Language
(sheet 1 of 3)

4-6 MOTOROLA

 printf(“\n TESTING DATA READ (56002-to-HOST)\n”);
k = 0xFFFF;
outportb (ICR,0); /* assure proper mode, DMA off,etc */
while ((inportb(ISR) & 0x01)==0); /* wait for RXDF == 1 */

 j = (inportb(RXL) & 0xFF); /* get first pattern */
 do {

 while ((inportb(ISR) & 0x01) == 0); /* wait for RXDF == 1 */
 i = (inportb(RXL) & 0xFF); /* get next pattern */
 if(i != ((j+1) & 0xFF)) /* check and advise */

printf(“\n ERROR! Rcvd: %2X Expected: %2X”,i,j);
 j = i; /* re-sync pattern */
 } while(k—);
 printf(“\n READ TEST COMPLETE\n\n”);
}

/**/
/* routine to reset and boot the DSP56001/2 */
/**/
int reset56(int codesize, unsigned char *codeptr)
 {
 unsigned char icr_rd,cvr_rd,isr_rd,ivr_rd;
 int i,j,k;

/* first, assert reset. Leave reset asserted for a while before */
/* releasing it...give the DSP time to exit reset, sample the */
/* MODA,MODB,MODC pins and start the bootstrap code... */

outp ((int)RSTADDR,0); /* reset the DSP */
for (k=0; k<DELAY; k++); /* wait */
inportb (RSTADDR); /* clear reset */
for (k=0; k<DELAY; k++); /* wait again */
printf (“\nRESET CYCLED\n”); /* eye candy */

/* then, verify that DSP56002 is present: read the icr,cvr,isr,ivr */
/* ...and look for default values in these registers. Refer to the */
/* DSP56000/1/2 Family User’s Manual for a complete description of */
/* Host Interface (Port-B) and its register set. */

icr_rd = inportb(ICR); /* Interrupt Control Register s/b 0x00 */
cvr_rd = inportb(CVR); /* Command Vector Register s/b 0x12 */
isr_rd = inportb(ISR); /* Interrupt Status Register s/b 0x06 */
ivr_rd = inportb(IVR); /* Interrupt Vector Register s/b 0x0F */

 printf
 (“\n HOST I/F RETURNED: ICR: %2X IVR: %2X ISR: %2X IVR: %2X\a”,

 icr_rd,cvr_rd,isr_rd,ivr_rd);
 if ((icr_rd != 0x00) || (cvr_rd != 0x12)
 || (isr_rd != 0x06) || (ivr_rd != 0x0F))
 { /* if default values */
 printf(“\n\a RESET FAILED! “); /* NOT found, advise */
 return(-1); /* and return error */

Figure 4-1 Example Program of DSP56000 Host Interface Using C Language
(sheet 2 of 3)

MOTOROLA 4-7

 }
 else
 { /* BOOT THE DSP */
 for (i=0, j=0; i<codesize; i++) /* NOTE: always send */
 { /* the lsbyte last */
 while ((inportb(ISR) & 0x02) != 2); /* wait for TXDE == 1 */
 outportb(TXH,codeptr[j++]); /* send upper byte */
 outportb(TXM,codeptr[j++]); /* send middle byte */
 outportb(TXL,codeptr[j++]); /* send low byte */
 outportb(ICR,0x08; /* terminate Host Boot */
 return(0);
 }
 }

Figure 4-1 Example Program of DSP56000 Host Interface Using C Language
(sheet 3 of 3)

INDEX

MOTOROLA INDEX-1

—A—
ABELTM 1-8, 1-11, 2-9, 2-10
Application Development Module 1-5, 2-5
Application Development System 2-7
Assembly-Language Program 1-11
Auto Refresh .1-1, 1-2

—B—
Bank Interleaving . 1-6
Bank Select . 2-8
Bootstrap . 3-2
Bus Control . 2-13
Bus Control Register1-7, 1-11
Bus Interface Timing . 3-6

—C—
CAS . 2-9
CE-only Refresh . 1-2
Column Address Strobe 2-2, 2-3
Column Addresses . 2-8

—D—
DRAM .2-2, 2-5
Dynamic RAM . 2-1

—F—
Fast Page Mode . 2-3

—H—
Host Interface . 3-2

—I—
Initialization . 1-5, 2-5, 2-11
Interleaving . 1-11
ISA Bus . 3-1
ISA Bus Interface .3-3, 3-4

—M—
Memory Test .1-5, 2-5
Multiple Banks . 1-6

INDEX-2 MOTOROLA

—O—
Operating Mode Register 1-3

—P—
PAL .1-11, 2-8, 2-9, 3-1
PLD . 1-11, 2-9, 3-1
Power Consumption . 1-3
Precharge . 2-3, 2-9
Pseudo-Static RAM . 1-2
PSRAM . 1-11

—R—
RAS . 2-9
Read . 1-3, 3-5
References . 1-12
Refresh . 2-2
Refresh Cycle . 1-6, 2-8
Refresh Mode . 1-2
Refresh Request Timing 1-5, 2-5
Reset . 3-2
Row Address Strobe 2-2, 2-3
Row Addresses . 2-8

—S—
SCI Clock . 1-5, 2-5
Self Refresh . 1-2
SRAM . 2-5
State Diagram . 1-6
State Machine . 1-11, 3-2
Static RAM . 2-1

—W—
Wait State1-3, 1-5, 1-7, 1-11, 2-1,

 2-4, . 2-5
Write . 1-3, 2-2, 2-4, 2-6, 3-5
Write Back . 2-3

MOTOROLA Reference-1

1. Eggebrecht, Lewis, Interfacing to the IBM
Personal Computer, Howard W. Sams &
Company, 1988

2. DRAM Refresh Modes, Motorola Application
Note AN987

3. Motorola’s DSP56000/DSP56001 Digital
Signal Processor User’s Manual,
DSP56000UM/AD,
Rev.2

4. Motorola’s DSP56001 56-Bit General Purpose
Digital Signal Processor, Advance
Information
DSP56001/D, Rev.1

5. Motorola FACT Data, DL138, Rev.1

6. Motorola’s MCM514256A Data sheet,
Motorola Memory Data, DL113, Rev.5,
pp.84-98

7. Page, Nibble, and Static Column Modes...,
Motorola Application Note AN986

8. PAL Device Handbook, Advanced Micro
Devices/Monolithic Memories Inc., 1988

9. PAL Devices Databook, Advanced Micro Devices,1990

REFERENCES

	DSP56001 Interface Techniques and Examples
	SECTION 1
	SECTION 2
	SECTION 3
	Figure 4-1 Example Program of DSP56000 Host Interface Using C Language (sheet 2 of 3)
	Figure 4-1 Example Program of DSP56000 Host Interface Using C Language (sheet 1 of 3)

	SECTION 4
	Figure 4-1 Example Program of DSP56000 Host Interface Using C Language (sheet 3 of 3)

	REFERENCES

