

MOTOROLA APR14

Motorola
Digital Signal
Processors

Conference Bridging in the
Digital Telecommunications
Environment Using the
Motorola DSP56001/2

by
Ralph Weir
DSP Applications– East Kilbride, Scotland

Motorola reserves the right to make changes without further notice to any products here-
in. Motorola makes no warranty, representation or guarantee regarding the suitability of
its products for any particular purpose, nor does Motorola assume any liability arising out
of the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation consequential or incidental damages. “Typical” pa-
rameters can and do vary in different applications. All operating parameters, including
“Typicals” must be validated for each customer application by customer’s technical ex-
perts. Motorola does not convey any license under its patent rights nor the rights of oth-
ers. Motorola products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Motorola
product could create a situation where personal injury or death may occur. Should Buyer
purchase or use Motorola products for any such unintended or unauthorized application,
Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affili-
ates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claim alleges
that Motorola was negligent regarding the design or manufacture of the part. Motorola
and

B

 are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/
Affirmative Action Employer.

© Motorola Inc., 1991

Table
of Contents

MOTOROLA

 iii

SECTION 1

Introduction

1.1 System Overview 1-3
1.2 Input/Output (I/O) Considerations 1-5

SECTION 2

Channel
Processors

2.1 Log/Linear Conversion 2-1
2.2 Absolute Value Calculation 2-1
2.3 Scaling 2-2
2.4 Integration 2-2
2.5 Maximum Value Selection Logic 2-3
2.6 Channel Switch 2-3
2.7 System Performance 2-4
2.8 System Variable Summary 2-5
2.9 Control of the Bridge by the

System Controller 2-6

SECTION 3

The Integrator—
Theory and Design

3.1 Theory 3-1
3.2 Design 3-3

SECTION 4

Calculating the
Integrator

Coefficients

4.1 Bilinear Transform Example 4-5
4.2 Coefficients for Design Example 4-6

SECTION 5

DSP56001/2
Implementation

of the
Conference Bridge

5.1 Code for Implementing the
Conference Bridge 5-1

Illustrations

MOTOROLA

v

Figure 1-1

Figure 1-2

Figure 3-1

Figure 3-2

Figure 3-3

Figure 3-4

Figure 3-5

Figure 3-6

Figure 3-7

Figure 4-1

Figure 4-2

Figure 5-1

Figure 5-2

A Six-Way Conference Bridge 1-1

System Block Diagram 1-4

Pure Tone 3-2

Modulating Function 3-2

Modulated Signal Representing Speech 3-2

Direct Form I Filter 3-4

Modified Direct Form I Filter 3-5

Direct Form II Filter 3-6

Scaled Direct Form II Filter 3-7

S-Domain 4-2

Z-Domain 4-2

Implementation of the Conference Bridge 5-1

Example Code that Shows the Calling Convention
for Conference Bridges 5-5

List of Tables

MOTOROLA

 vii

Table 2-1

Table 2-2

Computational Load for a Conference Bridge 2-4

Variable Summary 2-5

MOTOROLA 1-1

T

his application note describes one possible imple-
mentation of a conference bridge for a modern digital
telephone exchange. Conference bridging is a feature
available on many modern analog or digital telephone
exchanges. It allows conversation among three or more
subscribers and provides an arbitration scheme be-
tween subscribers who are involved in the conference.

Although Figure 1-1 shows the conference bridge as
a separate entity; it is usually implemented as part of
a larger system, such as a PABX. This concept allows
a conversation to occur among several subscribers in
a controlled manner.

Conference

Bridge

Figure 1-1 A Six-Way Conference Bridge

SECTION 1

Introduction

“To illustrate the
performance

available from
this software, a

20-MHz
DSP56000/

DSP56001 is
capable of

implementing 10
six-way

conference
bridges, a single

71-way bridge,
or even 17 three-

way bridges.”

1-2 MOTOROLA

There are a number of possible schemes for imple-
menting this concept. In the analog world, a common
approach is to simply sum all incoming signals, giv-
ing one output. However, this method degrades the
signal quality, because the signal-to-noise ratio
(SNR) of the signal is significantly reduced.

A digital system can emulate this approach. Howev-
er, a small conference bridge commonly uses a
'single speaker' algorithm that passes only one in-
put signal to the listeners. In this case, the speaker
is not a listener and no signal passes back; signal
paths within a handset are relied on to provide a
'comfort level' of signal feedback.

This approach has many advantages; the most sig-
nificant one is that the speaker's signal passes
through unaltered, so the SNR does not change.
This method is common for small bridges of no
more than 10 channels. Larger bridges may use a
multiple speaker algorithm.

A multiple speaker algorithm must decide which
subscriber should be the speaker. There are a num-
ber of choices; most algorithms use the 'loudest
speaker' algorithm, which designates the loudest
speaking subscriber as the current speaker. The
implementation of this approach is very
straightforward.

To determine the loudest speaker, software uses
an integrator to find the power level of the incoming
signal. This power level is then used as the 'loud-
ness', rather than the instantaneous level of the
signal which slows the bridge's switching rate, giv-
ing a more aurally-pleasing result.

MOTOROLA 1-3

One unusual feature of the implemented software is
the provision of a 'chairman' facility. One channel of
the bridge is given priority over all others, giving the
conference leader the ability to control the conver-
sation without becoming the loudest speaker.

1.1 System Overview

This application note describes a software imple-
mentation of a conference bridge written for the
DSP56001/2. This device has a 24-bit architecture,
a feature which greatly simplifies the software re-
quired. This processor is also available in different
speed ratings.

The implemented software is comprised of various
simple functional blocks, as shown in Figure 1-2. A
detailed description of each stage is presented; it
should be noted that some stages are merged to
improve overall system throughput.

One variable of global importance is the number of
channels, n_chans. This variable affects all sec-
tions of the bridge since it controls the number of
channels implemented by the software.

The software currently supports up to eight channels
per bridge without modification; obviously, all system
variables are common between bridges. Modifying
the software for larger bridges or for dynamically
configurable bridges according to the requirements
of the system controller is relatively simple. The only
requirement for more bridges is additional internal or
external memory for data storage and l/O.

1-4 MOTOROLA

To illustrate the performance available from this
software, a 20-MHz DSP56000/DSP56001 is capa-
ble of implementing 10 six-way conference bridges,
a single 71-way bridge, or even 17 three-way bridg-
es. Obviously, it is possible to mix and match; thus
the system may include different sized bridges or
be reconfigured dynamically according to system
requirements.

Figure 1-2 System Block Diagram

Maximum
Value

Selection
Logic

Log/Lin
Format

Conversion

II
Absolute

Value
Scale Integrator

Bridge Input
Data Streams

Log/Lin
Format

Conversion

II
Absolute

Value
Scale Integrator

Channel Switch

Bridge output
Data Streams

MOTOROLA 1-5

1.2 Input/Output (I/O)
Considerations

Input is taken from tables of data, representing the

l/O data streams to the subscribers, held in logarith-

mic format. In the DSP56001/2 implementation,

these tables may be updated from the SSI, a pow-

erful serial interface capable of direct connection to

the standard 32-slot serial data streams commonly

used for communications within telephone ex-

changes. Alternatively, an external parallel serial

conversion device such as the Mitel 8920 may be

used, which has the advantage of adding additional

serial ports to the DSP. Also, the MT8920 is table

driven, resulting in a reduction in the number of in-

terrupts the system must handle. This reduction

may be advantageous in situations where the DSP

is performing other tasks, such as dual-tone multi-

frequency (DTMF) detection or generation.

The output data tables share the l/O memory space

with the input tables; data is returned to these tables

in logarithmic format for retransmission. One data

table is required for each bridge, comprising one

word per bridge channel.

■

MOTOROLA 2-1

SECTION 2

2.1 Log/Linear Conversion

D

ata within a digital telecommunications network is
held in 8-bit logarithmic format to reduce the number
of bits required to be transmitted while still giving an
acceptable signal-to-noise (SNR) ratio. Two stan-
dards are used: Europe uses A-law coding and the
US uses Mu-law coding. The formats are similar, but
have differences that must be considered when con-
verting to linear data.

The data conversion is actually performed using the
lookup tables implemented in the DSP56001/2ROM.
There are two tables, one for each coding technique;
these are selected by using the system variable 'ctable',
which should be $100 for Mu-law and $180 for A-law.

2.2 Absolute Value
Calculation

The calculation of absolute value is performed within
the log/linear conversion code. Both A-law and Mu-
law are 'sign+magnitude' formats, where the most sig-
nificant bit represents sign and the remaining seven
bits form the magnitude. By ignoring the sign bit dur-
ing format conversion, a positive value is always

Channel Processors

“Using the
DSP56001/2 to

implement
conference

bridging results
in an additional

advantage — the
system

controller may
then set up the

bridge to the
exchange's

specific
requirements...”

2-2 MOTOROLA

generated, allowing the quickest possible conver-
sion to an absolute linear value.

2.3 Scaling

By applying a scaling factor to each individual chan-
nel of incoming data, different priorities can be
assigned to each channel. Also, the integrator used
has a very large gain and requires an attenuation
stage on its input to prevent arithmetic overflow.
These functions are combined in the scale block.

A different scale factor may be used for each chan-
nel of a bridge; however, with the current software
configuration, equivalent channels in separate
bridges are assigned the same priority. For exam-
ple, if channel 1 of bridge 1 of a two-bridge system
is selected as the highest priority channel, it will also
be the highest priority channel on bridge 2.

The scale factors are set up in the consecutive sys-
tem memory locations scale 1. . . scale

N

, where
scale

N

 corresponds to the scale factor applied to
channel

N

.

2.4 Integration

Integration is performed using a two-pole infinite im-
pulse response (IIR) filter. This technique allows the
system designer to easily tailor the envelope detec-
tor function to the system's requirements, using one
of the many standard IIR design techniques.

MOTOROLA 2-3

The coefficients of the filter are held in the memory
locations coeff. . . coeff+3. These memory locations
must be held in a modulo four memory area; which
is any memory block with a base address divisible
by four. The integrator requires two words of stor-
age per bridge channel to store the intermediate
data values generated within the filter stage.

2.5 Maximum Value
Selection Logic

This block controls which of the input channels is ac-
tually selected as the current speaker. It has no
system variables controlling it and is incorporated on
a per-channel basis with the channel processors.

2.6 Channel Switch

This block controls the signal routing after the chan-
nel processors choose the current speaker. The
channel processor returns a pointer indicating this
channel; data from this channel is used as output for
all other channels, except itself. The current speaker
is, in fact, passed silence; for this, the system variable
'silence' is accessed. This variable contains the con-
stant logarithmic value for silence according to the
data format in use at the time. Note that the technique
of sharing the I/O table between input and output data
allows use of the original unaltered data. The input
signal passes through unaltered; thus, the current
speaker experiences no degradation in SNR.

2-4 MOTOROLA

2.7 System Performance

The computational load imposed by the bridge is
comprised of two parts; one section is an absolute
overhead for initializing the bridge; the second part is
a per-channel overhead comprised of the computa-
tion involved in each channel processor. This is
expressed in terms of lcyc (instruction cycles) when
referring to the 8-kHz sampling rate used in telecom-
munications: 1687 lcyc are available with the
standard 27-MHz processor, whereas 2500 lcyc are
available with the 40-MHz DSP56002. In other words,
an 8-kHz sample rate corresponds to a 1250

µ

s sam-
ple period and the above devices have 74.1 and 50 ns
instruction cycle times, respectively. (See Table 2-1.)

The total load is given by the Eqn. 2-1:

 B

cyc

 = 22 + 17 * n_chans Eqn. 2-1

where: B

cyc

 is the number of processor
instruction cycles required to implement
the bridge

Thus, for a 20-MHz processor, a six-channel bridge
would require (22 + 17*6) = 124 instruction cycles

Table 2-1 Computational Load for a Conference Bridge

Processor Speed Icycle Times Icycles Required

DSP56001 20.5 MHz 97.5 ns 1280

DSP56001 27 MHz 74.1 ns 1687

DSP56001 33 MHz 60.6 ns 2062

DSP56002 40 MHz 50 ns 2500

MOTOROLA 2-5

or 12.4

µ

s. Obviously, various bridge configura-
tions are possible, and most applications will
require other functions (such as DTMF detection)
to be integrated onto the DSP.

2.8 System Variable
Summary

Table 2-2 gives a summary of the variables.

Table 2-2 Variable Summary

Variable X/Y Description

data X A block of memory intended for use as storage of the
integrator’s intermediate data terms. Two words are
required per channel of each bridge.

coeff Y A four-word modulo storage area containing the coeffi-
cients for the integration filter.

ctable Y One word containing the base address of the appropri-
ate conversion table. Set to $100 for Mu-law, $180 for
A-law.

silence Y Silence Code for appropriate logarithmic data format.
This is the code equivalent to DC zero.

scale Y An eight-word block of scaling coefficients used for the
data scalers. Their value depends on channel priority
and the integration coefficients; the bigger the value,
the higher the priority of the channel.

n_chans Y One data word per implemented bridge, giving the
number of channels in each bridge.

IO Y This is the I/O area for a bridge; requiring one word
per channel.

2-6 MOTOROLA

2.9 Control of the Bridge by
the System Controller

Using the DSP56001/2 to implement conference
bridging results in an additional advantage — the
system controller may then set up the bridge to
the exchange's specific requirements, regardless
of whether these requirements are decided at
power-on or are instantaneous. The only require-
ment is that the system should support some form
of access to the DSP56001 data RAM, which can
be accomplished through the host port or the un-
used slots of the SSI.

■

MOTOROLA 3-1

SECTION 3

3.1 Theory

T

he function of the integrator is to provide a signal
whose output is proportional to the power in the input.
However, instantaneous power is of little use because
of the nature of a speech signal. A speech signal is
composed of two basic components — the speech
tone and a modulating envelope. The interaction of
these two form the basic elements of speech, called
phonemes; every spoken word is comprised of a
number of these elements.

Additionally, a sentence is a linguistic structure
formed from several words. The speaker tends to ap-
ply a secondary envelop to a sentence, causing
amplitude differences between word and word gaps;
the actual envelope applied depends on dialect and
language spoken.

Some idea of the resulting signal is illustrated in Fig-
ure 3-1 through Figure 3-3. Figure 3-1 shows a pure
tone, Figure 3-2 shows a low-frequency sine wave
representing the modulating signal, and Figure 3-3
shows the modulated signal. Although these figures
are very simplistic, they show the complex nature of
the speech signal.

The Integrator —
Theory and Design

“The integrator
attempts to filter
out the envelope

functions,
leaving only a

slowly changing
function that can

successfully be
used in the

decision logic.”

3-2 MOTOROLA

Figure 3-1 Pure Tone

1.0
.8
.6
.4
.2
0

-.2
-.4

-.8
-1.0

-.6

Figure 3-2 Modulating Function

1.0
.8
.6
.4
.2
0

-.2
-.4

-.8
-1.0

-.6

Figure 3-3 Modulated Signal Representing Speech

1.0
.8
.6
.4
.2
0

-.2
-.4

-.8
-1.0

-.6

MOTOROLA 3-3

3.2 Design

It would be useless to use instantaneous power as
a basis for the 'loudest speaker' algorithm. Due to
the various envelope functions the speaker applies
to his speech, the instantaneous power is a rapidly
changing function, resulting in the bridge switching
rapidly between speakers. Some means of damp-
ing the bridge's response is required, which is the
function of the integrator.The integrator attempts to
filter out the envelope functions, leaving only a
slowly changing function that can successfully be
used in the decision logic.

Unfortunately, choosing integration coefficients in-
volves some trade-off. If the integrator uses too
long a period, the bridge will switch too slowly, and
an unacceptable switching delay will be introduced.

In view of this trade-off, the use of an adapted infi-
nite impulse response (IIR) filter is preferable to the
use of a true integrator. The system designer can
then modify the integration coefficients quite easily,
using a filter design methodology like the bilinear
transform.

Integration of incoming waveform is performed us-
ing a two-pole IIR filter. The transfer function, H(z),
for this filter is given in Eqn. 3-1:

Eqn. 3-1H z[]

bkz
k–

k 0=

M

∑

akz
k–

k 1=

N

∑
----------------------------=

3-4 MOTOROLA

From this transfer function, a signal flow diagram
can be synthesized as shown in Figure 3-4.

The implemented filter has been simplified to require
only four multiply-accumulate (MAC) operations and
two storage stages.

The first stage of the simplification is the reversal of
the a and b stages of the filter, giving the signal flow
diagram of Figure 3-4. This is an intermediate step
of the simplification process; no overall simplifica-
tion has been performed, but the delay stages for
the a and b stages are adjacent.

Grouping the delay stages allows the delay ele-
ments to be combined, which was the object of
grouping since no other simplification was gained by
the grouping. The transfer function is unchanged by
this operation.

Figure 3-4 Direct Form I Filter

X

X

X

X

X

+

++

+

z-1

z-1

b0

b1

b2

z-1

z-1

a2

a1

MOTOROLA 3-5

This application deals with relative levels as the out-
puts from the integrator; there is no merit in
producing the absolute value as an output. Thus,
the integrator's gain is immaterial.

If the numerator of the transfer function in Eqn. 3-1
is factored by b0 the result is the transfer function
shown in Eqn. 3-2.

Eqn. 3-2

Figure 3-5 Modified Direct Form I Filter

X

X

X

X

+

z-1

z-1

b0

b1

b2

z-1

z-1

a2

a1

+

+

+X

H z()

bkz
k–

k 0=

M

∑

b0 akz
k–

k 1=

N

∑
-----------------------------------=

3-6 MOTOROLA

Other than in terms of gain, this is equivalent to the
original filter and may be implemented by the sig-
nal flow diagram of Figure 3-4. As illustrated in
Figure 3-4, the filter only requires four multiplies
now, but implements a gain stage of 1/b0. Since
only relative levels are of interest, this gain stage
can be ignored, giving the optimal form of the integrator.

■

Figure 3-6 Direct Form II Filter

X

X

X

X

+

b0

b1

b2a2

a1

+

+

+X

z-1

z-1

MOTOROLA 3-7

Figure 3-7 Scaled Direct Form II Filter

X

X

X

X

+
b1

b2a2

a1

+

+

+

z-1

z-1

MOTOROLA 4-1

SECTION 4

T

he signal flow diagram of Figure 3-4 will implement
any filter; the final function of the block depends only
upon the coefficients used by the filter.

The coefficients of the integrator were produced using a
standard design technique—the bilinear transform. This
technique converts a standard analog filter to the digital
domain. Any standard filter approximation may be used.

The basis of the bilinear transform is the fact that the
s-domain, used in the analysis of analog filters, may
be mapped onto the z-domain using some mathemat-
ical relationship. A number of CAD packages are
available for this; however, for those who do not have
such a package, an explanation of the procedure will
follow.

The s-domain may be mapped as shown in Figure 4-1.
In this case, filters (of which the integrator is an exam-
ple) must have their poles and zeros within the shaded
area of the diagram, the left half plane (LHP).

The z-domain is represented in Figure 4-2. The z-plane
is not divided into the LHP and RHP, but is represented
as a unit circle. Filters must have poles and zeros with-
in the unit circle (the shaded area).

Calculating the
Integrator Coefficients

“...if an analog
filter can be
specified to
perform the
integration

function, this
function can be

mapped into the
digital domain

for
implementation

by the
DSP56001/2.”

4-2 MOTOROLA

jΩ

6

Figure 4-1 S-Domain

Figure 4-2 Z-Domain

wT = π wT = 0

MOTOROLA 4-3

Thus, stable digital filters map the LHP of the s-do-
main into the unit circle of the z-domain. An
algebraic mapping for this procedure is shown in
Eqn. 4-1:

Eqn. 4-1

or, equivalently, the reverse mapping is shown in
Eqn. 4-2:

Eqn. 4-2

In the above equations,

T

 represents the sampling
period of the digital system; for example,

T

 might
equal 125

µ

s. To evaluate the frequency response
of an analog filter, set

 s = j

ω

; to evaluate the same
function for a digital filter, set

z = e j

ω

T

. Thus, if

Ω

represents frequency in the analog domain, a rela-
tionship between the digital frequency variable

ω

and the analog frequency variable

Ω

, can be ob-
tained by substituting them in Eqn. 4-1:

Eqn. 4-3

z

2
T

 s+

2
T

 s–

------------------=

s
2 1 z

1–
–()

T 1 z
1–

+()
---------------------------=

jW
2 1 e

jωT–
–()

T 1 e
jωT–

+()

2 e

jωT
2

e

jωT
2

------------–

–

T e

jωT
2

e

jωT
2

------------–

+

---= =

4-4 MOTOROLA

Eqn. 4-3 gives:

Eqn. 4-4

This relationship is used to distort the analog filter
before applying the mapping of Eqn. 4-1 to pre-
serve the frequency response of the analog filter; a
procedure often known as 'prewarping'.

The completed design procedure is as follows:

1. Specify the filter in terms of sampling frequency,
3-dB point, passband/stopband ripple, etc.

2. Prewarp the filter by applying the relationship in
Eqn. 4-4 to distort the original filter's frequency
response.

3. Obtain an s-domain equation describing the
warped filter. One of the standard filter
approximations, such as the Butterworth LPF,
may be used. The LPF is demonstrated in the
following example.

4. Use the bilinear transform to map this analog
equation into the digital domain.

To summarize, if an analog filter can be specified to
perform the integration function, this function can be
mapped into the digital domain for implementation by
the DSP56001/2. The demonstration coefficients are
calculated in the following example.

Ω
2

ωT
2

 tan

T
-------------------------=

MOTOROLA 4-5

4.1 Bilinear Transform
Example

To design an LPF with a 3-dB cutoff at 5 Hz and a
sampling frequency of 8 kHz, normalize this filter to
the sampling frequency by dividing all frequencies
by the sampling frequency. The new frequencies
are as follows:

The first step is to prewarp this frequency as follows:

Eqn. 4-5

The Butterworth approximation for a second-order
lowpass filter cutoff frequency, Ω0 rad/s, is given by
Eqn. 4-6:

Eqn. 4-6

Sampling Frequency (normalized) = 1 Hz =2π rad/s

Cutoff Frequency (normalized) = 5/8000 Hz = 6.25E-4Hz = 3.927E-3 rad/s

Ω3dB 2
3.927E

3–

2

Hztan 3.927E
3–

rad/s= =

NOTE: Prewarping does not always result in a large
change in value. In this case, because of the near linearity
of the tangent function for small values, there is no effec-
tive change; for most filters, however, the normalized
cutoff frequency will be much larger, and prewarping will
cause a significant change.

H s()
Ω0

2

s
2

2Ω0s Ω0
2

+ +
--=

4-6 MOTOROLA

With Ω0 set to the calculated 3-dB point, an s-domain
equation defines the filter. The design process is com-
pleted by translating the s-domain to the z-domain
using Eqn. 4-1.

After some calculation, this translation yields the
following transfer function in the z-domain:

Eqn. 4-7

4.2 Coefficients for
Design Example

In tabular form for the DSP56001/2, the coefficients
are as follows:

■

H z() 3.866E
6–

=
1 2Z

1–
Z

2–
+ +

1 1.9945Z
1–

0.9945Z
2–

+–
--

a1 -1.9945

a2 0.9945

b1 2

b2 1

MOTOROLA 5-1

SECTION 5

OPT cex, mex, md, mu, cc
section bridge
include 'stddefs'
xdef bridge
xdef data 1
xdef data 2
xdef silence

;***
; Y-MEMORY VARIABLE DECLARATIONS
;***

org y:
; tap storage area
; intermediate storage for integrators

data 1 ds 16 :tap storage, bridge 1
data 2 ds 16 :tap storage, bridge 2

;**
; X-MEMORY VARIABLE DECLARATIONS
;**

org x:

; integration filter coefficients

; note these are in order (a1, a2, b1, b2) and are right-shifted coefficients
; ie, a1/2, a2/2, b1/2, b2/2

coeff dc (1.9928921/2.0) :a1/2
dc (-.99291730/2.0) :a2/2
dc 0.9999999999 :b1/2
dc 0.5 :b2/2

; variables for conversion routines.
; These will be set on powerup for A-law or mu-law

DSP56001/2
Implementation of the
Conference Bridge

Figure 5-1 Implementation of the Conference Bridge (sheet 1 of 4)

5-2 MOTOROLA

silence dc $d50000 :$d5 for A-law, $77 for mu-law

scale1 dc $0000a0
scale2 dc $0000a0
scale3 dc $0000a0
scale4 dc $0000a0
scale5 dc $0000a0
scale6 dc $0000a0
scale7 dc $0000a0
scale8 dc $0000a0

;**
; Conference Bridging Macro
;
; Last Update 21/6/88 Version 1.0
;
; bridge indent 1,0
;
; This macro performs a conference bridging function for telecomms switch
; applications. The bridge uses a single source algorithm for line
; arbitration,using the 'loudest speaker' algorithm.
;
; Data input is in the form of a table of logarithmic (A-law or mu-law format)
; data the algorithm, used converts this to a linear absolute value for
; processing.
;
; This (linear absolute) signal is then integrated to a given an estimation of
; the signal's power content. The coefficients of this integrator are variable
; for specific system needs, and are available to a host processor.
;
; After integration, compares are used to find the highest power signal on the
; bridge. This is then passed out to all outputs, except the source output. This
; receives silence.
;
; The bridge software can implement bridges of one or more channels, depending
; only on one variable. However, a bridge of less than three channels is
; meaningless in most telecomms applications.
;
;
;
; Macro Calls: Bridge - implement conference bridge with following parameters:
; 1) Data 1/0 table at location in r5
; 2) Integrator memory at location in rl
; 3) Number of channels in bridge at location x:(r2)
; 4) Base of appropriate conversion table in x:'ctable'
; This should be $100 for mu-law, $180 for A-law
; 5) Value of SILENCE tone at x:silence
;
;
; From these parameters, the software can allocate memory and use the correct
; format conversion law.
;
;

Figure 5-1 Implementation of the Conference Bridge (sheet 2 of 4)

MOTOROLA 5-3

; Note that the macro assumes that the scaling modes are off (S1=0, S2=0)
;
; Input/Output data is in the 8 most significant bits of the I/0 table: the
; remaining bits of data, if present, are ignored.
;
;
; Sign Chord Number Step Number
; Bit
; 23 22 21 20 19 18 17 16
;
; Alters Data ALU Registers
; y1 y0
; x1 x0
; a2 a1 a0 a
; b2 b1 b0 b
;
;
; Alters Address Registers
; r0 r1 r2 r3
; r4 r5 r6 r7
; n
; m
;
;
; ; Alters Program Control Registers
; pc sr
;
; bridge selection
; Selection of a bridge is performed by initializing r5 to access the I/0 table
; for a given bridge, and r1 with the address for that bridge’s filter data.
; Note that this is not the coefficients for the filter, but the W(n-1) and
; W(n-2)terms.
;
;***
; This selection is Conference Bridge
;***
;

org p:
bridge

; bridge setup
; Set up some variables for the bridges. These are generic to any bridge
; implementation. The variables are the address of the scale table, and the
; address of the coefficients for the integrator. (These coefficients may be
; downloaded by the host.)

cir b #<scale1,r6 ; set up address of scale table
 move #<oeff,r4 ; and address of integrator coefficients

move #3,m4 ; and modulo for integrator coefficients
move r5,n5 ; save r5 for future use

 move r5,57 ; initialize r7 for no signal operation

; stage one of the bridge is conversion of the current channel data to absolute
; linear value. This is performed using the DSP56001's A/mu-law lookup tables in
; ROM; x:'ctable' is the address of the conversion table to be used. This is $180
; for A-law, $100 for mu-law.

Figure 5-1 Implementation of the Conference Bridge (sheet 3 of 4)

5-4 MOTOROLA

do #6,end_env
move x:(r5)+,a
lsl a x:<cshift,y0 ;shift out sign bit, get_shift constant
lsr a y:<tab_val,yl ;shift in zero, get table base
tfr yl,a al,yl ;swap table base and offset
mac yl,y0,a #<silence,r3 ;shift offset down and add to base
move a,r0 ;move to address register

; r0 is a pointer to absolute value of the incoming signal, in linear format.
; Next stage is integration using recursive filter. Note the use of a scale factor
; to scale the input for calculations; also note that we are using the ALU's
; scalers to allow use of coefficients in the range +2 . . . -2.

envelope or #$8,mr ;set ALU scaling mode on
move x:(r0),y0
move x:(r6)+,xl ;read scaling coefficient for input
mpy xl,y0,a y:(rl)+,y0 x:(r4)+,x0 ;scale input data, read W(n-1)&a1

mac y0,x0,ay:(rl),ylx:(r4)+,x0;read WW(n-2), a2
mac yl,x0,a y0,y:(rl)- x:(r4)+,x0 ;rite new W(n-2), get b1
mac y0,x0,a a,y:(rl)+ x:(r4)+,x0 ;rite new W(n-1), get b2
macr yl,x0,a (rl)+ ;round output data, and

;increment data pointer to next
;integrator data

and #$f7,mr ;cancel the ALU scaling mode

; Finally, check to see how this slot's signal compares with the others. We also
; fetch the silence code into yl here: this is used later.

cmp b,a x:(r3),y1 ;is this the biggest input channel?
 tgt a,b r5,r7 ;if yes. Transfer the data as a

;new maximum, and set up pointer

; This is the end of the bridge loop. On exit, the DSP will have calculated
; the channel with the largest magnitude, and stored the magnitude of that
; channel in B, and a pointer to that channel’s data in r7.

end_env ;This is the end of the bridge loop

; Having found the largest channel, we must write that value to all output
; channels, except the source speaker, who should receive silence. This is
; performed by writing the output data to all channels, then overwriting this
; overwriting with silence for the speaker channel

output move n5,r5 ;read address of data table
move x:-(r7),a ;read output and silence tone
rep #6 ;repeat for all channels
move a,x:(R5)+ ;write out biggest channel data to channels
move y1,x:(r7) ;but overwrite source with silence
rts

Figure 5-1 Implementation of the Conference Bridge (sheet 4 of 4)

MOTOROLA 5-5

;***
; Interrupt Service routine
; Called at 8kHz by the Frame Sync Interrupt
; Saves registers, then processes one frame
;**

frame REG_DUMP ;save all registers
move #lol,r5 ;set up pointer to start of lo data table

;for this bridge
move #,datal,rl ;second pointer to stored tap data for this

;bridge
crbl jsr <bridge ;call bridge macro for channel 1 (short

move #102,r5 ;jump forced)
move #<data2,rl ;second pointer to stored tap data for this

;bridge
crb2 jsr <bridge ;call bridge macro for channel 2

;(short jump forced)
REG_RES ;restore registers
rti ;return to main handler

Figure 5-2 Example code that shows the calling convention for confer-
ence bridges. This code should be run as an interrupt routine,
or modified to fit into a polled environment.

	SECTION 1
	SECTION 2
	SECTION 3
	SECTION 4
	SECTION 5

