

MC68328 Microprocessor Application:
FLEXªAlphanumeric Chip MC68175

Interface for One-Way Pager

by

Perry Vo

Motorola, Incorporated
Semiconductor Products Sector
6501 William Cannon Drive West
Austin, TX 78735-8598

 FLEX Alphanumeric Chip, FLEX One-Way Stack, and Dragonball are trademarks of Motorola, Inc.

 M

otorola reserves the right to make changes without further notice to any products herein to improve
reliability, function, or design. Motorola does not assume any liability arising out of the application or
use of any product or circuit described herein; neither does it convey any license under its patent rights
nor the rights of others. Motorola products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other application in which the
failure of the Motorola product could create a situation where personal injury or death may occur.
Should Buyer purchase or use Motorola products for any such unintended or unauthorized application,
Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and

are registered trademarks of Motorola, Inc.
Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© MOTOROLA INC., 1998

Order this document by: APR34/D

MOTOROLA

FLEX Alphanumeric Chip MC68175 Interface

iii

TABLE OF CONTENTS

SECTION 1 INTRODUCTION . 1-1

1.1 INTRODUCTION . 1-3
1.2 SCOPE. 1-3
1.3 MC68328 . 1-3
1.4 FLEX PROTOCOL . 1-3
1.5 MC68175 . 1-4
1.6 FLEX ONE-WAY STACK . 1-4

SECTION 2 HARDWARE DEVELOPMENT 2-1

2.1 FLEX DEVELOPMENT KIT . 2-3
2.1.1 FLEX Alphanumeric Chip Development Board 2-3
2.1.2 FLEX Development/Receiver Board Interface. 2-4
2.1.3 FLEX Development/Evaluation Board Interface 2-5
2.1.4 SPI Interface Signals . 2-5
2.1.5 Additional Information . 2-6

SECTION 3 SOFTWARE DEVELOPMENT. 3-1

3.1 FLEX SYSTEM SOFTWARE . 3-3
3.1.1 FLEX One-Way Stack Overview . 3-3
3.1.2 SPI Communication . 3-4
3.1.3 Enabling the FLEX Alphanumeric Chip 3-4
3.1.4 FLEX Alphanumeric Chip and FLEX One-Way Stack

Configurations . 3-7
3.1.5 Receiving and Processing Paging Messages 3-8
3.2 PORTING FLEX ONE-WAY STACK TO THE MC68328 MPU 3-10
3.2.1 Creating the SPI Driver . 3-11
3.2.2 Configure PORT.H. 3-17
3.2.3 Completing PORT.C . 3-17
3.2.4 Set up Intitialization Buffer . 3-20
3.2.5 Retrieving Paging Messages from FLEX One-Way Stack. . 3-24

iv

FLEX Alphanumeric Chip MC68175 Interface

MOTOROLA

MOTOROLA

FLEX Alphanumeric Chip MC68175 Interface

v

LIST OF FIGURES

Figure 2-1 FLEX System Components . 2-3

Figure 2-2 Motorola FLEX Receiver Connection Diagram 2-4

Figure 2-3 FLEX Development Board/Dragonball ADS Board SPI interface . . . 2-5

Figure 3-1 FLEX One-Way Stack Software Interfaces . 3-3

Figure 3-2 FLEX Alphanumeric Chip Enabling Steps. 3-5

Figure 3-3 FLEX Alphanumeric Chip IC Checksum Flowchart 3-6

Figure 3-4 Flow of Data through FLEX One-Way Stack. 3-8

Figure 3-5 Circular Queue for Data Storage. 3-9

Figure 3-6 Paging Message Received/Handled by FLEX One-Way Stack . . . 3-10

vi

FLEX Alphanumeric Chip MC68175 Interface

MOTOROLA

MOTOROLA

FLEX Alphanumeric Chip MC68175 Interface

vii

LIST OF EXAMPLES

Example 3-1 Circular Queue Definition . 3-9

Example 3-2 Function

FLEX IC Handler

 . 3-11

Example 3-3 Function

storeData

 . 3-14

Example 3-4 Function

FlexSPITransfer

 . 3-15

Example 3-5 Function

waitForTransfer()

 . 3-16

Example 3-6 PORT.H Definitions . 3-17

Example 3-7 Function

FStkNotifyNewMsg()

 Sample . 3-18

Example 3-8 Function

Send_4_bytes()

 Sample . 3-19

Example 3-9 Function

FStkPacketProcessing

 Sample . 3-19

Example 3-10 Function

BuildInitBuffer()

 . 3-20

Example 3-11 Function

main()

 . 3-24

Example 3-12 Function

GetPage

 . 3-25

viii

FLEX Alphanumeric Chip MC68175 Interface

MOTOROLA

SECTION 1

INTRODUCTION

1-2

FLEX Alphanumeric Chip MC68175 Interface

MOTOROLA

Introduction

1.1 INTRODUCTION .1-3
1.2 SCOPE .1-3
1.3 MC68328 .1-3
1.4 FLEX PROTOCOL. .1-3
1.5 MC68175 .1-4
1.6 FLEX ONE-WAY STACK. .1-4

Introduction

Introduction

MOTOROLA

FLEX Alphanumeric Chip MC68175 Interface

1-3

1.1 INTRODUCTION

Combined with the Dragonballª MC68328 microprocessor, FLEXª One-way Stack
software and the FLEX Alphanumeric Chip Integrated Circuit (IC) MC68175 provide a
powerful solution for todayÕs and tomorrowÕs personal portable communication
devices.

1.2 SCOPE

This application report describes the hardware and software interfaces between
the MC68328 (Dragonball) Microprocessor and the MC68175 (FLEX Alphanumeric
Chip) IC.

1.3 MC68328

The Motorola MC68328 (Dragonball) is a low-cost, low-power, highly integrated
microprocessor designed for consumer portable devices, such as PDAs, pagers, and
cellular phones. The Dragonball provides key features that are suitable for many
portable applications. Modules like the Real-Time Clock (RTC), LCD controller, pulse
width modulator, timers, master and slave Serial Peripheral Interface (SPI), Universal
Asynchronous Receiver Transmitter (UART) with infrared communications capability,
and the System Integration Module (SIM28) give product engineers the flexibility and
resources to design efficient and innovative products.

1.4 FLEX PROTOCOL

FLEX Protocol is the multispeed, high-performance paging protocol from Motorola that
is rapidly becoming the de facto paging standard, used by 70% of the worldÕs paging
service providers. The FLEX Protocol increases paging capability up to 10 times over
POCSAG, the previous paging protocol. Its synchronous communication capability with
the transmitter also enhances pager battery longevity.

1-4

FLEX Alphanumeric Chip MC68175 Interface

MOTOROLA

Introduction

MC68175

1.5 MC68175

The FLEX one-way paging protocol is implemented in the form of the Motorola
MC68175 IC. This FLEX Alphanumeric Chip signal decoder enables developers to easily
incorporate wireless paging capabilities in a wide range of consumer products. It
simplifies FLEX Protocol implementation in end-user products by interfacing with
several off-the-shelf paging receivers and many off-the-shelf host
microcontrollers/microprocessors.

The FLEX Alphanumeric Chip MC68175 has the following primary functions:

¥ to process information received from a FLEX radio paging channel,

¥ to demodulate the audio signal,

¥ to select messages addressed to the paging device, and

¥ to communicate the message to the host MPU.

1.6 FLEX ONE-WAY STACK

Motorola FLEX One-Way Stack software runs on the host MPU and performs the
following functions:

¥ to initialize the FLEX Alphanumeric Chip at power-up,

¥ to perform the tasks of interpreting the message received from this chip in an
appropriate manner (numeric, alphanumeric, binary, etc.), and

¥ to provide the host software with the correct decoded message.

SECTION 2

HARDWARE DEVELOPMENT

2-2

FLEX Alphanumeric Chip MC68175 Interface

MOTOROLA

Hardware Development

2.1 FLEX DEVELOPMENT KIT .2-3
2.1.1 FLEX Alphanumeric Chip Development Board.2-3
2.1.2 FLEX Development/Receiver Board Interface 2-4
2.1.3 FLEX Development/Evaluation Board Interface2-5
2.1.4 SPI Interface Signals. .2-5
2.1.5 Additional Information .2-6

Hardware Development

FLEX Development Kit

MOTOROLA

FLEX Alphanumeric Chip MC68175 Interface

2-3

2.1 FLEX DEVELOPMENT KIT

This section briefly describes the following: the FLEX one-way pager development
system; the FLEX Development Kit (FDK), including the FLEX Development Board
(FDB); the receiver; and the MC68328 (Dragonball) Applications Development
Board (ADB).

2.1.1 FLEX Alphanumeric Chip Development Board

The FDB is a decoder module containing the FLEX signal processing decoder IC
combined with a 2-bit floating audio-to-digital converter that is used to decode 4-level
audio signal inputs from the receiver.

The FLEX Alphanumeric Chip IC has eight receiver control lines used for warming up
and shutting down a receiver in stages. The FLEX Alphanumeric Chip also has the
ability to detect a low battery signal during the receiver control sequences. It interfaces
to a host MPU through a standard Serial Peripheral Interface (SPI) and has a 38.4 kHz
clock output capable of driving other devices. Its minute timer offers low-power support
for time-of-day function to the host.

Figure 2-1

 illustrates how the FDB interfaces with the receiver and the host
microprocessor. This figure can also be used as a reference design for one-way pagers, or
any other consumer device with paging communication capability.

Figure 2-1

FLEX System Components

SPI

FLEXª

IC Decoder

Audio

RF

API

One-Way Stack
Software

Data

Communication

Receiver

Controls

Analog to
Digital

Converter

Receiver

Host
Microprocessor

AA1418

LCD

FLEX Development Board

Dragonballª
Applications
Development

Board

 Chip
Alphanumeric

FLEX

2-4

FLEX Alphanumeric Chip MC68175 Interface

MOTOROLA

Hardware Development

FLEX Development Kit

Motorola Semiconductor Products Sector has a complete FLEX one-way pager
solution, as described in

Figure 2-1

, including the FLEX Alphanumeric Chip
MC68175, receivers, the MC68328 microprocessor, and LCD panels. For evaluating
and prototype purposes, the FDB can also receive an audio signal directly injected (to
the BNC connector) from different types of signal encoders, such as the Hewlett
Packard 8648A RF signal generator. For over-the-air communication, the receiver end
of the FDB can interface with various types of receivers. A receiver connector is
available on the FDB as a Òplug-inÓ solution.

2.1.2 FLEX Development/Receiver Board Interface

Figure 2-2

 briefly describes the interface between the FLEX Development Board and
the Motorola FLEX Receiver Board. Pins 2 (A1), 3 (A2), and 10 (A0) should be
connected together to one of the receiver control lines for on/off cycling operation. In
the figure, those pins are connected to GND so that the receiver will be turned on at
all times. Pins 1, 4, 8, and 9 are not connected.

Figure 2-2

Motorola FLEX Receiver Connection Diagram

1 2 3 4 5

67891011

GND

Audio

CLKINReceiver
Voltage AA1419

Hardware Development

FLEX Development Kit

MOTOROLA

FLEX Alphanumeric Chip MC68175 Interface

2-5

2.1.3 FLEX Development/Evaluation Board Interface

The FLEX Development Board interfaces with the MC68328 ADS evaluation board via a
standard SPI.

Figure 2-3

 describes the hardware interface between the FLEX
Development Board and the MC68328 ADS board.

Figure 2-3

FLEX Development Board/Dragonball ADS Board SPI interface

2.1.4 SPI Interface Signals

The signals associated with the SPI shown in

Figure 2-3

 are as follows:

¥ ERESET (JP4 Header, Pin 1) is the reset signal to the FLEX Alphanumeric Chip IC.
This pin should connect to a general-purpose output port pin (e.g., Port K Pin 3),
so that the FLEX One-Way Stack software running on the host can reset the FLEX
Alphanumeric Chip.

¥ READY (JP4 Header, Pin 2) is connected to an interrupt pin on the host MPU.
When the FLEX Alphanumeric Chip would like to talk to the host MPU, it will

EREADY

ESCK

EMOSI

EMISO

ESS

EVcc

GND

JP
4

H
ea

de
r

V
M

E
 C

on
ne

ct
io

ns

PK-3

IRQ6

SPCLK0

SPTXD0

SPRXD0

PJ-4

Vcc

GND

FLEX
Development

Board

MC68328

ADSBoard
Dragonball

1

2

3

4

5

6

20

22

P14ÐB17

P14ÐC14

P14ÐA14

P14ÐB14

P14ÐB6

P14ÐB28

P14ÐB27

26 3.3 V

Output Port)

Vcc

ERESET
(General-Purpose

AA1420

2-6

FLEX Alphanumeric Chip MC68175 Interface

MOTOROLA

Hardware Development

FLEX Development Kit

assert the READY line low until the end of the 32-bit transfer. As an example, this
pin is connected to the IRQ6 pin on the Dragonball ADS board.

¥ SCK (JP4 Header, Pin 3) is the clock supplied by the host MPU. This input pin is
connected to SPI Clock output pin on the host ADS.

¥ SS (JP4 Header, Pin 6) is used as FLEX chip select. Before every data transfer
between FLEX Alphanumeric Chip and the host MPU, the host MPU needs to
assert SS low to select the FLEX Alphanumeric Chip IC. This pin is connected to a
configured general purpose port on the host microprocessor (e.g., Port J Pin 4).

¥ MISO (JP4 Header, Pin 5) is the line on which data from the FLEX Alphanumeric
Chip is transferred to the host.

¥ MOSI (JP4 Header, Pin 4) is the line on which data from the host is transferred to
the FLEX Alphanumeric Chip IC.

¥ EVCC (JP4 Header, Pin 20) and GND (Emulator Pin 22) lines are the power
supply from the host MPU (+ 5 V).

¥ Vcc (JP4 Header, Pin 26) is the 3.3 V power supply. This is the voltage supply for
the FLEX Alphanumeric Chip and the 2-bit Floating Audio-to-Digital converter
chip.

2.1.5 Additional Information

For a more complete description of the FLEX Development Board and the Dragonball
MC68328 ADS board, please refer to the corresponding UserÕs Manuals.

Contact your local Motorola sales office for more information on the FLEX one-way
pager solution.

The example code presented in this application report is available via the Motorola
website, reached at the following address:

http://www.motorola-dsp.com/documentation/appnotes

SECTION 3

SOFTWARE DEVELOPMENT

3-2

FLEX Alphanumeric Chip MC68175 Interface

MOTOROLA

Software Development

3.1 FLEX SYSTEM SOFTWARE. .3-3
3.1.1 FLEX One-Way Stack Overview. .3-3
3.1.2 SPI Communication .3-4
3.1.3 Enabling the FLEX Alphanumeric Chip.3-4
3.1.4 FLEX Alphanumeric Chip and FLEX One-Way Stack

Configurations. .3-7
3.1.5 Receiving and Processing Paging Messages.3-8
3.2 PORTING FLEX ONE-WAY STACK TO THE MC68328

MPU. .3-10
3.2.1 Creating the SPI Driver .3-11
3.2.2 Configuring PORT.H .3-17
3.2.3 Completing PORT.C .3-17
3.2.4 Setting up Initialization Buffer .3-20
3.2.5 Retrieving Paging Messages from FLEX One-Way

Stack .3-24

Software Development

FLEX System Software

MOTOROLA

FLEX Alphanumeric Chip MC68175 Interface

3-3

3.1 FLEX SYSTEM SOFTWARE

FLEX System Software (FSS) from Motorola is a family of interoperable software
components used for building products with paging/messaging capabilities. FLEX
One-Way Stack, one of the software components, is specifically designed to support the
integration of the FLEX Alphanumeric Chip Integrated Circuit (IC) with many
off-the-shelf microprocessors.

3.1.1 FLEX One-Way Stack Overview

The product engineer can regard FLEX One-Way Stack as the FLEX Alphanumeric Chip
device driver. As shown in

Figure 3-1

, FLEX One-Way Stack runs on the productÕs host
processor and communicates with FLEX Alphanumeric Chip IC. It fully interprets FLEX
code-words (packets of information) received from the FLEX IC and returns the original
paging message to the host software so the message can be displayed to the user.

Figure 3-1

 FLEX One-Way Stack Software Interfaces

A FLEX Software Development Kit (SDK) is available for downloading from MotorolaÕs
website at

http://www.motorola.com/flexstack.

The FLEX One-Way Stack
software has been proven to work on various microprocessors, including the MC68328
(Dragonball). Motorola customers can download FLEX One-Way Stack software from
the web and apply the recommended porting procedures described in this application
report to make the software work on the MC68328 Dragonball platform.

Application (host) Software

Public API

Interrupt Service Routine

Serial Peripheral Interface

FLEX Alphanumeric Chip

FLEX Alphanumeric Chip
Data Packets

Formatted
(or Unformatted)
Message

FLEX One-Way Stack Software

AA1421

3-4 FLEX Alphanumeric Chip MC68175 Interface MOTOROLA

Software Development

FLEX System Software

3.1.2 SPI Communication

The FLEX Alphanumeric Chip IC communicates with the host MCU via SPI in 32-bit
packets. Each packet consists of an 8-bit ID followed by twenty-four bits of data. The
FLEX IC uses SPI in Full Duplex mode; that is, for every transfer, both the FLEX IC and
host MCU transmit and receive valid information.

The SPI consists of a READY pin and four SPI pins: SS, SCK, MOSI, and MISO, as
described in the hardware section. When the host sends a packet to the FLEX
Alphanumeric Chip IC, it first selects the FLEX IC by driving the SS pin low. When the
FLEX IC has a packet for the host to read, it drives the READY line low to assert an
interrupt to the host.

3.1.3 Enabling the FLEX Alphanumeric Chip

Depending on the upper 8-bit ID value, data packets can be classified and recognized by
the FLEX Alphanumeric Chip and FLEX One-Way Stack software running on the host
microprocessor. For example, a packet with an ID of Ò00Ó is a Checksum packet, while a
packet with an ID of Ò01Ó is the Configuration packet, etc. One of the packets that the
FLEX Alphanumeric Chip sends to the host MPU is the Part ID packet (ID = ÒFFÓ),
which was designed to ensure proper communication procedure between the host and
the FLEX IC.

Software Development

FLEX System Software

MOTOROLA FLEX Alphanumeric Chip MC68175 Interface 3-5

Upon reset or at power-up, the entire FLEX Alphanumeric Chip IC is ÒdisabledÓ from
sending any information except the part ID. The FLEX Alphanumeric Chip will
continue to assert interrupt and broadcast the part ID until the host processor, via the
interrupt service routine, recognizes the FLEX IC by sending back to the FLEX
Alphanumeric Chip the proper Checksum packet. The Checksum packet can be
considered as the required handshaking signal from the host to recognize and ÒenableÓ
the FLEX IC. The algorithm for calculating the Checksum value is embedded in the FLEX
One-Way Stack software. Ordinarily, this initialization procedure requires two SPI data
transfers, as described in Figure 3-2.

Figure 3-2 FLEX Alphanumeric Chip Enabling Steps

After the FLEX Alphanumeric Chip receives the correct Checksum packet from the FLEX
One-Way Stack software, the chip is ÒenabledÓ. It stops asserting interrupts to the host
processor until it has new information to send to the host, such as a new page. The FLEX
Alphanumeric Chip is ÒdisabledÓ only in the sense that the host MPU cannot read data
from the FLEX Alphanumeric Chip IC.

SPI Communication

FLEX
Host

SPI Communication Host

Packet = <32-bit ID>

Packet = 00000000

Packet = <32-bit ID>

Packet = <32-bit Checksum>

First SPI Data
Transfer:

Second SPI Data
Transfer:

Chip is
 Disabled

Chip is
 Enabled AA1422

Alphanumeric
Chip

FLEX
Alphanumeric

Chip

3-6 FLEX Alphanumeric Chip MC68175 Interface MOTOROLA

Software Development

FLEX System Software

Figure 3-3 FLEX Alphanumeric Chip IC Checksum Flowchart

Note: On power-up, FLEX One-Way Stack software running on the host will attempt
to receive the Part ID packet and to send back the CheckSum packet to the
FLEX Alphanumeric Chip IC. If FLEX One-Way Stack does not seem to get out
of the interrupt handler (i.e., the FLEX IC keeps on asserting interrupt to the
host processor), it is reasonable to suspect that the FLEX IC has not received
the correct (expected) Checksum packet due to a hardware problem. The

RESET

FLEX Alphanumeric Chip

Checksum Register =

Chip Sends Part ID
Packet to Host

Chip Waits for SPI
Packet from Host

Checksum

Packet Data

Register?
Matches Checksum

Chip Sets Checksum
Register to the XOR of

the Packet Data Bits with
the Checksum Register Bits

Y N

N

N

Y

Y

Packet?

 Chip Enabled?

AA1423

Disables Itself

Part ID Value

FLEX Alphanumeric Chip
Disables ItselfAlphanumeric

FLEX

FLEX Alphanumeric Chip
Enables Itself

Software Development

FLEX System Software

MOTOROLA FLEX Alphanumeric Chip MC68175 Interface 3-7

FLEX Alphanumeric Chip is still in Reset or Disable mode. In this case, the
product engineer should check the configuration of the SPI communication
module on the host. Common faults include the SPI module not being
properly enabled or not transmitting properly, the SPI baud-rate being too
high, or the reset line connected to the FLEX Alphanumeric Chip being held
low.The very first packet sent from the host processor to the FLEX
Alphanumeric Chip is a null packet (i.e., a packet of value 0). If this packet is a
nonzero packet, the FLEX One-Way Stack may not calculate the checksum
packet correctly, resulting in a locked-up situation where the chip will never
come out of Reset state. Therefore, the host software may need to initialize the
gSecurity variable to 0 before running FLEX One-Way Stack.

3.1.4 FLEX Alphanumeric Chip and FLEX One-Way Stack
Configurations

The FLEX One-Way Stack software on the host MPU is responsible for configuring the
FLEX Alphanumeric Chip IC by sending to it (via SPI) a series of configuration packets.
The chip needs information such as receiver control, frame assignments, and user
address enabling, so that it behaves properly for a particular paging application. FLEX
One-Way Stack software performs this task automatically after the chip is enabled via
the checksum feature as described above. However, product engineers need to specify
how they would like to configure the chip, and translate those configurations into 32-bit
packets of data that FLEX One-Way Stack will send to the FLEX IC. These configuration
packets are stored in the initialization buffer.

When incorporating FLEX One-Way Stack software into FLEX paging products, it is
important that product engineers properly set up the initialization buffer. The
initialization buffer contains not only configuration data to be sent to FLEX
Alphanumeric Chip but also memory reservations and all necessary setups so that FLEX
One-Way Stack can properly manage and filter paging messages. The initialization
buffer is often in EEPROM, or nonvolatile memory. The initialization data is segmented
by functionality and is divided into four segments: Driver Initialization, Notification,
Message Manager, Filter and FLEX Alphanumeric Chip Initialization segments. Each
segment contains a header block and a data block. The header block in all segments has
the same format as the INIT_SECTION structure defined in init.h. The data blocks for
each segment are defined in struct.h. A sample of the function that sets up the
initialization buffer is provided in file idata.c in FLEX One-Way Stack software.

3-8 FLEX Alphanumeric Chip MC68175 Interface MOTOROLA

Software Development

FLEX System Software

3.1.5 Receiving and Processing Paging Messages

FLEX One-Way Stack consists of interoperable modules that work together through a set
of external and intermodule APIs. The following four modules can be found in FLEX
One-Way Stack:

¥ FLEX DriverÑDirectly manages the FLEX Alphanumeric Chip IC and builds raw
message data from received data stream.

¥ FLEX Message FilterÑFormats raw message data into character format, such as
ASCII, binary data, etc.

¥ FLEX Message ManagerÑStores and manages completed messages.

¥ FLEX Application InterfaceÑA lightweight wrapper of APIs that exposes a
high-level interface to host software.

Figure 3-4 Flow of Data through FLEX One-Way Stack

The flow of message data between software layers of FLEX One-Way Stack is
summarized in Figure 3-4. The process of receiving and processing paging messages
occurs in two stages.

In the first stage, the interrupt service routine receives raw data from the FLEX IC. Every
time the FLEX Alphanumeric Chip has data to send over to the host, it asserts an
interrupt to the host processor. The host acknowledges the interrupt with the interrupt
handler. The interrupt handler receives raw data from the FLEX Alphanumeric Chip via
SPI communication and stores the data in a circular queue as described in the following
paragraphs.

FLEX IC (Hardware Interface)

FLEX One-Way Stack
Driver Module

FLEX
Message Filter

ModuleManager Module
FLEX Message

FLEX Application Interface

Application Software

Raw Data

Codewords

Formatted
MessagesCodewords

(API Layer Can
Have Access to
Both Formatted

Messages or
Codewords)

AA1424

Software Development

FLEX System Software

MOTOROLA FLEX Alphanumeric Chip MC68175 Interface 3-9

In the second stage, the host software periodically calls the FLEX One-Way Stack
function to read data out of the circular queue. FLEX One-Way Stack then analyzes and
assembles the original FLEX page and returns it to the host software.

Two pointers (index variables) are used to manage the circular queue, gPackWrite and
gPackRead. The gPackWrite variable points to the next available byte in the queue for data
storage. The pointer gPackWrite advances for every byte of data that the FLEX
Alphanumeric Chip SPI interrupt handler receives. The gPackRead variable points to the
next byte of data in the queue to be read and processed. The pointer gPackRead advances
every time FLEX One-Way Stack reads a byte out of the queue for processing. Product
developers can manage the size of the circular queue. However, the size of the queue (in
bytes) must be a multiple of four to avoid splitting of packets (1 packet = 32 bits = 4
bytes). The circular queue is defined as shown in Example 3-1

Figure 3-5 Circular Queue for Data Storage

The host software can either poll the two pointers or use a timer interrupt to check them
for new data in the circular queue, shown in Figure 3-5. If the FLEX One-Way Stack
finishes assembling the original page (meaning that no other fragment of the page is
expected), FLEX One-Way Stack notifies the host software by calling the function
FStkNotifyNewMsg(). Product engineers can implement FStkNotifyNewMsg () in
accordance with the individual features of each product, such as alerting the user or
retrieving and displaying the message on the LCD.

Example 3-1 Circular Queue Definition

 unsigned char gPacketQ[PAKQ_SIZE];

gPackRead

gPackWritegPackRead

Queue with No Data (Empty)

Queue after Interrupt Handler
Receives Data from FLEX

Queue after FLEX One-Way
Stack Processes Data

1 2 30

gPackWrite

Alphanumeric Chip

AA1426

1 2 30

gPackWritegPackRead

3-10 FLEX Alphanumeric Chip MC68175 Interface MOTOROLA

Software Development

Porting FLEX One-Way Stack to the MC68328 MPU

Figure 3-6 shows how paging messages are received and handled by FLEX One-Way
Stack.

Figure 3-6 Paging Message Received/Handled by FLEX One-Way Stack

3.2 PORTING FLEX ONE-WAY STACK TO THE MC68328 MPU

The FLEX One-Way Stack software is written in the ANSI C language and is therefore
highly portable. However, in order to run FLEX One-Way Stack on a specific
microprocessor, some work is required. After getting the FLEX One-Way Stack software
from Motorola website, product engineers may have to make a few modifications to
enable the FLEX One-Way Stack software to run on the MC68328. This section describes
the recommended steps to assist product engineer to port FLEX One-Way Stack software
to the MC68328 (Dragonball) microprocessor.

Note: The term ÒFLEXchipÓ in code comments refers to the FLEX Alphanumeric
Chip MC68175.

 Host
Software

Application FLEX

FLEX Alphanumeric

Interrupt
Handler Circular Queue

Raw Data
(From Circular Queue)

SPI Communication

Raw Data

(to Storage)

Check For Paging Messages
(Interrupt Timer or Polling)

Paging Message
(Return to Host Software

for Displaying)

AA1425

One-Way

 Chip

Stack

Software Development

Porting FLEX One-Way Stack to the MC68328 MPU

MOTOROLA FLEX Alphanumeric Chip MC68175 Interface 3-11

3.2.1 Creating the SPI Driver

The SPI interrupt service routines are hardware dependent and require the most porting
effort. The recommended implementation code can be obtained from Motorola
Semiconductor Products Sector. Product engineers should attempt to understand this
code and reconfigure it according to their unique product specifications.

The recommended implementation code includes four functions, as shown in Examples
3-2 through 3-6. These functions are called FLEX IC Handler, storeData, FlexSPITransfer,
and waitForTransfer().

Example 3-2 Function FLEX IC Handler

/**
 * FUNCTION NAME: FlexICHandler() *
 * Date created: 07/26/96 *
 * *
 * DESCRIPTIONS: *
 * This function is the interrupt service routine for FLEXchip *
 * IC. Every time the FLEXchip IC would like to communicate *
 * with the host microprocessor, it will assert an interrupt to *
 * the host. This interrupt service routine is responsible for *
 * handling all communications between the host and the FLEXchip. *
 * *
 * INPUT: None *
 * OUTPUT: None *
 ***/

void FlexICHandler()
{
 volatile UVAR16 data1, data2;
 volatile UVAR8 *ptr;

 DISABLE_INT; /* Disable further interrupts */

 /*
 * First, we assert the FLEXchip chip-select to indicate that the
 * host processor is ready to communicate with FLEXchip IC.
 */
 portj_dat = (UVAR8 *) PJDATA;
 *portj_dat &= ASSERT_SS;

 /*
 * Next, we prepare the 2 16-bit variables data1 and data2 to
 * contain the 32-bit package that the host will send to the
 * FLEXchip IC.
 */

3-12 FLEX Alphanumeric Chip MC68175 Interface MOTOROLA

Software Development

Porting FLEX One-Way Stack to the MC68328 MPU

 if (!(gFlag1 & INITCHIP)){ /* Normal mode */
 if (gFlag1 & CMDOUT){ /* Send 4 bytes from the gCommand */

 ptr = (UVAR8*) &data1;
 *ptr++ = gCmdBuffer.byte3;
 *ptr = gCmdBuffer.byte2;
 ptr = (UVAR8*) &data2;
 *ptr++ = gCmdBuffer.byte1;
 *ptr = gCmdBuffer.byte0;
 }

 else{ /* Send 4 bytes from gSecurity */
 ptr = (UVAR8*) &data1;
 *ptr++ = gSecurity.byte3;
 *ptr = gSecurity.byte2;
 ptr = (UVAR8*) &data2;
 *ptr++ = gSecurity.byte1;
 *ptr = gSecurity.byte0;

 }
 }
 else{ /* This is when FlexIC is initialized the first time */
 ptr = (UVAR8*) &data1;
 *ptr++ = gInitData[gPointer++];
 *ptr = gInitData[gPointer++];
 ptr = (UVAR8*) &data2;
 *ptr++ = gInitData[gPointer++];
 *ptr = gInitData[gPointer++];
 }

 /*
 * FLEXchip and Host processor exchange data
 */
 FlexSPITransfer(&data1, &data2);

 /* Store receiving data from FLEXchip in the queue */
 storeData(data1, data2);

Example 3-2 Function FLEX IC Handler (Continued)

Software Development

Porting FLEX One-Way Stack to the MC68328 MPU

MOTOROLA FLEX Alphanumeric Chip MC68175 Interface 3-13

 /*
 * This is when FLEXstack sends packets to configure FLEXchip IC.
 * gInitCount keeps track of the number of configuration packets.
 * Data received from FLEXchip during the configuration process
 * is ignored
 */
 if (gFlag1 & INITCHIP) {

 gInitCount--;
 if (gInitCount == 0) {
 gFlag1 &= CLEAR_INITCHIP;

 gPackWrite = gPackRead;
 }

 }
 /*
 * If this is the part ID packet, call FLEXstack function to process
 * the part ID packet to come up with the correct Checksum packet.
 */
 if (!(BTST(gFlag1,DISPART_FIRST_f1)))
 FLEXstack();

 gFlag1 &= CLEAR_CMDOUT;
 gFlag1 |= XFERDONE;

 /* At the end of the interrupt service routine, we deselect
 the FLEXchip IC */
 portj_dat = (UVAR8 *) PJDATA;
 *portj_dat |= DESELECT_SS;
}

Example 3-2 Function FLEX IC Handler (Continued)

3-14 FLEX Alphanumeric Chip MC68175 Interface MOTOROLA

Software Development

Porting FLEX One-Way Stack to the MC68328 MPU

Example 3-3 Function storeData

/**
 * FUNCTION NAME: storeData() *
 * Date created: 07/26/96 *
 * *
 * DESCRIPTIONS: *
 * This function stores packets of information in the circular *
 * queue for later processing. These Packets are received *
 * from the FLEXchip IC via the interrupt service routine *
 * *
 * INPUT: 32-bit of data in 2 16-bit variables *
 * data1: First 16-bit data *
 * data2:Second 16-bit data *
 * OUTPUT: None *
 * GLOBAL VARIABLES: *
 * gPacketQ[]:Array used as a circular queue for *
 * data storage *
 * gPackWrite:index in the circular queue to keep *
 * keep track of the next available storage *
 * location in the queue. *
 ***/
void storeData(UVAR16 data1, UVAR16 data2)
{
 volatile UCHAR *ptr;

 /* Store the first word (16-bit data) in the queue */
 ptr = (UCHAR*) &data1;
 gPacketQ[gPackWrite++] = (UCHAR) *ptr++;
 gPacketQ[gPackWrite++] = (UCHAR) *ptr;

 /* Store the second word (16-bit data) in the queue */
 ptr = (UCHAR*) &data2;
 gPacketQ[gPackWrite++] = (UCHAR) *ptr++;
 gPacketQ[gPackWrite++] = (UCHAR) *ptr;

 /* If the index gPackWrite points to the end of the queue,
 "circulate" it to the beginning of the queue */
 gPackWrite &= (PAKQ_SIZE - 1);/* Assuming PAKQ_SIZE is 128 */
}

Software Development

Porting FLEX One-Way Stack to the MC68328 MPU

MOTOROLA FLEX Alphanumeric Chip MC68175 Interface 3-15

Example 3-4 Function FlexSPITransfer

/**
 * FUNCTION NAME: FlexSPITransfer() *
 * Date created: 07/26/96 *
 * *
 * DESCRIPTIONS: *
 * This function performs data communication via the *
 * Serial Peripheral Interface (SPI). Given the Dragonball as *
 * the 16-bit data bus microprocessor, two transmissions are *
 * needed, with 16 bits of data for each transmission. *
 * *
 * INPUT: 32-bit of data to be sent to the FLEXchip IC *
 * data1: Pointer to the first 16-bit data *
 * data2: Pointer to the second 16-bit data *
 * OUTPUT: data1 and data2 contain data received from the *
 * FLEXchip IC. *
 ***/

void FlexSPITransfer(UVAR16 *data1, UVAR16 *data2)
{

 spmode &= XCH_MASK; / Make sure no other transmission */
 spmode |= SPMEN_BIT; / Enable SPI */

 /* First 16-bit data transmission */
 *spbd = *data1;
 *spmode |= XCH_BIT;
 waitForTransfer();
 *data1 = *spbd; /* End of the first 16-bit transfer - data1
 contains data from the FLEXchip IC */

 /* Second 16-bit data transmission */
 *spbd = *data2;
 *spmode |= XCH_BIT;
 waitForTransfer();
 *data2 = *spbd; /* End of the second 16-bit transfer - data2

 contains data from the FLEXchip IC */
 return;
}

3-16 FLEX Alphanumeric Chip MC68175 Interface MOTOROLA

Software Development

Porting FLEX One-Way Stack to the MC68328 MPU

Example 3-5 Function waitForTransfer()

/**
 * FUNCTION NAME: waitForTransfer() *
 * Date created: 07/26/96 *
 * *
 * DESCRIPTIONS: *
 * This function checks the SPIM_IRQ bit (in the SPI status register), *
 * after data has been moved to the SPI data register to be transmitted *
 * to the FLEXchip. When the SPI finishes the transmission, it sets *
 * the SPIM_IRQ bit. By checking this bit, we can monitor the *
 * SPI communication. *
 * *
 * INPUT: None *
 * OUTPUT: None *
 ***/

void waitForTransfer()
{
 while (!(*spmode & SPIM_IRQ_BIT));

 /* Reset SPIM */
 *spmode &= SPIM_IRQ_MASK;
 *spmode &= XCH_MASK;

 return;
}

Software Development

Porting FLEX One-Way Stack to the MC68328 MPU

MOTOROLA FLEX Alphanumeric Chip MC68175 Interface 3-17

3.2.2 Configuring PORT.H

The PORT.H file contains most of the options and configurable items, depending on the
processor type. In PORT.H, product engineers should add the definitions shown in
Example 3-6 when porting FLEX One-Way Stack software to the Dragonball processor:

3.2.3 Completing PORT.C

Some routines in PORT.C are product dependent and must be completed for FLEX
One-Way Stack to perform properly for a particular application. We describe some
important functionalities in this file. Recommended code is also included. However, the
product engineer should examine this code carefully, and use it basically as reference to
design applicable products.

To complete PORT.C, three functions are called upon: FStkNotifyNewMsg() ,
Send_4_bytes() , and FLEXstack(). Code samples of the three functions are shown in
Examples 3-7 through 3-9.

Example 3-6 PORT.H Definitions

#define DRAGONBALL

#ifdef DRAGONBALL

typedef UVAR8 *ADDRESS; /* UVAR8 is an unsigned 8-bit value */
typedef UVAR8 *HANDLE;
typedef short VAR16; /* Type short is a 16-bit value */
typedef int VAR32; /* Type int is a 32-bit value */
typedef unsigned short UVAR16;
typedef unsigned int UVAR32;
#define PTR_SIZE 4 /* machine pointer size in bytes */
#define printf /* override printf */
#define ENABLE_INT asm(" ANDI.W #$F8FF,SR") /* Enable interrupts */
#define DISABLE_INT asm(" ORI.W #$0700,SR") /* Disable interrupts */
#define ATTRIB_BUF 0 /* No temp attrib buffer needed */

#endif /* DRAGONBALL */

3-18 FLEX Alphanumeric Chip MC68175 Interface MOTOROLA

Software Development

Porting FLEX One-Way Stack to the MC68328 MPU

FStkNotifyNewMsg()

The FStkNotifyNewMsg() function is called each time FLEX One-Way Stack software
receives a new and completed FLEX message from the FLEX Alphanumeric Chip IC.
The message ID is passed to this function. Product engineers should implement this
function according to the product specifications. For example, FStkNotifyNewMsg() can
alert the user (with sounds or vibration) and/or retrieve the message from FLEX
One-Way Stack and display it on the screen or LCD. In Example 3-7, the new message
ID is simply stored in an array, and function GetPage() is called to display the message on
the LCD.

Send_4_bytes()

The Send_4_Bytes() function sends 4-byte packets to the FLEX Alphanumeric Chip using
the SPI. FLEX One-Way Stack uses this function to initiate the configuration process by
sending the FLEX Alphanumeric Chip a series of packets from the initialization buffer
(described earlier). This is the communication initiated by the host, so that the host
processor must first drive the FLEX Alphanumeric Chip chip-select signal low to start
the communication process. The actual SPI communication happens through the
interrupt service routine.

Example 3-7 Function FStkNotifyNewMsg() Sample

void FStkNotifyNewMsg(MSG msg)
{

UVAR8 i;

 /*
 * If the new message overflows the array (storage of messages),
 * pop the oldest message off the array for storage.
 */

if (pageCount >= MSGTABLESZ)
 MMMakeRoom();

/* Store message in the message table */
msgtable[pageCount] = msg->msgId;

GetPage(msg->msgId); /* Retrieve message for display */
pageCount++; /* Increase the number of pages */

}

Software Development

Porting FLEX One-Way Stack to the MC68328 MPU

MOTOROLA FLEX Alphanumeric Chip MC68175 Interface 3-19

Send_4_bytes() supervises the interrupt process and will terminate after the transfer is
completed.

FLEXstack()

The FLEXstack function checks the circular packet queue for new data (by checking
gPackWrite and gPackRead indexes, as described in earlier section). If new data are in the
queue, it calls FStkPacketProcessing to process one packet.

A loop should wrap around FStkPacketProcessing to process all new information in the
circular queue.

Example 3-8 Function Send_4_bytes() Sample

void Send_4_bytes (void)
{

BCLR(gFlag1, XFERDONE_f1);

/* Select the FLEXchip IC to initiate the communication */
portj_dat = (UVAR8*) PJDATA;
*portj_dat &= ASSERT_SS;

/* Wait until the data transfer is complete */
while(!BTST(gFlag1, XFERDONE_f1));

}

Example 3-9 Function FStkPacketProcessing Sample

void FLEXstack()
{

while (gPackWrite != gPackRead)
 FStkPacketProcessing(GetPacket());

}

3-20 FLEX Alphanumeric Chip MC68175 Interface MOTOROLA

Software Development

Porting FLEX One-Way Stack to the MC68328 MPU

3.2.4 Setting up Initialization Buffer

The host software must provide initialization data to the FLEX One-Way Stack software
in a predefined format for the software for configure the IC after enabling it. The
initialization buffer is set up by function BuildInitBuffer(), as illustrated in Example 3-10.
This function is part of FLEX One-Way Stack software and can be found in data.c.

Please note that data should usually be placed directly in a reserved EPROM section for
code optimization. However, to better illustrate how the buffer is set up, we define
structures and hard-code the initialization data in function BuildInitBuffer(). The host
software must call this function right after enabling the FLEX Alphanumeric Chip.

Example 3-10 Function BuildInitBuffer()

/**
 * FUNCTION NAME: BuildInitBuffer() *
 * Date created: 07/26/96 *
 * *
 * Description: *
 * This function dynamically stores data in the initialization *
 * buffer. Note that this function is designed for software testing, *
 * and better illustration of how the initialization buffer is *
 * constructed. For users' end-products, initialization data can be *
 * stored in EEPROM for better performance and reducing code size. *
 * *
 * INPUT: None *
 * OUTPUT: None *
 * *
 * GLOBAL VARIABLES: *
 * init_buffer: Pointer to the beginning of the *
 * initialization buffer. *
 ***/

void BuildInitBuffer()
{

volatile FS_DRIVER_STRUCT *ptr1;
volatile E_NOTIFY_STRUCT *ptr2;
volatile MMLITE_STRUCT *ptr3;
volatile FILTER_STRUCT *ptr4;
volatile FLEXCHIP_STRUCT *ptr5;

Software Development

Porting FLEX One-Way Stack to the MC68328 MPU

MOTOROLA FLEX Alphanumeric Chip MC68175 Interface 3-21

/* Create FLEXstack Driver Initialization module */
ptr1 = (FS_DRIVER_STRUCT *)

_malloc((UVAR32)sizeof(FS_DRIVER_STRUCT));
ptr1->fs_driver_hdr.size = sizeof(FS_DRIVER_STRUCT);
ptr1->fs_driver_hdr.flag = 0;
ptr1->fs_driver_hdr.type = 1;
ptr1->fs_driver_data.msgStorSize = STATUS_TABLE_SIZE;
ptr1->fs_driver_data.msgBldSize = MESSAGE_BLD_SIZE;
 ptr1->fs_driver_data.msgstraddr = (void*)

_malloc((UVAR32)STATUS_TABLE_SIZE * sizeof(UCHAR));
ptr1->fs_driver_data.msgbldaddr = (void*)

_malloc((UVAR32)MESSAGE_BLD_SIZE * sizeof(UCHAR));

/* The pointer to this module is the beginning of the
 initialization buffer */
init_buffer = (UVAR8*) ptr1;

/* Create Event Notification module */
ptr2 = (E_NOTIFY_STRUCT *)

_malloc((UVAR32)sizeof(E_NOTIFY_STRUCT));
ptr1->fs_driver_hdr.next = (UVAR8*) ptr2;

ptr2->e_notify_hdr.size = sizeof(E_NOTIFY_STRUCT);
ptr2->e_notify_hdr.flag = 0;
ptr2->e_notify_hdr.type = 2;
ptr2->e_notify_data.FChipMask = 0;
ptr2->e_notify_data.FStackMask = 0;
ptr2->e_notify_data.BIWMask = 0;

/* create Message Manager Lite module */
ptr3 = (MMLITE_STRUCT *) _malloc((UVAR32)sizeof(MMLITE_STRUCT));
ptr2->e_notify_hdr.next = (UVAR8*) ptr3;

ptr3->mmlite_hdr.size = sizeof(MMLITE_STRUCT);
ptr3->mmlite_hdr.flag = 0;
ptr3->mmlite_hdr.type = 5;
ptr3->mmlite_data.numNodes = 0x009E;
ptr3->mmlite_data.nodeSize = 0x0020;
ptr3->mmlite_data.poolStartAddress = (UVAR8*)

_malloc((UVAR32)NUM_NODES * NODE_SIZE * sizeof(UCHAR));
ptr3->mmlite_data.maxHdls = 0x10;
ptr3->mmlite_data.hdlPoolAddress = (UVAR8*)

_malloc((UVAR32)MAX_HANDLES * NUM_MSGS * sizeof(UCHAR));

Example 3-10 Function BuildInitBuffer() (Continued)

3-22 FLEX Alphanumeric Chip MC68175 Interface MOTOROLA

Software Development

Porting FLEX One-Way Stack to the MC68328 MPU

/* Create Message Filter Module */
ptr4 = (FILTER_STRUCT *) _malloc((UVAR32)sizeof(FILTER_STRUCT));
ptr3->mmlite_hdr.next = (UVAR8*) ptr4;

ptr4->filter_hdr.size = sizeof(FILTER_STRUCT);
ptr4->filter_hdr.flag = 0;
ptr4->filter_hdr.type = 4;
ptr4->filter_data.hdlPoolAddress = (void*)

_malloc((UVAR32)16 * sizeof(UCHAR));
ptr4->filter_data.maxHdls = 1;
ptr4->filter_data.filterOptions = 1;
ptr4->filter_data.numSpare = 33;

/* Create FLEXchip Initialization Module */
ptr5 = (FLEXCHIP_STRUCT *)

_malloc((UVAR32)sizeof(FLEXCHIP_STRUCT));
ptr4->filter_hdr.next = (UVAR8*) ptr5;

ptr5->flexchip_hdr.size = sizeof(FLEXCHIP_STRUCT);
ptr5->flexchip_hdr.flag = 1;
ptr5->flexchip_hdr.type = 3;
ptr5->flexchip_hdr.next = NULL;
ptr5->flexchip_data.Major = 0x30;
ptr5->flexchip_data.Minor = 0x30;
ptr5->flexchip_data.reserved = 0;
ptr5->flexchip_data.cmapSize = 0x2B;

/*
 * These are packets of information to be sent out to configure
 * the FLEXchip IC. Please refer to FLEXchip UserÕs Manual on
 * how to construct these parameters.
 */

ptr5->cmds[0] = 0x010100D8;/* Configuration packet */
ptr5->cmds[1] = 0x03400000;/* All frame mode */
ptr5->cmds[2] = 0x0400FFFF;/* Reserved */
ptr5->cmds[3] = 0x05000000;/* Reserved */
ptr5->cmds[4] = 0x0F000700;/* Receiver line control */
ptr5->cmds[5] = 0x10000132;/* Off settings */
ptr5->cmds[6] = 0x11000132;/* Warm-up 1 setting */
ptr5->cmds[7] = 0x12000132;/* Warm-up 2 setting */
ptr5->cmds[8] = 0x13000132;/* Warm-up 3 setting */
ptr5->cmds[9] = 0x14000132;/* Warm-up 4 setting */

Example 3-10 Function BuildInitBuffer() (Continued)

Software Development

Porting FLEX One-Way Stack to the MC68328 MPU

MOTOROLA FLEX Alphanumeric Chip MC68175 Interface 3-23

ptr5->cmds[10] = 0x15000132;/* Warm-up 5 setting */
ptr5->cmds[11] = 0x16007102;/* 3200 sync. configuration */
ptr5->cmds[12] = 0x17006100;/* 1600 sync. configuration */
ptr5->cmds[13] = 0x18003100;/* 3200 data configuration */
ptr5->cmds[14] = 0x19002100;/* 1600 data configuration */
ptr5->cmds[15] = 0x1A000000;/* Shut-down 1 config. */
ptr5->cmds[16] = 0x1B000000;/* Shut-down 2 config. */
ptr5->cmds[17] = 0x2000FFFF;/* Frames assignment 112-127*/
ptr5->cmds[18] = 0x2100FFFF;/* Frames assignment 96-111 */
ptr5->cmds[19] = 0x2200FFFF;/* Frames assignment 80-95 */

ptr5->cmds[20] = 0x2300FFFF;/* Frames assignment 64-79 */
ptr5->cmds[21] = 0x2400FFFF;/* Frames assignment 48-63 */
ptr5->cmds[22] = 0x2500FFFF;/* Frames assignment 32-47 */
ptr5->cmds[23] = 0x2600FFFF;/* Frames assignment 16-31 */
ptr5->cmds[24] = 0x2700FFFF;/* Frames assignment 0-15 */
ptr5->cmds[25] = 0x7800000F;/* User address enable */
ptr5->cmds[26] = 0x801F0063;/* User address 0 */
ptr5->cmds[27] = 0x811F11E9;/* User address 1 */
ptr5->cmds[28] = 0x821F2700;/* User address 2 */
ptr5->cmds[29] = 0x831F2696;/* User address 3 */

ptr5->cmds[30] = 0x84090000;/* User address 4 */
ptr5->cmds[31] = 0x85088765;/* User address 5 */
ptr5->cmds[32] = 0x86100005;/* User address 6 */
ptr5->cmds[33] = 0x871C0CCE;/* User address 7 */
ptr5->cmds[34] = 0x881F2701;/* User address 8 */
ptr5->cmds[35] = 0x891F2702;/* User address 9 */
ptr5->cmds[36] = 0x8A400001;/* User long address 10 */
ptr5->cmds[37] = 0x8B5F8000;/* User long address 11 */
ptr5->cmds[38] = 0x8C400002;/* User long address 12 */
ptr5->cmds[39] = 0x8D5F9000;/* User long address 13 */

ptr5->cmds[40] = 0x8E0EEEEE;/* User address 14 */
ptr5->cmds[41] = 0x8F0FFFFF;/* User address 15 */
ptr5->cmds[42] = 0x02000001;/* Control packet */

return;
}

Example 3-10 Function BuildInitBuffer() (Continued)

3-24 FLEX Alphanumeric Chip MC68175 Interface MOTOROLA

Software Development

Porting FLEX One-Way Stack to the MC68328 MPU

3.2.5 Retrieving Paging Messages from FLEX One-Way Stack

This section illustrates sample code acting as the host software running on the MCU.
When FLEX One-Way Stack software has a new paging message in the buffer, the main ()
and GetPage functions retrieve the message and display it to the user. These functions
also illustrate the API provided in the software. Function main () code is shown in
Example 3-11. Function Getpage code is shown in Example 3-12.

Example 3-11 Function main()

/**
 * FUNCTION NAME: main() *
 * Date created: 07/26/96 *
 * *
 * Description: *
 * This is the main module that controls the FLEXstack software *
 * to communicate with the FLEXchip IC. *
 * *
 * INPUT: None *
 * OUTPUT: None *
 ***/

main()
{
 UVAR8 i;

 /* Initialize the SPI communication module to enable FLEXchip */
 _FlexICInit();

 /*
 * Initializes some global variables for storage of
 * FLEX messages. The msgtable stores up to a certain number
 * of message IDs, allowing the users to retrieve previously
 * received messages.
 */
 packet = (PACKET*) _Lmalloc((UVAR32)sizeof(PACKET));
 for (i = 0; i < MSGTABLESZ; i++);
 msgtable[i] = 0;

Software Development

Porting FLEX One-Way Stack to the MC68328 MPU

MOTOROLA FLEX Alphanumeric Chip MC68175 Interface 3-25

 /* Prepare the initialization buffer */
 BuildInitBuffer();
 /*
 * Initialize FLEXstack - init_buffer is the pointer to the
 * beginning of the initialization buffer.
 */
 FStkInit(init_buffer);

 /*
 * Poll FLEXstack for new messages. Programmer can also uses
 * timer interrupt to call FLEXstack function periodically
 * for new message.
 */
 while(1)
 {
 delay(10000);
 FLEXstack();
 }
}

Example 3-12 Function GetPage

/**
 * FUNCTION NAME: GetPage(MSGID) *
 * Date created: 07/26/96 *
 * *
 * Description: *
 * This function retrieves a message from FLEXstack *
 * and calls function displayMessage to display the message *
 * on the LCD. *
 * *
 * INPUT: msgid: MSGID-type variable - a number to *
 * identify the message to be retrieved *
 * OUTPUT: None *
 * *
 * GLOBAL VARIABLES *
 * *
 ***/

void GetPage(MSGID msgid)
{

HEADER* header;
UVAR8* handle;
char pageData[64];
int i = 0;
FILTERDATA filterData;

Example 3-11 Function main() (Continued)

3-26 FLEX Alphanumeric Chip MC68175 Interface MOTOROLA

Software Development

Porting FLEX One-Way Stack to the MC68328 MPU

/* Read the first message specified in the table */
handle = (UVAR8*) FStkOpen(msgid, (UVAR8)FILTERED);

/* Get the message attributes, including message length */
 header = (HEADER *)
FStkGetAttrib(msgid,(UVAR8)(sizeof(HEADER)), ATTRIB_BUF);

/*
 * In the case that we cannot open the message, return

 to the caller
 */
if (!header) {
 (void)FStkClose(handle);
 return;
}

if (BTST(header->e.msg_attrib, HDR_TONE_ONLY)) {
 pageData[i] = '\0';
}
else {

 /* Retrieve message and store it in pageData variable */
 for (i = 0; i < header->e.msg_char_size; i++) {
 (void)FStkRead(handle, (UVAR8*) &filterData);
 if ((filterData.data >= 0x20) && (filterData.data

 < 0x7F))
 pageData[i] = (UVAR8) filterData.data;

 else
 pageData[i] = 0x2E;

 }
 pageData[i] = '\0';
}
(void)FStkClose(handle);

/* Display the paging message on LCD */
displayMessage(pageData);

}

Example 3-12 Function GetPage (Continued)

