

Designing Motorola DSP56xxx
Software for Nonrealtime Tests

File I/O Using SIM56xxx and ADS56xxx

by

Tom Zudock

Motorola, Incorporated
Semiconductor Products Sector
6501 William Cannon Drive West
Austin, TX 78735-8598

 OnCE and Mfax are trademarks of Motorola, Inc.

 M

otorola reserves the right to make changes without further notice to any products herein to improve
reliability, function, or design. Motorola does not assume any liability arising out of the application or
use of any product or circuit described herein; neither does it convey any license under its patent rights
nor the rights of others. Motorola products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other application in which the
failure of the Motorola product could create a situation where personal injury or death may occur.
Should Buyer purchase or use Motorola products for any such unintended or unauthorized application,
Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and

are registered trademarks of Motorola, Inc.
Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© MOTOROLA INC., 1998

Order this document by: APR35/D

MOTOROLA

Nonrealtime Software Tests

iii

TABLE OF CONTENTS

INTRODUCTION . 1-1

1.1 INTRODUCTION . 1-3
1.2 SCOPE. 1-3
1.3 NONREALTIME EXECUTION . 1-3
1.4 BENEFITS OF NONREALTIME EXECUTION. 1-3

FILE INPUT/OUTPUT . 2-1

2.1 FILE INPUT/OUTPUT (I/O) . 2-3
2.1.1 Simulator File I/O . 2-3
2.1.2 Application Development System (ADS) File I/O. 2-4
2.2 COMMON FILE I/O MISTAKES . 2-7
2.2.1 Mistakes Common to Both the Simulator and the ADS 2-7
2.2.2 Simulator Mistakes . 2-7
2.2.3 ADS Mistakes . 2-8

CONDITIONAL ASSEMBLY . 3-1

3.1 CONDITIONAL ASSEMBLY . 3-3
3.2 EXAMPLE CODE . 3-5

iv

Nonrealtime Software Tests

MOTOROLA

MOTOROLA

Nonrealtime Software Tests

v

LIST OF EXAMPLES

Example 2-1 DSP Copy I/O Program A . 2-3

Example 2-2 Simulator Command Script . 2-4

Example 2-3 DSP Copy I/O Program B . 2-5

Example 2-4 ADS Command Script . 2-6

Example 3-1 Combined Application Code . 3-3

vi

Nonrealtime Software Tests

MOTOROLA

SECTION 1

INTRODUCTION

1-2 Nonrealtime Software Tests MOTOROLA

Introduction

1.1 INTRODUCTION. 1-3
1.2 SCOPE . 1-3
1.3 NONREALTIME EXECUTION . 1-3
1.4 BENEFITS OF NONREALTIME EXECUTION 1-3

Introduction

Introduction

MOTOROLA Nonrealtime Software Tests 1-3

1.1 INTRODUCTION

The debugging of realtime digital signal processing systems is inherently challenging
because of their complex nature and the high performance they demand. By executing
portions of a Digital Signal Processor (DSP) application in nonrealtime using the
Motorola DSP Simulator or the Application Development System (ADS), many bugs can
be identified and eliminated before system integration and system test. This application
report presents the methods for performing file I/O using the Simulator and ADS. Using
conditional assembly allows quick software reconfiguration for simulation, ADS, or
realtime execution and is presented here as a solution to multiexecution environment
needs.

1.2 SCOPE

This document focuses on using the Motorola tools to promote quality software rather
than complex DSP algorithms and systems. In fact, the DSP software and system
examples have intentionally been kept simple to maintain the emphasis on the true
purpose of the application report.

1.3 NONREALTIME EXECUTION

In this document, nonrealtime execution refers to the execution of code on the DSP
Simulator or the use of any DSP with a debugger that prevents continuous DSP
execution (i.e., using file I/O through a debugger). The benefits of designing software to
be executed in this manner are numerous.

1.4 BENEFITS OF NONREALTIME EXECUTION

When a project reaches the point where DSP coding begins, it is convenient to initiate
code development using file I/O. It provides a controlled environment in which input
data can be specific and output data can be examined sample by sample. Further, many
DSP applicationsÕ functionalities are defined by input vectors and the proper bit exact
output. By specifying an input data file and saving the output as a data file, it is possible
to verify such criteria. Additionally, if bit exact output is obtained only up to a certain
point, the DSP software can be executed up to the point of failure and then stopped.
Debugging may ensue thereafter.

1-4 Nonrealtime Software Tests MOTOROLA

Introduction

Benefits of Nonrealtime Execution

DSP applications typically depend upon continuous data input, which is provided via
interrupt. Multiple interrupts and processes are often performed by a system.
Nonrealtime testing can be used to verify each block individually before integrating an
entire system. Time spent at system test debugging subsystem failures is thus saved.
Final system integration and test are complex enough without the additional effort of
algorithm debug.

Using file I/O also promotes precise characterization of an algorithm without the
introduction of the performance limitations of other hardware. Analog stages and
codecs introduce artifacts into any DSP system. File I/O can be used to provide a ÒcleanÓ
digital input to evaluate maximum performance of an algorithm. Further, phase shifts,
noise, and other real-world signal characteristics can be introduced to the input data to
help determine the analog system performance required to maintain the desired overall
signal processing capability. In addition, testing can be automated by using operating
system scripts to execute debuggers and data analysis programs. This ensures test
repeatability and promotes archiving test data. Moreover, computers can test around the
clock while most engineers cannot.

If code is executing using the DSP Simulator, profiling information is immediately
available. The Motorola DSP profiler provides extensive execution performance statistics
that can be used to optimize DSP software. Because the initial implementation of a DSP
algorithm exceeds the available realtime resources, nonrealtime execution using file I/O
may initially be the only method possible. Using the profiler may allow early
implementations to be improved sufficiently to execute them in realtime.

SECTION 2

FILE INPUT/OUTPUT

2-2 Nonrealtime Software Tests MOTOROLA

File Input/Output

2.1 FILE I/O. 2-3
2.1.1 Simulator File I/O . 2-3
2.1.2 Application Development System File I/O 2-4
2.2 COMMON FILE I/O MISTAKES . 2-7
2.2.1 Mistakes Common to Both the Simulator and the ADS 2-7
2.2.2 Simulator Mistakes . 2-7
2.2.3 ADS Mistakes. 2-8

File Input/Output

File Input/Output (I/O)

MOTOROLA Nonrealtime Software Test 2-3

2.1 FILE INPUT/OUTPUT (I/O)

The fundamental purpose of nonrealtime testing is to provide input data to the Digital
Signal Processor (DSP) software and store the resulting output. The Motorola DSP
Simulator and Application Development System (ADS) software support this
functionality differently. Both methods are summarized in this section.

2.1.1 Simulator File I/O

The Simulator supports file I/O by memory mapping. A DSP address is associated with
an input or output file using a Simulator command. Each time the DSP software reads
that address, the Simulator will input data from the specified file. The Simulator will
output data to the specified file each time the DSP software writes that address.
Consider a simple DSP program that will copy an input file to an output file and the
associated Simulator commands.

In the preceding program, the DSP software moves data from the

X

 memory location

datain

 to the

Y

 memory location dataout by using the

x0

 register.

Note:

In the code examples that follow, the terms MSB and LSB refer to Most Significant
Byte and Least Significant Byte, respectively. However, normally MSB and LSB refer
to bits.

Example 2-1

DSP Copy I/O Program A

; filename: fileio.asm
 org p:$80
start
 move x:simdatain,x0 ; x0=input data
 move x0,x:simdataout ; move x0 to output
 jmp start ; repeat process

 org x:$0 ;
simdatain ds 1 ; memory location for input data
simdataout ds 1 ; memory location for output data

2-4 Nonrealtime Software Tests MOTOROLA

File Input/Output

File Input/Output (I/O)

Now examine a Simulator command script that will associate an input and output
file to the

datain

 and

dataout

 memory locations.

In the preceding Simulator command script the following holds true:

¥ Lines 1Ð3 reset the state of the Simulator and close any open input or output
files.

¥ Line 4 loads the

fileio.cld

 file for execution.

¥ Line 5 tells the Simulator to read data from the data file

 infile.dat

 in
hexadecimal format, -rh, whenever the DSP software reads memory
location

 datain.

¥ Line 6 provides identical functionality for the output file with the additional -o
option, forcing an overwrite of the output file if that file already exists.

¥ Line 7 indicates that the Simulator should halt execution when the input
end-of-file is reached.

¥ Finally, line 8 begins execution of the program.

2.1.2 Application Development System (ADS) File I/O

The Application Development System (ADS) software supports file I/O differently
than the Simulator. To perform file I/O using the ADS software, a debug instruction
is used in the program flow. The DSP software must initialize several registers just
before the debug instruction is executed. The initialization of these registers indicates
the file number and number of words to be transferred (the most significant byte and
least significant byte of

X0

), the starting address of the transfer (

R0

), and the target
memory (

R1

).

Example 2-2

Simulator Command Script

reset s ; reset simulator
input off ; reset all input files
output off ; reset all output files
load fileio.cld ; load the dsp program
input #1 simdatain infile.dat -rh ; input from infile.dat from address datain
output #1 simdataout outfile.dat -rh -o ; output to outfile.dat to address dataout
break EOF ; stop when an input file reaches end-of-file
go ; execute program

File Input/Output

File Input/Output (I/O)

MOTOROLA Nonrealtime Software Test 2-5

Now examine a DSP program that performs the same function (copies an input file to an
output file) as discussed in the Simulator section, as well as the associated ADS
commands.

At first glance, it would appear that this program doesn't do very much at all. However,
by coupling it with the proper ADS command script, it will copy an input file to an
output file. When the program is running and a debug instruction is encountered, the
ADS is notified. The ADS will check the address of the debug instruction to see if it is
associated with an input or output command. If it is, the ADS will use the contents of
registers

X0

,

R0

, and

R1

, to provide the information it needs to either read or write data
to or from the DSP.

Notice that this program transfers blocks of data, size

$20

. The block size is user-
specified in the least significant byte of the

X0

 registers. However, be aware that since all
of the DSP code is running at full processor speed except for the file I/O, the smaller the
block size, the longer it will take to execute the code. Since the block size is a byte-wide
entity, the largest block size is 255. If block transfers larger than 255 are required, then a
loop can be used that updates the

X0

,

R0

, and

R1

 registers as needed and repeatedly
executes the

debug

 instruction.

Example 2-3

DSP Copy I/O Program B

; filename: fileio.asm
bufsize equ $20

 org p:$80
start
 move #$010000+bufsize,x0 ; MSB=infile #1, LSB=bufsize
 move #dataio,r0 ;input address is dataio
 move #>1,r1 ; input data into X memory
adsdatain debug ;
 move #$010000+bufsize,x0 ; MSB=outfile #1, LSB=bufsize
 move #dataio,r0 ; output address is dataio
 move #>1,r1 ; output data into X memory
adsdataout debug ;
 jmp start ; repeat process

 org x:$0 ;
dataio ds bufsize ; buffer for data io

2-6 Nonrealtime Software Tests MOTOROLA

File Input/Output

File Input/Output (I/O)

Now examine the ADS command script that will properly initialize the debugger.

In the preceding ADS command script the following holds true:

¥ Line 1 resets the command converter and target system, which provides a known
initial state for the system.

¥ Line 2 specifies the target processor for the command converter.

¥ Line 3 sets the omr to zero which for the DSP56004 enables internal Program
RAM and disables the bootstrap code.

¥ Lines 4Ð5 reset all input and output files by closing them.

¥ Line 6 loads the program.

¥ Lines 7Ð8 specify the file numbers and program memory addresses for the I/O.

¥ Line 9 tells the ADS to break when the input file reaches its end.

¥ Finally, the program is started with the GO command.

Notice that the addresses specified are taken directly from the labels used in the DSP
program. Also, notice the file numbers are those used to initialize the X0 register just
prior to the debug instruction in the DSP program.

Example 2-4

ADS Command Script

force s ; reset command converter and target processor
device dv0 56004 ; specifiy target device type
change or 0 ; enable PRAM (for some 56xxx processors)
input off ; reset all input files
output off ; reset all output files
load fileio.cld ; load the dsp program
input #1 adsdatain infile.dat -rh ; input from infile.dat from address datain
output #1 adsdataout outfile.dat -rh -o ; output to outfile.dat to address dataout
break EOF ; stop when an input file reaches end-of-file
go ; stop when an input file reaches end-of-file

File Input/Output

Common File I/O Mistakes

MOTOROLA Nonrealtime Software Test 2-7

2.2 COMMON FILE I/O MISTAKES

The preceding sections provide simple examples of methods that can be used to perform
file I/O using the ADS and Simulator software. Although the techniques are
straightforward, there are a number of frequently made errors. Hopefully, this section
will prevent the reader from making the same mistakes many have already encountered.

2.2.1 Mistakes Common to Both the Simulator and the ADS

The following steps should be taken to avoid most mistakes common to both the
Simulator and the ADS:

¥ Verify that the input file data is the same radix as that specified in the input
statement.

¥ Eliminate any potential infinite loops using conditional assembly. For instance, if
the DSP software polls an external device before proceeding and there is no
intention to simulate the external device, be certain to bypass the code.

¥ Close all open input and output files if initiating new execution. Reloading and
reexecuting a DSP program does not reset the file pointers to any open input or
output files. Hence, input data will resume from the current input file position
and data output will be appended to the current output position.

2.2.2 Simulator Mistakes

To avoid Simulator mistakes, take the following steps:

¥ If simulating peripheral interrupts, confirm that the cycle spacing between
simulated interrupts matches the actual sample rate. If interrupted too frequently,
the application may experience buffer underruns or overruns.

¥ Disable interrupts or peripherals if they will interfere with nonrealtime execution
of the DSP code. Although it is completely possible and often desirable to fully
simulate the peripherals that provide I/O into the application, be sure to disable
these routines if I/O will be performed without them.

2-8 Nonrealtime Software Tests MOTOROLA

File Input/Output

Common File I/O Mistakes

2.2.3 ADS Mistakes

To avoid the most common ADS mistakes, take the following steps:

¥ The ADS block I/O is linear and does not examine the contents of M0 to
determine if it is set for modulo addressing. Hence, if the data is being transferred
to/from a modulo buffer, it must be copied from/to a linear block and then
transferred from/to the file. Otherwise, data may be input/output past the top of
the modulo buffer.

¥ The ADS file I/O method uses several registers that may be needed by the DSP
program. Be certain that destroying the registers does not affect the program or
preventively back them up to make the I/O code transparent to operation.

¥ Disable interrupts or peripherals if they will interfere with nonrealtime execution
of the DSP code. Since the DSP is likely part of a larger system, the peripherals
may be receiving clocks or other assertion signals. Alternatively, the peripherals
may internally be programmed to generate the signals and interrupts themselves.
The result may be undesired executions of an interrupt service routine accessing
input and output buffers when the intended I/O is via the debugger.

SECTION 3

CONDITIONAL ASSEMBLY

3-2 Nonrealtime Software Tests MOTOROLA

Conditional Assembly

3.1 CONDITIONAL ASSEMBLY . 3-3
3.2 EXAMPLE CODE . 3-5

Conditional Assembly

Conditional Assembly

MOTOROLA Nonrealtime Software Test 3-3

3.1 CONDITIONAL ASSEMBLY

Because the Simulator and the ADS use different file I/O techniques and require
different support code, conditional assembly should be used to select the proper build
for the execution that will ensue. Through the use of a makefile, conditional assembly,
and Simulator/ADS command macros, the software can promptly and easily be rebuilt
and executed as desired. To facilitate such an approach and maintain readability, the
code should be structured to use subroutines for input and output.

Combine the two applications discussed in prior sections into one application that can be
built to execute using file I/O on either the Simulator or the ADS.

Example 3-1 Combined Application Code

; filename: fileio.asm
bufsize equ $20

org p:$80
start

if ("exec"=="adsio")||("exec"=="simio")
jsr datain ; call input data subroutine
endif ;
; core purpose of DSP application here ;
if ("exec"=="adsio")||("exec"=="simio")
jsr dataout ; call output data subroutine
endif ;
jmp start ; repeat process

if ("exec"=="simio")||("exec"=="adsio") ;
datain ;

if ("exec"=="simio") ;
move #dataio,r0 ; r0=base address of I/O buffer
move #-1,m0 ; set linear addressing mode
do #bufsize,_input_data ; read in bufsize words
move x:simdatain,x0 ;
move x0,x:(r0)+ ;

_input_data ;
endif ; endif "simio"
if ("exec"=="adsio") ;
move #$010000+bufsize,x0 ; MSB=infile #1, LSB=bufsize
move #dataio,r0 ; input address is dataio
move #>1,r1 ; input data into X memory

adsdatain debug ;
endif ; endif "adsio"
rts ;

3-4 Nonrealtime Software Tests MOTOROLA

Conditional Assembly

Conditional Assembly

In the preceding example, there are essentially two conditional assembly variables used:
simio and adsio. Notice that in some portions of the code the conditional inclusion is
dependent upon only one of the variables, while in others the dependency is upon both
variables. In short, the code sections included by either variable are used in both
Simulator and ADS file I/O, while those included by only one of the variables are
needed for only that type of I/O.

Also notice that if neither variable is defined, no file I/O code is included and the bare
DSP application is left. A third conditional assembly variable could be used that
indicates the code build is for realtime I/O. An example of this would perhaps be rtio.
This variable could be used to include peripheral initialization when the build is for the
final system.

dataout ;
if ("exec"=="simio") ;
move #dataio,r0 ; r0=base address of I/O buffer
move #-1,m0 ; set linear addressing mode
do #bufsize,_output_data ; read in bufsize words
move x:(r0)+,x0 ;
move x0,x:simdataout ;

_output_data ;
endif ; endif "simio"
if ("exec"=="adsio") ;
move #$010000+bufsize,x0 ; MSB=outfile #1, LSB=bufsize
move #dataio,r0 ; output address is dataio
move #>1,r1 ; output data into X memory

adsdataout debug ;
endif ; endif "adsio"
rts
endif ; endif all file I/O routines

org x:$0 ;
if ("exec"=="simio")||("exec"=="adsio") ;

dataio ds bufsize ;
if ("exec"=="simio") ;

simdatain ds 1 ;
simdataout ds 1 ;

endif
endif

Example 3-1 Combined Application Code (Continued)

Conditional Assembly

Example Code

MOTOROLA Nonrealtime Software Test 3-5

Specifying the section of code to be included at assembly time can be done in two ways.
It is recommended that both be used. First, the define assembler directive can be used in
the code itself. An advantage of this is that a default value is always found in the code.
For instance, the final system build variable (rtio suggested earlier) may be in the code
to define the default build. When the code is built, a different conditional assembly
variable may be specified to override the default variable in the code.

Below, the code is built for ADS file I/O using the -d assembler option (which overrides
any internally defined value for the exec variable).

asm56000 -a -b -l -d exec adsio fileio.asm

The code was intentionally set up to use the same Simulator and ADS macros presented
in previous sections. The user simply needs to use the proper macro for a given code
build. All that remains for the software presented to truly become useful is for the user
to add the spice of a signal processing algorithm.

3.2 EXAMPLE CODE

The example code presented in this application report is available via the Motorola
website at the following address:

http://www.motorola-dsp.com/documentation/appnotes

3-6 Nonrealtime Software Tests MOTOROLA

Conditional Assembly

Example Code

