
 

MOTOROLA

 

Semiconductor Application Note

 

Order by APR39/D
(Motorola Order Number)

Rev. 0 , 10/98

© Motorola, Inc., 1998

 

P
ro

gr
am

m
in

g 
th

e 
D

S
P

56
30

7 
E

F
C

O
P

 

Programming the 
DSP56307 Enhanced Filter 
Coprocessor (EFCOP)

 

Tina M. Redheendran

 

The enhanced filter coprocessor (EFCOP) is a 
general-purpose peripheral module of the DSP56307 that is a 
fully programmable complex filter. The EFCOPÕs optimized 
modes of operation perform complex finite impulse response 
(FIR) filtering, infinite impulse response (IIR) filtering, 
adaptive FIR filtering, and multichannel FIR filtering. The 
EFCOP filter operations are completed concurrently with the 
DSP56300 core operations with minimal CPU intervention. 

The EFCOP has dedicated modes of operation optimized for 
cellular basestation applications. In a transceiver basestation, 
the EFCOP can perform complex matched filtering to 
maximize the signal-to-noise ratio (SNR) within an 
equalization process. In a transcoder basestation or a mobile 
switching center, the EFCOP can perform all types of FIR 
and IIR filtering within a vocoder, as well as LMS-type echo 
cancellation.

This document describes the programming model for the 
EFCOP and presents two application examples for the 
EFCOP:

¥ A complete IIR filter

¥ An LMS echo canceller

It is assumed that you already have access to the available 
Motorola DSP56307 documentation, which is located on the 
Motorola DSP World Wide Web site at the following 
address:

 

http://www.motorola-dsp.com/documentation

 

You can download the example EFCOP code presented in 
this application report from the Motorola DSP Web site at the 
following address:

 

http://www.motorola-dsp.com/documentation/app
notes

 

Contents

 

1 EFCOP Programming Model .... 1-1

 

1.1 EFCOP Description ......................1-1
1.2 EFCOP Registers ..........................1-2
1.2.1 Filter Data Input Register 

(FDIR)...........................................1-2
1.2.2 Filter Data Output Register 

(FDOR) .........................................1-2
1.2.3 Filter K-Constant Input Register 

(FKIR)...........................................1-2
1.2.4 Filter Count Register (FCNT).......1-3
1.2.5 EFCOP Control Status Register 

(FCSR) ..........................................1-3
1.2.6 EFCOP ALU Control Register 

(FACR) .........................................1-5
1.2.7 EFCOP Data Base Address

(FDBA) .........................................1-6
1.2.8 EFCOP Coefficient Base Address

(FCBA) .........................................1-6
1.2.9 Decimation/Channel Count 

Register (FDCH)...........................1-7

 

2 IIR Filter Example ..................... 2-1

 

2.1 IIR Filter Theory...........................2-1
2.2 IIR Filter Design ...........................2-2
2.3 IIR Filter Example Code...............2-3
2.3.1 Initialization of Constants.............2-3
2.3.2 FIR Filter Session .........................2-5
2.3.3 IIR Filter Session ..........................2-8
2.3.4 Coefficients, Taps, and Input........2-9
2.4 Filter Results ...............................2-10

 

3 Echo Canceller Example ........... 3-1

 

3.1 Echo Canceller Theory .................3-1
3.2 Echo Canceller Design..................3-2
3.3 Example Code...............................3-3
3.3.1 Declaration of Constants...............3-3
3.3.2 EFCOP Initialization.....................3-4
3.3.3 Interrupt Code to Implement the 

Coefficient Update........................3-5
3.3.4 Initialization of Coefficients

and Input .......................................3-6
3.4 Echo Canceller Results .................3-7

 

4 Correlation Notes....................... 4-1
5 ProgrammerÕs Reference ........... 5-1



 

Programming the DSP56307 EFCOP Motorola



 

EFCOP Description

Motorola 1-1

 

1

 

EFCOP Programming Model

 

This section describes the registers for configuring and operating the EFCOP. The 

 

DSP56307 UserÕs 
Manual

 

 discusses EFCOP programming in detail, including the basic types of filter algorithms that can 
be processed.

 

1.1   EFCOP Description

 

As Figure 1-1 shows, the EFCOP comprises the following main functional blocks:

¥ Peripheral module bus (PMB) interface, including:

Ñ Data input buffer

Ñ Constant input buffer

Ñ Output buffer

Ñ Filter counter

¥ Filter data memory (FDM) bank

¥ Filter coefficient memory (FCM) bank

¥ Filter multiplier-accumulator (FMAC) machine

¥ Address generator

¥ Control logic

 

Figure 1-1.   EFCOP Block Diagram

Filter Count

Address
Generator

Control

4-Word 

DATA

Memory Bank

24-bit

COEFFICIENT
Memory Bank

24-bit

FMAC
24x24 -> 56-bit

Output Buffer

Rounding & Limiting

DMA Bus

GDB BusPMB

Interface

Logic

Data Input Buffer
FDIR

FDM

FCM

FDOR

FCNT

Filter Constant
FKIR

X Memory
Shared
RAM

Y Memory
Shared
RAM

Coeff. Base Ad.
FCBA

Data Base Ad.
FDBA

AA1491



 

1-2 DSP56307 EFCOP Programming Motorola

EFCOP Registers

 

1.2   EFCOP Registers

 

Table 1-1 lists the EFCOP registers available to the digital signal processing programmer. The next 
subsections describe these registers in detail.

 

1.2.1   Filter Data Input Register (FDIR)

 

The FDIR is a 24-bit 4-word-deep FIFO for DSP-to-EFCOP data transfers. Up to four data samples 
can be written into the FDIR using the same address. Data from the FDIR is transferred to the FDM for 
filter processing. For proper operation, write data to the FDIR only if the FDIBE status bit is set, 
indicating that the FIFO is empty. Writing to the FDIR clears the FDIBE bit. Data transfers can be 
triggered by an interrupt request (for core transfers) or a DMA request (for DMA transfers). Both the 
DSP56300 core and the DMA controller can access the FDIR for writes.

 

1.2.2   Filter Data Output Register (FDOR)

 

The FDOR is a 24-bit read-only register for EFCOP-to-DSP data transfers. The result of the filter 
processing is transferred from the FMAC to the FDOR. For proper operation, read data from the 
FDOR only if the FDOBF status bit is set, indicating that the FDOR contains data. Reading from the 
FDOR clears the FDOBF bit. Data transfers can be triggered by an interrupt request (for core transfers) 
or a DMA request (for DMA transfers). The FDOR is accessible for reads by the DSP56300 core and 
the DMA controller.

 

1.2.3   Filter K-Constant Input Register (FKIR)

 

The FKIR is a 24-bit write-only register for DSP-to-EFCOP constant transfers. The filter constants are 
written to the FKIR before echo cancellation processing and transferred to the FMAC adder. The 
FKIR is accessible for reads or writes only by the DSP56300 core.

 

Table 1-1.   EFCOP Registers and Base Addresses 

 

Address EFCOP Register Name

$FFFFB0 Filter data input register (FDIR)

$FFFFB1 Filter data output register (FDOR)

$FFFFB2 Filter K-constant register (FKIR)

$FFFFB3 Filter count register (FCNT)

$FFFFB4 Filter control status register (FCSR)

$FFFFB5 Filter ALU control register (FACR)

$FFFFB6 Filter data buffer base address (FDBA)

$FFFFB7 Filter coefficient base address (FCBA)

$FFFFB8 Filter decimation/channel register (FDCH)



 

EFCOP Registers

Motorola 1-3

 

1.2.4   Filter Count Register (FCNT)

 

The FCNT register is a 24-bit read/write register for selecting the filter length (number of filter taps). 
Always write the initial count into the FCNT register before enabling the EFCOPÑthat is, setting the 
FEN bit (bit 0 of the FCSR). Do not change the contents of the FCNT register unless the EFCOP is in 
the individual reset state (FEN = 0). In the individual reset state, the EFCOP module is inactive, but 
the contents of the FCNT register are preserved. Table 1-2 describes the FCNT register bits.

 

1.2.5   EFCOP Control Status Register (FCSR)

 

The FCSR is a 24-bit read/write register by which the DSP56300 core controls the main operation 
modes of the EFCOP and monitors the EFCOP status. All FCSR bits are cleared after hardware and 
software reset. To ensure proper operation, do not change the FCSR bits unless the EFCOP is in 
individual reset state (i.e., FEN = 0) except FEN, FDIOE, FDIIE, FUPD, and FADP. Table 1-3 
describes the FCSR bits.

 

Table 1-2.   FCNT Register Bits

 

Bit Number Mnemonic Value Function

23Ð12 Ñ These bits are reserved and should be written with 0

11Ð0 FCNT

 

Filter Count

 

Ñ These bits should be written with the number of coefficient values 
minus one

 

Table 1-3.   FCSR Bits 

 

Bit Number Mnemonic Value Function

23Ð16 Ñ These bits are reserved and should be written with 0

15 FDOBF

 

Filter Data Output Buffer Full

 

 - status bit

0 FDOR is empty

1 FDOR is full and ready to be read by the Core or DMA

14 FDIBE

 

Filter Data Input Buffer Empty

 

 - status bit

0 FDIR is full

1 FDIR is empty and ready to be written to by the Core or DMA

13 FCONT

 

Filter Contention

 

 - sticky status bit 

0 Memory contention has not occurred 

1 Memory contention occurred between the Core and the EFCOP

12 FSAT

 

Filter Saturation

 

 - sticky status bit 

0 Overflow or underflow has not occurred

1 Overflow or underflow occurred



 

1-4 DSP56307 EFCOP Programming Motorola

EFCOP Registers

 

11 FDOIE

 

Filter Data Output Interrupt Enable

 

0 Interrupt disabled

1 Interrupt enabled

10 FDIIE

 

Filter Data Input Interrupt Enable

 

0 Interrupt disabled

1 Interrupt enabled

9 Ñ This bit is reserved and should be written with 0

8 FSCO

 

Filter Shared Coefficients mode

 

 -valid only in multichannel 
mode (FMLC bit in FCSR = 1)

0 Sequential coefficients

1 Shared coefficients

7 FPRC

 

Filter Processing State Initialization mode

 

 - valid only with FIR 
filter type (FLT bit in FCSR = 0) 

0 Initialization enabled

1 Initialization disabled

6 FMLC Filter Multichannel mode

0 Multichannel mode disabled

1 Multichannel mode enabled

5Ð4 FOM

 

Filter Operation mode

 

 - valid only with FIR filter type (FLT bit in 
FCSR = 0) 

00 Mode 0: Real FIR filter

01 Mode 1: Full complex FIR filter

10 Mode 2: Complex FIR filter with alternate real and imaginary 
outputs

11 Mode 3: Magnitude

3 FUPD

 

Filter Update

 

 - valid only with FIR filter type (FLT bit in FCSR = 
0), automatically cleared by the EFCOP and automatically set in 
adaptive mode (FADP bit in FCSR = 1)

0 Coefficient update is complete

1 Begin coefficient update

 

Table 1-3.   FCSR Bits (Continued)

 

Bit Number Mnemonic Value Function



 

EFCOP Registers

Motorola 1-5

 

1.2.6   EFCOP ALU Control Register (FACR)

 

The FACR is a 24-bit read/write register by which the DSP56300 core controls the main operation 
modes of the EFCOP arithmetic logic unit (ALU). All FACR bits are cleared after hardware and 
software reset. Table 1-4 describes the FACR bits.

 

2 FADP

 

Filter Adaptive mode

 

 - valid only with FIR filter type (FLT bit in 
FCSR = 0) 

0 Adaptive mode disabled

1 Adaptive mode enabled

1 FLT 

 

Filter Type

 

0 FIR filter

1 IIR filter

0 FEN

 

Filter Enable 

 

0 EFCOP disabled and in the individual reset state

1 EFCOP enabled

 

Table 1-4.   FACR Bits 

 

Bit Number Abbrev. Value Function

23Ð7 Ñ These bits are reserved and should be written with 0

6 FISL

 

Filter Input Scale

 

 - scaling in each case is determined by the 
FSCL[1:0] bits in the FCSR

0 Scale both the IIR feedback terms and the IIR input

1 Scale only the IIR feedback terms

5  FSA

 

Filter Sixteen-bit Arithmetic mode

 

0 Disables sixteen-bit arithmetic mode

1 Enables sixteen-bit arithmetic mode

4 FSM 

 

Filter Saturation mode 

 

0 Disables saturation mode

1 Enables saturation mode

3Ð2 FRM

 

Filter Rounding mode

 

00 Convergent rounding

 

Table 1-3.   FCSR Bits (Continued)

 

Bit Number Mnemonic Value Function



 

1-6 DSP56307 EFCOP Programming Motorola

EFCOP Registers

 

1.2.7   EFCOP Data Base Address (FDBA)

 

The FDBA is a 16-bit read/write counter register used as an address pointer to the EFCOP FDM bank. 
The FDBA points to the location to write the next data sample. The FDBA points to a modulo delay 
buffer of size M, defined by the filter length (M = FCNT[11:0] + 1). The address range of this modulo 
delay buffer is defined by lower and upper address boundaries. The lower address boundary is the 
FDBA value with 0s in the k LSBs, where 

 

2

 

k

 

 

 

≥

 

 

 

M

 

 

 

≥

 

 

 

2

 

k-1

 

, and therefore must be a multiple of 2

 

k

 

. The 
upper boundary is equal to the lower boundary plus (M Ð 1). Since 

 

M 

 

≤ 

 

2

 

k

 

 once M is chosen (FCNT is 
assigned), the sequential series of data memory blocks (each of length 2

 

 k

 

) is created where multiple 
circular buffers for multichannel filtering can be located. If 

 

M < 2

 

k

 

, there is a space between sequential 
circular buffers of 

 

2

 

k

 

 - M

 

. The address pointer is not required to start at the lower address boundary or 
to end on the upper address boundary. It can point anywhere within the defined modulo address range. 
If the data address pointer (FDBA) increments and reaches the upper boundary of the modulo buffer, it 
wraps around to the lower boundary.

 

1.2.8   EFCOP Coefficient Base Address (FCBA)

 

The FCBA is a 16-bit read/write counter register used as an address pointer to the EFCOP FCM bank. 
The FCBA points to the first location of the coefficient table. The FCBA points to a modulo buffer of 
size M, defined by the filter length (M = FCNT[11:0] + 1). The address range of this modulo buffer is 
defined by lower and upper address boundaries. The lower address boundary is the FCBA value with 
0s in the k LSBs, where

 

 2

 

k

 

 

 

≥

 

 M 

 

≥

 

 2

 

k-1

 

, and therefore must be a multiple of 2

 

k

 

. The upper boundary is 
equal to the lower boundary plus (M Ð 1). Since 

 

M 

 

≤

 

 2

 

k

 

 once M is chosen (FCNT is assigned), the 
sequential series of coefficient memory blocks (each of length 2

 

k

 

) is created where multiple circular 
buffers for multichannel filtering can be located. If 

 

M < 2

 

k

 

, there is a space between sequential circular 
buffers of 

 

2

 

k

 

 - M

 

. The FCBA address pointer must be assigned to the lower address boundary (must 
have k 0s in its LSBs). In a compute session, the coefficient address pointer always starts at the lower 
boundary and ends at the upper address boundary. Therefore, reading FCBA always gives the value of 
the lower address boundary.

 

01 Twos complement rounding

10 Truncation (no rounding)

11 Reserved

1Ð0 FSCL

 

Filter Scaling

 

00 Scaling factor = 1 (no shift)

01 Scaling factor = 8 (3-bit arithmetic left shift)

10 Scaling factor = 16 (4-bit arithmetic left shift)

11 Reserved

 

Table 1-4.   FACR Bits (Continued)

 

Bit Number Abbrev. Value Function



 

EFCOP Registers

Motorola 1-7

 

1.2.9   Decimation/Channel Count Register (FDCH)

 

The FDCH is a 24-bit read/write register for setting the number of channels used in multichannel mode 
and setting the decimation ratio in FIR filter mode. FDCH should be written before the EFCOP is 
enabledÑthat is, setting the FEN bit (bit 0 of the FCSR). FDCH should be changed only when the 
EFCOP is in the individual reset state (FEN = 0). Otherwise, improper operation may result. In the 
individual reset state, the EFCOP module is inactive, but the contents of the FDCH register are 
preserved. Table 1-5 describes the FDCH bits. 

 

Table 1-5.   FDCH Register Bits  

 

Bit Number Abbrev. Value Function

23Ð12 Ñ These bits are reserved and should be written with 0

11Ð8 FDCM

 

Filter Decimation 

 

These bits should be written with the decimation factor minus one

7Ð6 Ñ These bits are reserved and should be written with 0

5Ð0 FCHL

 

Filter Channels

 

 - valid only in multichannel mode (FMLC bit of 
FCSR = 1)

These bits should be written with the number of channels minus 
one



 

1-8 DSP56307 EFCOP Programming Motorola

EFCOP Registers



 

IIR Filter Theory

Motorola 2-1

 

2

 

IIR Filter Example

 

This section describes how to implement a complete infinite impulse response (IIR) filter using the 
EFCOP. It gives the theoretical background, the filter design, the example code, and the results of the 
example filter.

 

2.1   IIR Filter Theory

 

The difference equation for an IIR filter is:

where

 

 x(n)

 

 is the filter input at time 

 

n

 

, 

 

y(n)

 

 is the filter output at time 

 

n

 

, 

 

N

 

 is the number of 
feed-forward filter coefficients minus one,

 

 B

 

 i

 

 

 

are the feed-forward filter coefficients, 

 

M

 

 is the number 
of feed-back filter coefficients, and 

 

A

 

 j

 

 

 

are the feed-back filter coefficients.

Equation 1 can be rewritten as:

and

where all the coefficients are scaled down by 

 

S

 

. The block diagram of Equation 2 and Equation 3 is 
shown in Figure 2-1.

The EFCOP implements an IIR filter using the logic of Figure 2-1. First, an FIR mode session 
calculates 

 

w(n)

 

 using Equation 2 and 

 

x(n) 

 

as the input. Then, an IIR mode session calculates

 

 y(n)

 

 using 
Equation 3 and 

 

w(n)

 

 as the input.

y n( ) Bix(n - i) + A jy(n - j)

j 1=

M

∑
i 0=

N

∑= (EQ 1)

w(n) = Bix n iÐ( )
i 0=

N

∑ (EQ 2)

y(n) = S w(n) + A jy n jÐ( )
j 1=

M

∑
 
 
 

(EQ 3)



 

2-2 DSP56307 EFCOP Programming Motorola

IIR Filter Design

 

Figure 2-1.   General IIR Block Diagram

 

2.2   IIR Filter Design

 

This example implements a butterworth lowpass filter with M = N = 3 and a cut-off frequency of 
0.8W

 

n

 

, where W

 

n

 

 is half the sampling rate. The filter coefficients for these design parameters 
(determined using Matlab) are shown in Table 2-1.

Many of these coefficients have magnitudes greater than 1, which cannot be expressed in the DSPÕs 
fixed point numerical representation. Thus, the coefficients are scaled down by eight before they are 
used with the EFCOP and the EFCOP scaling factor bits are set to scale up the output of the IIR filter 
by eight. Table 2-2 shows the scaled coefficients.

 

Table 2-1.   Example Filter Coefficients

 

B

 

0

 

 = 0.5276

 

Ñ

 

B

 

1

 

 = 1.5829 A

 

1

 

 = -1.7600

B

 

2 

 

= 1.5829 A

 

2

 

 = -1.1829

B

 

3

 

 = 0.5276 A

 

3

 

 = -0.2781

x(n)

Z-1

Z-1

Z-1

Z-1

y(n)

Z-1

Z-1

Z-1

Z-1

B0

B1

B2

B3

BN

A1

A2

A3

AM

w(n)

x(n-1)

x(n-2)

x(n-N+1)

x(n-N)

y(n-1)

y(n-2)

y(n-3)

y(n-M)

FIR Session IIR Session

S

x(n-3)

y(n-M+1)

AA1496



 

IIR Filter Example Code

Motorola 2-3

 

Figure 2-2 shows the block diagram for this example.

 

Figure 2-2.   IIR Block Diagram

 

2.3   IIR Filter Example Code

 

The IIR filter example code is divided into four sections:

¥ Initialize the constants

¥ Implement the FIR filter session

¥ Implement the IIR filter session

¥ Initialize the filter input, coefficients, and taps

 

2.3.1   Initialization of Constants

 

The first section of the code, shown in Example 2-1, initializes the filter constants and defines the 
constants to control the EFCOP and DMA data transfers. The input/output equate and interrupt equate 
files are included. The following memory address locations are initialized:

 

START

 

Start of the program.

 

INPUT

 

Input data 

 

x(n)

 

.

 

FIR_OUT

 

Output of the FIR session and input of the IIR session 

 

w(n).

 

OUTPUT

 

Output of the IIR session 

 

y(n).

 

Table 2-2.   Scaled Example Coefficients 

 

B

 

0

 

 = 0.0660 —

B

 

1

 

 = 0.1979 A

 

1

 

 = -0.2200

B

 

2

 

 = 0.1979 A

 

2

 

 = -0.1479

B

 

3

 

 = 0.0660 A

 

3

 

 = -0.0348

x(n)

Z-1

Z-1

Z-1

y(n)

Z-1

Z-1

Z-1

B0=0.0660

B1=0.1979

B2=0.1979

B3=0.0660

A1=-0.2200

A2=-0.1479

A3=-0.0348

y(n-1)

y(n-2)

y(n-3)

FIR Session IIR Session

S=8

x(n-1)

x(n-2)

x(n-3)

AA1497

w(n)



 

2-4 DSP56307 EFCOP Programming Motorola

IIR Filter Example Code

 

FIR_FDBA

 

Memory address pointers for the FIR and IIR filter data and coefficient buffers. 

 

IIR_FDBA

 

These constants are written to the EFCOP data buffer base address (FDBA) and 

 

FIR_FCBA

 

the EFCOP coefficient buffer base address (FCBA). The EFCOP shares the 

 

IIR_FCBA

 

lowest 4K memory locations of X and Y memory with the DSP core for the data 
and coefficient buffers, respectively.

The constant initialization section defines the following constants to control the EFCOP:

 

FIR_FCSR

 

Written to the EFCOP control status register (FCSR) to control the main operation 
modes of the EFCOP. This constant configures the EFCOP in real FIR filter mode 
with processing initialization disabled, and it sets the EFCOP enable bit for the 
FIR filter session.

 

IIR_FCSR

 

Written to the EFCOP control status register (FCSR) to control the main operation 
modes of the EFCOP. This constant configures the EFCOP in IIR filter mode, and 
it sets the EFCOP enable bit for the IIR filter session.

 

IIR_FACR

 

 Written to the EFCOP ALU control register (FACR) to control the main operation 
of the EFCOP ALU for the IIR filter session. The 

 

IIR_FACR

 

 constant sets the 
scaling factor of the IIR filter output to eight. 

 

FIR_LEN Defines the filter length. FIR_LEN is set to four because there are four FIR 
(feed-forward) filter coefficients, B i, i=0...3 for this example. FIR_LEN - 1 is 
written to the EFCOP filter count register (FCNT) for the FIR filter session.

IIR_LEN Defines the filter length. IIR_LEN is set to three because there are three IIR 
(feed-back) filter coefficients, A j, j=1...3 for this example. IIR_LEN - 1 is 
written to the FCNT register for the IIR filter session.

The constant initialization section also defines constants to control the DMA transfers. The code uses 
two DMA channels, channel 0 to transfer the input data to EFCOP data input register (FDIR) and 
channel 1 to transfer the output data from the EFCOP data output register (FDOR). 

FIR_NUMIN Written to DMA counter register 0 (DCO0) to set the number of DMA transfers to 
FDIR for the FIR session.

IIR_NUMIN Written to DMA counter register 0 (DCO0) to set the number of DMA transfers to 
FDIR for the IIR session.

Because FDIR is a 4-word-deep register, mode B of the DMA transfers four input words at a time to 
FDIR. With mode B, DOC0 is separated into two sections: DCOL (bits 0-11) and DCOH (bits 12-23). 
DCOH is set to the number of transfers minus one. DCOL is set to the number of words in each 
transfer minus one. The input file for this example has 1024 points. Thus, DOCH is set to 255 (or 
$0FF) and DCOL is set to 3. The total number of words transferred is equal to (255+1) ∗ (3+1) = 1024.

FIR_NUMOUT Written to DCO1 to set the number of DMA transfers from FDOR for the FIR 
session.

IIR_NUMOUT Written to DCO1 to set the number of DMA transfers from FDOR for the IIR 
filter session. 

Because FDOR is one word deep, mode A of the DMA transfers one output word at a time from 
FDOR. With mode A, DCO1 is set to the number of DMA transfers minus one. Thus, FIR_NUMOUT 
and IIR_NUMOUT are set to the number of output values minus one, or 1023 (or $3FF). 



IIR Filter Example Code

Motorola 2-5

Example 2-1.   IIR Filter Constant Initialization

;*******************************************************************
nolist
INCLUDE "ioequ.asm"
INCLUDE "intequ.asm"
list

;*******************************************************************
; CONSTANTS
;*******************************************************************
START  equ $100 ; Main program starting address
INPUT equ $2000 ; FIR session source address 
FIR_OUT equ $1000 ; FIR session destination address
OUTPUT equ $3000 ; IIR session destination address
FIR_FDBA equ 0 ; FIR Data Start Address x:$0
IIR_FDBA equ 100 ; IIR Data Start Address x:$100
FIR_FCBA equ 0 ; FIR Coeff Start Address y:$0
IIR_FCBA equ 100 ; IIR Coeff Start Address y:$100
FIR_FCSR equ $081 ; Enable EFCOP FIR Mode 0
IIR_FCSR equ $003 ; Enable EFCOP IIR Mode 0
IIR_FACR equ $001 ; Enable EFCOP IIR Scale by 8 Mode
FIR_LEN equ 4 ; EFCOP FIR length
IIR_LEN equ 3 ; EFCOP IIR length
FIR_NUMIN equ $0FF003 ; DMA0 Count (256*4=1024 word xfers) FIR inputs
FIR_NUMOUT equ $3FF ; DMA1 Count (1024 word xfers) FIR outputs
IIR_NUMIN equ $0FF003 ; DMA0 Count (256*4=1024 word xfers) IIR inputs
IIR_NUMOUT equ $3FF ; DMA1 Count (1024 word xfers) IIR outputs

2.3.2   FIR Filter Session
The second part of the code, shown in Example 2-2, implements the FIR filter session and calculates 
w(n) from Equation 2. The reset vector is set to the beginning of the program. The FIR_LEN, 
FIR_FDBA, and FIR_FCBA constants are written to the appropriate EFCOP registers, as described 
in Section 2.3.1, ÒInitialization of Constants.Ó FIR_FCSR is written to the FCSR to enable the 
EFCOP. 

Channel 0 of the DMA transfers the input data from memory to the FDIR four words at a time. 
Figure 2-3 shows how the DMA transfer is completed. The DMA is initialized to complete this 
transfer as follows:

¥ Identify the source of the data transferÑ The memory address location of the input data, 
INPUT, is written to the DMA source address register for channel 0 (DSR0). 

¥ Identify the destination of the data transfers Ñ The memory-mapped address location of the 
FDIR is written to the DMA destination address register for channel 0 (DDR0). 

¥ Specify the number of data transfers Ñ FIR_NUMIN, which is described in Section 2.3.1, 
ÒInitialization of Constants.Ó is written to DCO0. 

¥ Designate the offset increment Ñ The DMA offset register 0 (DOR0) is used with mode B to 
increment the DMA source address register after each transfer. For this example, the input 
data is stored sequentially in memory. Therefore, DOR0 is written with the number 1 to 
increment the DMA source address register by one after each transfer.

¥ Specify the transfer properties Ñ The DMA control register for channel 0 (DCR0) controls 
the DMA channel 0 operation. The value written to DCR0 sets the transfer to trigger from the 
EFCOP input buffer empty request. This value also sets the source transfer to mode to B using 
the offset register DOR0. The destination transfer mode is set to A with no updating of the 
destination register because the input data should always be transferred to the FDIR. The 



2-6 DSP56307 EFCOP Programming Motorola

IIR Filter Example Code

source memory space is set to X memory because the input data is stored in X memory, as 
discussed in Section 2.3.4, ÒCoefficients, Taps, and Input.Ó  The destination memory space is 
set to Y memory because all EFCOP registers including FDIR are mapped to internal Y I/O 
memory. Finally, DMA channel 0 is enabled.

Figure 2-3.   DMA Channel 0 Transfer

Channel 1 of the DMA transfers the output data from the FDOR to memory. Figure 2-4 shows how the 
DMA transfer is completed. The DMA is initialized to complete this transfer as follows:

¥ Identify the source of the data transfer Ñ The memory-mapped address location of the FDOR 
is written to the DMA source address register for channel 1 (DSR1). 

¥ Identify the destination of the data transfer Ñ The memory address location of the FIR output 
data, FIR_OUT, is written to the DMA destination address register for channel 1 (DDR1). 

¥ Specify the number of data transfers Ñ FIR_NUMOUT, which is described in Section 2.3.1, 
ÒInitialization of Constants.Ó  is written to DCO1.

¥ Specify the transfer properties Ñ The DMA control register for channel 1 (DCR1) controls 
the DMA channel 1 operation. The value written to DCR1 sets the transfer to trigger from the 
EFCOP output buffer full request. This value also sets the source transfer to mode to A with 
no updating of the source register because the output data should always be transferred from 
FDOR. The destination transfer mode is set to A with post increment by one because the 
output data is stored sequentially to memory. The source memory space is set to Y memory 
because all EFCOP registers including FDOR are mapped to internal Y I/O memory. The 
destination memory space is set to X memory because the FIR output data is stored in X 
memory. Finally, DMA channel 1 is enabled.

Bits 0 and 1 of the DMA status register (DSTR) are set when the last word is stored in the destination 
and channel operation completes for channels 0 and 1, respectively. The program polls these bits and 
waits until the DMA transfers complete before continuing. Finally, the EFCOP is put into personal 
reset mode by clearing FCSR so that the EFCOP can be programmed for the IIR filter session.

INPUT
FDIR

}
}
}

}

}

transfer #1

transfer #2

transfer #3

tra
ns

fer
 #

25
6

increment by 1
(DOR0)

       SOURCE DESTINATION

AA1498



IIR Filter Example Code

Motorola 2-7

Figure 2-4.   DMA Channel 1 Transfer

Example 2-2.   FIR Filter Session Code

;********************************************************************
;* FIR Filter Section
;********************************************************************

org P:0
jmp START

org P:START
movep #FIR_LEN-1,y:M_FCNT ; FIR length
movep #FIR_FDBA,y:M_FDBA ; FIR Data Start Address
movep #FIR_FCBA,y:M_FCBA ; FIR Coeff Start Address
movep #FIR_FCSR,y:M_FCSR ; Enable EFCOP

; DMA 0 init to input DATA to EFCOP

movep #INPUT,x:M_DSR0 ; DMA source is the INPUT data buffer
movep #M_FDIR,x:M_DDR0 ; DMA destination is the EFCOP input register
movep #FIR_NUMIN,x:M_DCO0 ; DMA count in mode B
movep #$1,x:M_DOR0 ; DMA offset is 1
movep #$94AA04,x:M_DCR0 ; DMA control reg with line mode FDIBE request

; DMA 1 init to output DATA from EFCOP

movep #M_FDOR,x:M_DSR1 ; DMA source is the EFCOP output register
movep #FIR_OUT,x:M_DDR1 ; DMA destination is the FIR_OUT data buffer
movep #FIR_NUMOUT,x:M_DCO1 ; DMA count
movep #$8EB2C1,x:M_DCR1 ; DMA control register with FDOBF request

jclr #0,x:M_DSTR,* ; Wait till DMA 0 ends
jclr #1,x:M_DSTR,* ; Wait till DMA 1 ends
movep #$000,y:M_FCSR ; Reset EFCOP

FIR_OUT
FDOR

transfer 1

transfer 2

transfer #1024

post-increment
by 1

SOURCE
 DESTINATION

AA1499



2-8 DSP56307 EFCOP Programming Motorola

IIR Filter Example Code

2.3.3   IIR Filter Session
The third part of the code, shown in Example 2-3, implements the IIR filter session and calculates y(n) 
from Equation 3. The IIR_LEN, IIR_FDBA, IIR_FCBA, and IIR_FACR constants are 
written to the appropriate EFCOP registers, as described in Section 2.3.1, ÒInitialization of Constants.Ó 
IIR_FCSR is written to the FCSR to enable the EFCOP.

Channel 0 of the DMA transfers the input data from memory to the FDIR, four words at a time. 
Figure 2-3 shows how the DMA transfer is completed except that the source data is located at 
FIR_OUT instead of INPUT. The DMA is initialized to complete this transfer as follows:

¥ Identify the source of the data transfer Ñ The memory address location of the input data, in 
this case FIR_OUT, is written to DSR0.

¥ Identify the destination of the data transfer Ñ The memory-mapped address location of the 
FDIR is written to DDR0. 

¥ Specify the number of data transfers Ñ IIR_NUMIN, which is described in Section 2.3.1, 
ÒInitialization of Constants.Ó is written to DCO0. 

¥ Designate the offset increment Ñ DOR0 is used with mode B to increment the DMA source 
address register after each transfer. For this example, the input data is stored sequentially in 
memory. Therefore, DOR0 is written with the number 1 to increment the DMA source address 
register by one after each transfer.

¥ Specify the transfer properties Ñ DCR0 controls the DMA channel 0 operation. The value 
written to DCR0 sets the transfer to trigger from the EFCOP input buffer empty request. This 
value also sets the source transfer to mode B using the offset register DOR0. The destination 
transfer mode is set to A with no updating of the destination register because the input data 
should always be transferred to FDIR. The source memory space is set to X memory because 
the input data is stored in X memory. The destination memory space is set to Y memory 
because all EFCOP registers including the FDIR are mapped to internal Y I/O memory. 
Finally, DMA channel 0 is enabled.

Channel 1 of the DMA transfers the output data from FDOR to memory. Figure 2-4 shows how the 
DMA transfer is completed except that the destination data is located at OUTPUT instead of 
FIR_OUT. The DMA is initialized to complete this transfer as follows:

¥ Identify the source of the data transfer Ñ The memory-mapped address location of FDOR is 
written to the DMA source address register for channel 1 (DSR1). 

¥ Identify the destination of the data transfer Ñ The memory address location of the IIR output 
data, OUTPUT, is written to the DMA destination address register for channel 1 (DDR1). 

¥ Specify the number of data transfers Ñ IIR_NUMOUT, which is described in Section 2.3.1, 
ÒInitialization of Constants.Ó is written to DCO1.

¥ Specify the transfer properties Ñ The DMA control register for channel 1 (DCR1) controls 
the DMA channel 1 operation. The value written to DCR1 sets the transfer to trigger from the 
EFCOP output buffer full request. This value also sets the source transfer to mode to A with 
no updating of the source register because the output data should always be transferred from 
FDOR. The destination transfer mode is set to A with post increment by one because the 
output data is stored sequentially to memory. The source memory space is set to Y memory 
because all EFCOP registers including FDOR are mapped to internal Y I/O memory. The 
destination memory space is set to X memory because the IIR output data is stored in X 
memory. Finally, DMA channel 1 is enabled.



IIR Filter Example Code

Motorola 2-9

Bits 0 and 1 of the DMA status register (DSTR) are set when the last word is stored in the destination 
and channel operation completes for channels 0 and 1, respectively. The program polls these bits, and 
when the DMA transfers complete the program is finished.

Example 2-3.   IIR Filter Session Code

;********************************************************************
;* IIR Filter Section
;********************************************************************

movep #IIR_LEN-1,y:M_FCNT ; IIR length
movep #IIR_FDBA,y:M_FDBA ; IIR Data Start Address
movep #IIR_FCBA,y:M_FCBA ; IIR Coeff. Start Address
movep #IIR_FACR,y:M_FACR ; IIR Control Register
movep #IIR_FCSR,y:M_FCSR ; Enable EFCOP

; DMA 0 init to input DATA to EFCOP

movep #FIR_OUT,x:M_DSR0 ; DMA source is the FIR_OUT data buffer
movep #M_FDIR,x:M_DDR0 ; DMA destination is the EFCOP input buffer
movep #IIR_NUMIN,x:M_DCO0 ; DMA count in mode B
movep #$1,x:M_DOR0 ; DMA offset is 1
movep #$94AA04,x:M_DCR0 ; DMA control reg with line mode FDIBE request

; DMA 1 init to output DATA from EFCOP

movep #M_FDOR,x:M_DSR1 ; DMA source is the EFCOP out register
movep #OUTPUT,x:M_DDR1 ; DMA destination is the OUTPUT data buffer
movep #IIR_NUMOUT,x:M_DCO1 ; DMA count
movep #$8EB2C1,x:M_DCR1 ; DMA control reg with FDOBF request

jclr #0,x:M_DSTR,* ; Wait till DMA 0 ends
jclr #1,x:M_DSTR,* ; Wait till DMA 1 ends

stop_label
stop

2.3.4   Coefficients, Taps, and Input
The final part of the code, shown in Example 3-4, initializes the coefficients, taps, and input for the 
filter. The coefficient values are described in Section 2.2, ÒIIR Filter Design.Ó  The memory address 
pointers for the coefficients, FIR_FCBA and IIR_FCBA, are defined in Section 2.3.1, 
ÒInitialization of Constants.Ó  The EFCOP shares the lowest 4K memory locations of Y memory with 
the DSP core for the coefficient buffers. Thus, the coefficients are stored in Y memory. Notice that the 
coefficients are stored in reverse order such that the coefficient with the largest index is stored first 
and the coefficient with the smallest index is stored last.

The FIR filter taps must be initialized because processing state initialization mode is disabled for the 
FIR filter in the FIR_FCSR constant. Also, the IIR filter taps must be initialized because the EFCOP 
assumes that the data taps are initialized before the EFCOP is enabled and therefore does not initialize 
the taps for IIR filter mode. The filter taps are all initialized to zero. This tells the EFCOP that the 
values of the FIR input x(n) and the IIR output y(n) are zero for n < 0. The number of taps needed for 
each filter is equal to the number of filter coefficients. The memory address pointers for the taps, 
FIR_FDBA and IIR_FDBA,are defined in Section 2.3.1, ÒInitialization of Constants.Ó  The 
EFCOP shares the lowest 4K memory locations of X memory with the DSP core for the filter tap 
buffers. Thus, the filter taps are stored in X memory.



2-10 DSP56307 EFCOP Programming Motorola

Filter Results

The last lines of the code specify the input data. The memory address pointer for the input data, 
INPUT, is defined in Section 2.3.1, ÒInitialization of Constants.Ó  The file input.dat, which 
contains the input data, is included at this memory location. For more information on the input.dat 
file, consult the next section.

Example 2-4.   Coefficients, Inputs, and Taps Code

;********************************************************************
;* COEFFICIENTS, INPUTS, & TAPS
;********************************************************************

org y:FIR_FCBA
dc 0.06595304781274 ; b(3)/8
dc 0.19785914343823 ; b(2)/8
dc 0.19785914343823 ; b(1)/8
dc 0.06595304781274 ; b(0)/8

org y:IIR_FCBA
dc -0.03475748970432 ; a(3)/8
dc -0.14786165775473 ; a(2)/8
dc -0.22000523504290 ; a(1)/8

org x:FIR_FDBA
dc $000000
dc $000000
dc $000000
dc $000000

org x:IIR_FDBA
dc $000000
dc $000000
dc $000000

org x:INPUT

INCLUDE "input.dat"

2.4   Filter Results
This section describes the results for this filter example by presenting the input and the output data. 
The filter input data (calculated using Matlab) is gaussian random noise with a mean of 0.0 and a 
variance of 1.0. The data is then scaled so that the magnitudes of all of the values are less than 1. The 
filter output data is stored in X memory beginning at the memory address pointer, OUTPUT, that is 
defined in Section 2.3.1, ÒInitialization of Constants.Ó 

To show the effect of the filter, the frequency spectrum of the input and output is plotted (using 
Matlab) in Figure 2-5. As Figure 2-5 shows, the frequency spectrum of the output is the same as the 
frequency spectrum of the input for all frequency values less than 0.8Wn, where Wn is half the 
sampling rate. However, since the output is processed through the lowpass IIR filter, the frequency 
spectrum of the output is greatly attenuated for frequency values greater than 0.8Wn. Thus, the IIR 
filter is working properly and filtering the input signal as expected.



Filter Results

Motorola 2-11

Figure 2-5.   Frequency Spectrum of Input and Output

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

20
Frequency Spectrum of Input

Frequency/Wn

M
ag

ni
tu

de
 (

dB
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

20
Frequency Spectrum of Output

Frequency/Wn

M
ag

ni
tu

de
 (

dB
)



2-12 DSP56307 EFCOP Programming Motorola

Filter Results



 

Echo Canceller Theory

Motorola 3-1

 

3

 

Echo Canceller Example

 

This section describes how to implement a complete LMS electrical echo canceller using the EFCOP. 
It gives the theoretical background, the filter design, the example code, and the results of the echo 
canceller.

 

3.1   Echo Canceller Theory

 

Figure 3-1 shows the block diagram for the echo canceller in this example. This figure depicts a 
near-end electrical echo canceller. At the near-end is a four-wire system with separate signal paths for 
the transmit signal and receive signal. The transmit and receive signals are combined via a hybrid into 
a single two-wire signal for connection to the public phone network at the far-end. The hybrid also 
introduces an unwanted echo of the near-end signal 

 

x(n)

 

 into the receive path. The adaptive filter 
determines the delay and attenuation of the echo introduced by the hybrid and generates an estimate of 
the echo, 

 

y(n)

 

, that can be subtracted from the received signal + the echo,

 

 s(n)

 

. The result is a 
cancellation of most of the echo, leaving only the desired received signal

 

 e(n)

 

. The adaptive filter also 
uses the received signal 

 

e(n)

 

 to help track the delay and attenuation of the echo.

 

Figure 3-1.   Echo Canceller Block Diagram

 

The output of the adaptive filter is calculated as follows:

where 

 

y(n)

 

 is the estimated echo of the near-end signal at time 

 

n

 

, 

 

x(n)

 

 is the near-end signal at time 

 

n

 

, 

 

L

 

 
is the number of filter coefficients, and 

 

h

 

 n 

 

(i)

 

 are the filter coefficients for time 

 

n

 

. After the output 
signal is calculated, the filter coefficients are updated. First, the error signal is calculated by 

where 

 

e(n)

 

 is the error signal or the far-end signal plus the residual echo of the near-end signal at time 

 

n,

 

 and 

 

s(n)

 

 is the far-end signal plus the echo of the near-end signal at time 

 

n

 

. 

Hybrid
Echo Adaptive

Filter 

Σ
+

-

Far-end

s(n)

y(n)

e(n)

x(n)

Near-end

Transmit signal

Receive signal
AA1501

y(n) = hn i( )x n iÐ( )

i 0=

L 1Ð

∑ (EQ 4)

e n( ) s n( ) y n( )Ð= (EQ 5)



 

3-2 DSP56307 EFCOP Programming Motorola

Echo Canceller Design

 

Next, the coefficient update step is calculated as follows:

where 

 

K

 

 e 

 

(n)

 

 is the coefficient update step at time 

 

n

 

 and 

 

K(n)

 

 is the step size at time 

 

n

 

. Finally, the 
filter coefficients are updated for the next time period using the following equation:

The EFCOP implements Equation 4 using a FIR filter session. The EFCOP also implements a 
coefficient update session to calculate the new filter coefficients using Equation 7.

 

3.2   Echo Canceller Design

 

The example discussed in this section implements an echo canceller using an adaptive filter as 
previously described. Recall that the purpose of the adaptive filter is to generate an estimate of the 
near-end echo that can be subtracted from the far-end signal + the echo, 

 

s(n)

 

. However, the adaptive 
filter interprets the far-end signal as noise. Thus, it is difficult for the adaptive filter to estimate the 
echo when the far-end signal is present. It is much easier for the adaptive filter to estimate the echo 
when 

 

s(n)

 

 contains only the near-end echo. Therefore, some echo cancellers are designed to detect 
when the far-end signal is absent and update the filter coefficients only during these times. When the 
far-end signal is present, these echo cancellers set the step size, 

 

K

 

, to zero so that the filter coefficients 
are not changed. In other applications, these echo cancellers might reduce the step size significantly so 
that the filter coefficients are changed only a small amount when the far-end signal is present. 

The echo canceller in this example reduces the step size when the far-end signal is present. For an 
LMS echo canceller, the step size 

 

K(n) = K

 

, a constant that does not vary with time. This example uses 
K = 0.4 when the far-end signal is absent and 

 

K

 

 = 0.004 when the far-end signal is present.

Detecting the presence of a far-end signal must be done by DSP core and not the EFCOP. Therefore, 
this example does not address how to detect the presence of the far-end signal. Instead, the input file 
containing the far-end signal + the echo, 

 

s(n)

 

, is created so that the far-end signal is absent for 300 
samples and then present for 100 samples, and the example code automatically reduces the step size 
after 300 samples This input file is named 

 

far.dat

 

.

Both the far-end and the near-end signals are gaussian random noise (generated with Matlab) with a 
mean of 0.0 and a variance of 1.0. The near-end signal input file is 400 samples long and the near-end 
signal is uncorrelated with the far-end signal. The near-end signal input file is named 

 

near.dat

 

. The 
near-end signal is delayed by three samples and attenuated by  to create the near-end 
echo. Then the near-end echo is added to the far-end signal to create the 

 

far.dat

 

 input file. Both 
input signals are scaled so that the magnitudes of all of the values are less than 1.

For example, the filter coefficients are set to zero before the processing starts. With no 

 

a priori

 

 
knowledge about the echo, this is as good a starting point as any. The filter coefficients change and 
become non-zero when the processing begins and the coefficients are updated.

Ke(n) = K(n)e(n) (EQ 6)

hn 1+ (i) = hn(i) + Ke(n)x n iÐ( ) (EQ 7)

0.1 0.316=



 

Example Code

Motorola 3-3

 

3.3   Example Code

 

A real-life LMS electrical echo canceller requires 48 coefficients to cancel 6 ms of echo with a 
sampling rate of 8KHz (8000 samples/sec

 

 ∗

 

 0.006 seconds = 48). A real echo canceller also requires 
thousands of samples to converge. This example is scaled down to simplify the explanations and 
shorten the running time and input files.

The echo canceller example code is divided into four sections:

¥ Declare the necessary constants.

¥ Initialize the EFCOP.

¥ Implement the coefficient update with an interrupt service routine.

¥ Initialize the filter inputs and coefficients.

 

3.3.1   Declaration of Constants

 

The first part of the code, shown in Example 3-1, defines the constants for the echo canceller and 
defines a constant to control the EFCOP. The input/output equate and interrupt equate files are 
included. The following memory address locations are initialized:

 

START

 

Start of the program.

 

NEAR_SIG

 

Near-end signal data 

 

x(n)

 

.

 

FAR_SIG

 

Far-end signal plus the echo of the near-end signal data

 

 s(n).

 

ECHO

 

Estimated echo of the near-end signal data 

 

y(n).

 

FDBA_ADDRS

 

Memory address pointers for the filter data and coefficient buffers. 

 

FCBA_ADDRS

 

These constants are written to FDBA and FCBA. The EFCOP shares the lowest 
4K memory locations of X and Y memory with the DSP core for the data and 
coefficient buffers, respectively.

The constant initialization section also defines the following constants to control the EFCOP:

 

FCSR

 

Written to FCSR to control the main operation modes of the EFCOP. It configures 
the EFCOP in real FIR filter mode with adaptive filter mode enabled. 

 

FCSR

 

 also 
enables the data output buffer full interrupt. Finally, 

 

FCSR

 

 sets the EFCOP 
enable bit.

 

FIR_LEN

 

Defines the filter length. 

 

FIR_LEN

 

 is set to ten because there are ten filter 
coefficients, 

 

h

 

 n 

 

(i), i=0...9

 

 for this example. 

 

FIR_LEN

 

 - 1 is written to FCNT. 

 

K1

 

 and 

 

K2

 

 Set to the step sizes that update the filer coefficients. 

 

K1

 

 is used when the far-end 
signal is absent, and 

 

K2

 

 is used when the far-end signal is present. 

 

COUNT

 

 and Defines the number of data samples to process. For this example, there are 400
COUNTK input data samples. 

 

FIR_LEN

 

 - 1, or 9, of these samples initialize the filter. 
Thus, 400 - 9 = 391 data samples are processed. The constant determines when 
the program is to change the step size. When there are 

 

COUNTK

 

 - 1, or 100 
samples left to process, the program changes 

 

K

 

 from 

 

K1

 

 to 

 

K2

 

.



 

3-4 DSP56307 EFCOP Programming Motorola

Example Code

 

Example 3-1.   Constant Definition Code

 

;*******************************************************************
nolist
INCLUDE "ioequ.asm"
INCLUDE "intequ.asm"
list

;*******************************************************************
; CONSTANTS
;*******************************************************************
START equ $100 ; Main program starting address
NEAR_SIG equ $3000 ; Points to the Near-end data, x(n)
FAR_SIG equ $2000 ; Points to the Far_end data, s(n)
ECHO equ $1000 ; Points to the Echo data, y(n)
FDBA_ADDRS equ 0 ; Data Start Address x:$0
FCBA_ADDRS equ 0 ; Coeff Start Address y:$0
FCSR equ $805 ; Enable EFCOP ADP FIR Mode 0 with DOBF interrupt
FIR_LEN equ 10 ; Filter Length
K1 equ 0.4 ; Step size-Coef Update Constant-No Noise
K2 equ 0.004 ; Step size-Coef Update Constant-Noise
COUNT equ 391 ; Data Count-390 total data samples
COUNTK equ 101 ; Data Count to change K after 300 samples

 

3.3.2   EFCOP Initialization
The second part of the code, shown in Example 3-2, initializes the EFCOP for the echo canceller. The 
reset vector is set to the beginning of the program. The command to jump to the interrupt code is 
placed at the EFCOP output buffer full interrupt starting address. EFCOP interrupts are enabled at an 
interrupt priority level of 2 by setting the appropriate bits in the interrupt priority register peripherals 
(IPRP). The interrupt mask bits 0 and 1, bits 8 and 9 in the status register (SR), are cleared to permit 
interrupts at all priority levels. The following registers are initialized:

¥ Register b0 is initialized with COUNT to control the number of data samples to process, as 
described in Section 3.3.1, "Declaration of Constants."  

¥ Address registers r2 and r0 are initialized to the beginning of the near-end signal data, x(n) 
(NEAR_SIG), and the echo signal data, y(n) (ECHO). 

¥ Address register r3 is initialized for the far-end signal plus the echo of the near-end signal 
data buffer, s(n) (FAR_SIG). This buffer is incremented by FIR_LEN - 1 because the first 
FIR_LEN - 1 data samples of x(n) are used to initialize the filter and the x(n) and s(n) data 
buffers should be aligned after the filter initialization. 

¥ The y0 register is initialized with the first value for the step size, K.

The FIR_LEN, FDBA_ADDRS, and FCBA_ADDRS constants are written to the appropriate 
EFCOP registers, as described in Section 3.3.1, "Declaration of Constants."  FCSR is written to FCSR 
to enable the EFCOP. The first FIR_LEN samples of the near-end signal are written to the EFCOP 
data input register, FDIR: FIR_LEN - 1 samples to initialize the filter and one more sample to begin 
the first filter session. In the adaptive filter mode the EFCOP filters one sample of data and then waits 
until a value for Ke(n) is written to the FKIR. Once a value is written to FKIR, the EFCOP performs a 
coefficient update session. When the output buffer is full, the EFCOP requests interrupt service from 
the core, and the interrupt code updates the filter coefficients. At this point, the program waits until the 
EFCOP data output interrupt enable bit is cleared. The interrupt code clears this bit when all data 
samples are processed. The program waits until the final filter update session is finished, and then the 
program is complete.



Example Code

Motorola 3-5

Example 3-2.   EFCOP Initialization Code

;*******************************************************************
;* Initialization
;*******************************************************************

org P:0
jmp START

org p:(I_FDOBF) ; EFCOP Output Buffer Full Interrupt
; Starting Address

jsr >kdo ; Jump to Interrupt Code

org p:START
movep #$c00,x:M_IPRP ; Enable interrupts in IPR
bclr #8,SR ; Enable interrupts in SR
bclr #9,SR

move #0,b ; Init Counter
move #COUNT,b0
move #NEAR_SIG,r2 ; Init Pointer to Near-end Data, x(n)
move #ECHO,r0 ; Init Pointer to Echo Data, y(n)
move #FAR_SIG+FIR_LEN-1,r3 ; Init Pointer to Far-end Data, s(n)
move #K1,y0 ; Init K

movep #FIR_LEN-1,y:M_FCNT ; Filter Length
movep #FDBA_ADDRS,y:M_FDBA ; Data Start Address
movep #FCBA_ADDRS,y:M_FCBA ; Coeff Start Address
movep #FCSR,y:M_FCSR ; Enable EFCOP

rep #FIR_LEN ; Init Filter
movep x:(r2)+,y:M_FDIR

jset #11,y:M_FCSR,* ; Wait till FDOIE is cleared
jset #3,y:M_FCSR,* ; Wait until last update is complete

stop_label
stop

3.3.3   Interrupt Code to Implement the Coefficient Update
The third part of the code, shown in Example 3-3, calculates Equation 5 and Equation 6 and then starts 
the filter coefficient update session by writing the step parameter to FKIR. When the program reaches 
this point, the EFCOP has just completed a FIR filter session and placed the output into FDOR, 
causing a EFCOP output buffer full interrupt request. Updating of the coefficients proceeds in the 
following steps:

1. The interrupt code moves the filter output, y(n), from FDOR to the ECHO data buffer and 
increments the ECHO data buffer pointer. 

2. The ECHO data and the current FAR_SIG data, s(n), are moved to data registers, incrementing 
the FAR_SIG data buffer pointer. 

3. The current error signal, e(n) is calculated as in Equation 5. 

4. The step size, located in register y0, is multiplied by the error signal to calculate the coefficient 
update step parameter as in Equation 6.

5. The step parameter is loaded into FKIR. 

6. The EFCOP performs the coefficient update session, as in Equation 7, and replaces the filter 
coefficients with the updated coefficients. 



3-6 DSP56307 EFCOP Programming Motorola

Example Code

7. The next input sample is written from the NEAR_SIG data buffer to the input register, FDIR, 
incrementing the NEAR_SIG data buffer pointer.

8. The program determines if step size needs to be changed by comparing the counter in register b0 
to the value from COUNTK. If these values are equal, the step size is changed by writing K2 to the 
y0 register. Otherwise the step size is not changed. 

9. The counter is decremented and as long as the counter is not equal to zero the interrupt exits. 

The process repeats when the EFCOP places the next output into FDOR. When the counter is equal to 
zero, the EFCOP output buffer full interrupt is disabled and the processing stops.

Example 3-3.   Interrupt Code

;********************************************************************
;* Interrupt Code
;********************************************************************
kdo

movep y:M_FDOR,x:(r0)+ ; Move y(n) to memory buffer
move y:M_FDOR,x1 ; Move y(n) to x1
move x:(r3)+,a ; Move s(n) to a
sub x1,a ; a = e(n) = s(n) - y(n)
move a,x0 ; x0 = e(n)
mpy x0,y0,a ; a = Ke = K*e(n)
movep a,y:M_FKIR ; Move Ke to FKIR
movep x:(r2)+,y:M_FDIR ; Move x(n) to FDIR
clr a ; Check if K needs to be changed
move #COUNTK,a0
cmp a,b
jne samek ; Change K to K2 if
move #K2,y0 ; there are 100 samples left

samek dec b ; Decrement the counter
jne cont ; Jump to cont if counter is not zero
nop
bclr #11,y:M_FCSR ; Disable interrupt

cont
rti

3.3.4   Initialization of Coefficients and Input
The final part of the code, shown in Example 3-4, initializes the coefficients and inputs for the echo 
canceller. The coefficient values are initialized to zero as described in Section 3.2, "Echo Canceller 
Design."  The memory address pointer for the coefficients, FCBA_ADDRS, is defined in 
Section 3.3.1, "Declaration of Constants."  The EFCOP shares the lowest 4K memory locations of Y 
memory with the DSP core for the coefficient buffers. Thus, the coefficients are stored in Y memory. 
The filter taps do not need to be initialized for this example because processing state initialization 
mode is enabled in the FCSR constant.

The last lines of the code specify the input data. The input data includes the near-end signal data x(n) 
(NEAR_SIG) and the far-end signal plus the echo of the near-end signal data s(n) (FAR_SIG). The 
input files that contain these signals, near.dat and far.dat, are described in Section 3.2, "Echo 
Canceller Design."  The memory address pointers for the input data, FAR_SIG and NEAR_SIG, are 
defined in Section 3.3.1, "Declaration of Constants."  The far.dat and near.dat files are included 
at these memory locations.



Echo Canceller Results

Motorola 3-7

Example 3-4.   Coefficient and Input Code

org y:FCBA_ADDRS
dc $000000
dc $000000
dc $000000
dc $000000
dc $000000
dc $000000
dc $000000
dc $000000
dc $000000
dc $000000

org x:FAR_SIG

INCLUDE "far.dat"

org x:NEAR_SIG

INCLUDE "near.dat"

3.4   Echo Canceller Results
This section describes the results for the echo canceller example, presenting the filter coefficients and 
the received signal, e(n). If the filter is working properly, the filter coefficients show the delay and the 
attenuation of the echo. Table 3-1 shows the filter coefficients after 100, 200, 300, and 400 samples. 
Notice that the coefficients are stored in reverse order so that the coefficient with the largest index is 
stored first and the coefficient with the smallest index is stored last as they are stored in the DSP 
memory.

Recall that the far-end signal is absent for the first 300 samples. During this time the filter is adapting 
only to the near-end echo. The third coefficient from the bottom becomes more dominant as the 
number of samples increases. This signifies that the near-end echo is delayed three samples as 
described in Section 3.2, "Echo Canceller Design."  The magnitude of the third coefficient approaches 
the attenuation factor of the near-end echo  as the number of samples increases. Thus, 
the adaptive filter coefficients show the delay and attenuation of the echo properly and the filter is 
working as expected.

The filter coefficients for n = 400 show the effect of the far-end signal on the adaptive filter. Recall 
that the far-end signal is present for the last 100 samples and that the adaptive filter interprets the 
far-end signal as noise. Thus, the filter coefficients degrade when n = 400. The third coefficient is not 
as dominant as it is when n = 300. However, the step size is reduced for the last 100 samples. Thus, the 
coefficients are not significantly affected and the adaptive filter still does an acceptable job of 
cancelling the near-end echo, as indicated by the received signal, e(n).

Table 3-1.   Filter Coefficients 

n = 100 n = 200 n = 300 n = 400

h(9) =  -0.0052 -0.0003 -0.0000 -0.0047

h(8) =  -0.0062 -0.0010 0.0000 -0.0008

h(7) = 0.0014 -0.0005 0.0000 0.0027

0.1 0.316=



3-8 DSP56307 EFCOP Programming Motorola

Echo Canceller Results

Table 3-2 shows the received signal, e(n), the far-end signal, and the error between these two signals 
for the last 20 samples. The received signal is calculated in the interrupt code. The far-end signal is 
obtained from Matlab before the near-end echo is added to create the far-end plus the echo of the 
near-end signal, s(n). The error is the far-end signal minus the received signal. The table shows that the 
error between the two signals is very small. Thus, the adaptive filter works properly and generates an 
acceptable estimate of the echo, even when the far-end signal is present.

h(6) = 0.0020 0.0005 -0.0000 0.0015

h(5) = 0.0045 0.0008 0.0000 0.0029

h(4) = 0.0049 0.0004 0.0000 0.0002

h(3) = -0.0068 -0.0007 0.0000 0.0035

h(2) = 0.2999 0.3150 0.3162 0.3197

h(1) = -0.0034 -0.0003 0.0000 0.0046

h(0) = 0.0026 0.0008 0.0000 -0.0049

Table 3-2.   Received/Far-End Signal Error 

n e(n) Far-End (n) Error

381 -0.2092 -0.2063 0.0029

382 -0.3894 -0.3895 -0.0001

383 0.3776 0.3781 0.0005

384 0.1931 0.1964 0.0033

385 0.3200 0.3245 0.0045

386 0.1265 0.1301 0.0036

387 -0.2400 -0.2394 0.0006

388 0.1939 0.1953 0.0014

389 -0.0094 -0.0078 0.0016

390 -0.5286  -0.5289 -0.0003

391 -0.1407 -0.1391  0.0016

392 0.4876 0.4880 0.004

393 -0.2476 -0.2458 0.0018

394 -0.3945 -0.3958 -0.0013

Table 3-1.   Filter Coefficients (Continued)

n = 100 n = 200 n = 300 n = 400



Echo Canceller Results

Motorola 3-9

395  0.0678 0.0714 0.0036

396 0.2297  0.2308 0.0011

397  -0.1418 -0.1407 0.0011

398  0.1386  0.1342  -0.0044

399  -0.5797  -0.5796 0.0001

400 0.0654 0.0665 0.0011

Table 3-2.   Received/Far-End Signal Error (Continued)



3-10 DSP56307 EFCOP Programming Motorola

Echo Canceller Results



 

Motorola 4-1

 

4

 

Correlation Notes

 

This section gives a few notes on how to implement correlations using the EFCOP. The general 
correlation equation for real valued signals is:

where 

 

r

 

 ab 

 

(k)

 

 is the cross-correlation between signals 

 

a(n)

 

 and 

 

b(n)

 

. If 

 

a(n)

 

 = 

 

b(n)

 

, then Equation 8 is 
the auto-correlation.

Equation 8 is similar to the general convolution equation implemented by the EFCOP:

where 

 

y(n)

 

 is the result of filtering the signal 

 

x(n)

 

 with the filter coefficients 

 

h(n)

 

.

Equation 8 converts into the second part of Equation 9 if the filter input signal, 

 

x(n)

 

, is replaced with 
the 

 

a(n)

 

 signal and the filter coefficients are replaced with the 

 

b(n)

 

 signal values in reverse order. 
However, the EFCOP filter coefficients are stored in memory in reverse order. Thus, implementing a 
cross-correlation using the EFCOP is as simple as using the first signal as the input signal and the 
second signal as the filter coefficients, making sure that the second signal is stored in memory in the 
proper non-reversed order.

rab(k) = a(n)b(k + n)

n
∑ (EQ 8)

y(k) = h(n)x(k - n) = x(n)h(k - n)

n
∑

n
∑ (EQ 9)



 

4-2 DSP56307 EFCOP Programming Motorola



 

Motorola 5-1

 

5

 

ProgrammerÕs Reference

 

Figure 5-1.   EFCOP Counter and Control Status Registers (FCNT and FCSR)

EFCOP

Filter Count Register (FCNT)
Y:$FFFFB3 Read/Write
Reset = $000000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 019 18 17 1623 22 21 20

Filter Count Value*0 *0 *0 *0 *0 *0 *0 *0 *0 *0 *0 *0

* = Reserved, Program as 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
FPCR FOM1FOM0 FADP FLT FEN

19 18 17 1623 22 21 20
FMLCFD FSAT FDOE FSCO*0 *0*0 *0*0 *0 *0

EFCOP Control Status Register (FCSR)
Y:$FFFFB4 Read/Write
Reset = $000000

* = Reserved, Program as 0

*0 *0
FD F FDIE

OBF IBE CONT
FUPD

 

Filter Data Output Buffer Full Bit 15

0 = FDOR is not full
1 = FDOR is full

(Read only status bit)

Filter Data Input Buffer Empty Bit 14

0 = FDIR is not empty
1 = FDIR is empty

(Read only status bit)

FilterContention Bit 13

0 = No dual access occurred
1 = Core and EFCOP tried to access

(Read only status bit)

the same bank in FDM or FCM

 

FilterSaturation Bit 12

0 = No FMAC underflow/overflow 
1 = FMAC underflow/overflow occurred

(Read only status bit)

 

FilterData Output Interrupt Enable Bit 11

0 = Interrupt disabled
1 = Interrupt enabled

(Read/write control bit)

 

FilterData Input Interrupt Enable Bit 10

0 = Interrupt disabled
1 = Interrupt enabled

(Read/write control bit)

Filter Enable Bit 0
0 = EFCOP Disabled
1 = EFCOP Enabled

Filter Type Bit 1
0 = FIR
1 = IIR

Adaptive Mode Enable Bit 2
0 = Adaptive Mode Disabled
1 = Adaptive Mode Enabled

Update Mode Enable Bit 3
0 = Update Mode Disabled
1 = Update Mode Enabled

Filter Operating ModeBits 5–4
00 = Real          10 = Alt. Complex
01 = Complex   11 = Magnitude 

Channels Bit 6

 

0 = Single channel
1 = Multichannel

 

Coefficients Bit 8

 

0 = Not shared
1 = Shared

 

Initialization Bit 7

 

0 = Preprocess initialization
1 = No initialization



 

5-2 DSP56307 EFCOP Programming Motorola

 

Figure 5-2.   EFCOP FACR, FDBA, FCBA, and FDCH Registers

 

EFCOP

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 

FSA FSM
Filter 

 

19 18 17 1623 22 21 20

 

FISL

 

*

 

0

 

*

 

0

 

*

 

0

 

*

 

0

 

*

 

0

 

*

 

0

 

*

 

0

 

EFCOP ALU Control Register (FACR)
Y:$FFFFB5 Read/Write
Reset = $000000

 

*

 

 = Reserved, Program as 0

 

*

 

0

 

*0 Rounding 

Saturation Mode Bit 4
0 = Disabled 1 = Enabled

Sixteen-bit Arithmetic Mode Bit 5
0 = Disabled      1 = Enabled 

Filter Rounding Mode Bits 3–2

 

00 = Convergent   

10 = Truncation

 

Filter Input Scaling Bit 6

 

0 = Not used     1 = Used 

*

 

0

 

*

 

0

 

*

 

0

 

*

 

0

 

*

 

0

 

*

 

0

 

*

 

0

 

*

 

0

 

Mode Scaling

 

Filter Scaling Bits 1–0

 

00 = 

 

×

 

 1   10 =  ×  16
01 = 

 
×

 
 8   11 = Reserved

01 = Two’s complement

11 = Reserved  

EFCOP Data Base Address (FDBA)
Y:$FFFFB6 Read/Write
Reset = $000000

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data Base Address (FDM Pointer)

 

EFCOP Coefficient Base Address (FCBA)
Y:$FFFFB7 Read/Write
Reset = $000000

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Coefficient Base Address (FDM Pointer)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 019 18 17 1623 22 21 20

 

*

 

0

 

*

 

0

 

*

 

0

 

*

 

0

 

*

 

0

 

*0

EFCOP Decimation/Channel Count Register (FDCH)
Y:$FFFFB8 Read/Write
Reset = $000000

* = Reserved, Program as 0

*0 *0 *0 *0 *0 *0 Filter Deci-
mation Value *0 *0 Filter Channels Value



NOTES:



5-4 DSP56307 EFCOP Programming Motorola

NOTES:



Motorola 5-5

Order By:

APR39/D



Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no 
warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does 
Motorola assume any liability arising out of the application or use of any product or circuit, and specifically 
disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” 
parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different 
applications and actual performance may vary over time. All operating parameters, including “Typicals” must be 
validated for each customer application by customer’s technical experts. Motorola does not convey any license 
under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use 
as components in systems intended for surgical implant into the body, or other applications intended to support life, 
or for any other application in which the failure of the Motorola product could create a situation where personal 
injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or 
unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, 
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney 
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or 
unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of 
the part. Motorola and  are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal 
Opportunity/Affirmative Action Employer. 

How to reach us:

USA/Europe/Locations Not Listed:
Motorola Literature Distribution
P.O. Box 5405
Denver, Colorado  80217
1 (800) 441-2447 
1 (303) 675-2140 

Motorola Fax Back System (Mfax™):
TOUCHTONE (602) 244-6609
1 (800) 774-1848
RMFAX0@email.sps.mot.com

Asia/Pacific:
Motorola Semiconductors H.K. Ltd.
8B Tai Ping Industrial Park
51 Ting Kok Road
Tai Po, N.T., Hong Kong
852-26629298

Technical Resource Center:
1 (800) 521-6274

DSP Helpline
dsphelp@dsp.sps.mot.com

Japan:
Nippon Motorola Ltd
SPD, Strategic Planning Office141
4-32-1, Nishi-Gotanda
Shinagawa-ku, Japan
81-3-5487-8488

Internet:
http://www.motorola-dsp.com/

OnCE and Mfax are registered trademarks of Motorola, Inc.


