

Order this document
by EB181/D

Motorola Semiconductor Engineering Bulletin

Frequently Asked Questions and Answers
M68HC05 Family MCAN Module
Contents

• Does the M68HC05 Family MCAN (Motorola controller area
network) module use the BasicCAN or the FullCAN principle?

• How does the Ping-Pong principle of the two receive buffers work?

• Which bit time should be chosen for a network?

• Which resynchronization mode should be chosen?

• How is the HC05X microcontroller connected to an external CAN
driver?

• Can the M68HC05 Family be used in a network which runs
extended CAN frame format?

• How are the MCAN module registers initialized?

• When should and how should the single-line mode be used?

• What are the considerations when putting the MCAN module into
sleep mode?

• After the MCAN module is put into sleep mode, why doesn’t the
oscillator stop?

• How should an overrun condition be handled?

• How should a bus error or bus off condition be handled?

• What does an MCAN interrupt handler look like?

• How is a message aborted?

© Motorola, Inc., 1997 EB181

Engineering Bulletin

Does the M68HC05 Family MCAN module use
the BasicCAN or the FullCAN principle?

The MCAN module’s message buffers are implemented as a BasicCAN
structure. Three buffers are implemented in RAM — one transmit buffer
and two receive buffers — and each is accessible by either the CPU or
the CAN bus at the same time. Because the module has two receive
buffers, its software can read a received message while another
message is being received from the CAN bus. (Refer to How does the
Ping-Pong principle of the two receive buffers work?) A BasicCAN
structure offers the advantage of having no fixed link between a receive
buffer and a message identifier. Instead, a programmable 11-bit
identifier filter defines which messages are allowed to be received.

CPU

Receive
Buffer

0

Receive
Buffer

1

Transmit
Buffer

CAN
Bus

Basic CAN

CPU CAN
BUS

Dual Ported RAM

Message Buffer 0

Message Buffer 1

Message Buffer 11

Message Buffer 12

Message Buffer 13

Message Buffer 2
Message Buffer 3

ID0

ID1

ID2

ID3

ID11

ID12

ID13

Full CAN
EB181

2 MOTOROLA

Engineering Bulletin
How does the Ping-Pong principle of the two receive buffers work?

How does the Ping-Pong principle of the two receive buffers work?

As described, the MCAN module offers two receive buffers which can be
accessed by the CPU or the CAN bus. Both buffers alternate with each
other to receive data from the bus. This gives the CPU time to read a
message buffer while a new message is being received at the same
time. The illustrations demonstrate the steps involved during a message
reception.

1. Both receive buffers were empty and released to allow reuse by
the CAN interface. A new message arrives and will be written into
receive buffer 1.

During the time that the message is received, the relevant status
bits have these states:

Receive status (RS): 1
Receive buffer status (RBS): 0
Receive interrupt flag (RIF): 0
Release receive buffer (RRB): 0

Receive
Buffer

0

Receive
Buffer

1

e m p t y be written to

CAN
Bus
EB181

MOTOROLA 3

Engineering Bulletin

2. As soon as receive message buffer 1 is full, this will be indicated
by the flags RBS and RIF, and control of this receive buffer is
given to the CPU. If the receive interrupt has been enabled, the
interrupt routine starts to read and release this message buffer.

Receive status (RS): 0
Receive buffer status (RBS): 1
Receive interrupt flag (RIF): 1
Release receive buffer (RRB): 0

3. At the same time that the last message is being read, a new
message may be received from the CAN bus and written into the
second message buffer (receive buffer 0). Receive status (RS)
becomes active again. The receive interrupt flag has been cleared
by reading the status register at the beginning of the interrupt
routine. (Also, refer to What does an MCAN interrupt handler
look like?)

Receive status (RS): 1
Receive buffer status (RBS): 1
Receive interrupt flag (RIF): 0
Release receive buffer (RRB): 0

Receive
Buffer

1

Receive
Buffer

0

full e m p t y

CPU

Receive
Buffer

1

Receive
Buffer

0

be read out be written to

CAN
Bus

CPU
EB181

4 MOTOROLA

Engineering Bulletin
How does the Ping-Pong principle of the two receive buffers work?

4. After reading all the message bytes in receive buffer 1, the CPU
releases this buffer by setting the RRB bit in the MCAN command
register. The buffer can be reused by the CAN interface now. At
the same time, the receive buffer status bit is cleared, showing that
receive buffer 1, which is still attached to the CPU, is empty again.

Receive status (RS): 1
Receive Buffer status (RBS): 0
Receive Interrupt Flag (RIF): 0
Release Receive Buffer (RRB): 1

5. The new message is fully stored into buffer 0 and the control of
that buffer is given to the CPU. As receiving stopped, the receive
status bit is cleared. As in step 2, the two bits RBS and RIF
indicate that the buffer 0, which is currently attached to the CPU,
is full. If receive interrupt has been enabled, the interrupt routine
starts.

Receive status (RS): 0
Receive buffer status (RBS): 1
Receive interrupt flag (RIF): 1
Release receive buffer (RRB): 1

Receive
Buffer

1

Receive
Buffer

0

e m p t y be written to

CAN
Bus

Receive
Buffer

0

Receive
Buffer

1

full e m p t y

CPU
EB181

MOTOROLA 5

Engineering Bulletin

Which bit time should be chosen for a network?

To define bit time and the length of its time segments, some rules have
to be followed. The CAN specification defines a bit time consisting of four
segments. These segments are:

– Synchronization segment (SYNC)

– Propagation segment (PROP)

– Phase segment 1 (PS1)

– Phase segment 2 (PS2)

Each segment length must be set up by the CAN timing registers CBT0
and CBT1. While SYNC represents the synchronization segment,
TSEG1 is a summation of the propagation segment and phase
segment 1, and TSEG2 represents phase segment 2. The segment
length is set up by defining the number of time quanta (Tq = tSCL) per
segment. Time quanta is the smallest time unit of the MCAN module and
is derived from a programmable prescaler.

The setup of the time segments has to fulfill these rules:

Length of Time Segments
SYNC = 1 Tq
PROP = 1,....,8 Tq
PS1 = 1,....,8 Tq
PS2 = max(PS1,2)
SJW = 1, ... min(4, PS1)
with fN = Synchronization Jump Width

SYNC

1 Tq clock cycle

TSEG1

Bit_Time

SYNC

Sample Point Transmit Point

TSEG2

PHSEG2PHSEG1PROPSEG
EB181

6 MOTOROLA

Engineering Bulletin
Which bit time should be chosen for a network?

In some special cases during a CAN communication, there could be a
long sequence of bits (28 to 30 bits) where no signal transition from
recessive to dominant occurs. There is no possibility for
resynchronization during this time, and the phase shift should not
exceed the synchronization jump width. This worst case condition used
to be considered within the oscillator tolerance calculation of the original
CAN protocol. But this allows only clock tolerances below 0.5 percent.
To allow the use of ceramic resonators, the CAN specification has been
modified so that larger phase shifts of up to one bit time are allowed for
long sequences of equal bits.

The two formulas of the enhanced CAN protocol imply all worst case
conditions which have to be considered:

Clock Tolerance Rules
Requirement 1: Sample correctly the first bit after sending an active

error flag (localizing bus errors)

(2 * df) * (13 * BT − PS2) < min (PS1 ,PS2)

Requirement 2: Correct synchronization in stuffed part of the bit
stream

(2 * df) * 10 * BT < SJW

with fN = nominal CAN clock frequency

f = actual CAN clock frequency
df = relative clock difference: (df = | f − fN | / fN)

The two formulas show that the system’s required clock accuracy
depends on the bit time definition. The smaller the bit time and the larger
the synchronization jump width, the larger the allowed clock tolerance is.

To understand the above rules better, this example shows how to set up
the CAN bit time in a system.
EB181

MOTOROLA 7

Engineering Bulletin

Example
The following system parameters are assumed:

CAN bus frequency 500 kBaud → 2 µs bit time
Bus driver delay 50 ns
Receiver circuit delay 30 ns
Bus line delay (40 m) 220 ns
Total propagation delay 600 ns

First, the correct oscillator frequency has to be chosen. The oscillator
frequency influences the length of the bit segments PS1 and PS2 and
with that the synchronization jump width. As the formula above shows,
the higher the synchronization jump width and the phase segments the
larger is the maximum allowed clock tolerance.The smallest possible
crystal/resonator frequency , which fulfills the propagation delay
requirement is 6 MHz. Larger frequencies as 8 MHz or 16 MHz show
better values for the maximum allowed clock tolerance due to larger
SJW, PS1 or PS2 values. In resonator based systems the maximum
allowed clock tolerance should be as large as possible. A 16 MHz clock
showed the highest tolerance values and were chosen for this example.

When selecting a crystal frequency for the microcontroller, the internal
bus frequency has to be considered as well. With higher external crystal
frequencies a higher clock divide ratio may be needed, which could
result in different internal bus frequencies. An oscillator frequency of
16 MHz with a clock divide ratio of 8 gives an internal bus frequency of
2 MHz.

Oscillator frequency 16 MHz

With a 16-MHz oscillator frequency, the MCAN module is clocked with a
frequency of 8 MHz. A prescaler value of 1 defines the number of time
quanta per bit time.

Time quanta per bit time 16 Tq
Prescaler 1

Tq = tSCL = 2 * P
fOSC

= 125 ns
EB181

8 MOTOROLA

Engineering Bulletin
Which bit time should be chosen for a network?

The propagation segment has to be able to buffer the system’s signal
delay time. The segment should have double the length of the delay
between sender and receiver, which is 600 ns in this example. With a
time of 125 q is specified as the propagation delay time to fulfill this
requirement.

Propagation delay segment 5 Tq = 625 ns

The synchronization segment of 1 Tq and the propagation segment of 5
Tq within the total bit time of 16 Tq still leaves 10 Tq to be shared
between phase segment 1 and phase segment 2. As the above rules
show, phase segment 2 equals phase segment 1 if phase segment 1 is
greater than 2 Tq. The length of 5 Tq for each segment fulfills this
requirement.

Phase segment 1 5 Tq
Phase segment 2 5 Tq

Corresponding to the above rule, a phase segment length of 5 Tq allows
the synchronization jump width of a maximum value of 4 Tq. At the same
time, this gives the maximum possible clock tolerance for that bus
frequency.

In this example, the MCAN module of the M68HC05 Family has to be set
up with these values:

TSEG1 (PROP + PS1) 5 Tq + 5 Tq = 10 Tq
TSEG2 (PS2) 5 Tq
SJW 4 Tq

The corresponding bit timing registers of the MCAN module CBT0 and
CBT1 would be specified as:

SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0

1 1 0 0 0 0 0 0
CBT0 =$C0

SAMP TSEG
22

0 1 0 0 1 0 0 1
CBT1 =$49TSEG

21
TSEG

20
TSEG

13
TSEG

12
TSEG

11
TSEG

10
EB181

MOTOROLA 9

Engineering Bulletin

After initializing the MCAN timing registers for the above values, the bit
time of this example can be seen in the next picture.

Which resynchronization mode should be chosen?

The following phenomenon has to be considered when
resynchronization on both edges is selected. In that mode, a transmitter
will resysnchronize on positive phase shifts if a dominant bit is sent. If
the transceiver delay of that node is larger than the SYNC time quanta,
the transmitting node receives its sent bit edge after the SYNC time
quanta and then resynchronizes itself. This will result in a variable bit
time/baud rate on the bus. In a CAN network with a different bit timing
definition in some CAN nodes (for instance, due to different used
crystals), this could cause bus failures.

As described earlier, an enhanced CAN protocol was added, which
allows phase shifts of a whole bit time after long sequences of equal bits.
With these modifications to the original CAN protocol, the
resynchronization on recessive-to-dominant edges as well as dominant-
to-recessive edges has absolutely no advantage over resynchronization
on recessive-to-dominant edges only. The oscillator tolerance is the
same for both ways of resynchronization.

Therefore, resynchronization is recommended only on recessive-to-
dominant edges.

S
Y

N
C

1 Tq

TSEG1

Bit Time

TSEG2

PS1PROP PS2
EB181

10 MOTOROLA

Engineering Bulletin
How is the HC05X microcontroller connected to an external CAN driver?

How is the HC05X microcontroller connected to an external CAN driver?

Most applications today implement an integrated physical bus interface
device which is specified for a higher drive current and which includes
short-circuit protection and slope control. Some newer interface circuits
even integrate an automatic single-wire mode switch, which recognizes
an interrupted or short-circuited bus line to GND/VDD and automatically
switches to one functional bus line.

The appropriate physical interface for a system depends on the speed,
which is needed for the CAN bus. There are low-speed physical
interfaces (<125 kBaud) and high-speed physical interfaces (up to
1 Mbaud).

When using external transceiver devices, the internal comparator logic
of the M68HC05 Family is not needed. Only one transmit and one
receive line are connected between the microcontroller and the
transceiver. The voltage reference pin, VDDH, of the X-microcontroller
can be left open, if internally the VDDH reference is connected to one
comparator input. This can be done by initializing the CCOM and
COCNTRL register for single-line mode. (For more details, see When
should and how should the single-line mode be used?)

Two examples of the HC05X controller combined with an external
transceiver are shown here. When using a Philips PCA82C250, only
three pins need to be connected. Use one TX and one RX CAN line
(either 0 or 1 can be chosen) in addition to one input/output pin, which
controls the output slope of the bus signal and the standby mode of the
transceiver. If the port pin is set to low, the output slope will be controlled
via the current through the resistor. This is used in applications with
lower CAN bus speed. By switching the port pin to high, the transceiver
enters the low-power mode because no current passes through the pin.
EB181

MOTOROLA 11

Engineering Bulletin

The second example shows the use of the newer, more sophisticated,
low-speed transceiver PCA82C252 or SN65LBC032. This device is
connected to VBAT to detect a short circuit to the battery and ground. In
case of bus failures, the device automatically switches to single-line
mode, which reduces the HC05X microcontroller’s error handling
software.

In addition to the CAN lines TX and RX, three input/output pins and one
interrupt/wired or interrupt pin have to be spent to control the transceiver.
The connections to EN and NSTB control the mode of operation of the
transceiver (sleep, standby), and the input/output line to NWKUP can
enable a wakeup request to the powered down transceiver. Feedback of
any failure on the bus or of a wakeup is sent to the microcontroller via
the NERR line, which triggers an interrupt.

Mikrocontroller
HC05X

TX0
RX0

TXD
RXD

RS
CAN_H
CAN_LIO

VCC GND+5V

High Speed CAN Transceiver
PCA82C250

MCAN
TX1
RX0

VDDH

Mikrocontroller
HC05X

TX0
RX0

TX

RX

ERR

CAN_H

CAN_L

EN

STB

WKUP

RTL
RTHIO

IO
IO

BAT
VCC GND

IRQ/WOI

+5V
+12V

INH
to Vreg

Low Speed CAN Transceiver
PCA82C252T / SN65LBC032

MCAN
TX1
RX0

VDDH
EB181

12 MOTOROLA

Engineering Bulletin
Can the M68HC05 Family be used in a network which runs extended CAN frame format?

Can the M68HC05 Family be used in a network which runs extended
CAN frame format?

The MCAN module has been designed according to CAN protocol 1.2
(standard CAN, 11-bit identifier) as defined by Robert BOSCH GmbH.
The two reserved bits, r1 and r0, within the control field are sent as
dominant bits and are not evaluated during reception.

Bit r1 of those reserved bits has been redefined within CAN standard
2.0 B (extended CAN, 29-bit identifier). It has been renamed to IDE bit
(identifier extension) and distinguishes between extended CAN and
standard CAN format.

Because the IDE bit is not evaluated in the MCAN module, an extended,
29-bit identifier frame would be treated as a standard frame, which would
lead into a form error.

11-Bit Identifier
S
O
F

R
T
R

r
1

r
0

DLC Data

Standard Format - CAN 1.2 / 2.0A

11-Bit Identifier
S
O
F

S
R
R

I
D
E

r
0 Data

Extended Format - CAN 2.0B

18-Bit Identifier
R
T
R

r
1 DLC
EB181

MOTOROLA 13

Engineering Bulletin

How are the MCAN module registers initialized?

The MCAN registers usually are initialized within a separate CAN
initialization routine. For some registers, it is mandatory to be in the CAN
reset state during initialization, which is entered by setting the reset
request bit in the CAN control register.

These registers are:

– Acceptance code register (CACC)

– Acceptance mask register (CACM)

– Bit timing register 0/1 (CBT0, CBT1)

– Output control register (COCTRL)

NOTE: In opposition to these registers, the CAN command register (CCOM)
must not be initialized during the reset condition of the MCAN module.
(The reset request bit in the CAN control register is set.) All bits of the
CCOM register are forced to 0 during the CAN reset state. Initializing the
register while CAN reset is entered would have no effect.

NOTE: The CAN command register (CCOM) must not be modified by using the
read-modify-write instructions BSET/BCLR. This register is write only
and returns the value $FF when reading it. Thus, a BSET instruction
would first read $FF, then set a bit and write $FF back to the CCOM
register, which would result in a non-functional CAN module.

When setting the MCAN out of reset mode (clearing RR bit), remember
that the MCAN module doesn't start normal operation immediately. In a
normal situation, MCAN waits for 11 consecutive recessive bits on the
CAN bus before starting normal operation. If the bus off state is active,
MCAN waits for 128 occurrences of 11 recessive bits before starting
normal operation.

 Therefore, a wait loop after the reset sequence should be added to
make sure that no MCAN action, such as a sleep mode request, is
activated before MCAN re-enters normal operation mode.
EB181

14 MOTOROLA

Engineering Bulletin
How are the MCAN module registers initialized?

This diagram shows the usual sequence of a CAN initialization routine.

The init routine usually should be executed only after power-on reset.
Therefore, the bus off state does not need to be checked, and there is
no need to wait for 128 times 11 consecutive recessive bits within the init
routine. Usually, bus off failure is handled separately. (For more details,
see How should a bus error or bus off condition be handled?)

Here is an example of an MCAN initialization routine written in
assembler language:

Set Reset Request

Initialize MCAN registers
CACC,CACM.CBT0/1,COCTRL

Start CAN_INIT

Clear Reset Request

Initialize CCOM register

Wait for 11 recessive bits

End CAN_INIT
EB181

MOTOROLA 15

Engineering Bulletin

*
LDA #RIE|OIE|EIE|RR ;set up CAN control register:
STA CCNTRL ;enable Receive/Overrun/Error interrupts,
* only rec. to dom. edge for synchronization,
* reset request present,
LDA #$FF
STA CACM ;accept all IDs-->no need to initialize CACC
*
LDA #$58
STA CBT1 ;Set up bus timing reg. 1
* 125 kBaud -> 8 µs bit time
* with 4 MHz crystal
* for P=1: 1tSCL = 1Tq = 0.5 µs
* -->BT = 16 x tSCL
* choosen:tSEG1 = 9 x tSCL
* tSEG2 = 6 x tSCL
* tSYNC = 1 x tSCL
LDA #$C0
STA CBT0 ;Set up bus timing reg. 0
* P=1 --> tSCL = 0.5 µs
* tSJW = 4 x tSCL
*
LDA #$FA
STA COCNTRL ;Set output control register
* Normal mode 1,
* OCTP0 = OCTN0 = 1
* OCTP1 = OCTN1 = 1
* --> drivers Tx0 and Tx1 push/pull
* -->both NTrans and PTrans enabled
* OCPOL0 = 0, OCPOL1 = 1,
* Tx0 Tx'ed normally, Tx1 inverted
LDA CCNTRL
AND #$FE ;Set up CAN control reg.
STA CCNTRL ;set reset request absent
*
LDA CCOMCPY ;load a copy of CCOM register in RAM
ORA #CMPSEL ;setup sleep comparator for
STA CCOM ;two line mode
STA CCOMCPY ;save CCOM register (write only)
*
NOBSLDACSTAT ;check receive/Transmit state for bus idle
AND #$30 ;bus is idle, if TS and RS equals 0
BNE NOBS ;wait until bus is idle
BRS WAIT88 ;if bus is idle, then count 11 consecutive bits

;which is 88 µs at 125 kbaud bus speed
RTS
EB181

16 MOTOROLA

Engineering Bulletin
When should and how should the single-line mode be used?

When should and how should the single-line mode be used?

The usual CAN configuration uses two signal lines which transmit a
differential signal. A differential signal allows redundancy so that the
system is less sensitive to bus failures in a disturbed environment. The
transmitter and receiver of the MCAN module also can be set in a single-
line mode, where only one line is used to transmit the signal. This mode
could be used due to these reasons:

– The MCAN uses an external bus transceiver, which generates
the differential signal itself.

– The environment is less critical, so that the system can
renounce the redundancy of the two-line mode.

– Due to short circuit to ground or battery of one bus line or due
to an interrupted bus line, the communication fails (error status
active). One communication line is still operational.

One-line communication mode on the receiver side is entered by
connecting one input of the internal receive comparator to a fixed
reference voltage. The internal 2.5-V (VDDH) reference should be used
to save additional external connections. The switch to VDDH is done in
the CCOM register. Three bits have to be taken care of to use one-line
mode: RX0, RX1, and COMPSEL.

On the transmitter side, only one transmit line should be enabled in
single-line mode. The unused transmit line should be set into a floating
state. This is set up by the appropriate value in the output control
register.

The following pictures show the physical schematics of the MCAN
physical interface in one-line mode (RX0/TX0 active) and the required
register settings which have to be chosen in one-line mode:
EB181

MOTOROLA 17

Engineering Bulletin

One-line mode on TX0/RX0 line:

One-line mode on TX1/RX1 line:

+
-VDDH

VDD/2

TXP1

TXN1

TXP0

TXN0

+
-AC

+
-SC

+
-SC

SC

RX0
passive

RX1
passive

Data

TX0

TX1

RX0

RX1

Wake-up

COMPSEL

floating

Push-pull

CAN
Transceiver

main
comparator

RX0 RX1 Comp
SEL Sleep COS RRB AT TR

0 1 0 0 0 0 0 0
CCOM =$40

OC
TP1 OCM1 OCM0

0 0 0 1 1 0 1 0
COCNTRL =$1AOC

TN1
OC

POL1
OC
TP0

OC
TN0

OC
POL0

RX0 RX1 Comp
SEL

Sleep COS RRB AT TR

1 0 0 0 0 0 0 0
CCOM =$80

OC
TP1 OCM1 OCM0

1 1 0 0 0 0 1 0
COCNTRL =$C2OC

TN1
OC

POL1
OC
TP0

OC
TN0

OC
POL0
EB181

18 MOTOROLA

Engineering Bulletin
When should and how should the single-line mode be used?

The TX line polarity depends on the external physical interface. The
register setup shown here uses positive polarity, as an example of the
use of an external bus transceiver.

NOTE: The COMPSEL bit has to be cleared in one-line mode, which means that
both main comparator inputs are compared to each other to recognize a
wakeup condition on the bus. Since one comparator input remains
connected to VDDH by setting RX0/1, this configuration leads to the
comparison of one single bus line with VDDH (bottom sleep comparator
SC in the schematics). If COMPSEL would be set in single-line mode,
the two middle comparators would be used for wakeup recognition. In
this case, one comparator would compare VDDH against VDDH, which is
an unpredictable condition. When entering sleep mode this setup could
immediately wake up the MCAN module.

NOTE: The CAN command register (CCOM) must not be modified by using the
read-modify-write instructions BSET/BCLR. This register is write only
and returns the value $FF when reading it. Thus, a BSET instruction
would first read $FF, then set a bit and write $FF back to the CCOM
register, which would result in a non-functional CAN module.
EB181

MOTOROLA 19

Engineering Bulletin

What are the considerations when putting the MCAN module
into sleep mode?

After requesting the MCAN sleep mode, the CPU usually checks if the
sleep state really was entered. The MC68HC05X16 and the
MC68HC(7)05X32 microcontrollers offer a sleep flag, which
acknowledges the sleep request. This MCAN asleep flag (CAF) is
located at bit 6 of the EEPROM/ECLK control register. The
MC68HC(7)05X4 microcontroller also offers such a sleep mirror bit,
which is located at bit 3 of the port configuration register (SLEEP).

After a successful sleep request, which is indicated by a set sleep flag,
a stop instruction may be entered to power down the CPU. If the sleep
flag is not set, a new message may be arrived, which can activate a
receive interrupt in case of a valid, accepted message. After a certain
waiting time, the CPU could try again to enter sleep mode.

The oscillator clock will stop only if the STOP instruction is executed
after the sleep request. Otherwise, only the clock path of the MCAN
module is stopped.

There are several reasons why the MCAN module could not enter sleep
mode after setting the sleep request bit:

– The sleep request has been activated during message
reception or transmission, which immediately causes a
wakeup interrupt. Before setting the sleep request bit, always
verify that no transmission is pending and that the MCAN
module is in idle mode.

– The sleep request has been entered immediately after the
CAN initialization routine. Perhaps not enough time went by
between clearing the MCAN reset request and the sleep
request so that the MCAN module could not re-enter normal
operation mode. To wait for the occurrence of 11 consecutive
recessive bits on the bus, a small wait loop should be included
after clearing the reset request bit. Then the MCAN module
starts normal operation and sleep can be requested. (For more
details, see How are the MCAN module registers
initialized?)
EB181

20 MOTOROLA

Engineering Bulletin
After the MCAN module is put into sleep mode, why doesn’t the oscillator stop?

– The CCOM register has been used wrongly. A read-modify-
write operation such as BSET may be used to set the sleep bit.
This register is write only and returns the value $FF when
reading it. Thus, a BSET instruction would first read $FF, then
set a bit and write $FF back to the CCOM register, which would
result in a non-functional CAN module. LDA/STA instructions
should be used instead to set a bit.

– One-line mode was selected, but the comparator selection bit,
COMPSEL, of the CCOM register was set. In one-line mode,
COMPSEL should be cleared. (For more details, see When
should and how should the single-line mode be used?)

After the MCAN module is put into sleep mode,
why doesn’t the oscillator stop?

The oscillator stops only if the CPU executed a stop instruction and the
CAN module was set into sleep mode. It remains in stop until either an
external interrupt or a CAN interrupt occurs.
EB181

MOTOROLA 21

Engineering Bulletin

How should an overrun condition be handled?

An overrun condition occurs if both receive buffers are full and a third
message occurs. The following pictures illustrate such an overrun event.
In this example, receive and overrun interrupts are enabled. Reading of
the message buffers is controlled by the MCAN interrupt routine.

1. In this overrun example, the first received message is ready to be
read by the CPU, while a second one is received from the bus and
written into receive buffer 0. Due to other peripheral interrupts,
such as a timer interrupt, the receive interrupt routine cannot start
immediately to read out receive buffer 1.

Receive status (RS): 1
Receive buffer status (RBS): 1
Receive interrupt flag (RIF): 1
Release receive buffer (RRB): 0

2. The receive interrupt routine starts and reads the message in
receive buffer 1. Receive buffer 0 is now full, and a receive
interrupt request for receive buffer 0 will be asserted. A third
message arrives, which cannot be written into a buffer since the
first message buffer is accessed by the CPU and the second one
is full. The new message is dropped. This is indicated by the data
overrun status bit (DO), which is set. If data overrun interrupt has
been enabled in the MCAN control register, the MCAN interrupt
line remains asserted, since it is still asserted by the receive
interrupt.

Receive
Buffer

1

Receive
Buffer

0

full be written to

CAN
BusCPU
EB181

22 MOTOROLA

Engineering Bulletin
How should an overrun condition be handled?

Receive status (RS): 1
Receive buffer status (RBS): 1
Receive interrupt flag (RIF): 1
Release receive buffer (RRB): 0
Data overrun (DO): 1

3. As soon as the CPU leaves the interrupt routine after reading
receive buffer 1 and after releasing this buffer, the CPU will re-
enter the MCAN interrupt routine immediately due to the latched
receive and overrun interrupt requests. As receive buffer 1 is
released, it can be accessed by a new message (B), which may
arrive on the CAN bus. The RBS bit was cleared by releasing
buffer 1, but it immediately was set again because the control of
the buffer 0 is given to the CPU. The RRB bit gets cleared as soon
as the controller starts to receive a new message (RS = 1).

Receive status (RS): 1
Receive buffer status (RBS): 1
Receive interrupt flag (RIF): 0
Release receive buffer (RRB): 0
Data overrun (DO): 1

Receive
Buffer

1

Receive
Buffer

0

be read out full

CAN
Bus

CPU

new message A
dropped

message A

Receive
Buffer

0

Receive
Buffer

1

be read out e m p t y

CAN
Bus

CPU
message B
EB181

MOTOROLA 23

Engineering Bulletin

Within the active MCAN interrupt routine, all MCAN interrupt flags have
to be checked to start the corresponding interrupt subroutines. In this
case, both the receive and the data overrun interrupt subroutines will be
executed.

Within the data overrun subroutine the only action is to clear the data
overrun status bit by setting the clear overun status bit COS in the
CCOM register.

How should a bus error or bus off condition be handled?

Error management can be defined for the lowest level of the OSI
reference model, but also for the higher communication levels of this
reference model. Only the low-level error management is discussed
here.

The definition of the error management depends very much on the
intelligence of the physical interface. When using a transceiver with
integrated automatic single-line switch, the software for bus error
handling gets reduced. In case of an active error, there’s no need for a
two-line/one-line mode switch by the software, as this is done in
hardware by the transceiver itself. Within the error interrupt routine, the
status line of the transceiver, which reports failure mode, could be
evaluated and reported to the CAN management software.

When using a simple bus transceiver, no function in the physical
interface device recognizes a short circuit or interruption of a bus line.
Usually the error management software with this type of transceiver just
tells the management software that a bus failure has occurred. Extra,
costly hardware would be needed for bus failure sensing.

Another possible implementation is a discrete physical interface, where
the two-line mode of the MCAN is used. With this configuration, an active
error status could trigger a software algorithm within the MCAN interrupt
routine to detect a faulty bus line.
EB181

24 MOTOROLA

Engineering Bulletin
How should a bus error or bus off condition be handled?

Error status The error status bit is set when the receive or transmit error counter
reaches value 96. The MCAN interrupt handler should give an indication
to the CAN management software that the bus may be heavily disturbed.
To avoid a resultant bus off state (only produced by transmission), this
may lead the management software to stop any further transmission, if
possible.

When using the two-line mode with a discrete physical layer, the error
status interrupt software could trigger an algorithm to detect possible bus
line interruption or short circuits.

Bus off status When the bus status flag in the status register CSTAT gets set, a bus off
condition is signaled, which means the internal transmit error counter
reached the value 255. This state can never be reached, if the node is in
receive mode or if there is only one node on the bus.

Within the MCAN interrupt routine, the RR bit should be cleared and the
management software should be made aware of a problem on the bus.

NOTE: The error status and bus off bits are level sensitive. But the error
interrupt flag is not level sensitive. The interrupt flag gets set only when
either bus off or error status bits change. If the error interrupt becomes
active due to a set error status bit, the error interrupt flag gets set and
will call the MCAN interrupt handler, when the error interrupt has been
enabled. After clearing the error interrupt flag within the MCAN interrupt
routine, it gets set again only if the bus off state gets active in addition to
error status or if error status was cleared and then set again.
EB181

MOTOROLA 25

Engineering Bulletin
What does an MCAN interrupt handler look like?

This illustration is an example of the basic MCAN interrupt handler
structure.

Read CAN Status register to clear
all active flags, save backup

of status register in RAM

Start MCAN_IRQ

End MCAN_IRQ

Receive
Interrupt?

Transmit
Interrupt?

compare ID of received
message to accepted
IDs stored in a table

save pointer to
corresponding receive

buffer in RAM

copy received
message into

pointed RAM buffer

release Receive
buffer

another
msg. in queue
to transmit?

copy data of next
message into
transmit buffer

no

Error
Interrupt? yes

request transmission

yes

no

no

Bus off
Status set?

for intelligent transceiver:
evaluate error status
report of transceiver

no

yes

Overrun
Interrupt? clear RR bit

in CCOM

error status to Network
management SW

Clear overrun
state (COS)

yes

yes

no

no

Wakeup
Interrupt?

yes

no
check wakeup interrupt

source, start
corresponding action

yes
EB181

26 MOTOROLA

Engineering Bulletin
How is a message aborted?
How is a message aborted?

In some cases, an urgent message gets activated, for example, by the
network management software, but the transmit buffer is full. Then the
loaded message has to be aborted to release the transmit buffer for the
new message.

First the abort transmission bit (AT) in the CAN command register
(CCOM) has to be set to request the abortion of a pending transmission.
If the transmission is not already in progress, the buffer is released
immediately, which sets the transmit buffer access bit. In the case of an
enabled transmit interrupt, the transmit interrupt request gets asserted,
which allows an orthogonal interrupt handler. Within the transmit
interrupt routine the new message then will be copied automatically into
the transmit buffer and requested for transmission.

If the transmission already is in progress when an abort request is being
received, the abort request remains active and will be evaluated in the
next interframe space. In case of lost arbitration on the bus, the abortion
of the old message could then be executed as described above. In that
case, the transmit buffer would not get released immediately after the
abort request, which has to be considered in polling mode when no
transmit interrupt is used. The transmit buffer access bit (TBA) in the
CAN status register should be polled to indicate the released state
before writing the new message into the buffer. Otherwise, the new data
get lost without being signaled.
EB181

MOTOROLA 27

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Engineering Bulletin
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-800-441-2447 or

303-675-2140
Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 602-244-6609, US & Canada ONLY 1-800-774-1848
INTERNET: http://motorola.com/sps
JAPAN: Nippon Motorola Ltd. SPD, Strategic Planning Office 4-32-1, Nishi-Gotanda Shinagawa-ku, Tokyo 141, Japan. 81-3-5487-8488
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
EB181/D

© Motorola, Inc., 1997

Mfax is a trademark of Motorola, Inc.

	Contents
	Does the M68HC05 Family MCAN module use the BasicC...
	How does the Ping-Pong principle of the two receiv...
	Which bit time should be chosen for a network?
	Which resynchronization mode should be chosen?
	How is the HC05X microcontroller connected to an e...
	Can the M68HC05 Family be used in a network which ...
	How are the MCAN module registers initialized?
	When should and how should the single-line mode be...
	What are the considerations when putting the MCAN ...
	After the MCAN module is put into sleep mode, why ...
	How should an overrun condition be handled?
	How should a bus error or bus off condition be han...
	Error status
	Bus off status

	What does an MCAN interrupt handler look like?
	How is a message aborted?

