
© Motorola, Inc., 1998 EB286

Order this document
by EB286/D

Motorola Semiconductor Engineering Bulletin

EB286

C Macro Definitions for the MC68HC11A8/A7/A1/A0
By By John Bodnar

Austin, Texas

Introduction

With more microcontroller users moving to high level languages like C,
macro definition files like the one outlined in this document can speed
software development efforts. The file reproduced in the following pages
is available on the Freeware Data System. Download and unzip the
hc11a8h.zip file from the MCU11 directory.

The hc11a8h.zip file includes an ASCII text copy of this documentation
and the actual hc11a8.h text file. The hc11a8.h file, and others like it, use
Motorola's designated register and bit names for each device described.
Any user already familiar with MC68HC11 assembly language and
architecture (a requirement even for those who think they will only
program in C), will be able to make use of this file readily.

Conventions

The contents of the actual file will be designated with the Courier
typeface while commentary will appear in the Helvetica typeface used in
this paragraph.

Engineering Bulletin

EB286

2 MOTOROLA

Thus these lines appear in the hc11a8.h file:

/* MOTOROLA INC.

 *

 * FILENAME: hc11a8.h

 *

 * DESCRIPTION: Register and bit macro definitions for the

 * MC68HC11A8, MC68HC11A7, MC68HC11A1, and MC68HC11A0

 * microcontrollers.

 *

 * CREATED: 11/19/93

 *

 * NOTE: Your comments, suggestions, and corrections are requested

 * and greatly appreciated.

 */

First references to key terms appear in bold type, and C keywords, and
expressions appear in italics.

Concepts, Development, and Usage

In C, we can make just about anything an lvalue, that is, something that
appears to the left of the equal sign in an assignment expression. We
can even use a number as an lvalue. In particular, we would like to use
register addresses as lvalues. To do this, we must cast the lvalue as a
pointer to a particular data type.

For example

(unsigned char *) 0x1000

Engineering Bulletin
Concepts, Development, and Usage

EB286

MOTOROLA 3

would be an lvalue that points to an unsigned character (an 8 bit
unsigned value) at memory location 0x1000 ($1000 for those used to
assembly language). In this particular form, however, we cannot yet
assign a value to the memory location. To do this, we must de-
references the pointer. De-references a pointer specifies the value that
is pointed to and not the pointer itself. So, to assign the value 0xFF to
memory location 0x1000, we would use the following C assignment
expression:

*(unsigned char *) 0x1000 = 0xFF;

Likewise, to assign the contents of memory location 0x1000 to the
variable A, use the following assignment:

A = *(unsigned char *) 0x1000;

This is all that is really necessary to manipulate the memory mapped
registers of the MC68HC11. Unfortunately, *(unsigned char *) 0x1000 is
not particularly indicative of the function memory location 0x1000
performs (PORT A on most MC68HC11 devices). The extra typing
required to use this memory location can also be a source of minor, but
unnecessary compilation errors. A better idea is to use the following line
(remember, lines appearing in the hc11a8.h file appear in the Courier
typeface):

#define REGISTER unsigned char

Thus to access memory location 0x1000, we can now type:

A = *(REGISTER *) 0x1000

This is an improvement, but it would be even better if we could define a
register as PORTA or DDRC as we do when programming in assembly.
Thus the following line

#define SOMEDEVICE *(REGISTER *)0x1000

will allow us to address 0x1000 in a very convenient fashion.

For example, we can now type

SOMEDEVICE = 0xFF

to assign 0xFF to memory location 0x1000, and we can also type

A = SOMEDEVICE

Engineering Bulletin

EB286

4 MOTOROLA

to assign the contents of 0x1000 to the variable A.

The MC68HC11 has an INIT register which is used to remap internal
RAM and registers to the beginning of any 4-K page of memory. Some
applications may require register remapping, so it would be convenient
if we could make a simple change to the macro definition file to account
for this. The following line (part of hc11a8.h) allows us to do this:

#define REG_BASE 0x1000

We can thus use the following macro definition to handle register
relocation:

#define SOMEDEVICE *(REGISTER *)(REG_BASE + 0x00)

If we leave REG_BASE as 0x1000, then pointers to the MC68HC11's
peripheral registers will be addressed at 0x1000 in our source code. If
we decide to remap the registers to 0x4000, we can simply replace
0x1000 in the #define REG_BASE macro with 0x4000.

NOTE: This does not actually modify the MC68HC11's INIT register. This must
be done by modifying your C compiler's run-time start up code. Refer to
your compiler's documentation before making any such changes.

Before proceeding with the rest of the hc11a8.h file, we need to
understand the use of C's volatile keyword. By specifying a variable as
volatile, we tell the C compiler not to optimize expressions using that
variable.

#define PORT *(REGISTER *)(REG_BASE + 0xA0)

void main()
{
 PORT = 0x00;

 etc... /* PORT is not used until while(PORT) */

 while (PORT)
 {
 etc...
 }
}

In this program fragment, we immediately initialize PORT to 0x00, but
we will not reference it again until the while (PORT) expression. Unless

Engineering Bulletin
Concepts, Development, and Usage

EB286

MOTOROLA 5

PORT were to somehow change, while (PORT) would be false, and
code in the braces immediately following would not execute.

Some C compilers may view this as unnecessary if PORT never
changes, and it is possible these lines could be optimized out of the
resulting object code.

On the MC68HC11, PORT may point to a bi-directional I/O port whose
inputs may change during the course of program execution, thus the
while (PORT) expression could actually be true when it is executed. As
a precaution, we can designate the PORT pointer as volatile so that the
optimizer will not attempt to remove any questionable references to it.
We would thus change the #define macro to be

#define PORT *(volatile REGISTER *)(REG_BASE + 0xA0)

By doing this, references to PORT will not be optimized. Several
registers on the MC68HC11 can change without the intervention of user
code. These register include port data registers (PORTC), peripheral
status registers (SPSR), peripheral data registers (SCDR, ADR1), flag
registers (TFLG1), and timer registers (TCNT, TIC3).

We could use the volatile keyword with every register macro definition to
simplify matters, but this runs counter to good code documentation. By
specifying only those registers which require it as volatile, the resulting
code will be better documented. Only registers which can receive data
externally or be changed by the processor without user intervention will
be declared volatile. Write only registers will be easily recognized
because they will lack the volatile declaration.

These macro definitions are used for the registers on the MC68HC11A8,
MC68HC11A7, MC68HC11A1, and MC68HC11A0 devices:

#define PORTA (*(volatile REGISTER *)(REG_BASE + 0x00))
#define PIOC (*(volatile REGISTER *)(REG_BASE + 0x02))
#define PORTC (*(volatile REGISTER *)(REG_BASE + 0x03))
#define PORTB (*(REGISTER *)(REG_BASE + 0x04))
#define PORTCL (*(volatile REGISTER *)(REG_BASE + 0x05))
#define DDRC (*(REGISTER *)(REG_BASE + 0x07))
#define PORTD (*(volatile REGISTER *)(REG_BASE + 0x08))
#define DDRD (*(REGISTER *)(REG_BASE + 0x09))
#define PORTE (*(volatile REGISTER *)(REG_BASE + 0x0A))

Engineering Bulletin

EB286

6 MOTOROLA

#define CFORC (*(REGISTER *)(REG_BASE + 0x0B))
#define OC1M (*(REGISTER *)(REG_BASE + 0x0C))
#define OC1D (*(REGISTER *)(REG_BASE + 0x0D))

The following registers (TCNT, TICx, and TOCx) are declared as
unsigned integers because they are 16-bit registers and should be
accessed as such. It is much simpler and clearer to change, for example,
the output compare 4 register by using

TOC4 = 0x4000, TOC4 = TCNT + 0x20FF, or TOC4 += 0x3200.

#define TCNT (*(volatile unsigned int *)(REG_BASE + 0x0E))
#define TIC1 (*(volatile unsigned int *)(REG_BASE + 0x10))
#define TIC2 (*(volatile unsigned int *)(REG_BASE + 0x12))
#define TIC3 (*(volatile unsigned int *)(REG_BASE + 0x14))
#define TOC1 (*(unsigned int *)(REG_BASE + 0x16))
#define TOC2 (*(unsigned int *)(REG_BASE + 0x18))
#define TOC3 (*(unsigned int *)(REG_BASE + 0x1A))
#define TOC4 (*(unsigned int *)(REG_BASE + 0x1C))
#define TOC5 (*(unsigned int *)(REG_BASE + 0x1E))
#define TCTL1 (*(REGISTER *)(REG_BASE + 0x20))
#define TCTL2 (*(REGISTER *)(REG_BASE + 0x21))
#define TMSK1 (*(REGISTER *)(REG_BASE + 0x22))
#define TFLG1 (*(volatile REGISTER *)(REG_BASE + 0x23))
#define TMSK2 (*(REGISTER *)(REG_BASE + 0x24))
#define TFLG2 (*(volatile REGISTER *)(REG_BASE + 0x25))
#define PACTL (*(REGISTER *)(REG_BASE + 0x26))
#define PACNT (*(volatile REGISTER *)(REG_BASE + 0x27))
#define SPCR (*(REGISTER *)(REG_BASE + 0x28))
#define SPSR (*(volatile REGISTER *)(REG_BASE + 0x29))
#define SPDR (*(volatile REGISTER *)(REG_BASE + 0x2A))
#define BAUD (*(REGISTER *)(REG_BASE + 0x2B))

SCCR1 is declared volatile because it has the R8 bit, the ninth data bit
received when SCI mode 1 is used. The remaining bits in this register
are write only.

#define SCCR1 (*(volatile REGISTER *)(REG_BASE + 0x2C))
#define SCCR2 (*(REGISTER *)(REG_BASE + 0x2D))
#define SCSR (*(volatile REGISTER *)(REG_BASE + 0x2E))
#define SCDR (*(volatile REGISTER *)(REG_BASE + 0x2F))

Engineering Bulletin
Concepts, Development, and Usage

EB286

MOTOROLA 7

ADCTL is declared volatile because bit 7, the conversion complete flag
(CCF), is changed without user intervention. The remaining bits in this
register are write only.

#define ADCTL (*(volatile REGISTER *)(REG_BASE + 0x30))
#define ADR1 (*(volatile REGISTER *)(REG_BASE + 0x31))
#define ADR2 (*(volatile REGISTER *)(REG_BASE + 0x32))
#define ADR3 (*(volatile REGISTER *)(REG_BASE + 0x33))
#define ADR4 (*(volatile REGISTER *)(REG_BASE + 0x34))
#define OPTION (*(REGISTER *)(REG_BASE + 0x39))
#define COPRST (*(REGISTER *)(REG_BASE + 0x3A))
#define PPROG (*(REGISTER *)(REG_BASE + 0x3B))
#define HPRIO (*(REGISTER *)(REG_BASE + 0x3C))
#define INIT (*(REGISTER *)(REG_BASE + 0x3D))
#define TEST1 (*(REGISTER *)(REG_BASE + 0x3E))
#define CONFIG (*(REGISTER *)(REG_BASE + 0x3F))

C also allows us to declare individual bit fields as constants. This allows
us to make simple register bit assignments and comparisons. For
instance

while (!(SPSR & SPIF))

can be used to halt program execution until the SPI status register SPIF
bit has set.

Likewise, we can use

SPCR = SPIE + SPE + MSTR + CPHA + SPR0

to configure the SPI for master operation with interrupts using clock
phase 1 and a baud rate of E clock divided by 4. We can also use these
constants to clear individual bit fields in the timer flag registers.

TFLG1 &= OC3F

This clears output compare flag 3 without affecting the other bits in the
TFLG1 register.

A partial list of the macro definitions used for the register bit fields on the
MC68HC11A8, MC68HC11A7, MC68HC11A1, and MC68HC11A0
devices follows. For a complete list, download the file hc11a8h.zip from
the Freeware Data System.

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Engineering Bulletin

EB286/D

© Motorola, Inc., 1998

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217, 1-800-441-2447 or

1-303-675-2140. Customer Focus Center, 1-800-521-6274
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shinigawa-Ku, Tokyo, Japan. 03-5487-8488
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
Mfax™, Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/;

TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848
HOME PAGE: http://motorola.com/sps/

Mfax is a trademark of Motorola, Inc.

/* Bit names for general use */
#define bit7 0x80
#define bit6 0x40
#define bit5 0x20
#define bit4 0x10
#define bit3 0x08
#define bit2 0x04
#define bit1 0x02
#define bit0 0x01

/* PORTA bit definitions 0x00 */
#define PA7 bit7
#define PA6 bit6
#define PA5 bit5
#define PA4 bit4
#define PA3 bit3
#define PA2 bit2
#define PA1 bit1
#define PA0 bit0
 .
 .
 .

/* CONFIG bit definitions 0x3F */
#define NOSEC bit3
#define NOCOP bit2
#define ROMON bit1
#define EEON bit0

	Introduction
	Conventions
	Concepts, Development, and Usage

